code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import gc import threading import time import psutil import torch class lowerCAmelCase__ : '''simple docstring''' def __init__( self ): _lowerCamelCase : Tuple = psutil.Process() _lowerCamelCase : Optional[int] = False def A_ ( self ): _lowerCamelCase : Tuple = -1 while True: _lowerCamelCase : List[Any] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def A_ ( self ): _lowerCamelCase : List[str] = True _lowerCamelCase : Union[str, Any] = threading.Thread(target=self.peak_monitor ) _lowerCamelCase : Optional[Any] = True self.thread.start() def A_ ( self ): _lowerCamelCase : Optional[Any] = False self.thread.join() return self.cpu_memory_peak lowercase__ = PeakCPUMemory() def _snake_case ( ): # Time _lowerCamelCase : Dict = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCamelCase : str = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _lowerCamelCase : List[Any] = torch.cuda.memory_allocated(lowercase__ ) torch.cuda.reset_peak_memory_stats() return measures def _snake_case ( lowercase__ ): # Time _lowerCamelCase : Any = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCamelCase : Dict = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 _lowerCamelCase : str = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _lowerCamelCase : List[Any] = (torch.cuda.memory_allocated(lowercase__ ) - start_measures[str(lowercase__ )]) / 2**20 _lowerCamelCase : Union[str, Any] = (torch.cuda.max_memory_allocated(lowercase__ ) - start_measures[str(lowercase__ )]) / 2**20 return measures def _snake_case ( lowercase__ , lowercase__ ): print(f'''{description}:''' ) print(f'''- Time: {measures['time']:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(f'''- GPU {i} allocated: {measures[str(lowercase__ )]:.2f}MiB''' ) _lowerCamelCase : Any = measures[f'''{i}-peak'''] print(f'''- GPU {i} peak: {peak:.2f}MiB''' ) print(f'''- CPU RAM allocated: {measures['cpu']:.2f}MiB''' ) print(f'''- CPU RAM peak: {measures['cpu-peak']:.2f}MiB''' )
96
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase__ = logging.getLogger() def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = {} _lowerCamelCase : List[Any] = os.path.join(lowercase__ , 'all_results.json' ) if os.path.exists(lowercase__ ): with open(lowercase__ , 'r' ) as f: _lowerCamelCase : List[Any] = json.load(lowercase__ ) else: raise ValueError(f'''can\'t find {path}''' ) return results lowercase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self ): import xla_spawn _lowerCamelCase : List[Any] = self.get_auto_remove_tmp_dir() _lowerCamelCase : List[Any] = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowercase , 'argv' , lowercase ): _lowerCamelCase : Dict = time() xla_spawn.main() _lowerCamelCase : Any = time() _lowerCamelCase : Optional[int] = get_results(lowercase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def A_ ( self ): import xla_spawn _lowerCamelCase : Tuple = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(lowercase , 'argv' , lowercase ): xla_spawn.main()
96
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowercase : Tuple = logging.get_logger(__name__) # General docstring lowercase : Optional[int] = """ResNetConfig""" # Base docstring lowercase : Any = """microsoft/resnet-50""" lowercase : Optional[Any] = [1, 2048, 7, 7] # Image classification docstring lowercase : str = """microsoft/resnet-50""" lowercase : List[str] = """tiger cat""" lowercase : List[Any] = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class __snake_case ( nn.Module ): def __init__( self ,snake_case ,snake_case ,snake_case = 3 ,snake_case = 1 ,snake_case = "relu" ): '''simple docstring''' super().__init__() lowercase : int = nn.Convad( snake_case ,snake_case ,kernel_size=snake_case ,stride=snake_case ,padding=kernel_size // 2 ,bias=snake_case ) lowercase : int = nn.BatchNormad(snake_case ) lowercase : List[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = self.convolution(snake_case ) lowercase : List[str] = self.normalization(snake_case ) lowercase : List[Any] = self.activation(snake_case ) return hidden_state class __snake_case ( nn.Module ): def __init__( self ,snake_case ): '''simple docstring''' super().__init__() lowercase : Union[str, Any] = ResNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act ) lowercase : Union[str, Any] = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 ) lowercase : Any = config.num_channels def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Dict = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) lowercase : str = self.embedder(snake_case ) lowercase : int = self.pooler(snake_case ) return embedding class __snake_case ( nn.Module ): def __init__( self ,snake_case ,snake_case ,snake_case = 2 ): '''simple docstring''' super().__init__() lowercase : Tuple = nn.Convad(snake_case ,snake_case ,kernel_size=1 ,stride=snake_case ,bias=snake_case ) lowercase : Tuple = nn.BatchNormad(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = self.convolution(snake_case ) lowercase : List[Any] = self.normalization(snake_case ) return hidden_state class __snake_case ( nn.Module ): def __init__( self ,snake_case ,snake_case ,snake_case = 1 ,snake_case = "relu" ): '''simple docstring''' super().__init__() lowercase : int = in_channels != out_channels or stride != 1 lowercase : Optional[Any] = ( ResNetShortCut(snake_case ,snake_case ,stride=snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase : str = nn.Sequential( ResNetConvLayer(snake_case ,snake_case ,stride=snake_case ) ,ResNetConvLayer(snake_case ,snake_case ,activation=snake_case ) ,) lowercase : Union[str, Any] = ACTaFN[activation] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = hidden_state lowercase : str = self.layer(snake_case ) lowercase : List[Any] = self.shortcut(snake_case ) hidden_state += residual lowercase : str = self.activation(snake_case ) return hidden_state class __snake_case ( nn.Module ): def __init__( self ,snake_case ,snake_case ,snake_case = 1 ,snake_case = "relu" ,snake_case = 4 ): '''simple docstring''' super().__init__() lowercase : Optional[Any] = in_channels != out_channels or stride != 1 lowercase : List[Any] = out_channels // reduction lowercase : Optional[Any] = ( ResNetShortCut(snake_case ,snake_case ,stride=snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase : Dict = nn.Sequential( ResNetConvLayer(snake_case ,snake_case ,kernel_size=1 ) ,ResNetConvLayer(snake_case ,snake_case ,stride=snake_case ) ,ResNetConvLayer(snake_case ,snake_case ,kernel_size=1 ,activation=snake_case ) ,) lowercase : Union[str, Any] = ACTaFN[activation] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : int = hidden_state lowercase : int = self.layer(snake_case ) lowercase : Dict = self.shortcut(snake_case ) hidden_state += residual lowercase : str = self.activation(snake_case ) return hidden_state class __snake_case ( nn.Module ): def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case = 2 ,snake_case = 2 ,): '''simple docstring''' super().__init__() lowercase : Tuple = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer lowercase : List[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(snake_case ,snake_case ,stride=snake_case ,activation=config.hidden_act ) ,*[layer(snake_case ,snake_case ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[Any] = input for layer in self.layers: lowercase : int = layer(snake_case ) return hidden_state class __snake_case ( nn.Module ): def __init__( self ,snake_case ): '''simple docstring''' super().__init__() lowercase : List[str] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(snake_case ,config.depths[1:] ): self.stages.append(ResNetStage(snake_case ,snake_case ,snake_case ,depth=snake_case ) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = False ,snake_case = True ): '''simple docstring''' lowercase : str = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase : List[Any] = hidden_states + (hidden_state,) lowercase : Optional[int] = stage_module(snake_case ) if output_hidden_states: lowercase : Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=snake_case ,hidden_states=snake_case ,) class __snake_case ( lowerCAmelCase ): _a : Optional[int]= ResNetConfig _a : int= "resnet" _a : Union[str, Any]= "pixel_values" _a : int= True def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if isinstance(snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode="""fan_out""" ,nonlinearity="""relu""" ) elif isinstance(snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=False ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : Union[str, Any] = value lowercase : Union[str, Any] = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowercase : Dict = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , lowerCAmelCase , ) class __snake_case ( lowerCAmelCase ): def __init__( self ,snake_case ): '''simple docstring''' super().__init__(snake_case ) lowercase : Union[str, Any] = config lowercase : Optional[int] = ResNetEmbeddings(snake_case ) lowercase : Any = ResNetEncoder(snake_case ) lowercase : str = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=snake_case ,config_class=_CONFIG_FOR_DOC ,modality="""vision""" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ): '''simple docstring''' lowercase : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict lowercase : str = self.embedder(snake_case ) lowercase : Optional[int] = self.encoder( snake_case ,output_hidden_states=snake_case ,return_dict=snake_case ) lowercase : Dict = encoder_outputs[0] lowercase : List[Any] = self.pooler(snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case ,pooler_output=snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase , ) class __snake_case ( lowerCAmelCase ): def __init__( self ,snake_case ): '''simple docstring''' super().__init__(snake_case ) lowercase : Union[str, Any] = config.num_labels lowercase : Optional[int] = ResNetModel(snake_case ) # classification head lowercase : int = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,): '''simple docstring''' lowercase : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase : Tuple = self.resnet(snake_case ,output_hidden_states=snake_case ,return_dict=snake_case ) lowercase : Any = outputs.pooler_output if return_dict else outputs[1] lowercase : Tuple = self.classifier(snake_case ) lowercase : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase : Optional[int] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase : Optional[Any] = """single_label_classification""" else: lowercase : Optional[Any] = """multi_label_classification""" if self.config.problem_type == "regression": lowercase : Dict = MSELoss() if self.num_labels == 1: lowercase : List[str] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase : List[str] = loss_fct(snake_case ,snake_case ) elif self.config.problem_type == "single_label_classification": lowercase : Dict = CrossEntropyLoss() lowercase : int = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase : Dict = BCEWithLogitsLoss() lowercase : Dict = loss_fct(snake_case ,snake_case ) if not return_dict: lowercase : Union[str, Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=snake_case ,logits=snake_case ,hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , lowerCAmelCase , ) class __snake_case ( lowerCAmelCase , lowerCAmelCase ): def __init__( self ,snake_case ): '''simple docstring''' super().__init__(snake_case ) super()._init_backbone(snake_case ) lowercase : List[str] = [config.embedding_size] + config.hidden_sizes lowercase : List[Any] = ResNetEmbeddings(snake_case ) lowercase : List[str] = ResNetEncoder(snake_case ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case ) @replace_return_docstrings(output_type=snake_case ,config_class=_CONFIG_FOR_DOC ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ): '''simple docstring''' lowercase : str = return_dict if return_dict is not None else self.config.use_return_dict lowercase : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : List[str] = self.embedder(snake_case ) lowercase : List[str] = self.encoder(snake_case ,output_hidden_states=snake_case ,return_dict=snake_case ) lowercase : Optional[Any] = outputs.hidden_states lowercase : Dict = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowercase : Optional[Any] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=snake_case ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=snake_case ,)
369
import math from datetime import datetime, timedelta def _snake_case( SCREAMING_SNAKE_CASE__ ) -> datetime: lowercase : Any = year % 19 lowercase : Optional[int] = year % 4 lowercase : Any = year % 7 lowercase : str = math.floor(year / 100 ) lowercase : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) lowercase : Tuple = leap_day_inhibits / 4 lowercase : Any = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 lowercase : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowercase : str = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon lowercase : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE__ , 4 , 18 ) else: return datetime(SCREAMING_SNAKE_CASE__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): lowercase : List[str] = """will be""" if year > datetime.now().year else """was""" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
285
0
lowercase__ :Optional[Any] = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
101
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowercase__ :Optional[int] = pytest.mark.integration @require_faiss class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): lowercase = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(A__) for x in np.arange(3_0).tolist()]}) return dset def A__ ( self): import faiss lowercase = self._create_dummy_dataset() lowercase = dset.map( lambda A__ ,A__: {"vecs": i * np.ones(5 ,dtype=np.floataa)} ,with_indices=A__ ,keep_in_memory=A__) lowercase = dset.add_faiss_index('''vecs''' ,batch_size=1_0_0 ,metric_type=faiss.METRIC_INNER_PRODUCT) lowercase , lowercase = dset.get_nearest_examples('''vecs''' ,np.ones(5 ,dtype=np.floataa)) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') dset.drop_index('''vecs''') def A__ ( self): import faiss lowercase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 ,1) ,index_name='''vecs''' ,batch_size=1_0_0 ,metric_type=faiss.METRIC_INNER_PRODUCT ,) lowercase , lowercase = dset.get_nearest_examples('''vecs''' ,np.ones(5 ,dtype=np.floataa)) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') def A__ ( self): import faiss lowercase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 ,1) ,index_name='''vecs''' ,metric_type=faiss.METRIC_INNER_PRODUCT ,) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__) as tmp_file: dset.save_faiss_index('''vecs''' ,tmp_file.name) dset.load_faiss_index('''vecs2''' ,tmp_file.name) os.unlink(tmp_file.name) lowercase , lowercase = dset.get_nearest_examples('''vecs2''' ,np.ones(5 ,dtype=np.floataa)) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') def A__ ( self): lowercase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 ,1) ,index_name='''vecs''') dset.drop_index('''vecs''') self.assertRaises(A__ ,partial(dset.get_nearest_examples ,'''vecs2''' ,np.ones(5 ,dtype=np.floataa))) def A__ ( self): from elasticsearch import Elasticsearch lowercase = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''') as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''') as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''') as mocked_bulk: lowercase = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 3_0) lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 2_9}]}} lowercase = Elasticsearch() dset.add_elasticsearch_index('''filename''' ,es_client=A__) lowercase , lowercase = dset.get_nearest_examples('''filename''' ,'''my_name-train_29''') self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') @require_faiss class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): import faiss lowercase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal ,5) index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal ,1_0) # single query lowercase = np.zeros(5 ,dtype=np.floataa) lowercase = 1 lowercase , lowercase = index.search(A__) self.assertRaises(A__ ,index.search ,query.reshape(-1 ,1)) self.assertGreater(scores[0] ,0) self.assertEqual(indices[0] ,1) # batched queries lowercase = np.eye(5 ,dtype=np.floataa)[::-1] lowercase , lowercase = index.search_batch(A__) self.assertRaises(A__ ,index.search_batch ,queries[0]) lowercase = [scores[0] for scores in total_scores] lowercase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__) ,0) self.assertListEqual([4, 3, 2, 1, 0] ,A__) def A__ ( self): import faiss lowercase = FaissIndex(string_factory='''Flat''') index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat) lowercase = FaissIndex(string_factory='''LSH''') index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsInstance(index.faiss_index ,faiss.IndexLSH) with self.assertRaises(A__): lowercase = FaissIndex(string_factory='''Flat''' ,custom_index=faiss.IndexFlat(5)) def A__ ( self): import faiss lowercase = faiss.IndexFlat(5) lowercase = FaissIndex(custom_index=A__) index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat) def A__ ( self): import faiss lowercase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 ,dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__) as tmp_file: index.save(tmp_file.name) lowercase = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) lowercase = np.zeros(5 ,dtype=np.floataa) lowercase = 1 lowercase , lowercase = index.search(A__) self.assertGreater(scores[0] ,0) self.assertEqual(indices[0] ,1) @require_faiss def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' import faiss lowercase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowercase = '''index.faiss''' lowercase = f'mock://{index_name}' index.save(lowerCAmelCase__ , storage_options=mockfs.storage_options ) lowercase = FaissIndex.load(lowerCAmelCase__ , storage_options=mockfs.storage_options ) lowercase = np.zeros(5 , dtype=np.floataa ) lowercase = 1 lowercase , lowercase = index.search(lowerCAmelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''') as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''') as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''') as mocked_bulk: lowercase = Elasticsearch() lowercase = {'''acknowledged''': True} lowercase = ElasticSearchIndex(es_client=A__) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['''foo''', '''bar''', '''foobar''']) # single query lowercase = '''foo''' lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowercase , lowercase = index.search(A__) self.assertEqual(scores[0] ,1) self.assertEqual(indices[0] ,0) # single query with timeout lowercase = '''foo''' lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowercase , lowercase = index.search(A__ ,request_timeout=3_0) self.assertEqual(scores[0] ,1) self.assertEqual(indices[0] ,0) # batched queries lowercase = ['''foo''', '''bar''', '''foobar'''] lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowercase , lowercase = index.search_batch(A__) lowercase = [scores[0] for scores in total_scores] lowercase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__) ,0) self.assertListEqual([1, 1, 1] ,A__) # batched queries with timeout lowercase = ['''foo''', '''bar''', '''foobar'''] lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowercase , lowercase = index.search_batch(A__ ,request_timeout=3_0) lowercase = [scores[0] for scores in total_scores] lowercase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__) ,0) self.assertListEqual([1, 1, 1] ,A__)
101
1
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput snake_case__ = 8 def snake_case__ ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any]=BITS ) -> List[str]: A_ : Any = x.device A_ : Union[str, Any] = (x * 2_5_5).int().clamp(0 , 2_5_5 ) A_ : Optional[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCamelCase__ ) A_ : Any = rearrange(lowerCamelCase__ , '''d -> d 1 1''' ) A_ : Union[str, Any] = rearrange(lowerCamelCase__ , '''b c h w -> b c 1 h w''' ) A_ : Tuple = ((x & mask) != 0).float() A_ : Union[str, Any] = rearrange(lowerCamelCase__ , '''b c d h w -> b (c d) h w''' ) A_ : str = bits * 2 - 1 return bits def snake_case__ ( lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any]=BITS ) -> str: A_ : Union[str, Any] = x.device A_ : Optional[int] = (x > 0).int() A_ : Dict = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCamelCase__ , dtype=torch.intaa ) A_ : Tuple = rearrange(lowerCamelCase__ , '''d -> d 1 1''' ) A_ : List[str] = rearrange(lowerCamelCase__ , '''b (c d) h w -> b c d h w''' , d=8 ) A_ : Tuple = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 2_5_5).clamp(0.0 , 1.0 ) def snake_case__ ( self : Dict , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : int , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : bool = True , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A_ : Optional[int] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A_ : Dict = self.alphas_cumprod[timestep] A_ : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A_ : List[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A_ : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A_ : str = self.bit_scale if self.config.clip_sample: A_ : List[str] = torch.clamp(lowerCamelCase__ , -scale , lowerCamelCase__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A_ : Dict = self._get_variance(lowerCamelCase__ , lowerCamelCase__ ) A_ : Any = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A_ : str = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A_ : Optional[int] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A_ : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A_ : Optional[int] = model_output.device if torch.is_tensor(lowerCamelCase__ ) else '''cpu''' A_ : Tuple = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowerCamelCase__ ).to(lowerCamelCase__ ) A_ : Any = self._get_variance(lowerCamelCase__ , lowerCamelCase__ ) ** 0.5 * eta * noise A_ : Optional[int] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCamelCase__ , pred_original_sample=lowerCamelCase__ ) def snake_case__ ( self : List[str] , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : int , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : Optional[Any]="epsilon" , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: A_ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A_ ,A_ : List[str] = torch.split(lowerCamelCase__ , sample.shape[1] , dim=1 ) else: A_ : int = None # 1. compute alphas, betas A_ : List[str] = self.alphas_cumprod[t] A_ : Any = self.alphas_cumprod[t - 1] if t > 0 else self.one A_ : Optional[Any] = 1 - alpha_prod_t A_ : Dict = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A_ : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A_ : List[str] = model_output else: raise ValueError(f'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A_ : Optional[int] = self.bit_scale if self.config.clip_sample: A_ : Any = torch.clamp(lowerCamelCase__ , -scale , lowerCamelCase__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ : List[Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A_ : int = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A_ : List[str] = 0 if t > 0: A_ : List[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowerCamelCase__ ).to(model_output.device ) A_ : Any = (self._get_variance(lowerCamelCase__ , predicted_variance=lowerCamelCase__ ) ** 0.5) * noise A_ : str = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCamelCase__ , pred_original_sample=lowerCamelCase__ ) class UpperCamelCase_ (a__ ): """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : UNetaDConditionModel , _lowerCamelCase : Union[DDIMScheduler, DDPMScheduler] , _lowerCamelCase : Optional[float] = 1.0 , ): """simple docstring""" super().__init__() A_ : Any = bit_scale A_ : Optional[Any] = ( ddim_bit_scheduler_step if isinstance(_lowerCamelCase , _lowerCamelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self : Tuple , _lowerCamelCase : Optional[int] = 256 , _lowerCamelCase : Optional[int] = 256 , _lowerCamelCase : Optional[int] = 50 , _lowerCamelCase : Optional[torch.Generator] = None , _lowerCamelCase : Optional[int] = 1 , _lowerCamelCase : Optional[str] = "pil" , _lowerCamelCase : bool = True , **_lowerCamelCase : Any , ): """simple docstring""" A_ : Optional[int] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_lowerCamelCase , ) A_ : str = decimal_to_bits(_lowerCamelCase ) * self.bit_scale A_ : int = latents.to(self.device ) self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A_ : Optional[int] = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample A_ : Dict = bits_to_decimal(_lowerCamelCase ) if output_type == "pil": A_ : Dict = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
4
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Any=32 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : int=10 , _lowerCamelCase : Union[str, Any]=[8, 16, 32, 64] , _lowerCamelCase : Dict=[1, 1, 2, 1] , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any="relu" , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Dict=["stage2", "stage3", "stage4"] , _lowerCamelCase : Union[str, Any]=[2, 3, 4] , _lowerCamelCase : Tuple=1 , ): """simple docstring""" A_ : List[str] = parent A_ : List[str] = batch_size A_ : Union[str, Any] = image_size A_ : Tuple = num_channels A_ : Any = embeddings_size A_ : int = hidden_sizes A_ : Optional[Any] = depths A_ : List[Any] = is_training A_ : Optional[int] = use_labels A_ : int = hidden_act A_ : Tuple = num_labels A_ : Union[str, Any] = scope A_ : List[Any] = len(_lowerCamelCase ) A_ : Union[str, Any] = out_features A_ : List[Any] = out_indices A_ : Dict = num_groups def _a ( self : Optional[int] ): """simple docstring""" A_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.num_labels ) A_ : Any = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Any = BitModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Dict = self.num_labels A_ : Optional[Any] = BitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : List[Any] = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A_ : Optional[Any] = None A_ : int = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : List[Any] ): """simple docstring""" A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ ,A_ ,A_ : Union[str, Any] = config_and_inputs A_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCAmelCase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = BitModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _a ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _a ( self : Any ): """simple docstring""" pass def _a ( self : List[Any] ): """simple docstring""" A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(_lowerCamelCase ) A_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ ,A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(config=_lowerCamelCase ) for name, module in model.named_modules(): if isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _a ( self : int ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int ): A_ : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Tuple = layer_type A_ : Optional[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[Any] = BitModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> Optional[int]: A_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCamelCase ) A_ : Union[str, Any] = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : int = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_lowerCamelCase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @require_torch class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitBackbone,) if is_torch_available() else () _lowerCAmelCase = BitConfig _lowerCAmelCase = False def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = BitModelTester(self )
4
1
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __SCREAMING_SNAKE_CASE ( *UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__=True , UpperCamelCase__=2 ) -> Dict: '''simple docstring''' from .. import __version__ UpperCAmelCase = take_from UpperCAmelCase = () if not isinstance(args[0] , _lowerCAmelCase ): UpperCAmelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_lowerCAmelCase ).base_version ) >= version.parse(_lowerCAmelCase ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""" ) UpperCAmelCase = None if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_lowerCAmelCase ),) UpperCAmelCase = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(_lowerCAmelCase , _lowerCAmelCase ): values += (getattr(_lowerCAmelCase , _lowerCAmelCase ),) UpperCAmelCase = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: UpperCAmelCase = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: UpperCAmelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , _lowerCAmelCase , stacklevel=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) > 0: UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1] UpperCAmelCase = call_frame.filename UpperCAmelCase = call_frame.lineno UpperCAmelCase = call_frame.function UpperCAmelCase , UpperCAmelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(_lowerCAmelCase ) == 0: return elif len(_lowerCAmelCase ) == 1: return values[0] return values
273
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """mgp-str""" def __init__( self : int , _lowerCAmelCase : str=[3_2, 1_2_8] , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : int=3 , _lowerCAmelCase : str=2_7 , _lowerCAmelCase : List[str]=3_8 , _lowerCAmelCase : Tuple=5_0_2_5_7 , _lowerCAmelCase : str=3_0_5_2_2 , _lowerCAmelCase : Optional[int]=7_6_8 , _lowerCAmelCase : Optional[int]=1_2 , _lowerCAmelCase : Optional[Any]=1_2 , _lowerCAmelCase : Optional[int]=4.0 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[Any]=1e-5 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : str=False , _lowerCAmelCase : List[Any]=0.02 , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**_lowerCAmelCase) __lowercase =image_size __lowercase =patch_size __lowercase =num_channels __lowercase =max_token_length __lowercase =num_character_labels __lowercase =num_bpe_labels __lowercase =num_wordpiece_labels __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =mlp_ratio __lowercase =distilled __lowercase =layer_norm_eps __lowercase =drop_rate __lowercase =qkv_bias __lowercase =attn_drop_rate __lowercase =drop_path_rate __lowercase =output_aa_attentions __lowercase =initializer_range
166
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __get__( self: str , __A: str , __A: Tuple=None ) -> List[str]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) _A = '''__cached_''' + self.fget.__name__ _A = getattr(__A , __A , __A ) if cached is None: _A = self.fget(__A ) setattr(__A , __A , __A ) return cached def __A ( _lowercase ): '''simple docstring''' _A = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"""invalid truth value {val!r}""" ) def __A ( _lowercase ): '''simple docstring''' if is_torch_fx_proxy(_lowercase ): return True if is_torch_available(): import torch if isinstance(_lowercase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowercase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowercase , (jnp.ndarray, Tracer) ): return True return isinstance(_lowercase , np.ndarray ) def __A ( _lowercase ): '''simple docstring''' return isinstance(_lowercase , np.ndarray ) def __A ( _lowercase ): '''simple docstring''' return _is_numpy(_lowercase ) def __A ( _lowercase ): '''simple docstring''' import torch return isinstance(_lowercase , torch.Tensor ) def __A ( _lowercase ): '''simple docstring''' return False if not is_torch_available() else _is_torch(_lowercase ) def __A ( _lowercase ): '''simple docstring''' import torch return isinstance(_lowercase , torch.device ) def __A ( _lowercase ): '''simple docstring''' return False if not is_torch_available() else _is_torch_device(_lowercase ) def __A ( _lowercase ): '''simple docstring''' import torch if isinstance(_lowercase , _lowercase ): if hasattr(_lowercase , _lowercase ): _A = getattr(_lowercase , _lowercase ) else: return False return isinstance(_lowercase , torch.dtype ) def __A ( _lowercase ): '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(_lowercase ) def __A ( _lowercase ): '''simple docstring''' import tensorflow as tf return isinstance(_lowercase , tf.Tensor ) def __A ( _lowercase ): '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(_lowercase ) def __A ( _lowercase ): '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowercase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(_lowercase ) return type(_lowercase ) == tf.Tensor def __A ( _lowercase ): '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowercase ) def __A ( _lowercase ): '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(_lowercase , jnp.ndarray ) def __A ( _lowercase ): '''simple docstring''' return False if not is_flax_available() else _is_jax(_lowercase ) def __A ( _lowercase ): '''simple docstring''' if isinstance(_lowercase , (dict, UserDict) ): return {k: to_py_obj(_lowercase ) for k, v in obj.items()} elif isinstance(_lowercase , (list, tuple) ): return [to_py_obj(_lowercase ) for o in obj] elif is_tf_tensor(_lowercase ): return obj.numpy().tolist() elif is_torch_tensor(_lowercase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowercase ): return np.asarray(_lowercase ).tolist() elif isinstance(_lowercase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __A ( _lowercase ): '''simple docstring''' if isinstance(_lowercase , (dict, UserDict) ): return {k: to_numpy(_lowercase ) for k, v in obj.items()} elif isinstance(_lowercase , (list, tuple) ): return np.array(_lowercase ) elif is_tf_tensor(_lowercase ): return obj.numpy() elif is_torch_tensor(_lowercase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowercase ): return np.asarray(_lowercase ) else: return obj class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __A ( self: str ) -> Optional[int]: _A = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) _A = getattr(self , class_fields[0].name ) _A = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A , __A ): _A = first_field.items() _A = True else: try: _A = iter(__A ) _A = True except TypeError: _A = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A , (list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0] , __A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _A = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _A = element[1] elif first_field is not None: _A = first_field else: for field in class_fields: _A = getattr(self , field.name ) if v is not None: _A = v def __delitem__( self: List[str] , *__A: List[str] , **__A: str ) -> Optional[Any]: raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def __A ( self: List[str] , *__A: int , **__A: Tuple ) -> Dict: raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def __A ( self: Dict , *__A: Optional[Any] , **__A: Union[str, Any] ) -> int: raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def __A ( self: int , *__A: Dict , **__A: str ) -> Tuple: raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self: List[str] , __A: Optional[int] ) -> str: if isinstance(__A , __A ): _A = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self: Optional[int] , __A: str , __A: Dict ) -> Dict: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A , __A ) super().__setattr__(__A , __A ) def __setitem__( self: List[str] , __A: Tuple , __A: Any ) -> List[str]: # Will raise a KeyException if needed super().__setitem__(__A , __A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A , __A ) def __A ( self: Any ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class SCREAMING_SNAKE_CASE ( snake_case , snake_case ): """simple docstring""" @classmethod def __A ( cls: Dict , __A: List[Any] ) -> Optional[int]: raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "longest" A_ = "max_length" A_ = "do_not_pad" class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "pt" A_ = "tf" A_ = "np" A_ = "jax" class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: List[Any] , __A: List[ContextManager] ) -> str: _A = context_managers _A = ExitStack() def __enter__( self: List[str] ) -> str: for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self: Union[str, Any] , *__A: int , **__A: List[Any] ) -> int: self.stack.__exit__(*__A , **__A ) def __A ( _lowercase ): '''simple docstring''' _A = infer_framework(_lowercase ) if framework == "tf": _A = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _A = inspect.signature(model_class.forward ) # PyTorch models else: _A = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __A ( _lowercase ): '''simple docstring''' _A = model_class.__name__ _A = infer_framework(_lowercase ) if framework == "tf": _A = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _A = inspect.signature(model_class.forward ) # PyTorch models else: _A = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __A ( _lowercase , _lowercase = "" , _lowercase = "." ): '''simple docstring''' def _flatten_dict(_lowercase , _lowercase="" , _lowercase="." ): for k, v in d.items(): _A = str(_lowercase ) + delimiter + str(_lowercase ) if parent_key else k if v and isinstance(_lowercase , _lowercase ): yield from flatten_dict(_lowercase , _lowercase , delimiter=_lowercase ).items() else: yield key, v return dict(_flatten_dict(_lowercase , _lowercase , _lowercase ) ) @contextmanager def __A ( _lowercase , _lowercase = False ): '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __A ( _lowercase , _lowercase=None ): '''simple docstring''' if is_numpy_array(_lowercase ): return np.transpose(_lowercase , axes=_lowercase ) elif is_torch_tensor(_lowercase ): return array.T if axes is None else array.permute(*_lowercase ) elif is_tf_tensor(_lowercase ): import tensorflow as tf return tf.transpose(_lowercase , perm=_lowercase ) elif is_jax_tensor(_lowercase ): return jnp.transpose(_lowercase , axes=_lowercase ) else: raise ValueError(f"""Type not supported for transpose: {type(_lowercase )}.""" ) def __A ( _lowercase , _lowercase ): '''simple docstring''' if is_numpy_array(_lowercase ): return np.reshape(_lowercase , _lowercase ) elif is_torch_tensor(_lowercase ): return array.reshape(*_lowercase ) elif is_tf_tensor(_lowercase ): import tensorflow as tf return tf.reshape(_lowercase , _lowercase ) elif is_jax_tensor(_lowercase ): return jnp.reshape(_lowercase , _lowercase ) else: raise ValueError(f"""Type not supported for reshape: {type(_lowercase )}.""" ) def __A ( _lowercase , _lowercase=None ): '''simple docstring''' if is_numpy_array(_lowercase ): return np.squeeze(_lowercase , axis=_lowercase ) elif is_torch_tensor(_lowercase ): return array.squeeze() if axis is None else array.squeeze(dim=_lowercase ) elif is_tf_tensor(_lowercase ): import tensorflow as tf return tf.squeeze(_lowercase , axis=_lowercase ) elif is_jax_tensor(_lowercase ): return jnp.squeeze(_lowercase , axis=_lowercase ) else: raise ValueError(f"""Type not supported for squeeze: {type(_lowercase )}.""" ) def __A ( _lowercase , _lowercase ): '''simple docstring''' if is_numpy_array(_lowercase ): return np.expand_dims(_lowercase , _lowercase ) elif is_torch_tensor(_lowercase ): return array.unsqueeze(dim=_lowercase ) elif is_tf_tensor(_lowercase ): import tensorflow as tf return tf.expand_dims(_lowercase , axis=_lowercase ) elif is_jax_tensor(_lowercase ): return jnp.expand_dims(_lowercase , axis=_lowercase ) else: raise ValueError(f"""Type not supported for expand_dims: {type(_lowercase )}.""" ) def __A ( _lowercase ): '''simple docstring''' if is_numpy_array(_lowercase ): return np.size(_lowercase ) elif is_torch_tensor(_lowercase ): return array.numel() elif is_tf_tensor(_lowercase ): import tensorflow as tf return tf.size(_lowercase ) elif is_jax_tensor(_lowercase ): return array.size else: raise ValueError(f"""Type not supported for expand_dims: {type(_lowercase )}.""" ) def __A ( _lowercase , _lowercase ): '''simple docstring''' for key, value in auto_map.items(): if isinstance(_lowercase , (tuple, list) ): _A = [f"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: _A = f"""{repo_id}--{value}""" return auto_map def __A ( _lowercase ): '''simple docstring''' for base_class in inspect.getmro(_lowercase ): _A = base_class.__module__ _A = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"""Could not infer framework from class {model_class}.""" )
360
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: List[str] , __A: Optional[NestedDataStructureLike[PathLike]] = None , __A: Optional[NamedSplit] = None , __A: Optional[Features] = None , __A: str = None , __A: bool = False , __A: bool = False , __A: Optional[int] = None , **__A: Tuple , ) -> List[Any]: _A = path_or_paths _A = split if split or isinstance(__A , __A ) else '''train''' _A = features _A = cache_dir _A = keep_in_memory _A = streaming _A = num_proc _A = kwargs @abstractmethod def __A ( self: Union[str, Any] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: str , __A: Optional[Features] = None , __A: str = None , __A: bool = False , __A: bool = False , __A: Optional[int] = None , **__A: Optional[int] , ) -> Union[str, Any]: _A = features _A = cache_dir _A = keep_in_memory _A = streaming _A = num_proc _A = kwargs @abstractmethod def __A ( self: Any ) -> Union[Dataset, IterableDataset]: pass
75
0
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __lowercase = logging.get_logger(__name__) __lowercase = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class a__: '''simple docstring''' def __init__( self , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""") lowerCAmelCase = model lowerCAmelCase = kwargs.get("""model_save_dir""" , _SCREAMING_SNAKE_CASE) lowerCAmelCase = kwargs.get("""latest_model_name""" , _SCREAMING_SNAKE_CASE) def __call__( self , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = {k: np.array(_SCREAMING_SNAKE_CASE) for k, v in kwargs.items()} return self.model.run(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) @staticmethod def a_ ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None): """simple docstring""" if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""") lowerCAmelCase = 'CPUExecutionProvider' return ort.InferenceSession(_SCREAMING_SNAKE_CASE , providers=[provider] , sess_options=_SCREAMING_SNAKE_CASE) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowerCAmelCase = self.model_save_dir.joinpath(self.latest_model_name) lowerCAmelCase = Path(_SCREAMING_SNAKE_CASE).joinpath(_SCREAMING_SNAKE_CASE) try: shutil.copyfile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowerCAmelCase = self.model_save_dir.joinpath(_SCREAMING_SNAKE_CASE) if src_path.exists(): lowerCAmelCase = Path(_SCREAMING_SNAKE_CASE).joinpath(_SCREAMING_SNAKE_CASE) try: shutil.copyfile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) except shutil.SameFileError: pass def a_ ( self , __lowerCAmelCase , **__lowerCAmelCase , ): """simple docstring""" if os.path.isfile(_SCREAMING_SNAKE_CASE): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE) # saving model weights/files self._save_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) @classmethod def a_ ( cls , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_SCREAMING_SNAKE_CASE): lowerCAmelCase = OnnxRuntimeModel.load_model( os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) , provider=_SCREAMING_SNAKE_CASE , sess_options=_SCREAMING_SNAKE_CASE) lowerCAmelCase = Path(_SCREAMING_SNAKE_CASE) # load model from hub else: # download model lowerCAmelCase = hf_hub_download( repo_id=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = Path(_SCREAMING_SNAKE_CASE).parent lowerCAmelCase = Path(_SCREAMING_SNAKE_CASE).name lowerCAmelCase = OnnxRuntimeModel.load_model(_SCREAMING_SNAKE_CASE , provider=_SCREAMING_SNAKE_CASE , sess_options=_SCREAMING_SNAKE_CASE) return cls(model=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) @classmethod def a_ ( cls , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = None if len(str(_SCREAMING_SNAKE_CASE).split("""@""")) == 2: lowerCAmelCase = model_id.split("""@""") return cls._from_pretrained( model_id=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
272
"""simple docstring""" import os import pytest from attr import dataclass lowerCamelCase__ = """us-east-1""" # defaults region @dataclass class A__ : A_ : str A_ : Union[str, Any] = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' A_ : Optional[int] = { 'task_name': 'mnli', 'per_device_train_batch_size': 1_6, 'per_device_eval_batch_size': 1_6, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_0_0, 'save_steps': 5_5_0_0, } A_ : List[Any] = {**hyperparameters, 'max_steps': 1_0_0_0} @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __lowerCamelCase ( self ): return f"{self.framework}-transfromers-test" @property def __lowerCamelCase ( self ): return f"./tests/sagemaker/scripts/{self.framework}" @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : str = SageMakerTestEnvironment(framework=request.cls.framework )
86
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int = 1_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = n * (n + 1) * (2 * n + 1) / 6 UpperCAmelCase_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"{solution() = }")
106
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def _lowercase (self : Dict , __a : Any ): if isinstance(__a , __a ): UpperCAmelCase_ = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__(self : Union[str, Any] , __a : Optional[int] , __a : Optional[int] , __a : int ): if len(__a ) == 0 or len(__a ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(__a ) ) if isinstance(__a , __a ): UpperCAmelCase_ = [sequences] UpperCAmelCase_ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCamelCase__ ) class __A ( UpperCamelCase__ ): def __init__(self : Optional[Any] , __a : Union[str, Any]=ZeroShotClassificationArgumentHandler() , *__a : Optional[int] , **__a : List[str] ): UpperCAmelCase_ = args_parser super().__init__(*__a , **__a ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def _lowercase (self : str ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def _lowercase (self : Any , __a : Any , __a : int=True , __a : Dict=True , __a : Any=TruncationStrategy.ONLY_FIRST , **__a : Tuple ): UpperCAmelCase_ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) UpperCAmelCase_ = self.tokenizer.eos_token try: UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase (self : List[str] , **__a : Tuple ): if kwargs.get("multi_class" , __a ) is not None: UpperCAmelCase_ = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) UpperCAmelCase_ = {} if "candidate_labels" in kwargs: UpperCAmelCase_ = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: UpperCAmelCase_ = kwargs["hypothesis_template"] UpperCAmelCase_ = {} if "multi_label" in kwargs: UpperCAmelCase_ = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__(self : Tuple , __a : Union[str, List[str]] , *__a : Optional[Any] , **__a : Tuple , ): if len(__a ) == 0: pass elif len(__a ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase_ = args[0] else: raise ValueError(f"""Unable to understand extra arguments {args}""" ) return super().__call__(__a , **__a ) def _lowercase (self : Optional[int] , __a : Optional[Any] , __a : List[str]=None , __a : Any="This example is {}." ): UpperCAmelCase_ , UpperCAmelCase_ = self._args_parser(__a , __a , __a ) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a ) ): UpperCAmelCase_ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a ) - 1, **model_input, } def _lowercase (self : List[str] , __a : Any ): UpperCAmelCase_ = inputs["candidate_label"] UpperCAmelCase_ = inputs["sequence"] UpperCAmelCase_ = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase_ = self.model(**__a ) UpperCAmelCase_ = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def _lowercase (self : Optional[Any] , __a : List[str] , __a : Tuple=False ): UpperCAmelCase_ = [outputs["candidate_label"] for outputs in model_outputs] UpperCAmelCase_ = [outputs["sequence"] for outputs in model_outputs] UpperCAmelCase_ = np.concatenate([output["logits"].numpy() for output in model_outputs] ) UpperCAmelCase_ = logits.shape[0] UpperCAmelCase_ = len(__a ) UpperCAmelCase_ = N // n UpperCAmelCase_ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__a ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase_ = self.entailment_id UpperCAmelCase_ = -1 if entailment_id == 0 else 0 UpperCAmelCase_ = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase_ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCAmelCase_ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase_ = reshaped_outputs[..., self.entailment_id] UpperCAmelCase_ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCAmelCase_ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
106
1
import qiskit def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] = 2 ) -> str: '''simple docstring''' A__ = qubits # Using Aer's simulator A__ = qiskit.Aer.get_backend("aer_simulator" ) # Creating a Quantum Circuit acting on the q register A__ = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , UpperCamelCase__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , UpperCamelCase__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(UpperCamelCase__ ) ) , list(range(UpperCamelCase__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator A__ = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=1_0_0_0 ) return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": print(f"""Total count for various states are: {quantum_entanglement(3)}""")
68
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Dict = { """nielsr/canine-s""": 2048, } # Unicode defines 1,114,112 total “codepoints” _UpperCAmelCase : Tuple = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Any = 0xE000 _UpperCAmelCase : Dict = 0xE001 _UpperCAmelCase : Optional[int] = 0xE002 _UpperCAmelCase : Tuple = 0xE003 _UpperCAmelCase : Tuple = 0xE004 # Maps special codepoints to human-readable names. _UpperCAmelCase : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _UpperCAmelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , snake_case=chr(snake_case ) , snake_case=chr(snake_case ) , snake_case=chr(snake_case ) , snake_case=chr(snake_case ) , snake_case=chr(snake_case ) , snake_case=chr(snake_case ) , snake_case=False , snake_case=2048 , **snake_case , ): snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else bos_token snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else eos_token snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else sep_token snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else cls_token snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token super().__init__( bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , model_max_length=snake_case , **snake_case , ) # Creates a mapping for looking up the IDs of special symbols. snake_case_ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): snake_case_ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. snake_case_ = { codepoint: name for name, codepoint in self._special_codepoints.items() } snake_case_ = UNICODE_VOCAB_SIZE snake_case_ = len(self._special_codepoints ) @property def a ( self ): return self._unicode_vocab_size def a ( self , snake_case ): return list(snake_case ) def a ( self , snake_case ): try: return ord(snake_case ) except TypeError: raise ValueError(F'''invalid token: \'{token}\'''' ) def a ( self , snake_case ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(snake_case ) except TypeError: raise ValueError(F'''invalid id: {index}''' ) def a ( self , snake_case ): return "".join(snake_case ) def a ( self , snake_case , snake_case = None ): snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def a ( self , snake_case , snake_case = None , snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) snake_case_ = [1] + ([0] * len(snake_case )) + [1] if token_ids_a is not None: result += ([0] * len(snake_case )) + [1] return result def a ( self , snake_case , snake_case = None ): snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def a ( self , snake_case , snake_case = None ): return ()
285
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = StableDiffusionSAGPipeline UpperCAmelCase__ = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Dict) ->str: '''simple docstring''' torch.manual_seed(0) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) A__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A__ = CLIPTextModel(UpperCAmelCase__) A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') A__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any]=0) ->Optional[int]: '''simple docstring''' if str(UpperCAmelCase__).startswith('''mps'''): A__ = torch.manual_seed(UpperCAmelCase__) else: A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__) A__ = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Tuple) ->str: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''') A__ = sag_pipe.to(UpperCAmelCase__) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = '''.''' A__ = torch.manual_seed(0) A__ = sag_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''') A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: '''simple docstring''' A__ = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''') A__ = sag_pipe.to(UpperCAmelCase__) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = '''.''' A__ = torch.manual_seed(0) A__ = sag_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''') A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: '''simple docstring''' A__ = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''') A__ = sag_pipe.to(UpperCAmelCase__) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = '''.''' A__ = torch.manual_seed(0) A__ = sag_pipe( [prompt] , width=768 , height=512 , generator=UpperCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) A__ = output.images assert image.shape == (1, 512, 768, 3)
356
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : str = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
231
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __snake_case =8 def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[Any]=BITS ): lowerCAmelCase = x.device lowerCAmelCase = (x * 255).int().clamp(0 , 255 ) lowerCAmelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCamelCase ) lowerCAmelCase = rearrange(lowerCamelCase , 'd -> d 1 1' ) lowerCAmelCase = rearrange(lowerCamelCase , 'b c h w -> b c 1 h w' ) lowerCAmelCase = ((x & mask) != 0).float() lowerCAmelCase = rearrange(lowerCamelCase , 'b c d h w -> b (c d) h w' ) lowerCAmelCase = bits * 2 - 1 return bits def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str]=BITS ): lowerCAmelCase = x.device lowerCAmelCase = (x > 0).int() lowerCAmelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCamelCase , dtype=torch.intaa ) lowerCAmelCase = rearrange(lowerCamelCase , 'd -> d 1 1' ) lowerCAmelCase = rearrange(lowerCamelCase , 'b (c d) h w -> b c d h w' , d=8 ) lowerCAmelCase = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def a_ ( self : Optional[int] , lowerCamelCase : torch.FloatTensor , lowerCamelCase : int , lowerCamelCase : torch.FloatTensor , lowerCamelCase : float = 0.0 , lowerCamelCase : bool = True , lowerCamelCase : Any=None , lowerCamelCase : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowerCAmelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowerCAmelCase = self.alphas_cumprod[timestep] lowerCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowerCAmelCase = self.bit_scale if self.config.clip_sample: lowerCAmelCase = torch.clamp(lowerCamelCase , -scale , lowerCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowerCAmelCase = self._get_variance(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowerCAmelCase = model_output.device if torch.is_tensor(lowerCamelCase ) else 'cpu' lowerCAmelCase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowerCamelCase ).to(lowerCamelCase ) lowerCAmelCase = self._get_variance(lowerCamelCase , lowerCamelCase ) ** 0.5 * eta * noise lowerCAmelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCamelCase , pred_original_sample=lowerCamelCase ) def a_ ( self : List[Any] , lowerCamelCase : torch.FloatTensor , lowerCamelCase : int , lowerCamelCase : torch.FloatTensor , lowerCamelCase : List[Any]="epsilon" , lowerCamelCase : Optional[Any]=None , lowerCamelCase : bool = True , ): lowerCAmelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase = torch.split(lowerCamelCase , sample.shape[1] , dim=1 ) else: lowerCAmelCase = None # 1. compute alphas, betas lowerCAmelCase = self.alphas_cumprod[t] lowerCAmelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one lowerCAmelCase = 1 - alpha_prod_t lowerCAmelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowerCAmelCase = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" lowerCAmelCase = self.bit_scale if self.config.clip_sample: lowerCAmelCase = torch.clamp(lowerCamelCase , -scale , lowerCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowerCAmelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCAmelCase = 0 if t > 0: lowerCAmelCase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowerCamelCase ).to(model_output.device ) lowerCAmelCase = (self._get_variance(lowerCamelCase , predicted_variance=lowerCamelCase ) ** 0.5) * noise lowerCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCamelCase , pred_original_sample=lowerCamelCase ) class UpperCAmelCase_ ( __lowercase ): def __init__( self : int , UpperCAmelCase__ : UNetaDConditionModel , UpperCAmelCase__ : Union[DDIMScheduler, DDPMScheduler] , UpperCAmelCase__ : Optional[float] = 1.0 , ) -> int: super().__init__() lowerCAmelCase = bit_scale lowerCAmelCase = ( ddim_bit_scheduler_step if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self : Tuple , UpperCAmelCase__ : Optional[int] = 2_5_6 , UpperCAmelCase__ : Optional[int] = 2_5_6 , UpperCAmelCase__ : Optional[int] = 5_0 , UpperCAmelCase__ : Optional[torch.Generator] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : str , ) -> Union[Tuple, ImagePipelineOutput]: lowerCAmelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase__ , ) lowerCAmelCase = decimal_to_bits(UpperCAmelCase__ ) * self.bit_scale lowerCAmelCase = latents.to(self.device ) self.scheduler.set_timesteps(UpperCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowerCAmelCase = self.unet(UpperCAmelCase__ , UpperCAmelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample lowerCAmelCase = bits_to_decimal(UpperCAmelCase__ ) if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
4
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : Any ): lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' ) if "norm" in key: lowerCAmelCase = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' ) if "layer_norm1" in key: lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find('block' ) + len('block' )] lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' ) if "attn.q" in key: lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' ) if "bot_conv" in key: lowerCAmelCase = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCAmelCase = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCAmelCase = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCAmelCase = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' ) lowerCAmelCase = value return new_state_dict def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def a_ ( ): lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ): lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCAmelCase = rename_keys(lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass lowerCAmelCase = model(lowerCamelCase ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) __snake_case =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
4
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase: Optional[int] = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Dict = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: int = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _lowercase: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
71
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a( A : Optional[Any] ) -> Tuple: """simple docstring""" a = 384 a = 7 if "tiny" in model_name: a = 96 a = (2, 2, 6, 2) a = (3, 6, 12, 24) elif "small" in model_name: a = 96 a = (2, 2, 18, 2) a = (3, 6, 12, 24) elif "base" in model_name: a = 128 a = (2, 2, 18, 2) a = (4, 8, 16, 32) a = 12 a = 512 elif "large" in model_name: a = 192 a = (2, 2, 18, 2) a = (6, 12, 24, 48) a = 12 a = 768 # set label information a = 150 a = "huggingface/label-files" a = "ade20k-id2label.json" a = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) a = {int(A ): v for k, v in idalabel.items()} a = {v: k for k, v in idalabel.items()} a = SwinConfig( embed_dim=A , depths=A , num_heads=A , window_size=A , out_features=["stage1", "stage2", "stage3", "stage4"] , ) a = UperNetConfig( backbone_config=A , auxiliary_in_channels=A , num_labels=A , idalabel=A , labelaid=A , ) return config def a( A : Optional[Any] ) -> Tuple: """simple docstring""" a = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def a( A : List[str] , A : List[str] , A : Dict ) -> Any: """simple docstring""" a = dct.pop(A ) a = val def a( A : str , A : List[str] ) -> List[Any]: """simple docstring""" a = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[:dim, :] a = in_proj_bias[: dim] a = in_proj_weight[ dim : dim * 2, : ] a = in_proj_bias[ dim : dim * 2 ] a = in_proj_weight[ -dim :, : ] a = in_proj_bias[-dim :] # fmt: on def a( A : Optional[int] ) -> Optional[Any]: """simple docstring""" a , a = x.shape a = x.reshape(A , 4 , in_channel // 4 ) a = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(A , A ) return x def a( A : int ) -> Dict: """simple docstring""" a , a = x.shape a = x.reshape(A , in_channel // 4 , 4 ) a = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(A , A ) return x def a( A : List[Any] ) -> Dict: """simple docstring""" a = x.shape[0] a = x.reshape(4 , in_channel // 4 ) a = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(A ) return x def a( A : Optional[Any] ) -> List[str]: """simple docstring""" a = x.shape[0] a = x.reshape(in_channel // 4 , 4 ) a = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(A ) return x def a( A : Any , A : int , A : Dict ) -> Union[str, Any]: """simple docstring""" a = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } a = model_name_to_url[model_name] a = torch.hub.load_state_dict_from_url(A , map_location="cpu" , file_name=A )[ "state_dict" ] for name, param in state_dict.items(): print(A , param.shape ) a = get_upernet_config(A ) a = UperNetForSemanticSegmentation(A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a = state_dict.pop(A ) if "bn" in key: a = key.replace("bn" , "batch_norm" ) a = val # rename keys a = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: a = reverse_correct_unfold_reduction_order(A ) if "norm" in key: a = reverse_correct_unfold_norm_order(A ) model.load_state_dict(A ) # verify on image a = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" a = Image.open(requests.get(A , stream=A ).raw ).convert("RGB" ) a = SegformerImageProcessor() a = processor(A , return_tensors="pt" ).pixel_values with torch.no_grad(): a = model(A ) a = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": a = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": a = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": a = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": a = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _lowercase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase: int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
71
1
import requests from bsa import BeautifulSoup def _lowercase ( lowercase__ = "AAPL" ): __lowerCAmelCase : str = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __lowerCAmelCase : int = BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) __lowerCAmelCase : Union[str, Any] = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
275
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging a_ : List[Any] = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) a_ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def a_ ( ) -> List[str]: """simple docstring""" lowerCamelCase_ ='''https://pypi.org/pypi/diffusers/json''' lowerCamelCase_ =json.loads(request.urlopen(__snake_case ).read() )['''releases'''].keys() return sorted(__snake_case , key=lambda __snake_case : version.Version(__snake_case ) ) def a_ ( ) -> str: """simple docstring""" # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(__snake_case ) os.makedirs(__snake_case , exist_ok=__snake_case ) lowerCamelCase_ =Path(__snake_case ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def a_ ( __snake_case : Union[str, os.PathLike] ) -> List[str]: """simple docstring""" init_hf_modules() lowerCamelCase_ =Path(__snake_case ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__snake_case , exist_ok=__snake_case ) lowerCamelCase_ =dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def a_ ( __snake_case : Tuple ) -> List[str]: """simple docstring""" with open(__snake_case , '''r''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =f.read() # Imports of the form `import .xxx` lowerCamelCase_ =re.findall('''^\s*import\s+\.(\S+)\s*$''' , __snake_case , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , __snake_case , flags=re.MULTILINE ) # Unique-ify return list(set(__snake_case ) ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =[module_file] lowerCamelCase_ =[] # Let's recurse through all relative imports while not no_change: lowerCamelCase_ =[] for f in files_to_check: new_imports.extend(get_relative_imports(__snake_case ) ) lowerCamelCase_ =Path(__snake_case ).parent lowerCamelCase_ =[str(module_path / m ) for m in new_imports] lowerCamelCase_ =[f for f in new_import_files if f not in all_relative_imports] lowerCamelCase_ =[F'''{f}.py''' for f in new_import_files] lowerCamelCase_ =len(__snake_case ) == 0 all_relative_imports.extend(__snake_case ) return all_relative_imports def a_ ( __snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" with open(__snake_case , '''r''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =f.read() # Imports of the form `import xxx` lowerCamelCase_ =re.findall('''^\s*import\s+(\S+)\s*$''' , __snake_case , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , __snake_case , flags=re.MULTILINE ) # Only keep the top-level module lowerCamelCase_ =[imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all lowerCamelCase_ =list(set(__snake_case ) ) lowerCamelCase_ =[] for imp in imports: try: importlib.import_module(__snake_case ) except ImportError: missing_packages.append(__snake_case ) if len(__snake_case ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F'''{', '.join(__snake_case )}. Run `pip install {' '.join(__snake_case )}`''' ) return get_relative_imports(__snake_case ) def a_ ( __snake_case : Tuple , __snake_case : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ =module_path.replace(os.path.sep , '''.''' ) lowerCamelCase_ =importlib.import_module(__snake_case ) if class_name is None: return find_pipeline_class(__snake_case ) return getattr(__snake_case , __snake_case ) def a_ ( __snake_case : Dict ) -> Any: """simple docstring""" from ..pipelines import DiffusionPipeline lowerCamelCase_ =dict(inspect.getmembers(__snake_case , inspect.isclass ) ) lowerCamelCase_ =None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __snake_case ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''' ) lowerCamelCase_ =cls return pipeline_class def a_ ( __snake_case : Union[str, os.PathLike] , __snake_case : str , __snake_case : Optional[Union[str, os.PathLike]] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[Dict[str, str]] = None , __snake_case : Optional[Union[bool, str]] = None , __snake_case : Optional[str] = None , __snake_case : bool = False , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =str(__snake_case ) lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ): lowerCamelCase_ =module_file_or_url lowerCamelCase_ ='''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: lowerCamelCase_ =get_diffusers_versions() # cut ".dev0" lowerCamelCase_ ='''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: lowerCamelCase_ =latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: lowerCamelCase_ =F'''v{revision}''' elif revision == "main": lowerCamelCase_ =revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {', '.join(available_versions + ['main'] )}.''' ) # community pipeline on GitHub lowerCamelCase_ =COMMUNITY_PIPELINES_URL.format(revision=__snake_case , pipeline=__snake_case ) try: lowerCamelCase_ =cached_download( __snake_case , cache_dir=__snake_case , force_download=__snake_case , proxies=__snake_case , resume_download=__snake_case , local_files_only=__snake_case , use_auth_token=__snake_case , ) lowerCamelCase_ ='''git''' lowerCamelCase_ =pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached lowerCamelCase_ =hf_hub_download( __snake_case , __snake_case , cache_dir=__snake_case , force_download=__snake_case , proxies=__snake_case , resume_download=__snake_case , local_files_only=__snake_case , use_auth_token=__snake_case , ) lowerCamelCase_ =os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment lowerCamelCase_ =check_imports(__snake_case ) # Now we move the module inside our cached dynamic modules. lowerCamelCase_ =DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__snake_case ) lowerCamelCase_ =Path(__snake_case ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__snake_case , submodule_path / module_file ) for module_needed in modules_needed: lowerCamelCase_ =F'''{module_needed}.py''' shutil.copy(os.path.join(__snake_case , __snake_case ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__snake_case , __snake_case ): lowerCamelCase_ =use_auth_token elif use_auth_token is True: lowerCamelCase_ =HfFolder.get_token() else: lowerCamelCase_ =None lowerCamelCase_ =model_info(__snake_case , revision=__snake_case , token=__snake_case ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. lowerCamelCase_ =submodule_path / commit_hash lowerCamelCase_ =full_submodule + os.path.sep + commit_hash create_dynamic_module(__snake_case ) if not (submodule_path / module_file).exists(): shutil.copy(__snake_case , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __snake_case , F'''{module_needed}.py''' , cache_dir=__snake_case , force_download=__snake_case , resume_download=__snake_case , proxies=__snake_case , use_auth_token=__snake_case , revision=__snake_case , local_files_only=__snake_case , ) return os.path.join(__snake_case , __snake_case ) def a_ ( __snake_case : Union[str, os.PathLike] , __snake_case : str , __snake_case : Optional[str] = None , __snake_case : Optional[Union[str, os.PathLike]] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[Dict[str, str]] = None , __snake_case : Optional[Union[bool, str]] = None , __snake_case : Optional[str] = None , __snake_case : bool = False , **__snake_case : Optional[int] , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_cached_module_file( __snake_case , __snake_case , cache_dir=__snake_case , force_download=__snake_case , resume_download=__snake_case , proxies=__snake_case , use_auth_token=__snake_case , revision=__snake_case , local_files_only=__snake_case , ) return get_class_in_module(__snake_case , final_module.replace('''.py''' , '''''' ) )
75
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : List[Any] )-> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case ( self : Optional[int] )-> Optional[Any]: lowerCamelCase__ : Optional[Any] =1 lowerCamelCase__ : int =3 lowerCamelCase__ : str =(32, 32) lowerCamelCase__ : Optional[Any] =floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(lowerCamelCase ) return image @property def snake_case ( self : int )-> Tuple: torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] =UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=32, ) return model @property def snake_case ( self : int )-> Tuple: torch.manual_seed(0 ) lowerCamelCase__ : List[Any] =AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) return model @property def snake_case ( self : Optional[Any] )-> int: torch.manual_seed(0 ) lowerCamelCase__ : str =RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=5006, ) return RobertaSeriesModelWithTransformation(lowerCamelCase ) @property def snake_case ( self : Tuple )-> Any: def extract(*lowerCamelCase : List[str], **lowerCamelCase : Optional[int] ): class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] )-> Dict: lowerCamelCase__ : int =torch.ones([0] ) def snake_case ( self : Union[str, Any], lowerCamelCase : List[Any] )-> Any: self.pixel_values.to(lowerCamelCase ) return self return Out() return extract def snake_case ( self : List[Any] )-> Tuple: lowerCamelCase__ : Optional[Any] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Any =self.dummy_cond_unet lowerCamelCase__ : Dict =PNDMScheduler(skip_prk_steps=lowerCamelCase ) lowerCamelCase__ : Optional[Any] =self.dummy_vae lowerCamelCase__ : int =self.dummy_text_encoder lowerCamelCase__ : str =XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase__ : Union[str, Any] =77 lowerCamelCase__ : Union[str, Any] =self.dummy_image.to(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase__ : Optional[Any] =AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) lowerCamelCase__ : Optional[Any] =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase ) lowerCamelCase__ : Dict =alt_pipe.to(lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : Dict ='''A painting of a squirrel eating a burger''' lowerCamelCase__ : Any =torch.Generator(device=lowerCamelCase ).manual_seed(0 ) lowerCamelCase__ : Union[str, Any] =alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', image=lowerCamelCase, ) lowerCamelCase__ : int =output.images lowerCamelCase__ : Optional[int] =torch.Generator(device=lowerCamelCase ).manual_seed(0 ) lowerCamelCase__ : Optional[int] =alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', image=lowerCamelCase, return_dict=lowerCamelCase, )[0] lowerCamelCase__ : Union[str, Any] =image[0, -3:, -3:, -1] lowerCamelCase__ : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__ : Union[str, Any] =np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''', '''This test requires a GPU''' ) def snake_case ( self : Tuple )-> Dict: lowerCamelCase__ : int =self.dummy_cond_unet lowerCamelCase__ : Dict =PNDMScheduler(skip_prk_steps=lowerCamelCase ) lowerCamelCase__ : Dict =self.dummy_vae lowerCamelCase__ : Dict =self.dummy_text_encoder lowerCamelCase__ : List[str] =XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase__ : Tuple =77 lowerCamelCase__ : str =self.dummy_image.to(lowerCamelCase ) # put models in fp16 lowerCamelCase__ : List[Any] =unet.half() lowerCamelCase__ : List[Any] =vae.half() lowerCamelCase__ : List[Any] =bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase__ : Any =AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) lowerCamelCase__ : Any =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase ) lowerCamelCase__ : List[Any] =alt_pipe.to(lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : Tuple ='''A painting of a squirrel eating a burger''' lowerCamelCase__ : str =torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] =alt_pipe( [prompt], generator=lowerCamelCase, num_inference_steps=2, output_type='''np''', image=lowerCamelCase, ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''', '''This test requires a GPU''' ) def snake_case ( self : List[Any] )-> List[Any]: lowerCamelCase__ : List[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase__ : List[Any] =init_image.resize((760, 504) ) lowerCamelCase__ : Dict ='''BAAI/AltDiffusion''' lowerCamelCase__ : Tuple =AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() lowerCamelCase__ : List[str] ='''A fantasy landscape, trending on artstation''' lowerCamelCase__ : str =torch.manual_seed(0 ) lowerCamelCase__ : Tuple =pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.75, guidance_scale=7.5, generator=lowerCamelCase, output_type='''np''', ) lowerCamelCase__ : str =output.images[0] lowerCamelCase__ : List[Any] =image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowerCamelCase__ : Any =np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : Optional[Any] )-> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Any )-> List[str]: lowerCamelCase__ : Optional[int] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase__ : List[str] =init_image.resize((768, 512) ) lowerCamelCase__ : Any =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCamelCase__ : Optional[int] ='''BAAI/AltDiffusion''' lowerCamelCase__ : int =AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() lowerCamelCase__ : List[str] ='''A fantasy landscape, trending on artstation''' lowerCamelCase__ : Union[str, Any] =torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] =pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.75, guidance_scale=7.5, generator=lowerCamelCase, output_type='''np''', ) lowerCamelCase__ : Any =output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
272
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Any ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase__ : Optional[Any] ={ '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } lowerCamelCase__ : Any =f'''{src_lang}-{tgt_lang}''' lowerCamelCase__ : Any =f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=__lowerCamelCase , exist_ok=__lowerCamelCase ) lowerCamelCase__ : str =os.path.join(__lowerCamelCase , '''README.md''' ) print(f'''Generating {path}''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(__lowerCamelCase ) # make sure we are under the root of the project _lowercase : List[str] = Path(__file__).resolve().parent.parent.parent _lowercase : Dict = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _lowercase : int = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
272
1
"""simple docstring""" import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Union[str, Any] = tmp_path / '''file.csv''' lowerCAmelCase__ : List[str] = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(A_ , '''w''' ) as f: f.write(A_ ) return str(A_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Optional[Any] = tmp_path / '''malformed_file.csv''' lowerCAmelCase__ : Tuple = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(A_ , '''w''' ) as f: f.write(A_ ) return str(A_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Optional[int] = tmp_path / '''csv_with_image.csv''' lowerCAmelCase__ : Dict = textwrap.dedent( f'\\n image\n {image_file}\n ' ) with open(A_ , '''w''' ) as f: f.write(A_ ) return str(A_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : List[str] = tmp_path / '''csv_with_label.csv''' lowerCAmelCase__ : Tuple = textwrap.dedent( '''\ label good bad good ''' ) with open(A_ , '''w''' ) as f: f.write(A_ ) return str(A_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Tuple = tmp_path / '''csv_with_int_list.csv''' lowerCAmelCase__ : Dict = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(A_ , '''w''' ) as f: f.write(A_ ) return str(A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Any = Csv() lowerCAmelCase__ : Union[str, Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(A_ , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(A_ ) in record.message for record in caplog.records ) @require_pil def __SCREAMING_SNAKE_CASE ( A_ ): with open(A_ , encoding='''utf-8''' ) as f: lowerCAmelCase__ : int = f.read().splitlines()[1] lowerCAmelCase__ : Tuple = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) lowerCAmelCase__ : Any = csv._generate_tables([[csv_file_with_image]] ) lowerCAmelCase__ : str = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() lowerCAmelCase__ : List[Any] = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def __SCREAMING_SNAKE_CASE ( A_ ): with open(A_ , encoding='''utf-8''' ) as f: lowerCAmelCase__ : List[Any] = f.read().splitlines()[1:] lowerCAmelCase__ : str = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) lowerCAmelCase__ : str = csv._generate_tables([[csv_file_with_label]] ) lowerCAmelCase__ : List[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() lowerCAmelCase__ : Optional[Any] = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(A_ ) for label in labels] def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Any = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda A_ : [int(A_ ) for i in x.split()]} ) lowerCAmelCase__ : int = csv._generate_tables([[csv_file_with_int_list]] ) lowerCAmelCase__ : List[Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) lowerCAmelCase__ : List[Any] = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
106
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCamelCase : str = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
1
from __future__ import annotations def lowercase_ ( A__ , A__ , A__ , A__ ) -> Dict: # noqa: E741 """simple docstring""" while r - l > 1: snake_case = (l + r) // 2 if v[m] >= key: snake_case = m else: snake_case = m # noqa: E741 return r def lowercase_ ( A__ ) -> int: """simple docstring""" if len(A__ ) == 0: return 0 snake_case = [0] * len(A__ ) snake_case = 1 snake_case = v[0] for i in range(1 , len(A__ ) ): if v[i] < tail[0]: snake_case = v[i] elif v[i] > tail[length - 1]: snake_case = v[i] length += 1 else: snake_case = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
137
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
137
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( __a , unittest.TestCase ): A = CTRLTokenizer A = False A = False def __snake_case (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_: List[Any] = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCAmelCase_: List[str] = dict(zip(_UpperCamelCase, range(len(_UpperCamelCase ) ) ) ) UpperCAmelCase_: str = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCAmelCase_: Optional[int] = {"""unk_token""": """<unk>"""} UpperCAmelCase_: str = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_: Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCamelCase ) + """\n""" ) with open(self.merges_file, """w""", encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_UpperCamelCase ) ) def __snake_case (self, **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname, **_UpperCamelCase ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: Optional[int] = """adapt react readapt apt""" UpperCAmelCase_: int = """adapt react readapt apt""" return input_text, output_text def __snake_case (self ) -> int: UpperCAmelCase_: List[Any] = CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCAmelCase_: Union[str, Any] = """adapt react readapt apt""" UpperCAmelCase_: Union[str, Any] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCAmelCase_: Optional[Any] = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase, _UpperCamelCase ) UpperCAmelCase_: int = tokens + [tokenizer.unk_token] UpperCAmelCase_: Tuple = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ), _UpperCamelCase )
147
from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> str: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Dict ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : Optional[int] , **__lowerCAmelCase : int ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : List[str] , **__lowerCAmelCase : int ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : Dict , **__lowerCAmelCase : Any ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : Optional[int] , **__lowerCAmelCase : Dict ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : int , **__lowerCAmelCase : Any ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> str: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] )
231
0
import requests from bsa import BeautifulSoup def lowerCamelCase__ (__lowerCamelCase = "https://www.worldometers.info/coronavirus" ): _SCREAMING_SNAKE_CASE : List[Any] = BeautifulSoup(requests.get(__lowerCamelCase ).text, "html.parser" ) _SCREAMING_SNAKE_CASE : List[Any] = soup.findAll("h1" ) _SCREAMING_SNAKE_CASE : Any = soup.findAll("div", {"class": "maincounter-number"} ) keys += soup.findAll("span", {"class": "panel-title"} ) values += soup.findAll("div", {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCamelCase, __lowerCamelCase )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"{key}\n{value}\n")
357
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ ='src/diffusers' UpperCamelCase__ ='.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ =importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ =spec.loader.load_module() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$", __lowerCamelCase ) is not None def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = object_name.split("." ) _SCREAMING_SNAKE_CASE : List[Any] = 0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE : Any = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase, f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase, parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase, f"""{module}.py""" ), "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE : Union[str, Any] = "" _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""", lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE : Optional[int] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index], __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : Optional[int] = lines[start_index:line_index] return "".join(__lowerCamelCase ) UpperCamelCase__ =re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase__ =re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase__ =re.compile(R'<FILL\s+[^>]*>') def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = code.split("\n" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"^(\s*)\S", lines[idx] ).groups()[0] return "" def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE : Union[str, Any] = f"""class Bla:\n{code}""" _SCREAMING_SNAKE_CASE : Any = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119, preview=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = black.format_str(__lowerCamelCase, mode=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = style_docstrings_in_code(__lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = search.groups() _SCREAMING_SNAKE_CASE : Any = find_code_in_diffusers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = get_indent(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE : int = theoretical_indent _SCREAMING_SNAKE_CASE : str = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE : Any = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break _SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index] _SCREAMING_SNAKE_CASE : str = _should_continue(__lowerCamelCase, __lowerCamelCase ) and re.search(f"""^{indent}# End copy""", __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : List[Any] = lines[start_index:line_index] _SCREAMING_SNAKE_CASE : Optional[Any] = "".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE : Dict = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__lowerCamelCase ) is None] _SCREAMING_SNAKE_CASE : str = "\n".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : str = replace_pattern.replace("with", "" ).split("," ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = pattern.groups() _SCREAMING_SNAKE_CASE : Tuple = re.sub(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE : List[Any] = re.sub(obja.lower(), obja.lower(), __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = re.sub(obja.upper(), obja.upper(), __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE : int = blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE : int = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ (__lowerCamelCase = False ): _SCREAMING_SNAKE_CASE : int = glob.glob(os.path.join(__lowerCamelCase, "**/*.py" ), recursive=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for filename in all_files: _SCREAMING_SNAKE_CASE : int = is_copy_consistent(__lowerCamelCase, __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : Dict = "\n".join(__lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ =parser.parse_args() check_copies(args.fix_and_overwrite)
325
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness A_ :List[str] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' A_ :Any = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' A_ :Tuple = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' A_ :List[str] = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' A_ :Tuple = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def __lowercase ( self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=[1, 10, 100] , lowerCamelCase__=4 , lowerCamelCase__=3.0 ): """simple docstring""" if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: __UpperCamelCase : List[str] =[] __UpperCamelCase : Any =Counter() __UpperCamelCase : List[Any] =0 __UpperCamelCase : int =defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): for candidate in candidates: __UpperCamelCase : str =candidate + '\n' + test_case __UpperCamelCase : Any =(test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase : Optional[Any] =executor.submit(lowerCamelCase__ , *lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): __UpperCamelCase : str =future.result() results[result["task_id"]].append((result['completion_id'], result) ) __UpperCamelCase , __UpperCamelCase : int =[], [] for result in results.values(): result.sort() __UpperCamelCase : str =[r[1]['passed'] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) __UpperCamelCase : Optional[int] =np.array(lowerCamelCase__ ) __UpperCamelCase : List[str] =np.array(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =k __UpperCamelCase : List[Any] ={f'pass@{k}': estimate_pass_at_k(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A ( a_ ,a_ ,a_ ) -> Optional[int]: def estimator(a_ ,a_ ,a_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(a_ ,a_ ): __UpperCamelCase : Optional[int] =itertools.repeat(a_ ,len(a_ ) ) else: assert len(a_ ) == len(a_ ) __UpperCamelCase : List[Any] =iter(a_ ) return np.array([estimator(int(a_ ) ,int(a_ ) ,a_ ) for n, c in zip(a_ ,a_ )] )
71
import re def A ( a_ ) -> bool: __UpperCamelCase : Any =re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(a_ ,a_ ) ) if __name__ == "__main__": A_ :List[str] = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
71
1
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _A : Union[str, Any] =HfApi() _A : Tuple ={} # fmt: off _A : Dict =torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _A : Union[str, Any] =torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _A : Any =torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _A : int =torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _A : Tuple =torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _A : List[Any] =torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _A : str =torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _A : Dict =torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _A : List[Any] =torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _A : Optional[int] =torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _A : List[Any] =torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _A : Union[str, Any] =torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _A : Union[str, Any] =torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _A : str =torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _A : Any =torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _A : Union[str, Any] =api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _A : int ='''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(F'Started running {mod.modelId}!!!') if mod.modelId.startswith('''CompVis'''): _A : List[str] =UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: _A : Optional[Any] =UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _A : Optional[int] =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _A : int =torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _A : Any =model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1e-3 ) print(F'{mod.modelId} has passed successfully!!!')
129
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _A : List[Any] =argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) _A : Dict =parser.parse_args() _A : List[str] =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _A : Any =CLIPImageProcessor() _A : Union[str, Any] =CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') _A : Union[str, Any] =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
129
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowerCAmelCase__ = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCAmelCase : Any = 'lm_head' lowerCAmelCase : Any = getattr(__a , __a ) if weight_type is not None: lowerCAmelCase : List[Any] = getattr(__a , __a ).shape else: lowerCAmelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase : List[Any] = value elif weight_type == "weight_g": lowerCAmelCase : Union[str, Any] = value elif weight_type == "weight_v": lowerCAmelCase : Dict = value elif weight_type == "bias": lowerCAmelCase : Optional[Any] = value else: lowerCAmelCase : Any = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : List[str] = fairseq_model.state_dict() lowerCAmelCase : List[Any] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase : Any = False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase : List[str] = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase : Optional[int] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCAmelCase : Union[str, Any] = True if "*" in mapped_key: lowerCAmelCase : Dict = name.split(__a )[0].split("." )[-2] lowerCAmelCase : Optional[int] = mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCAmelCase : List[Any] = 'weight_g' elif "weight_v" in name: lowerCAmelCase : str = 'weight_v' elif "bias" in name: lowerCAmelCase : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase : str = 'weight' else: lowerCAmelCase : List[str] = None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Any = full_name.split("conv_layers." )[-1] lowerCAmelCase : int = name.split("." ) lowerCAmelCase : Optional[Any] = int(items[0] ) lowerCAmelCase : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=True ): '''simple docstring''' if config_path is not None: lowerCAmelCase : Optional[Any] = UniSpeechConfig.from_pretrained(__a ) else: lowerCAmelCase : str = UniSpeechConfig() if is_finetuned: if dict_path: lowerCAmelCase : int = Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase : Optional[int] = target_dict.pad_index lowerCAmelCase : Union[str, Any] = target_dict.bos_index lowerCAmelCase : List[str] = target_dict.eos_index lowerCAmelCase : List[str] = len(target_dict.symbols ) lowerCAmelCase : Optional[Any] = os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCAmelCase : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase : Optional[Any] = 4_2 lowerCAmelCase : Any = 4_3 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCAmelCase : Tuple = WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCAmelCase : str = True if config.feat_extract_norm == 'layer' else False lowerCAmelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCAmelCase : int = WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCAmelCase : str = UniSpeechForCTC(__a ) else: lowerCAmelCase : str = UniSpeechForPreTraining(__a ) if is_finetuned: lowerCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCAmelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase : Union[str, Any] = model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
108
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __lowerCAmelCase = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase_ (): """simple docstring""" _a : Optional[int] = 'https://pypi.org/pypi/diffusers/json' _a : int = json.loads(request.urlopen(__a ).read() )['releases'].keys() return sorted(__a , key=lambda __a : version.Version(__a ) ) def UpperCAmelCase_ (): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(__a ) os.makedirs(__a , exist_ok=__a ) _a : str = Path(__a ) / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase_ (__a : Union[str, os.PathLike] ): """simple docstring""" init_hf_modules() _a : Dict = Path(__a ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__a , exist_ok=__a ) _a : Optional[int] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase_ (__a : str ): """simple docstring""" with open(__a , 'r' , encoding='utf-8' ) as f: _a : int = f.read() # Imports of the form `import .xxx` _a : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , __a , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , __a , flags=re.MULTILINE ) # Unique-ify return list(set(__a ) ) def UpperCAmelCase_ (__a : Any ): """simple docstring""" _a : Optional[int] = False _a : Optional[int] = [module_file] _a : List[str] = [] # Let's recurse through all relative imports while not no_change: _a : str = [] for f in files_to_check: new_imports.extend(get_relative_imports(__a ) ) _a : Union[str, Any] = Path(__a ).parent _a : str = [str(module_path / m ) for m in new_imports] _a : Tuple = [f for f in new_import_files if f not in all_relative_imports] _a : Dict = [f"""{f}.py""" for f in new_import_files] _a : List[str] = len(__a ) == 0 all_relative_imports.extend(__a ) return all_relative_imports def UpperCAmelCase_ (__a : Tuple ): """simple docstring""" with open(__a , 'r' , encoding='utf-8' ) as f: _a : Dict = f.read() # Imports of the form `import xxx` _a : Optional[int] = re.findall('^\s*import\s+(\S+)\s*$' , __a , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , __a , flags=re.MULTILINE ) # Only keep the top-level module _a : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all _a : Optional[int] = list(set(__a ) ) _a : List[str] = [] for imp in imports: try: importlib.import_module(__a ) except ImportError: missing_packages.append(__a ) if len(__a ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' f"""{', '.join(__a )}. Run `pip install {' '.join(__a )}`""" ) return get_relative_imports(__a ) def UpperCAmelCase_ (__a : Any , __a : str ): """simple docstring""" _a : Any = module_path.replace(os.path.sep , '.' ) _a : Union[str, Any] = importlib.import_module(__a ) if class_name is None: return find_pipeline_class(__a ) return getattr(__a , __a ) def UpperCAmelCase_ (__a : Optional[int] ): """simple docstring""" from ..pipelines import DiffusionPipeline _a : List[str] = dict(inspect.getmembers(__a , inspect.isclass ) ) _a : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __a ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) _a : Any = cls return pipeline_class def UpperCAmelCase_ (__a : Union[str, os.PathLike] , __a : str , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , __a : bool = False , __a : Optional[Dict[str, str]] = None , __a : Optional[Union[bool, str]] = None , __a : Optional[str] = None , __a : bool = False , ): """simple docstring""" _a : str = str(__a ) _a : Optional[Any] = os.path.join(__a , __a ) if os.path.isfile(__a ): _a : Tuple = module_file_or_url _a : Optional[Any] = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: _a : int = get_diffusers_versions() # cut ".dev0" _a : Any = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: _a : Any = latest_version if latest_version[1:] in available_versions else 'main' logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: _a : Any = f"""v{revision}""" elif revision == "main": _a : Optional[int] = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub _a : Tuple = COMMUNITY_PIPELINES_URL.format(revision=__a , pipeline=__a ) try: _a : Any = cached_download( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , ) _a : List[Any] = 'git' _a : Any = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached _a : Optional[Any] = hf_hub_download( __a , __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , ) _a : List[Any] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment _a : Optional[int] = check_imports(__a ) # Now we move the module inside our cached dynamic modules. _a : Optional[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__a ) _a : Any = Path(__a ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__a , submodule_path / module_file ) for module_needed in modules_needed: _a : Dict = f"""{module_needed}.py""" shutil.copy(os.path.join(__a , __a ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__a , __a ): _a : Optional[Any] = use_auth_token elif use_auth_token is True: _a : List[Any] = HfFolder.get_token() else: _a : Dict = None _a : int = model_info(__a , revision=__a , token=__a ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _a : Optional[int] = submodule_path / commit_hash _a : str = full_submodule + os.path.sep + commit_hash create_dynamic_module(__a ) if not (submodule_path / module_file).exists(): shutil.copy(__a , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __a , f"""{module_needed}.py""" , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) return os.path.join(__a , __a ) def UpperCAmelCase_ (__a : Union[str, os.PathLike] , __a : str , __a : Optional[str] = None , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , __a : bool = False , __a : Optional[Dict[str, str]] = None , __a : Optional[Union[bool, str]] = None , __a : Optional[str] = None , __a : bool = False , **__a : str , ): """simple docstring""" _a : Dict = get_cached_module_file( __a , __a , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) return get_class_in_module(__a , final_module.replace('.py' , '' ) )
271
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Any): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = LxmertConfig.from_json_file(lowerCamelCase_) print(f"""Building PyTorch model from configuration: {config}""") lowerCAmelCase__ : Optional[Any] = LxmertForPreTraining(lowerCamelCase_) # Load weights from tf checkpoint load_tf_weights_in_lxmert(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() ,lowerCamelCase_) if __name__ == "__main__": __snake_case : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __snake_case : Dict =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
94
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case : str ={ 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple =['ConditionalDetrFeatureExtractor'] __snake_case : Union[str, Any] =['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] =[ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __snake_case : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = int(number**0.5) return number == sq * sq def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE = x_den * y_den * z_den SCREAMING_SNAKE_CASE = gcd(_UpperCAmelCase , _UpperCAmelCase) top //= hcf bottom //= hcf return top, bottom def lowerCamelCase__ (_UpperCAmelCase = 35): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = Fraction(0) SCREAMING_SNAKE_CASE = 42 for x_num in range(1 , order + 1): for x_den in range(x_num + 1 , order + 1): for y_num in range(1 , order + 1): for y_den in range(y_num + 1 , order + 1): # n=1 SCREAMING_SNAKE_CASE = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE = x_den * y_den SCREAMING_SNAKE_CASE = gcd(_UpperCAmelCase , _UpperCAmelCase) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) unique_s.add(_UpperCAmelCase) # n=2 SCREAMING_SNAKE_CASE = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE = x_den * x_den * y_den * y_den if is_sq(_UpperCAmelCase) and is_sq(_UpperCAmelCase): SCREAMING_SNAKE_CASE = int(sqrt(_UpperCAmelCase)) SCREAMING_SNAKE_CASE = int(sqrt(_UpperCAmelCase)) SCREAMING_SNAKE_CASE = gcd(_UpperCAmelCase , _UpperCAmelCase) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) unique_s.add(_UpperCAmelCase) # n=-1 SCREAMING_SNAKE_CASE = x_num * y_num SCREAMING_SNAKE_CASE = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE = gcd(_UpperCAmelCase , _UpperCAmelCase) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) unique_s.add(_UpperCAmelCase) # n=2 SCREAMING_SNAKE_CASE = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_UpperCAmelCase) and is_sq(_UpperCAmelCase): SCREAMING_SNAKE_CASE = int(sqrt(_UpperCAmelCase)) SCREAMING_SNAKE_CASE = int(sqrt(_UpperCAmelCase)) SCREAMING_SNAKE_CASE = gcd(_UpperCAmelCase , _UpperCAmelCase) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) unique_s.add(_UpperCAmelCase) for num, den in unique_s: total += Fraction(_UpperCAmelCase , _UpperCAmelCase) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
137
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowerCamelCase__ (_UpperCAmelCase=None): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser('env') else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser('Accelerate env command') parser.add_argument( '--config_file' , default=_UpperCAmelCase , help='The config file to use for the default values in the launching script.') if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase) return parser def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = torch.__version__ SCREAMING_SNAKE_CASE = torch.cuda.is_available() SCREAMING_SNAKE_CASE = is_xpu_available() SCREAMING_SNAKE_CASE = is_npu_available() SCREAMING_SNAKE_CASE = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCAmelCase): SCREAMING_SNAKE_CASE = load_config_from_file(args.config_file).to_dict() SCREAMING_SNAKE_CASE = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F'''{pt_version} ({pt_cuda_available})''', 'PyTorch XPU available': str(_UpperCAmelCase), 'PyTorch NPU available': str(_UpperCAmelCase), 'System RAM': F'''{psutil.virtual_memory().total / 1024 ** 3:.2f} GB''', } if pt_cuda_available: SCREAMING_SNAKE_CASE = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n') print('\n'.join([F'''- {prop}: {val}''' for prop, val in info.items()])) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:') SCREAMING_SNAKE_CASE = ( '\n'.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()]) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else F'''\t{accelerate_config}''' ) print(_UpperCAmelCase) SCREAMING_SNAKE_CASE = accelerate_config return info def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = env_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() env_command(_UpperCAmelCase) return 0 if __name__ == "__main__": raise SystemExit(main())
137
1
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCAmelCase_ = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } UpperCAmelCase_ = { '169M': 768, '430M': 1024, '1B5': 2048, '3B': 2560, '7B': 4096, '14B': 5120, } def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> Dict: UpperCamelCase__ : Optional[int] = list(state_dict.keys() ) for name in state_dict_keys: UpperCamelCase__ : int = state_dict.pop(__UpperCAmelCase ) # emb -> embedding if name.startswith('''emb.''' ): UpperCamelCase__ : int = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): UpperCamelCase__ : Union[str, Any] = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention UpperCamelCase__ : List[str] = re.sub(r'''blocks\.(\d+)\.att''' , r'''blocks.\1.attention''' , __UpperCAmelCase ) # ffn -> feed_forward UpperCamelCase__ : Optional[int] = re.sub(r'''blocks\.(\d+)\.ffn''' , r'''blocks.\1.feed_forward''' , __UpperCAmelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): UpperCamelCase__ : Optional[Any] = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): UpperCamelCase__ : List[Any] = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): UpperCamelCase__ : Dict = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": UpperCamelCase__ : Union[str, Any] = '''rwkv.''' + name UpperCamelCase__ : Tuple = weight return state_dict def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: str , __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Optional[Any]=None , __UpperCAmelCase: Optional[int]=None , __UpperCAmelCase: List[Any]=False , __UpperCAmelCase: Optional[int]=None ) -> List[str]: # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) UpperCamelCase__ : Dict = 5_0277 UpperCamelCase__ : int = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: UpperCamelCase__ : str = PreTrainedTokenizerFast(tokenizer_file=__UpperCAmelCase ) UpperCamelCase__ : str = len(__UpperCAmelCase ) tokenizer.save_pretrained(__UpperCAmelCase ) # 2. Build the config UpperCamelCase__ : Optional[int] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: UpperCamelCase__ : List[Any] = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." ) UpperCamelCase__ : Dict = RwkvConfig( vocab_size=__UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__UpperCAmelCase ) # 3. Download model file then convert state_dict UpperCamelCase__ : int = hf_hub_download(__UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = torch.load(__UpperCAmelCase , map_location='''cpu''' ) UpperCamelCase__ : int = convert_state_dict(__UpperCAmelCase ) # 4. Split in shards and save UpperCamelCase__ ,UpperCamelCase__ : List[str] = shard_checkpoint(__UpperCAmelCase ) for shard_file, shard in shards.items(): torch.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) if index is not None: UpperCamelCase__ : Tuple = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) # Save the index as well with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: UpperCamelCase__ : Optional[int] = json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + '''\n''' f.write(__UpperCAmelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) UpperCamelCase__ : str = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: UpperCamelCase__ : Any = torch.load(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) UpperCamelCase__ : Optional[int] = AutoModelForCausalLM.from_pretrained(__UpperCAmelCase ) model.push_to_hub(__UpperCAmelCase , max_shard_size='''2GB''' ) tokenizer.push_to_hub(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) UpperCAmelCase_ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
247
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase__ : List[str] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } UpperCamelCase__ : Dict = Dataset.from_dict(__UpperCAmelCase ) return dataset class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : List[Any] = get_dataset() UpperCamelCase__ : List[str] = make_duplicate_clusters(__magic_name__, 0.85 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : List[Any] = get_dataset() UpperCamelCase__ ,UpperCamelCase__ : Dict = deduplicate_dataset(__magic_name__ ) self.assertEqual(len(__magic_name__ ), 2 ) print(__magic_name__ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], __magic_name__ )
247
1
import re from filelock import FileLock try: import nltk _SCREAMING_SNAKE_CASE = True except (ImportError, ModuleNotFoundError): _SCREAMING_SNAKE_CASE = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def SCREAMING_SNAKE_CASE__ ( __a ): re.sub('<n>' , '' , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
327
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = "mask2former" lowerCAmelCase__ : List[Any] = ["swin"] lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"} def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowercase = CONFIG_MAPPING['swin']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = backbone_config.pop('model_type' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) __lowercase = backbone_config __lowercase = feature_size __lowercase = mask_feature_size __lowercase = hidden_dim __lowercase = encoder_feedforward_dim __lowercase = activation_function __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = num_attention_heads __lowercase = dropout __lowercase = dim_feedforward __lowercase = pre_norm __lowercase = enforce_input_projection __lowercase = common_stride __lowercase = ignore_value __lowercase = num_queries __lowercase = no_object_weight __lowercase = class_weight __lowercase = mask_weight __lowercase = dice_weight __lowercase = train_num_points __lowercase = oversample_ratio __lowercase = importance_sample_ratio __lowercase = init_std __lowercase = init_xavier_std __lowercase = use_auxiliary_loss __lowercase = feature_strides __lowercase = output_auxiliary_logits __lowercase = decoder_layers super().__init__(**_UpperCAmelCase ) @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return cls( backbone_config=_UpperCAmelCase , **_UpperCAmelCase , ) def a__ ( self : str ) -> Dict[str, any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
325
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = LxmertConfig.from_json_file(__UpperCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) SCREAMING_SNAKE_CASE__ = LxmertForPreTraining(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __UpperCamelCase ) if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowerCamelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
204
from __future__ import annotations __lowerCamelCase : Tuple = list[list[int]] # assigning initial values to the grid __lowerCamelCase : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __lowerCamelCase : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE__ = digit if sudoku(__UpperCamelCase ) is not None: return grid SCREAMING_SNAKE_CASE__ = 0 return None def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__UpperCamelCase , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __lowerCamelCase : str = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
204
1
def lowerCAmelCase__ ( lowerCamelCase_ : Tuple): '''simple docstring''' lowerCAmelCase__ : int = 1 lowerCAmelCase__ : Optional[int] = 2 while i * i <= n: lowerCAmelCase__ : Union[str, Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : List[Any] = 1 lowerCAmelCase__ : List[Any] = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase_) > 500: break return t_num if __name__ == "__main__": print(solution())
129
def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : List[str] = 1 while len(lowerCamelCase_) < 1E6: constant.append(str(lowerCamelCase_)) i += 1 lowerCAmelCase__ : Union[str, Any] = ''''''.join(lowerCamelCase_) return ( int(constant[0]) * int(constant[9]) * int(constant[99]) * int(constant[999]) * int(constant[9999]) * int(constant[99999]) * int(constant[999999]) ) if __name__ == "__main__": print(solution())
129
1
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __SCREAMING_SNAKE_CASE = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __SCREAMING_SNAKE_CASE = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def UpperCAmelCase ( _lowerCamelCase ): A : Optional[Any] = (images / 2 + 0.5).clamp(0 , 1 ) A : int = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A : Tuple = numpy_to_pil(_lowerCamelCase ) return images def UpperCAmelCase ( _lowerCamelCase ): if images.ndim == 3: A : Optional[Any] = images[None, ...] A : str = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images A : List[Any] = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: A : Tuple = [Image.fromarray(_lowerCamelCase ) for image in images] return pil_images
256
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A , A : Optional[Any] = len(_lowerCamelCase ), len(grid[0] ) if ( min(_lowerCamelCase , _lowerCamelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) A : Tuple = 0 count += depth_first_search(_lowerCamelCase , row + 1 , _lowerCamelCase , _lowerCamelCase ) count += depth_first_search(_lowerCamelCase , row - 1 , _lowerCamelCase , _lowerCamelCase ) count += depth_first_search(_lowerCamelCase , _lowerCamelCase , col + 1 , _lowerCamelCase ) count += depth_first_search(_lowerCamelCase , _lowerCamelCase , col - 1 , _lowerCamelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
256
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case : Dict = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys snake_case : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
94
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(self , **_lowerCamelCase ) a :Union[str, Any] = repo_info a :int = token a :int = None def SCREAMING_SNAKE_CASE__ ( self ): if self.dir_cache is None: a :Dict = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a :List[Any] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_lowerCamelCase ): {'''name''': str(_lowerCamelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , **_lowerCamelCase , ): if not isinstance(self.repo_info , _lowerCamelCase ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) a :Optional[int] = hf_hub_url(self.repo_info.id , _lowerCamelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCamelCase , mode=_lowerCamelCase , headers=get_authentication_headers_for_url(_lowerCamelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , **_lowerCamelCase ): self._get_dirs() a :Union[str, Any] = self._strip_protocol(_lowerCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ): self._get_dirs() a :str = PurePosixPath(path.strip('''/''' ) ) a :Tuple = {} for p, f in self.dir_cache.items(): a :Optional[int] = PurePosixPath(p.strip('''/''' ) ) a :str = p.parent if root == path: a :List[str] = f a :Any = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
94
1
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int ) -> Dict: '''simple docstring''' _UpperCAmelCase : int = 0 _UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _UpperCAmelCase : Dict = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase_ ): return None _UpperCAmelCase : str = sorted_collection[point] if current_item == item: return point else: if point < left: _UpperCAmelCase : int = left _UpperCAmelCase : Union[str, Any] = point elif point > right: _UpperCAmelCase : Union[str, Any] = right _UpperCAmelCase : List[Any] = point else: if item < current_item: _UpperCAmelCase : Any = point - 1 else: _UpperCAmelCase : Dict = point + 1 return None def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> int: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _UpperCAmelCase : Union[str, Any] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase_ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) elif point > right: return interpolation_search_by_recursion(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowercase_ , lowercase_ , lowercase_ , point - 1 ) else: return interpolation_search_by_recursion( lowercase_ , lowercase_ , point + 1 , lowercase_ ) def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: '''simple docstring''' if collection != sorted(lowercase_ ): raise ValueError("Collection must be ascending sorted" ) return True if __name__ == "__main__": import sys _lowerCAmelCase : Any = 0 if debug == 1: _lowerCAmelCase : Dict = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _lowerCAmelCase : Union[str, Any] = 67 _lowerCAmelCase : Optional[int] = interpolation_search(collection, target) if result is not None: print(F"{target} found at positions: {result}") else: print("Not found")
357
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: _lowerCAmelCase : Tuple = json.load(f) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : str , A : Union[str, Any] ): return FSMTTokenizer.from_pretrained(A ) def snake_case_ ( self : Union[str, Any] , A : Union[str, Any] ): _UpperCAmelCase : List[Any] = FSMTForConditionalGeneration.from_pretrained(A ).to(A ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def snake_case_ ( self : Any , A : Dict , A : List[str] ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _UpperCAmelCase : Any = f'facebook/wmt19-{pair}' _UpperCAmelCase : Dict = self.get_tokenizer(A ) _UpperCAmelCase : Optional[int] = self.get_model(A ) _UpperCAmelCase : int = bleu_data[pair]["src"] _UpperCAmelCase : Optional[int] = bleu_data[pair]["tgt"] _UpperCAmelCase : List[str] = tokenizer(A , return_tensors="pt" , truncation=A , padding="longest" ).to(A ) _UpperCAmelCase : List[str] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _UpperCAmelCase : Any = tokenizer.batch_decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A ) _UpperCAmelCase : Any = calculate_bleu(A , A ) print(A ) self.assertGreaterEqual(scores["bleu"] , A )
202
0
"""simple docstring""" import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( ) -> Tuple: from torch.utils.cpp_extension import load A__ = Path(lowercase_ ).resolve().parent.parent.parent / "kernels" / "deformable_detr" A__ = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , lowercase_ , with_cuda=lowercase_ , extra_include_paths=[str(lowercase_ )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
247
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: A__ = len(lowercase_ ) while cur > 1: # Find the maximum number in arr A__ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi A__ = arr[mi::-1] + arr[mi + 1 : len(lowercase_ )] # Reverse whole list A__ = arr[cur - 1 :: -1] + arr[cur : len(lowercase_ )] cur -= 1 return arr if __name__ == "__main__": SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma:\n").strip() SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
247
1
"""simple docstring""" class _lowercase : # Public class to implement a graph """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[list[bool]] ) -> None: '''simple docstring''' __UpperCamelCase =row __UpperCamelCase =col __UpperCamelCase =graph def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[list[bool]] ) -> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCAmelCase_ ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[list[bool]] ) -> None: '''simple docstring''' __UpperCamelCase =[-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __UpperCamelCase =[-1, 0, 1, -1, 1, -1, 0, 1] __UpperCamelCase =True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase__ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> int: # And finally, count all islands. '''simple docstring''' __UpperCamelCase =[[False for j in range(self.COL )] for i in range(self.ROW )] __UpperCamelCase =0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) count += 1 return count
366
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __a , unittest.TestCase ): """simple docstring""" lowercase__ = LongformerTokenizer lowercase__ = True lowercase__ = LongformerTokenizerFast lowercase__ = True def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCamelCase =dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __UpperCamelCase =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCamelCase ={'''unk_token''': '''<unk>'''} __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] , **UpperCamelCase__ : str ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , **UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase ='''lower newer''' __UpperCamelCase ='''lower newer''' return input_text, output_text def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase ='''lower newer''' __UpperCamelCase =['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCamelCase =tokenizer.tokenize(UpperCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokens + [tokenizer.unk_token] __UpperCamelCase =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCamelCase =tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() __UpperCamelCase ='''Encode this sequence.''' __UpperCamelCase =tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing spaces after special tokens __UpperCamelCase ='''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )} ) # mask token has a left space __UpperCamelCase =tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) __UpperCamelCase ='''Encode <mask> sequence''' __UpperCamelCase ='''Encode <mask>sequence''' __UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) __UpperCamelCase =encoded.index(UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) __UpperCamelCase =encoded.index(UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' pass def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase ='''A, <mask> AllenNLP sentence.''' __UpperCamelCase =tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) __UpperCamelCase =tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , UpperCamelCase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , UpperCamelCase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase ='''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCamelCase =f"""{text_of_1_token} {text_of_1_token}""" __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ) + 1, 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , )
85
0
from string import ascii_uppercase lowerCamelCase : Any = {str(ord(c) - 55): c for c in ascii_uppercase} def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' if isinstance(lowercase , lowercase ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(lowercase , lowercase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(lowercase , lowercase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowerCamelCase_ = '' lowerCamelCase_ = 0 lowerCamelCase_ = 0 while div != 1: lowerCamelCase_ , lowerCamelCase_ = divmod(lowercase , lowercase ) if base >= 11 and 9 < mod < 36: lowerCamelCase_ = ALPHABET_VALUES[str(lowercase )] else: lowerCamelCase_ = str(lowercase ) new_value += actual_value lowerCamelCase_ = num // base lowerCamelCase_ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(lowercase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
204
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase : List[Any] = None lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowerCamelCase : Optional[int] = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } lowerCamelCase : List[Any] = { "google/fnet-base": 512, "google/fnet-large": 512, } lowerCamelCase : Any = "▁" class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''token_type_ids'''] UpperCamelCase = FNetTokenizer def __init__( self : Optional[int] , A_ : Any=None , A_ : int=None , A_ : int=False , A_ : Optional[int]=True , A_ : List[Any]=True , A_ : Tuple="<unk>" , A_ : Optional[int]="[SEP]" , A_ : List[Any]="<pad>" , A_ : Optional[int]="[CLS]" , A_ : Optional[Any]="[MASK]" , **A_ : Dict , ) -> List[str]: """simple docstring""" lowerCamelCase_ = ( AddedToken(A_ , lstrip=A_ , rstrip=A_ , normalized=A_ ) if isinstance(A_ , A_ ) else mask_token ) super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , remove_space=A_ , keep_accents=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , **A_ , ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = remove_space lowerCamelCase_ = keep_accents lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self : Tuple , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : Dict , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
204
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" _a : int = len(__a ) + 1 _a : List[str] = len(__a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _a : Optional[int] = [[0 for i in range(__a )] for j in range(__a )] # since string of zero length match pattern of zero length _a : str = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __a ): _a : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __a ): _a : Dict = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __a ): for j in range(1 , __a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _a : Tuple = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _a : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _a : int = dp[i - 1][j] else: _a : Any = 0 else: _a : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCAmelCase = """aab""" __lowerCAmelCase = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
5
1
"""simple docstring""" def lowercase ( a__ : int = 50 ) -> int: _UpperCamelCase = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
256
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def lowercase ( a__ : str , a__ : bool = True , a__ : float = math.inf , a__ : float = -math.inf , a__ : float = math.inf , a__ : float = -math.inf , a__ : bool = False , a__ : float = 100 , a__ : float = 0.01 , a__ : float = 1 , ) -> Any: _UpperCamelCase = False _UpperCamelCase = search_prob _UpperCamelCase = start_temperate _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = None while not search_end: _UpperCamelCase = current_state.score() if best_state is None or current_score > best_state.score(): _UpperCamelCase = current_state scores.append(a__ ) iterations += 1 _UpperCamelCase = None _UpperCamelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _UpperCamelCase = random.randint(0 , len(a__ ) - 1 ) # picking a random neighbor _UpperCamelCase = neighbors.pop(a__ ) _UpperCamelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _UpperCamelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution _UpperCamelCase = picked_neighbor else: _UpperCamelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _UpperCamelCase = picked_neighbor _UpperCamelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _UpperCamelCase = True else: _UpperCamelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a__ ) , a__ ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowercase ( a__ : str , a__ : List[Any] ) -> Tuple: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowercase ( a__ : str , a__ : Optional[Any] ) -> Union[str, Any]: return (3 * x**2) - (6 * y) UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
256
1
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : List[Any] = BertTokenizer _snake_case : Optional[Any] = BertTokenizerFast _snake_case : int = True _snake_case : Optional[Any] = True _snake_case : List[str] = filter_non_english def a__ ( self ): super().setUp() __a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def a__ ( self , lowerCamelCase ): __a = "UNwant\u00E9d,running" __a = "unwanted, running" return input_text, output_text def a__ ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCamelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = "UNwant\u00E9d,running" __a = tokenizer.tokenize(lowerCamelCase ) __a = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __a = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(lowerCamelCase ) __a = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) # With lower casing __a = self.get_tokenizer(do_lower_case=lowerCamelCase ) __a = self.get_rust_tokenizer(do_lower_case=lowerCamelCase ) __a = "UNwant\u00E9d,running" __a = tokenizer.tokenize(lowerCamelCase ) __a = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __a = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(lowerCamelCase ) __a = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def a__ ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def a__ ( self ): __a = BasicTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def a__ ( self ): __a = BasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def a__ ( self ): __a = BasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def a__ ( self ): __a = BasicTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def a__ ( self ): __a = BasicTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def a__ ( self ): __a = BasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def a__ ( self ): __a = BasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def a__ ( self ): __a = BasicTokenizer(do_lower_case=lowerCamelCase , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def a__ ( self ): __a = BasicTokenizer() __a = "a\n'll !!to?'d of, can't." __a = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."] self.assertListEqual(tokenizer.tokenize(lowerCamelCase ) , lowerCamelCase ) def a__ ( self ): __a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __a = {} for i, token in enumerate(lowerCamelCase ): __a = i __a = WordpieceTokenizer(vocab=lowerCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def a__ ( self ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def a__ ( self ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def a__ ( self ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def a__ ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def a__ ( self ): __a = self.tokenizer_class.from_pretrained("bert-base-uncased" ) __a = tokenizer.encode("sequence builders" , add_special_tokens=lowerCamelCase ) __a = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCamelCase ) __a = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) __a = tokenizer.build_inputs_with_special_tokens(lowerCamelCase , lowerCamelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __a = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __a = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." __a = tokenizer_r.encode_plus( lowerCamelCase , return_attention_mask=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase , ) __a = tokenizer_r.do_lower_case if hasattr(lowerCamelCase , "do_lower_case" ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def a__ ( self ): __a = ["的", "人", "有"] __a = "".join(lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __a = True __a = self.tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __a = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __a = tokenizer_p.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __a = tokenizer_r.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __a = tokenizer_r.convert_ids_to_tokens(lowerCamelCase ) __a = tokenizer_p.convert_ids_to_tokens(lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = False __a = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __a = self.tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __a = tokenizer_r.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __a = tokenizer_p.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __a = tokenizer_r.convert_ids_to_tokens(lowerCamelCase ) __a = tokenizer_p.convert_ids_to_tokens(lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(lowerCamelCase ) ] self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase )
268
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:List[Any] = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__:Optional[int] = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__:Tuple = { """openbmb/cpm-ant-10b""": 1024, } def _lowerCamelCase( a ): __a = collections.OrderedDict() with open(a , "r" , encoding="utf-8" ) as reader: __a = reader.readlines() for index, token in enumerate(a ): __a = token.rstrip("\n" ) __a = index return vocab class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase="<unk>" , lowerCamelCase=200 ): __a = vocab __a = unk_token __a = max_input_chars_per_word def a__ ( self , lowerCamelCase ): __a = list(lowerCamelCase ) if len(lowerCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] __a = 0 __a = [] while start < len(lowerCamelCase ): __a = len(lowerCamelCase ) __a = None while start < end: __a = "".join(chars[start:end] ) if substr in self.vocab: __a = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCamelCase ) __a = end return sub_tokens class snake_case__ ( snake_case_ ): _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : int = ["""input_ids""", """attention_mask"""] _snake_case : int = False def __init__( self , lowerCamelCase , lowerCamelCase="<d>" , lowerCamelCase="</d>" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<pad>" , lowerCamelCase="<unk>" , lowerCamelCase="</n>" , lowerCamelCase="</_>" , lowerCamelCase="left" , **lowerCamelCase , ): requires_backends(self , ["jieba"] ) super().__init__( bod_token=lowerCamelCase , eod_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , unk_token=lowerCamelCase , line_token=lowerCamelCase , space_token=lowerCamelCase , padding_side=lowerCamelCase , **lowerCamelCase , ) __a = bod_token __a = eod_token __a = load_vocab(lowerCamelCase ) __a = self.encoder[space_token] __a = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) ) __a = {v: k for k, v in self.encoder.items()} __a = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def a__ ( self ): return self.encoder[self.bod_token] @property def a__ ( self ): return self.encoder[self.eod_token] @property def a__ ( self ): return self.encoder["\n"] @property def a__ ( self ): return len(self.encoder ) def a__ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self , lowerCamelCase ): __a = [] for x in jieba.cut(lowerCamelCase , cut_all=lowerCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase ) ) return output_tokens def a__ ( self , lowerCamelCase , **lowerCamelCase ): __a = [i for i in token_ids if i >= 0] __a = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase ): return token in self.encoder def a__ ( self , lowerCamelCase ): return "".join(lowerCamelCase ) def a__ ( self , lowerCamelCase ): return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def a__ ( self , lowerCamelCase ): return self.decoder.get(lowerCamelCase , self.unk_token ) def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if os.path.isdir(lowerCamelCase ): __a = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: __a = (filename_prefix + "-" if filename_prefix else "") + save_directory __a = 0 if " " in self.encoder: __a = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: __a = self.encoder["\n"] del self.encoder["\n"] __a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) __a = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) return [1] + ([0] * len(lowerCamelCase ))
268
1
"""simple docstring""" import sys from collections import defaultdict class UpperCamelCase : def __init__( self) -> Optional[int]: snake_case_ = [] def a_ ( self, lowerCAmelCase__) -> Any: return self.node_position[vertex] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = pos def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case_ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case_ = 2 * start + 1 else: snake_case_ = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case_ , snake_case_ = heap[smallest_child], positions[smallest_child] snake_case_ , snake_case_ = ( heap[start], positions[start], ) snake_case_ , snake_case_ = temp, tempa snake_case_ = self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child], self.get_position(positions[start])) self.set_position(positions[start], lowerCAmelCase__) self.top_to_bottom(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: snake_case_ = position[index] while index != 0: snake_case_ = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: snake_case_ = heap[parent] snake_case_ = position[parent] self.set_position(position[parent], lowerCAmelCase__) else: snake_case_ = val snake_case_ = temp self.set_position(lowerCAmelCase__, lowerCAmelCase__) break snake_case_ = parent else: snake_case_ = val snake_case_ = temp self.set_position(lowerCAmelCase__, 0) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = len(lowerCAmelCase__) // 2 - 1 for i in range(lowerCAmelCase__, -1, -1): self.top_to_bottom(lowerCAmelCase__, lowerCAmelCase__, len(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = positions[0] snake_case_ = sys.maxsize self.top_to_bottom(lowerCAmelCase__, 0, len(lowerCAmelCase__), lowerCAmelCase__) return temp def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = Heap() snake_case_ = [0] * len(UpperCAmelCase ) snake_case_ = [-1] * len(UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case_ = [] # Heap of Distance of vertices from their neighboring vertex snake_case_ = [] for vertex in range(len(UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase ) heap.node_position.append(UpperCAmelCase ) snake_case_ = [] snake_case_ = 1 snake_case_ = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case_ = 0 snake_case_ = distance heap.heapify(UpperCAmelCase , UpperCAmelCase ) for _ in range(1 , len(UpperCAmelCase ) ): snake_case_ = heap.delete_minimum(UpperCAmelCase , UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case_ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase )] ): snake_case_ = distance heap.bottom_to_top( UpperCAmelCase , heap.get_position(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase ) snake_case_ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __UpperCamelCase = int(input('''Enter number of edges: ''').strip()) __UpperCamelCase = defaultdict(list) for _ in range(edges_number): __UpperCamelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
69
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __magic_name__ ( __snake_case : Union[str, Any] , __snake_case : List[str]=7 ) -> str: lowercase : int = None if token is not None: lowercase : Any = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowercase : int = "636036" lowercase : Dict = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowercase : int = requests.get(__snake_case , headers=__snake_case ).json() return result["workflow_runs"] def __magic_name__ ( __snake_case : Dict ) -> Tuple: lowercase : Tuple = get_daily_ci_runs(__snake_case ) lowercase : Union[str, Any] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase : List[Any] = workflow_run["id"] break return workflow_run_id def __magic_name__ ( __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> int: lowercase : Dict = get_last_daily_ci_runs(__snake_case ) if workflow_run_id is not None: lowercase : Dict = get_artifacts_links(worflow_run_id=__snake_case , token=__snake_case ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase : Optional[int] = artifacts_links[artifact_name] download_artifact( artifact_name=__snake_case , artifact_url=__snake_case , output_dir=__snake_case , token=__snake_case ) def __magic_name__ ( __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Tuple ) -> Optional[int]: get_last_daily_ci_artifacts(__snake_case , __snake_case , __snake_case ) lowercase : str = {} for artifact_name in artifact_names: lowercase : Optional[Any] = os.path.join(__snake_case , f"""{artifact_name}.zip""" ) if os.path.isfile(__snake_case ): lowercase : List[Any] = {} with zipfile.ZipFile(__snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(__snake_case ): # read the file with z.open(__snake_case ) as f: lowercase : str = f.read().decode("UTF-8" ) return results
202
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __magic_name__ ( snake_case ): UpperCamelCase_ :int = """Salesforce/blip-image-captioning-base""" UpperCamelCase_ :List[str] = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) UpperCamelCase_ :int = """image_captioner""" UpperCamelCase_ :Dict = AutoModelForVisionaSeq UpperCamelCase_ :Tuple = ["""image"""] UpperCamelCase_ :Tuple = ["""text"""] def __init__( self , *_lowercase , **_lowercase )-> Tuple: requires_backends(self , ["vision"] ) super().__init__(*_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , _lowercase )-> Any: return self.pre_processor(images=_lowercase , return_tensors="pt" ) def UpperCAmelCase_ ( self , _lowercase )-> Union[str, Any]: return self.model.generate(**_lowercase ) def UpperCAmelCase_ ( self , _lowercase )-> Tuple: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase )[0].strip()
60
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE :Tuple = 16 SCREAMING_SNAKE_CASE :Optional[Any] = 32 def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1_6 , SCREAMING_SNAKE_CASE_ = "bert-base-cased" )-> Optional[int]: """simple docstring""" UpperCamelCase_ = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE_ ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase_ = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=SCREAMING_SNAKE_CASE_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="max_length" , max_length=1_2_8 , return_tensors="pt" ) return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: """simple docstring""" model.eval() UpperCamelCase_ = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase_ , UpperCamelCase_ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE_ ) - 1: UpperCamelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase_ = metric.compute() return eval_metric["accuracy"] def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: """simple docstring""" UpperCamelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config["lr"] UpperCamelCase_ = int(config["num_epochs"] ) UpperCamelCase_ = int(config["seed"] ) UpperCamelCase_ = int(config["batch_size"] ) UpperCamelCase_ = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) # Instantiate optimizer UpperCamelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase_ = optimizer_cls(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: UpperCamelCase_ = 1 UpperCamelCase_ = (len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=0 , num_training_steps=SCREAMING_SNAKE_CASE_ , ) else: UpperCamelCase_ = DummyScheduler(SCREAMING_SNAKE_CASE_ , total_num_steps=SCREAMING_SNAKE_CASE_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase_ = 0 UpperCamelCase_ = evaluate.load("glue" , "mrpc" ) UpperCamelCase_ = num_epochs if args.partial_train_epoch is not None: UpperCamelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCamelCase_ = args.resume_from_checkpoint.split("epoch_" )[1] UpperCamelCase_ = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCamelCase_ = int(SCREAMING_SNAKE_CASE_ ) + 1 UpperCamelCase_ = evaluation_loop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.print("resumed checkpoint performance:" , SCREAMING_SNAKE_CASE_ ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , f"state_{starting_epoch-1}.json" ) , "r" ) as f: UpperCamelCase_ = json.load(SCREAMING_SNAKE_CASE_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCamelCase_ = {} for epoch in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = outputs.loss UpperCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCamelCase_ = f"epoch_{epoch}" UpperCamelCase_ = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = evaluation_loop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = accuracy UpperCamelCase_ = lr_scheduler.get_lr()[0] UpperCamelCase_ = optimizer.param_groups[0]["lr"] UpperCamelCase_ = epoch UpperCamelCase_ = overall_step accelerator.print(f"epoch {epoch}:" , SCREAMING_SNAKE_CASE_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"state_{epoch}.json" ) , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase( )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=SCREAMING_SNAKE_CASE_ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=SCREAMING_SNAKE_CASE_ , ) parser.add_argument( "--output_dir" , type=SCREAMING_SNAKE_CASE_ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=SCREAMING_SNAKE_CASE_ , default=2 , help="Number of train epochs." , ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 4_2, "batch_size": 1_6} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
60
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A__ ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" __A : Optional[Any] = IFInpaintingPipeline __A : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __A : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __A : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def __lowercase ( self) -> Tuple: '''simple docstring''' return self._get_dummy_components() def __lowercase ( self , lowercase , lowercase=0) -> Dict: '''simple docstring''' if str(a__).startswith('mps'): a__ : List[Any] = torch.manual_seed(a__) else: a__ : Any = torch.Generator(device=a__).manual_seed(a__) a__ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__)).to(a__) a__ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__)).to(a__) a__ : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowercase ( self) -> Tuple: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def __lowercase ( self) -> Any: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1) def __lowercase ( self) -> Any: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def __lowercase ( self) -> str: '''simple docstring''' self._test_save_load_local() def __lowercase ( self) -> Dict: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
99
'''simple docstring''' from __future__ import annotations import requests def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(snake_case ).json() def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" snake_case_ = requests.get(snake_case ).json()[:max_stories] return [get_hackernews_story(snake_case ) for story_id in story_ids] def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = hackernews_top_stories(snake_case ) return "\n".join("* [{title}]({url})".format(**snake_case ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
85
0
'''simple docstring''' import os import sys import unittest lowercase : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowercase : int = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : List[str] = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Optional[Any] = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : List[str] = {'''BertModelTest''': '''BertModelTester'''} A : List[Any] = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[Any] = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : Dict = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : Any = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A : Optional[Any] = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : str = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Dict = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Optional[Any] = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A : Any = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
366
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if len(snake_case__ ) <= 1: return [tuple(snake_case__ )] A : Tuple = [] def generate(snake_case__ , snake_case__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A, A : Optional[Any] = arr[k - 1], arr[i] else: # k is odd A, A : Optional[Any] = arr[k - 1], arr[0] generate(k - 1 , snake_case__ ) generate(len(snake_case__ ) , snake_case__ ) return res if __name__ == "__main__": lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip() lowercase : int = [int(item) for item in user_input.split(',')] print(heaps(arr))
311
0
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
1
'''simple docstring''' def _A (lowerCAmelCase__ :int = 10_00 ) -> int: '''simple docstring''' _a = 2**power _a = 0 while n: _a , _a = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
371
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a_ : Optional[Any] = TypeVar("T") def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' return (position - 1) // 2 def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' return (2 * position) + 1 def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' return (2 * position) + 2 class a ( Generic[T] ): def __init__( self ) -> None: _a = [] _a = {} _a = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def __UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _a = self.elements self.elements += 1 self._bubble_up(__magic_name__ ) def __UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _a , _a = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _a , _a = self.heap[0] self._bubble_down(__magic_name__ ) return elem def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: # Update the weight of the given key _a = self.position_map[elem] _a = (elem, weight) if position > 0: _a = get_parent_position(__magic_name__ ) _a , _a = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__magic_name__ ) else: self._bubble_down(__magic_name__ ) else: self._bubble_down(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _a = self.position_map[elem] if curr_pos == 0: return None _a = get_parent_position(__magic_name__ ) _a , _a = self.heap[curr_pos] _a , _a = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_up(__magic_name__ ) return None def __UpperCAmelCase ( self , __magic_name__ ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _a = self.position_map[elem] _a , _a = self.heap[curr_pos] _a = get_child_left_position(__magic_name__ ) _a = get_child_right_position(__magic_name__ ) if child_left_position < self.elements and child_right_position < self.elements: _a , _a = self.heap[child_left_position] _a , _a = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_down(__magic_name__ ) if child_left_position < self.elements: _a , _a = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_down(__magic_name__ ) else: return None if child_right_position < self.elements: _a , _a = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_down(__magic_name__ ) return None def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: # Swap the nodes at the given positions _a = self.heap[nodea_pos][0] _a = self.heap[nodea_pos][0] _a , _a = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _a = nodea_pos _a = nodea_pos class a ( Generic[T] ): def __init__( self ) -> None: _a = {} _a = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def __UpperCAmelCase ( self , __magic_name__ ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _a = {} self.nodes += 1 def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__magic_name__ ) self.add_node(__magic_name__ ) _a = weight _a = weight def _A (lowerCAmelCase__ :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: '''simple docstring''' _a = {node: maxsize for node in graph.connections} _a = {node: None for node in graph.connections} _a = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase__ , lowerCAmelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization _a = priority_queue.extract_min() _a = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _a = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) _a = node # running prim's algorithm while not priority_queue.is_empty(): _a = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _a = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) _a = node return dist, parent
104
0
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase_ : def __init__( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str]=13 , lowerCAmelCase_ : str=30 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=32 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Any=37 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=10 , lowerCAmelCase_ : str=0.0_2 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : List[str]=2 , ) -> Optional[Any]: UpperCAmelCase_ : str = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : List[Any] = patch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : str = is_training UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase_ : Optional[Any] = (image_size // patch_size) ** 2 UpperCAmelCase_ : Optional[Any] = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = None if self.use_labels: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Any = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: UpperCAmelCase_ : str = DeiTModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ) -> Tuple: UpperCAmelCase_ : int = DeiTForMaskedImageModeling(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : str = model(lowerCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : List[str] = DeiTForMaskedImageModeling(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Tuple = model(lowerCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.type_sequence_label_size UpperCAmelCase_ : Dict = DeiTForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : str = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : Dict = DeiTForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: UpperCAmelCase_ : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (__A , __A , unittest.TestCase ): __magic_name__ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __magic_name__ = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : Tuple = DeiTModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: pass def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase_ : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any]=False ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase_ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCAmelCase_ : List[str] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() UpperCAmelCase_ : Union[str, Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : Any = model(**lowerCAmelCase_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase_ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCAmelCase_ : List[str] = model_class(lowerCAmelCase_ ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase_ ) model.train() UpperCAmelCase_ : Optional[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : int = model(**lowerCAmelCase_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : str = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase_ ), *get_values(lowerCAmelCase_ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type['title']}""" ): UpperCAmelCase_ : List[Any] = problem_type["title"] UpperCAmelCase_ : List[str] = problem_type["num_labels"] UpperCAmelCase_ : Any = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() UpperCAmelCase_ : Optional[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if problem_type["num_labels"] > 1: UpperCAmelCase_ : Union[str, Any] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCAmelCase_ : Optional[int] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase_ ) as warning_list: UpperCAmelCase_ : Any = model(**lowerCAmelCase_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = DeiTModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case ( ): UpperCAmelCase_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: UpperCAmelCase_ : Any = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.default_image_processor UpperCAmelCase_ : Optional[int] = prepare_img() UpperCAmelCase_ : Any = image_processor(images=lowerCAmelCase_ , return_tensors="pt" ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowerCAmelCase_ ) # verify the logits UpperCAmelCase_ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = prepare_img() UpperCAmelCase_ : int = image_processor(images=lowerCAmelCase_ , return_tensors="pt" ) UpperCAmelCase_ : Optional[int] = inputs.pixel_values.to(lowerCAmelCase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase_ : int = model(lowerCAmelCase_ )
268
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCamelCase_ = get_logger(__name__) class UpperCamelCase_ : __magic_name__ = '''dummy_data''' __magic_name__ = '''datasets''' __magic_name__ = False def __init__( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[Version, str] , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[List[Callable]] = None , ) -> Tuple: UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : int = dataset_name UpperCAmelCase_ : Optional[int] = cache_dir UpperCAmelCase_ : Tuple = use_local_dummy_data UpperCAmelCase_ : int = config # download_callbacks take a single url as input UpperCAmelCase_ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root UpperCAmelCase_ : Optional[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general UpperCAmelCase_ : Dict = str(lowerCAmelCase_ ) # to be downloaded UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : int = None @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: if self._dummy_file is None: UpperCAmelCase_ : List[str] = self.download_dummy_data() return self._dummy_file @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: UpperCAmelCase_ : int = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) UpperCAmelCase_ : Union[str, Any] = cached_path( lowerCAmelCase_ , cache_dir=self.cache_dir , extract_compressed_file=lowerCAmelCase_ , force_extract=lowerCAmelCase_ ) return os.path.join(lowerCAmelCase_ , self.dummy_file_name ) @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: if self._bucket_url is None: UpperCAmelCase_ : Union[str, Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : List[str] , *lowerCAmelCase_ : List[Any] ) -> Optional[int]: if self.load_existing_dummy_data: # dummy data is downloaded and tested UpperCAmelCase_ : Dict = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned UpperCAmelCase_ : Optional[int] = self.dummy_file_name # special case when data_url is a dict if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return self.create_dummy_data_dict(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , (list, tuple) ): return self.create_dummy_data_list(lowerCAmelCase_ , lowerCAmelCase_ ) else: return self.create_dummy_data_single(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : int , *lowerCAmelCase_ : Union[str, Any] ) -> Any: return self.download_and_extract(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple ) -> Any: return self.download_and_extract(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Union[str, Any] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Tuple ) -> Union[str, Any]: return path def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: return {} def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] ) -> List[Any]: UpperCAmelCase_ : Dict = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): for single_url in single_urls: download_callback(lowerCAmelCase_ ) else: UpperCAmelCase_ : Tuple = single_urls download_callback(lowerCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : List[str] = [os.path.join(lowerCAmelCase_ , urllib.parse.quote_plus(Path(lowerCAmelCase_ ).name ) ) for x in single_urls] else: UpperCAmelCase_ : Optional[int] = single_urls UpperCAmelCase_ : Optional[Any] = os.path.join(lowerCAmelCase_ , urllib.parse.quote_plus(Path(lowerCAmelCase_ ).name ) ) UpperCAmelCase_ : int = value # make sure that values are unique if all(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique UpperCAmelCase_ : List[str] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ) -> Dict: UpperCAmelCase_ : str = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one UpperCAmelCase_ : int = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , lowerCAmelCase_ ) ) for url in data_url ) UpperCAmelCase_ : Union[str, Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): UpperCAmelCase_ : Tuple = [data_url[0]] * len(lowerCAmelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowerCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCAmelCase_ : Dict = os.path.join(lowerCAmelCase_ , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(lowerCAmelCase_ ) return dummy_data_list def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str ) -> Optional[int]: for download_callback in self.download_callbacks: download_callback(lowerCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCAmelCase_ : Optional[Any] = os.path.join(lowerCAmelCase_ , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(lowerCAmelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: pass def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: def _iter_archive_members(lowerCAmelCase_ : Dict ): # this preserves the order of the members inside the ZIP archive UpperCAmelCase_ : str = Path(self.dummy_file ).parent UpperCAmelCase_ : Optional[Any] = path.relative_to(lowerCAmelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: UpperCAmelCase_ : str = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = Path(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = _iter_archive_members(lowerCAmelCase_ ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(lowerCAmelCase_ ).as_posix(), file_path.open("rb" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Tuple ) -> str: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : str = [paths] for path in paths: if os.path.isfile(lowerCAmelCase_ ): if os.path.basename(lowerCAmelCase_ ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowerCAmelCase_ ): if os.path.basename(lowerCAmelCase_ ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(lowerCAmelCase_ ): if filename.startswith((".", "__") ): continue yield os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )
268
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __snake_case (_a ): def __init__( self : str , *_UpperCAmelCase : Any , **_UpperCAmelCase : List[str] ) -> None: '''simple docstring''' warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
159
from collections import namedtuple import requests from lxml import html # type: ignore _lowerCamelCase : Dict = namedtuple("covid_data", "cases deaths recovered") def _UpperCAmelCase (UpperCamelCase_ : str = "https://www.worldometers.info/coronavirus/" ): '''simple docstring''' _lowerCAmelCase : Dict = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(UpperCamelCase_ ).content ).xpath(UpperCamelCase_ ) ) _lowerCamelCase : Tuple = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
159
1
"""simple docstring""" from collections.abc import Callable def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ): lowerCAmelCase : float = a lowerCAmelCase : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: lowerCAmelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: lowerCAmelCase : Dict = mid else: lowerCAmelCase : List[str] = mid lowerCAmelCase : List[Any] = start + (end - start) / 2.0 return mid def _snake_case ( _snake_case : float ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
60
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case__ : List[Any] = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class snake_case_: __UpperCamelCase = PegasusConfig __UpperCamelCase = {} __UpperCamelCase = '''gelu''' def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any=1_3 , UpperCamelCase_ : List[Any]=7 , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : Optional[Any]=9_9 , UpperCamelCase_ : Any=3_2 , UpperCamelCase_ : List[Any]=5 , UpperCamelCase_ : str=4 , UpperCamelCase_ : str=3_7 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=2_0 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : List[str]=1 , UpperCamelCase_ : Any=0 , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Any = seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : Optional[int] = use_labels lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : str = eos_token_id lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : List[str] = bos_token_id def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowerCAmelCase : Union[str, Any] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase : List[str] = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase : Dict = prepare_pegasus_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict ): lowerCAmelCase : Any = 2_0 lowerCAmelCase : Any = model_class_name(UpperCamelCase_ ) lowerCAmelCase : List[str] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : Optional[Any] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : Any = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCAmelCase : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : int = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : List[Any] = model.decode(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict ): lowerCAmelCase : Dict = 2_0 lowerCAmelCase : Union[str, Any] = model_class_name(UpperCamelCase_ ) lowerCAmelCase : Any = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : Any = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : List[Any] = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) lowerCAmelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def _snake_case ( _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict , _snake_case : Optional[Any]=None , _snake_case : Dict=None , ): if attention_mask is None: lowerCAmelCase : Tuple = np.not_equal(_snake_case , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowerCAmelCase : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = FlaxPegasusModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Dict ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase, lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : str = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Tuple ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : Tuple = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : Dict = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Optional[int] = model_class(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowerCAmelCase : Any = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : Optional[Any] = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : Any = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase : int = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : List[Any] = np.ones((1, 1) ) lowerCAmelCase : str = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) lowerCAmelCase : List[Any] = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) lowerCAmelCase : int = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] lowerCAmelCase : str = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] lowerCAmelCase : Optional[Any] = tokenizer(UpperCamelCase_ , return_tensors='''np''' , truncation=UpperCamelCase_ , max_length=5_1_2 , padding=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model.generate(**UpperCamelCase_ , num_beams=2 ).sequences lowerCAmelCase : Tuple = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) assert tgt_text == decoded
60
1
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class UpperCamelCase_ : def __init__( self : Optional[Any] ) -> None: UpperCAmelCase_ : list[Any] = [] UpperCAmelCase_ : int = 0 UpperCAmelCase_ : int = 0 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> bool: return self.head == self.tail def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Any ) -> None: self.data.append(lowerCAmelCase_ ) UpperCAmelCase_ : int = self.tail + 1 def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: UpperCAmelCase_ : List[str] = self.data[self.head] UpperCAmelCase_ : Optional[int] = self.head + 1 return ret def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.tail - self.head def _SCREAMING_SNAKE_CASE ( self : Any ) -> None: print(self.data ) print("**************" ) print(self.data[self.head : self.tail] ) class UpperCamelCase_ : def __init__( self : int , lowerCAmelCase_ : Any ) -> None: UpperCAmelCase_ : Dict = data UpperCAmelCase_ : MyNode | None = None UpperCAmelCase_ : MyNode | None = None UpperCAmelCase_ : int = 1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: return self.data def _SCREAMING_SNAKE_CASE ( self : Any ) -> MyNode | None: return self.left def _SCREAMING_SNAKE_CASE ( self : Any ) -> MyNode | None: return self.right def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: return self.height def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Any ) -> None: UpperCAmelCase_ : str = data def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : MyNode | None ) -> None: UpperCAmelCase_ : List[Any] = node def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : MyNode | None ) -> None: UpperCAmelCase_ : Dict = node def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : int ) -> None: UpperCAmelCase_ : str = height def snake_case ( A__ ): if node is None: return 0 return node.get_height() def snake_case ( A__ ,A__ ): if a > b: return a return b def snake_case ( A__ ): print("left rotation node:" ,node.get_data() ) UpperCAmelCase_ : Tuple = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(A__ ) UpperCAmelCase_ : List[Any] = my_max(get_height(node.get_right() ) ,get_height(node.get_left() ) ) + 1 node.set_height(A__ ) UpperCAmelCase_ : List[str] = my_max(get_height(ret.get_right() ) ,get_height(ret.get_left() ) ) + 1 ret.set_height(A__ ) return ret def snake_case ( A__ ): print("right rotation node:" ,node.get_data() ) UpperCAmelCase_ : str = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(A__ ) UpperCAmelCase_ : Any = my_max(get_height(node.get_right() ) ,get_height(node.get_left() ) ) + 1 node.set_height(A__ ) UpperCAmelCase_ : List[Any] = my_max(get_height(ret.get_right() ) ,get_height(ret.get_left() ) ) + 1 ret.set_height(A__ ) return ret def snake_case ( A__ ): UpperCAmelCase_ : Tuple = node.get_left() assert left_child is not None node.set_left(left_rotation(A__ ) ) return right_rotation(A__ ) def snake_case ( A__ ): UpperCAmelCase_ : Optional[int] = node.get_right() assert right_child is not None node.set_right(right_rotation(A__ ) ) return left_rotation(A__ ) def snake_case ( A__ ,A__ ): if node is None: return MyNode(A__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() ,A__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected UpperCAmelCase_ : Optional[Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child UpperCAmelCase_ : str = right_rotation(A__ ) else: UpperCAmelCase_ : List[Any] = lr_rotation(A__ ) else: node.set_right(insert_node(node.get_right() ,A__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: UpperCAmelCase_ : Any = node.get_right() assert right_child is not None if data < right_child.get_data(): UpperCAmelCase_ : List[Any] = rl_rotation(A__ ) else: UpperCAmelCase_ : int = left_rotation(A__ ) UpperCAmelCase_ : int = my_max(get_height(node.get_right() ) ,get_height(node.get_left() ) ) + 1 node.set_height(A__ ) return node def snake_case ( A__ ): while True: UpperCAmelCase_ : Union[str, Any] = root.get_right() if right_child is None: break UpperCAmelCase_ : int = right_child return root.get_data() def snake_case ( A__ ): while True: UpperCAmelCase_ : Dict = root.get_left() if left_child is None: break UpperCAmelCase_ : Tuple = left_child return root.get_data() def snake_case ( A__ ,A__ ): UpperCAmelCase_ : int = root.get_left() UpperCAmelCase_ : Dict = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: UpperCAmelCase_ : Dict = get_left_most(A__ ) root.set_data(A__ ) root.set_right(del_node(A__ ,A__ ) ) elif left_child is not None: UpperCAmelCase_ : Optional[int] = left_child elif right_child is not None: UpperCAmelCase_ : List[Any] = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(A__ ,A__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(A__ ,A__ ) ) if get_height(A__ ) - get_height(A__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): UpperCAmelCase_ : Any = left_rotation(A__ ) else: UpperCAmelCase_ : Any = rl_rotation(A__ ) elif get_height(A__ ) - get_height(A__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): UpperCAmelCase_ : Tuple = right_rotation(A__ ) else: UpperCAmelCase_ : str = lr_rotation(A__ ) UpperCAmelCase_ : Optional[Any] = my_max(get_height(root.get_right() ) ,get_height(root.get_left() ) ) + 1 root.set_height(A__ ) return root class UpperCamelCase_ : def __init__( self : Dict ) -> None: UpperCAmelCase_ : MyNode | None = None def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return get_height(self.root ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Any ) -> None: print("insert:" + str(lowerCAmelCase_ ) ) UpperCAmelCase_ : List[str] = insert_node(self.root , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Any ) -> None: print("delete:" + str(lowerCAmelCase_ ) ) if self.root is None: print("Tree is empty!" ) return UpperCAmelCase_ : int = del_node(self.root , lowerCAmelCase_ ) def __str__( self : int , ) -> str: # a level traversale, gives a more intuitive look on the tree UpperCAmelCase_ : Dict = "" UpperCAmelCase_ : List[str] = MyQueue() q.push(self.root ) UpperCAmelCase_ : List[Any] = self.get_height() if layer == 0: return output UpperCAmelCase_ : Union[str, Any] = 0 while not q.is_empty(): UpperCAmelCase_ : int = q.pop() UpperCAmelCase_ : Any = " " * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCAmelCase_ ) q.push(lowerCAmelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space UpperCAmelCase_ : List[Any] = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , lowerCAmelCase_ ) - 1: UpperCAmelCase_ : List[str] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def snake_case ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() lowerCamelCase_ = AVLtree() lowerCamelCase_ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
253
"""simple docstring""" import numpy as np def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : Tuple = int(np.ceil((x_end - xa) / h ) ) UpperCAmelCase_ : Optional[Any] = np.zeros((n + 1,) ) UpperCAmelCase_ : List[Any] = ya UpperCAmelCase_ : Optional[int] = xa for k in range(A__ ): UpperCAmelCase_ : List[str] = f(A__ ,y[k] ) UpperCAmelCase_ : Any = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCAmelCase_ : Union[str, Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCAmelCase_ : Dict = f(x + h ,y[k] + h * ka ) UpperCAmelCase_ : Optional[int] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
253
1
from collections.abc import Callable import numpy as np def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = int(np.ceil((x_end - xa) / step_size ) ) __a = np.zeros((n + 1,) ) __a = ya __a = xa for k in range(_UpperCAmelCase ): __a = y[k] + step_size * ode_func(_UpperCAmelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
49
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig a : Optional[Any] = logging.get_logger(__name__) a : Tuple = "T5Config" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = jnp.zeros_like(__magic_name__ ) UpperCAmelCase : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) UpperCAmelCase : str = shifted_input_ids.at[:, 0].set(__magic_name__ ) UpperCAmelCase : Any = jnp.where(shifted_input_ids == -100 , __magic_name__ , __magic_name__ ) return shifted_input_ids class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "mt5" SCREAMING_SNAKE_CASE__ : Dict = MTaConfig class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "mt5" SCREAMING_SNAKE_CASE__ : str = MTaConfig class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = "mt5" SCREAMING_SNAKE_CASE__ : str = MTaConfig
311
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __a ( A__ ): _lowerCAmelCase : UNetaDModel _lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Dict , SCREAMING_SNAKE_CASE : UNetaDModel , SCREAMING_SNAKE_CASE : ScoreSdeVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self : Tuple , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 20_00 , SCREAMING_SNAKE_CASE : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE : Optional[str] = "pil" , SCREAMING_SNAKE_CASE : bool = True , **SCREAMING_SNAKE_CASE : Tuple , ): '''simple docstring''' UpperCamelCase__ : Tuple = self.unet.config.sample_size UpperCamelCase__ : List[str] = (batch_size, 3, img_size, img_size) UpperCamelCase__ : int = self.unet UpperCamelCase__ : int = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ) * self.scheduler.init_noise_sigma UpperCamelCase__ : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) self.scheduler.set_sigmas(SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCamelCase__ : Dict = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample UpperCamelCase__ : str = self.scheduler.step_correct(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample # prediction step UpperCamelCase__ : Tuple = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample UpperCamelCase__ : str = self.scheduler.step_pred(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ : Dict = output.prev_sample, output.prev_sample_mean UpperCamelCase__ : Union[str, Any] = sample_mean.clamp(0 , 1 ) UpperCamelCase__ : Optional[int] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ : int = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (sample,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
196
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCamelCase : Optional[Any] =False class __a ( unittest.TestCase ): pass @nightly @require_torch_gpu class __a ( unittest.TestCase ): def __lowercase ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : int = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCamelCase__ : Dict = torch.manual_seed(0 ) UpperCamelCase__ : str = pipe.dual_guided( prompt="first prompt" , image=SCREAMING_SNAKE_CASE , text_to_image_strength=0.7_5 , generator=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = VersatileDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = generator.manual_seed(0 ) UpperCamelCase__ : Dict = pipe.dual_guided( prompt="first prompt" , image=SCREAMING_SNAKE_CASE , text_to_image_strength=0.7_5 , generator=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = "cyberpunk 2077" UpperCamelCase__ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCamelCase__ : int = torch.manual_seed(0 ) UpperCamelCase__ : Any = pipe.dual_guided( prompt=SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , text_to_image_strength=0.7_5 , generator=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images UpperCamelCase__ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ : Optional[int] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ : List[str] = "A painting of a squirrel eating a burger " UpperCamelCase__ : List[Any] = torch.manual_seed(0 ) UpperCamelCase__ : Dict = pipe.text_to_image( prompt=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images UpperCamelCase__ : Union[str, Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ : Dict = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ : Any = pipe.image_variation(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , output_type="numpy" ).images UpperCamelCase__ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ : int = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
196
1
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _lowercase : int = logging.get_logger(__name__) _lowercase : List[str] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED _lowercase : List[str] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } _lowercase : Union[str, Any] = { 'allenai/led-base-16384': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase__ ( ): __UpperCAmelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __UpperCAmelCase = bs[:] __UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def lowercase__ ( snake_case_ :Optional[Any] ): __UpperCAmelCase = set() __UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase = char return pairs class _UpperCAmelCase ( lowerCamelCase__ ): a__ : int = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self : Dict , _lowercase : Tuple , _lowercase : Dict , _lowercase : Union[str, Any]="replace" , _lowercase : Any="<s>" , _lowercase : Dict="</s>" , _lowercase : Union[str, Any]="</s>" , _lowercase : Dict="<s>" , _lowercase : Dict="<unk>" , _lowercase : Union[str, Any]="<pad>" , _lowercase : Tuple="<mask>" , _lowercase : List[str]=False , **_lowercase : List[Any] , ): __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else bos_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else eos_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else sep_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else cls_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else unk_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) with open(lowercase__ , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase = json.load(lowercase__ ) __UpperCAmelCase = {v: k for k, v in self.encoder.items()} __UpperCAmelCase = errors # how to handle errors in decoding __UpperCAmelCase = bytes_to_unicode() __UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowercase__ , encoding='''utf-8''' ) as merges_handle: __UpperCAmelCase = merges_handle.read().split('''\n''' )[1:-1] __UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = {} __UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def a ( self : Union[str, Any] ): return len(self.encoder ) def a ( self : List[str] ): return dict(self.encoder , **self.added_tokens_encoder ) def a ( self : Optional[Any] , _lowercase : Optional[Any] ): if token in self.cache: return self.cache[token] __UpperCAmelCase = tuple(lowercase__ ) __UpperCAmelCase = get_pairs(lowercase__ ) if not pairs: return token while True: __UpperCAmelCase = min(lowercase__ , key=lambda _lowercase : self.bpe_ranks.get(lowercase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase = bigram __UpperCAmelCase = [] __UpperCAmelCase = 0 while i < len(lowercase__ ): try: __UpperCAmelCase = word.index(lowercase__ , lowercase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase = j if word[i] == first and i < len(lowercase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase = tuple(lowercase__ ) __UpperCAmelCase = new_word if len(lowercase__ ) == 1: break else: __UpperCAmelCase = get_pairs(lowercase__ ) __UpperCAmelCase = ''' '''.join(lowercase__ ) __UpperCAmelCase = word return word def a ( self : List[Any] , _lowercase : List[Any] ): __UpperCAmelCase = [] for token in re.findall(self.pat , lowercase__ ): __UpperCAmelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase__ ).split(''' ''' ) ) return bpe_tokens def a ( self : str , _lowercase : Tuple ): return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token ) ) def a ( self : Union[str, Any] , _lowercase : Any ): return self.decoder.get(lowercase__ ) def a ( self : Optional[int] , _lowercase : Optional[Any] ): __UpperCAmelCase = ''''''.join(lowercase__ ) __UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def a ( self : List[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__ ) + '''\n''' ) __UpperCAmelCase = 0 with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __UpperCAmelCase = token_index writer.write(''' '''.join(lowercase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a ( self : Union[str, Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) + [1] def a ( self : Union[str, Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self : int , _lowercase : Optional[int] , _lowercase : Optional[Any]=False , **_lowercase : Optional[int] ): __UpperCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase__ ) > 0 and not text[0].isspace()): __UpperCAmelCase = ''' ''' + text return (text, kwargs) def a ( self : Any , _lowercase : Union[Dict[str, EncodedInput], BatchEncoding] , _lowercase : Optional[int] = None , _lowercase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , ): __UpperCAmelCase = super()._pad( encoded_inputs=lowercase__ , max_length=lowercase__ , padding_strategy=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , ) # Load from model defaults if return_attention_mask is None: __UpperCAmelCase = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __UpperCAmelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __UpperCAmelCase = len(encoded_inputs['''global_attention_mask'''] ) != len(lowercase__ ) if needs_to_be_padded: __UpperCAmelCase = len(lowercase__ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __UpperCAmelCase = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __UpperCAmelCase = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
332
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(A__ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(A__ ): http_head('''https://huggingface.co''' )
104
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Union[str, Any] = ['''flax'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = ['''flax'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Dict = ['''flax'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Any = ['''flax'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[Any] = ['''flax'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = ['''flax'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''flax'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Dict = ['''flax'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[Any] = ['''flax'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Dict = ['''flax'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Dict = ['''flax'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = ['''flax'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Dict = ['''flax'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""flax"""] )
229
'''simple docstring''' import logging from transformers import PretrainedConfig _lowercase = logging.getLogger(__name__) _lowercase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[Any] = '''bertabs''' def __init__( self , _lowercase=30_522 , _lowercase=512 , _lowercase=6 , _lowercase=512 , _lowercase=8 , _lowercase=512 , _lowercase=0.2 , _lowercase=6 , _lowercase=768 , _lowercase=8 , _lowercase=2_048 , _lowercase=0.2 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = max_pos _lowerCAmelCase = enc_layers _lowerCAmelCase = enc_hidden_size _lowerCAmelCase = enc_heads _lowerCAmelCase = enc_ff_size _lowerCAmelCase = enc_dropout _lowerCAmelCase = dec_layers _lowerCAmelCase = dec_hidden_size _lowerCAmelCase = dec_heads _lowerCAmelCase = dec_ff_size _lowerCAmelCase = dec_dropout
229
1
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowerCAmelCase ( lowerCAmelCase_ :List[str] )->Tuple: # picklable for multiprocessing '''simple docstring''' return x.sum() def _lowerCAmelCase ( lowerCAmelCase_ :Any )->List[Any]: # picklable for multiprocessing '''simple docstring''' return i + 1 @dataclass class __lowerCAmelCase : """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 class __lowerCAmelCase ( a ): """simple docstring""" def lowerCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" snake_case_ = {} snake_case_ = [] snake_case_ = 1 snake_case_ = [1, 2] snake_case_ = {"a": 1, "b": 2} snake_case_ = {"a": [1, 2], "b": [3, 4]} snake_case_ = {"a": {"1": 1}, "b": 2} snake_case_ = {"a": 1, "b": 2, "c": 3, "d": 4} snake_case_ = {} snake_case_ = [] snake_case_ = 2 snake_case_ = [2, 3] snake_case_ = {"a": 2, "b": 3} snake_case_ = {"a": [2, 3], "b": [4, 5]} snake_case_ = {"a": {"1": 2}, "b": 3} snake_case_ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) snake_case_ = 2 self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) snake_case_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} snake_case_ = {"a": 2, "b": 0, "c": 2} snake_case_ = { "a": np.eye(2 ).astype(_lowerCAmelCase ), "b": np.zeros(3 ).astype(_lowerCAmelCase ), "c": np.ones(2 ).astype(_lowerCAmelCase ), } self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase , num_proc=_lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowerCAmelCase ): # can't pickle a local lambda map_nested(lambda _lowerCAmelCase : x + 1 , _lowerCAmelCase , num_proc=_lowerCAmelCase ) def lowerCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" snake_case_ = {"a": 1, "b": 2} snake_case_ = {"a": 3, "b": 4} snake_case_ = {"a": 5, "b": 6} snake_case_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) , _lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" class __lowerCAmelCase : """simple docstring""" _SCREAMING_SNAKE_CASE = 'bar' snake_case_ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(_lowerCAmelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Any , lowerCAmelCase_ :str )->int: '''simple docstring''' with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: snake_case_ = {F'''{i}''': i for i in range(lowerCAmelCase_ )} snake_case_ = map_nested(lambda lowerCAmelCase_ : x + 10 , lowerCAmelCase_ , num_proc=lowerCAmelCase_ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __lowerCAmelCase ( a ): """simple docstring""" @require_tf def lowerCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" import tensorflow as tf from tensorflow.keras import layers snake_case_ = layers.Dense(2 ) def gen_random_output(): snake_case_ = tf.random.uniform((1, 3) ) return model(_lowerCAmelCase ).numpy() with temp_seed(4_2 , set_tensorflow=_lowerCAmelCase ): snake_case_ = gen_random_output() with temp_seed(4_2 , set_tensorflow=_lowerCAmelCase ): snake_case_ = gen_random_output() snake_case_ = gen_random_output() np.testing.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def lowerCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" import torch def gen_random_output(): snake_case_ = torch.nn.Linear(3 , 2 ) snake_case_ = torch.rand(1 , 3 ) return model(_lowerCAmelCase ).detach().numpy() with temp_seed(4_2 , set_pytorch=_lowerCAmelCase ): snake_case_ = gen_random_output() with temp_seed(4_2 , set_pytorch=_lowerCAmelCase ): snake_case_ = gen_random_output() snake_case_ = gen_random_output() np.testing.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def lowerCAmelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): snake_case_ = gen_random_output() with temp_seed(4_2 ): snake_case_ = gen_random_output() snake_case_ = gen_random_output() np.testing.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def _lowerCAmelCase ( lowerCAmelCase_ :Optional[Any] )->Optional[int]: '''simple docstring''' snake_case_ = NestedDataStructure(lowerCAmelCase_ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def _lowerCAmelCase ( lowerCAmelCase_ :Dict , lowerCAmelCase_ :Tuple )->Union[str, Any]: '''simple docstring''' snake_case_ = NestedDataStructure(lowerCAmelCase_ ).flatten() assert output == expected_output def _lowerCAmelCase ( )->str: '''simple docstring''' snake_case_ = A(x=1 , y="foobar" ) snake_case_ = {"x": 1, "y": "foobar"} assert asdict(lowerCAmelCase_ ) == expected_output snake_case_ = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} snake_case_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCAmelCase_ ) == expected_output with pytest.raises(lowerCAmelCase_ ): asdict([1, A(x=10 , y="foo" )] ) def _lowerCAmelCase ( lowerCAmelCase_ :str )->Any: '''simple docstring''' return text.split() def _lowerCAmelCase ( lowerCAmelCase_ :int )->int: '''simple docstring''' yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowerCAmelCase ( )->List[str]: '''simple docstring''' with Pool(2 ) as pool: snake_case_ = list(iflatmap_unordered(lowerCAmelCase_ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCAmelCase_ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: snake_case_ = list(iflatmap_unordered(lowerCAmelCase_ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCAmelCase_ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: snake_case_ = [] for yield_time, content in iflatmap_unordered( lowerCAmelCase_ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCAmelCase_ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCAmelCase_ ) == 4
159
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE :Union[str, Any] = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys SCREAMING_SNAKE_CASE :List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
159
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): '''simple docstring''' @property def __snake_case ( self : int): '''simple docstring''' torch.manual_seed(0) lowerCAmelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def __snake_case ( self : List[Any]): '''simple docstring''' torch.manual_seed(0) lowerCAmelCase__ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def __snake_case ( self : Tuple): '''simple docstring''' torch.manual_seed(0) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase__) def __snake_case ( self : Any): '''simple docstring''' lowerCAmelCase__ = self.dummy_uncond_unet lowerCAmelCase__ = DDIMScheduler() lowerCAmelCase__ = self.dummy_vq_model lowerCAmelCase__ = LDMPipeline(unet=lowercase__ , vqvae=lowercase__ , scheduler=lowercase__) ldm.to(lowercase__) ldm.set_progress_bar_config(disable=lowercase__) lowerCAmelCase__ = torch.manual_seed(0) lowerCAmelCase__ = ldm(generator=lowercase__ , num_inference_steps=2 , output_type='numpy').images lowerCAmelCase__ = torch.manual_seed(0) lowerCAmelCase__ = ldm(generator=lowercase__ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase__)[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172]) lowerCAmelCase__ = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance @slow @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256') ldm.to(lowercase__) ldm.set_progress_bar_config(disable=lowercase__) lowerCAmelCase__ = torch.manual_seed(0) lowerCAmelCase__ = ldm(generator=lowercase__ , num_inference_steps=5 , output_type='numpy').images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase__ = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447]) lowerCAmelCase__ = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
119
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ = 1_6 ): lowerCAmelCase__ = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase__ = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( lowerCAmelCase__ , padding='longest' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets['train'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowerCAmelCase__ = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCAmelCase__ ) == "1": lowerCAmelCase__ = 2 # Initialize accelerator lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config['lr'] lowerCAmelCase__ = int(config['num_epochs'] ) lowerCAmelCase__ = int(config['seed'] ) lowerCAmelCase__ = int(config['batch_size'] ) lowerCAmelCase__ = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ = model(**lowerCAmelCase__ ) lowerCAmelCase__ = outputs.loss lowerCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowerCAmelCase__ = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**lowerCAmelCase__ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCAmelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowerCAmelCase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) def __lowerCamelCase ( ): lowerCAmelCase__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
119
1
import functools def A_ ( a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = len(a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(a ) @functools.cache def min_distance(a , a ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa SCREAMING_SNAKE_CASE_ : str = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , a ) , 1 + min_distance(a , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
253
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCAmelCase : Any = logging.getLogger(__name__) class _A ( __magic_name__): def __init__( self , _SCREAMING_SNAKE_CASE=-1 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = label_idx def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : int = mode.value SCREAMING_SNAKE_CASE_ : Any = os.path.join(_SCREAMING_SNAKE_CASE , f"{mode}.txt" ) SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Any = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) ) guid_index += 1 SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : Dict = [] else: SCREAMING_SNAKE_CASE_ : List[str] = line.split(' ' ) words.append(splits[0] ) if len(_SCREAMING_SNAKE_CASE ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) ) return examples def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(_SCREAMING_SNAKE_CASE ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: SCREAMING_SNAKE_CASE_ : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(_SCREAMING_SNAKE_CASE ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if path: with open(_SCREAMING_SNAKE_CASE , 'r' ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _A ( __magic_name__): def __init__( self ): """simple docstring""" super().__init__(label_idx=-2 ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if path: with open(_SCREAMING_SNAKE_CASE , 'r' ) as f: SCREAMING_SNAKE_CASE_ : int = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE_ : int = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _A ( __magic_name__): def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = mode.value SCREAMING_SNAKE_CASE_ : str = os.path.join(_SCREAMING_SNAKE_CASE , f"{mode}.txt" ) SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Tuple = [] with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: for sentence in parse_incr(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : List[str] = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) ) guid_index += 1 return examples def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 0 for sentence in parse_incr(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : List[str] = preds_list[example_id] SCREAMING_SNAKE_CASE_ : Any = '' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(_SCREAMING_SNAKE_CASE ) example_id += 1 def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if path: with open(_SCREAMING_SNAKE_CASE , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
253
1
from __future__ import annotations def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(_A ) // 2 # choose the middle 3 elements SCREAMING_SNAKE_CASE__ = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
218
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
218
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __lowerCAmelCase = None __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __lowerCAmelCase = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } __lowerCAmelCase = '''▁''' class __a ( __UpperCamelCase ): __lowercase : int = VOCAB_FILES_NAMES __lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Dict = ['input_ids', 'attention_mask'] __lowercase : str = BarthezTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , **lowerCAmelCase__ , ) -> Optional[Any]: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase__: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__: Union[str, Any] = vocab_file lowercase__: Union[str, Any] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__: str = [self.cls_token_id] lowercase__: List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: Optional[Any] = [self.sep_token_id] lowercase__: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__: str = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
196
from __future__ import annotations def snake_case_ ( snake_case , snake_case ) -> list[int]: lowercase__: List[str] = 0 lowercase__: Dict = len(snake_case ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__: Dict = i + 1 else: lowercase__: List[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
196
1
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def _lowerCamelCase( a = 2_0_0_0_0_0_0 ): __a = [0] __a = 4_2 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __a = 0 # the area corresponding to the grid that gives the product closest to target __a = 0 # an estimate of b, using the quadratic formula __a = 4_2 # the largest integer less than b_estimate __a = 4_2 # the largest integer less than b_estimate __a = 4_2 # the triangle number corresponding to b_floor __a = 4_2 # the triangle number corresponding to b_ceil __a = 4_2 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __a = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __a = floor(a ) __a = ceil(a ) __a = triangle_numbers[b_floor] __a = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __a = triangle_b_first_guess * triangle_a __a = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __a = triangle_b_second_guess * triangle_a __a = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
350
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__) class snake_case__ ( snake_case_ ): _snake_case : Optional[Any] = ["""pixel_values"""] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) __a = size if size is not None else {"shortest_edge": 384} __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = do_resize __a = size # Default value set here for backwards compatibility where the value in config is None __a = crop_pct if crop_pct is not None else 224 / 256 __a = resample __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BICUBIC , lowerCamelCase = None , **lowerCamelCase , ): __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}" ) __a = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __a = int(shortest_edge / crop_pct ) __a = get_resize_output_image_size(lowerCamelCase , size=lowerCamelCase , default_to_square=lowerCamelCase ) __a = resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase , size=(shortest_edge, shortest_edge) , data_format=lowerCamelCase , **lowerCamelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase , size=(shortest_edge, shortest_edge) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ): __a = do_resize if do_resize is not None else self.do_resize __a = crop_pct if crop_pct is not None else self.crop_pct __a = resample if resample is not None else self.resample __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __a = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: __a = [self.resize(image=lowerCamelCase , size=lowerCamelCase , crop_pct=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: __a = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: __a = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] __a = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] __a = {"pixel_values": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
268
0
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: _A : List[str] = None try: import msvcrt except ImportError: _A : Any = None try: import fcntl except ImportError: _A : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _A : Optional[int] = OSError # Data # ------------------------------------------------ _A : Dict = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] _A : List[str] = '''3.0.12''' _A : Optional[int] = None def UpperCamelCase_ ( ) -> Optional[int]: '''simple docstring''' global _logger __lowerCAmelCase = _logger or logging.getLogger(__name__ ) return _logger class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: __lowerCAmelCase = lock_file return None def __str__( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _lowercase : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: __lowerCAmelCase = lock return None def __enter__( self : Dict ) -> Dict: return self.lock def __exit__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: self.lock.release() return None class _lowercase : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int=-1 , SCREAMING_SNAKE_CASE__ : Tuple=None ) -> Union[str, Any]: __lowerCAmelCase = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __lowerCAmelCase = self.hash_filename_if_too_long(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # The path to the lock file. __lowerCAmelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCAmelCase = None # The default timeout value. __lowerCAmelCase = timeout # We use this lock primarily for the lock counter. __lowerCAmelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCAmelCase = 0 return None @property def a ( self : Optional[Any] ) -> Union[str, Any]: return self._lock_file @property def a ( self : List[str] ) -> Tuple: return self._timeout @timeout.setter def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: __lowerCAmelCase = float(SCREAMING_SNAKE_CASE__ ) return None def a ( self : Tuple ) -> Any: raise NotImplementedError() def a ( self : Any ) -> Union[str, Any]: raise NotImplementedError() @property def a ( self : Any ) -> List[Any]: return self._lock_file_fd is not None def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0_5 ) -> List[str]: # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCAmelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCAmelCase = id(self ) __lowerCAmelCase = self._lock_file __lowerCAmelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(SCREAMING_SNAKE_CASE__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCAmelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict=False ) -> List[str]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCAmelCase = id(self ) __lowerCAmelCase = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCAmelCase = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : Dict ) -> Dict: self.acquire() return self def __exit__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: self.release() return None def __del__( self : Optional[Any] ) -> Optional[Any]: self.release(force=SCREAMING_SNAKE_CASE__ ) return None def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: __lowerCAmelCase = os.path.basename(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > max_length and max_length > 0: __lowerCAmelCase = os.path.dirname(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = str(hash(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = filename[: max_length - len(SCREAMING_SNAKE_CASE__ ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: return path class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=-1 , SCREAMING_SNAKE_CASE__ : int=None ) -> List[Any]: from .file_utils import relative_to_absolute_path super().__init__(SCREAMING_SNAKE_CASE__ , timeout=SCREAMING_SNAKE_CASE__ , max_filename_length=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def a ( self : str ) -> Tuple: __lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCAmelCase = os.open(self._lock_file , SCREAMING_SNAKE_CASE__ ) except OSError: pass else: try: msvcrt.locking(SCREAMING_SNAKE_CASE__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(SCREAMING_SNAKE_CASE__ ) else: __lowerCAmelCase = fd return None def a ( self : List[str] ) -> Dict: __lowerCAmelCase = self._lock_file_fd __lowerCAmelCase = None msvcrt.locking(SCREAMING_SNAKE_CASE__ , msvcrt.LK_UNLCK , 1 ) os.close(SCREAMING_SNAKE_CASE__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=-1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> Optional[Any]: __lowerCAmelCase = os.statvfs(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ).f_namemax super().__init__(SCREAMING_SNAKE_CASE__ , timeout=SCREAMING_SNAKE_CASE__ , max_filename_length=SCREAMING_SNAKE_CASE__ ) def a ( self : int ) -> Union[str, Any]: __lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCAmelCase = os.open(self._lock_file , SCREAMING_SNAKE_CASE__ ) try: fcntl.flock(SCREAMING_SNAKE_CASE__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(SCREAMING_SNAKE_CASE__ ) else: __lowerCAmelCase = fd return None def a ( self : Tuple ) -> Optional[int]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCAmelCase = self._lock_file_fd __lowerCAmelCase = None fcntl.flock(SCREAMING_SNAKE_CASE__ , fcntl.LOCK_UN ) os.close(SCREAMING_SNAKE_CASE__ ) return None class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def a ( self : str ) -> Tuple: __lowerCAmelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCAmelCase = os.open(self._lock_file , SCREAMING_SNAKE_CASE__ ) except OSError: pass else: __lowerCAmelCase = fd return None def a ( self : List[str] ) -> Optional[int]: os.close(self._lock_file_fd ) __lowerCAmelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _A : List[str] = None if msvcrt: _A : Optional[int] = WindowsFileLock elif fcntl: _A : Optional[int] = UnixFileLock else: _A : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
229
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _lowercase ( datasets.BuilderConfig ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None class _lowercase ( datasets.ArrowBasedBuilder ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = PandasConfig def a ( self : Union[str, Any] ) -> int: return datasets.DatasetInfo(features=self.config.features ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE__ , (str, list, tuple) ): __lowerCAmelCase = data_files if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowerCAmelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowerCAmelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE__ , gen_kwargs={"""files""": files} ) ) return splits def a ( self : Any , SCREAMING_SNAKE_CASE__ : pa.Table ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __lowerCAmelCase = table_cast(SCREAMING_SNAKE_CASE__ , self.config.features.arrow_schema ) return pa_table def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: for i, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE__ ) ): with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as f: __lowerCAmelCase = pa.Table.from_pandas(pd.read_pickle(SCREAMING_SNAKE_CASE__ ) ) yield i, self._cast_table(SCREAMING_SNAKE_CASE__ )
229
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
"""simple docstring""" def __lowerCamelCase ( a_ : Union[str, Any] , a_ : Optional[Any] ) -> Union[str, Any]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCamelCase ( a_ : Optional[int] , a_ : Any=0 ) -> Optional[Any]: return sorted(a_ , key=lambda a_ : x[column] ) def __lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[int] , a_ : str=float('''inf''' ) ) -> str: for i in range(points_counts - 1 ): for j in range(i + 1 , a_ ): __SCREAMING_SNAKE_CASE :Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE :Optional[Any] = current_dis return min_dis def __lowerCamelCase ( a_ : List[Any] , a_ : Any , a_ : Optional[int]=float('''inf''' ) ) -> Optional[Any]: for i in range(min(6 , points_counts - 1 ) , a_ ): for j in range(max(0 , i - 6 ) , a_ ): __SCREAMING_SNAKE_CASE :Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE :int = current_dis return min_dis def __lowerCamelCase ( a_ : str , a_ : List[Any] , a_ : int ) -> Optional[int]: # base case if points_counts <= 3: return dis_between_closest_pair(a_ , a_ ) # recursion __SCREAMING_SNAKE_CASE :int = points_counts // 2 __SCREAMING_SNAKE_CASE :Dict = closest_pair_of_points_sqr( a_ , points_sorted_on_y[:mid] , a_ ) __SCREAMING_SNAKE_CASE :Any = closest_pair_of_points_sqr( a_ , points_sorted_on_y[mid:] , points_counts - mid ) __SCREAMING_SNAKE_CASE :Union[str, Any] = min(a_ , a_ ) __SCREAMING_SNAKE_CASE :str = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(a_ ) __SCREAMING_SNAKE_CASE :Dict = dis_between_closest_in_strip( a_ , len(a_ ) , a_ ) return min(a_ , a_ ) def __lowerCamelCase ( a_ : int , a_ : Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE :Union[str, Any] = column_based_sort(a_ , column=0 ) __SCREAMING_SNAKE_CASE :int = column_based_sort(a_ , column=1 ) return ( closest_pair_of_points_sqr( a_ , a_ , a_ ) ) ** 0.5 if __name__ == "__main__": lowerCamelCase_ = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
239
0
def UpperCamelCase ( snake_case__ : list[int] ) -> list[int]: UpperCamelCase : Any = len(snake_case__ ) for i in range(snake_case__ ): for j in range(i + 1 , snake_case__ ): if numbers[j] < numbers[i]: UpperCamelCase , UpperCamelCase : List[str] = numbers[j], numbers[i] return numbers if __name__ == "__main__": __UpperCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() __UpperCAmelCase = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
119
from __future__ import annotations __UpperCAmelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : Union[str, Any] = graph # mapping node to its parent in resulting breadth first tree UpperCamelCase : dict[str, str | None] = {} UpperCamelCase : Union[str, Any] = source_vertex def snake_case_ ( self ) -> None: UpperCamelCase : str = {self.source_vertex} UpperCamelCase : str = None UpperCamelCase : int = [self.source_vertex] # first in first out queue while queue: UpperCamelCase : Dict = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = vertex queue.append(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if target_vertex == self.source_vertex: return self.source_vertex UpperCamelCase : Optional[Any] = self.parent.get(SCREAMING_SNAKE_CASE_ ) if target_vertex_parent is None: UpperCamelCase : Union[str, Any] = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) return self.shortest_path(SCREAMING_SNAKE_CASE_ ) + F"""->{target_vertex}""" if __name__ == "__main__": __UpperCAmelCase = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
119
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class _A ( lowerCAmelCase ): snake_case__ : int = 'transfo-xl' snake_case__ : Dict = ['mems'] snake_case__ : Union[str, Any] = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __lowerCAmelCase=26_7735 , __lowerCAmelCase=[2_0000, 4_0000, 20_0000] , __lowerCAmelCase=1024 , __lowerCAmelCase=1024 , __lowerCAmelCase=16 , __lowerCAmelCase=64 , __lowerCAmelCase=4096 , __lowerCAmelCase=4 , __lowerCAmelCase=False , __lowerCAmelCase=18 , __lowerCAmelCase=1600 , __lowerCAmelCase=1000 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=0 , __lowerCAmelCase=-1 , __lowerCAmelCase=True , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase="normal" , __lowerCAmelCase=0.0_1 , __lowerCAmelCase=0.0_1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0 , **__lowerCAmelCase , ): """simple docstring""" lowercase = vocab_size lowercase = [] self.cutoffs.extend(__lowerCAmelCase ) if proj_share_all_but_first: lowercase = [False] + [True] * len(self.cutoffs ) else: lowercase = [False] + [False] * len(self.cutoffs ) lowercase = d_model lowercase = d_embed lowercase = d_head lowercase = d_inner lowercase = div_val lowercase = pre_lnorm lowercase = n_layer lowercase = n_head lowercase = mem_len lowercase = same_length lowercase = attn_type lowercase = clamp_len lowercase = sample_softmax lowercase = adaptive lowercase = dropout lowercase = dropatt lowercase = untie_r lowercase = init lowercase = init_range lowercase = proj_init_std lowercase = init_std lowercase = layer_norm_epsilon super().__init__(eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def A__ ( self , __lowerCAmelCase ): """simple docstring""" raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
32
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = UnCLIPImageVariationPipeline SCREAMING_SNAKE_CASE = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} SCREAMING_SNAKE_CASE = IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] SCREAMING_SNAKE_CASE = False @property def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' return 32 @property def __magic_name__ ( self ) -> Any: '''simple docstring''' return self.time_input_dim @property def __magic_name__ ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim * 4 @property def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return 100 @property def __magic_name__ ( self ) -> str: '''simple docstring''' __a =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __a =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__snake_case ) @property def __magic_name__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __a =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(__snake_case ) @property def __magic_name__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __a ={ 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } __a =UnCLIPTextProjModel(**__snake_case ) return model @property def __magic_name__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __a ={ 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } __a =UNetaDConditionModel(**__snake_case ) return model @property def __magic_name__ ( self ) -> str: '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __magic_name__ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __a =UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def __magic_name__ ( self ) -> Any: '''simple docstring''' # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) __a =UNetaDModel(**self.dummy_super_res_kwargs ) return model def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.dummy_decoder __a =self.dummy_text_proj __a =self.dummy_text_encoder __a =self.dummy_tokenizer __a =self.dummy_super_res_first __a =self.dummy_super_res_last __a =UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1000 , ) __a =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1000 , ) __a =CLIPImageProcessor(crop_size=32 , size=32 ) __a =self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __magic_name__ ( self , __snake_case , __snake_case=0 , __snake_case=True ) -> Union[str, Any]: '''simple docstring''' __a =floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) if pil_image: __a =input_image * 0.5 + 0.5 __a =input_image.clamp(0 , 1 ) __a =input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __a =DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a ='cpu' __a =self.get_dummy_components() __a =self.pipeline_class(**__snake_case ) __a =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) __a =pipe(**__snake_case ) __a =output.images __a =self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) __a =pipe( **__snake_case , return_dict=__snake_case , )[0] __a =image[0, -3:, -3:, -1] __a =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a =np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a ='cpu' __a =self.get_dummy_components() __a =self.pipeline_class(**__snake_case ) __a =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) __a =pipe(**__snake_case ) __a =output.images __a =self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) __a =pipe( **__snake_case , return_dict=__snake_case , )[0] __a =image[0, -3:, -3:, -1] __a =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a =np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a ='cpu' __a =self.get_dummy_components() __a =self.pipeline_class(**__snake_case ) __a =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) __a =[ pipeline_inputs['image'], pipeline_inputs['image'], ] __a =pipe(**__snake_case ) __a =output.images __a =self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) __a =[ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] __a =pipe( **__snake_case , return_dict=__snake_case , )[0] __a =image[0, -3:, -3:, -1] __a =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) __a =np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =torch.device('cpu' ) class __magic_name__ : SCREAMING_SNAKE_CASE = 1 __a =self.get_dummy_components() __a =self.pipeline_class(**__snake_case ) __a =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =torch.Generator(device=__snake_case ).manual_seed(0 ) __a =pipe.decoder.dtype __a =1 __a =( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) __a =pipe.prepare_latents( __snake_case , dtype=__snake_case , device=__snake_case , generator=__snake_case , latents=__snake_case , scheduler=DummyScheduler() ) __a =( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) __a =pipe.prepare_latents( __snake_case , dtype=__snake_case , device=__snake_case , generator=__snake_case , latents=__snake_case , scheduler=DummyScheduler() ) __a =self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) __a =pipe( **__snake_case , decoder_latents=__snake_case , super_res_latents=__snake_case ).images __a =self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) # Don't pass image, instead pass embedding __a =pipeline_inputs.pop('image' ) __a =pipe.image_encoder(__snake_case ).image_embeds __a =pipe( **__snake_case , decoder_latents=__snake_case , super_res_latents=__snake_case , image_embeddings=__snake_case , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor __a =1e-2 self._test_attention_slicing_forward_pass( test_max_difference=__snake_case , expected_max_diff=__snake_case ) @skip_mps def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =torch_device == 'cpu' __a =True __a =[ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=__snake_case , relax_max_difference=__snake_case , additional_params_copy_to_batched_inputs=__snake_case , ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =[ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes __a =[2, 3] self._test_inference_batch_consistent( batch_sizes=__snake_case , additional_params_copy_to_batched_inputs=__snake_case , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__snake_case ) @skip_mps def __magic_name__ ( self ) -> Dict: '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' return super().test_save_load_local() @skip_mps def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) __a =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) __a =UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) __a =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __a =torch.Generator(device='cpu' ).manual_seed(0 ) __a =pipeline( __snake_case , generator=__snake_case , output_type='np' , ) __a =output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(__snake_case , __snake_case , 15 )
218
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowerCAmelCase : Optional[Any] = False class __magic_name__ ( unittest.TestCase ): pass @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __a =torch.manual_seed(0 ) __a =pipe( image=__snake_case , generator=__snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __a =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a =np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
218
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
198
from manim import * class UpperCamelCase ( _UpperCAmelCase ): def __A ( self ): A__ = Rectangle(height=0.5 , width=0.5 ) A__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) A__ = [mem.copy() for i in range(6 )] A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = VGroup(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("CPU" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase__ ) A__ = [mem.copy() for i in range(4 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("GPU" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase__ ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("Model" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase__ ) A__ = [] for i, rect in enumerate(UpperCAmelCase__ ): rect.set_stroke(UpperCAmelCase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) A__ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=UpperCAmelCase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=UpperCAmelCase__ , buff=0.0 ) self.add(UpperCAmelCase__ ) cpu_targs.append(UpperCAmelCase__ ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("Loaded Checkpoint" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , aligned_edge=UpperCAmelCase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) A__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A__ = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(UpperCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) A__ = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase__ ) , Write(UpperCAmelCase__ ) ) self.play(Write(UpperCAmelCase__ , run_time=1 ) , Create(UpperCAmelCase__ , run_time=1 ) ) A__ = [] A__ = [] for i, rect in enumerate(UpperCAmelCase__ ): A__ = fill.copy().set_fill(UpperCAmelCase__ , opacity=0.7 ) target.move_to(UpperCAmelCase__ ) first_animations.append(GrowFromCenter(UpperCAmelCase__ , run_time=1 ) ) A__ = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(UpperCAmelCase__ , run_time=1.5 ) ) self.play(*UpperCAmelCase__ ) self.play(*UpperCAmelCase__ ) self.wait()
198
1
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case ( __A ): a__ = """new-model""" if is_tf_available(): class __snake_case ( __A ): a__ = NewModelConfig @require_tf class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Optional[int] = "bert-base-cased" a__: Dict = AutoConfig.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) a__: Tuple = TFAutoModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) @slow def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: str = "bert-base-cased" a__: Any = AutoConfig.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) a__: Dict = TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) @slow def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: List[str] = AutoConfig.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) a__: Optional[Any] = TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase_) a__: Dict = TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , output_loading_info=lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) @slow def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: Any = AutoConfig.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) a__: List[Any] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) @slow def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: Optional[int] = AutoConfig.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) a__: Optional[int] = TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase_) a__: Optional[int] = TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , output_loading_info=lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) @slow def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: int = AutoConfig.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) a__: Any = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_) a__: List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , output_loading_info=lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) @slow def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' for model_name in ["bert-base-uncased"]: a__: Optional[Any] = AutoConfig.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) a__: Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) @slow def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' for model_name in ["bert-base-uncased"]: a__: int = AutoConfig.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) a__: List[Any] = TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) @slow @require_tensorflow_probability def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: a__: Dict = AutoConfig.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) a__: int = TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCAmelCase_) a__: List[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: str = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) self.assertEqual(model.num_parameters() , 1_44_10) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_) , 1_44_10) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: str = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) self.assertEqual(model.num_parameters() , 1_44_10) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_) , 1_44_10) def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Union[str, Any] = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny') self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) a__: Any = copy.deepcopy(model.config) a__: Dict = ["FunnelBaseModel"] a__: Union[str, Any] = TFAutoModel.from_config(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase_) a__: Any = TFAutoModel.from_pretrained(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' try: AutoConfig.register('new-model' , lowerCAmelCase_) a__: Union[str, Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(lowerCAmelCase_): auto_class.register(lowerCAmelCase_ , lowerCAmelCase_) auto_class.register(lowerCAmelCase_ , lowerCAmelCase_) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase_): auto_class.register(lowerCAmelCase_ , lowerCAmelCase_) # Now that the config is registered, it can be used as any other config with the auto-API a__: List[Any] = BertModelTester(self).get_config() a__: Union[str, Any] = NewModelConfig(**tiny_config.to_dict()) a__: int = auto_class.from_config(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase_) a__: Dict = auto_class.from_pretrained(lowerCAmelCase_) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( lowerCAmelCase_ , 'bert-base is not a local folder and is not a valid model identifier'): a__: str = TFAutoModel.from_pretrained('bert-base') def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( lowerCAmelCase_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): a__: Union[str, Any] = TFAutoModel.from_pretrained(lowerCAmelCase_ , revision='aaaaaa') def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( lowerCAmelCase_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): a__: List[Any] = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model') def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex(lowerCAmelCase_ , 'Use `from_pt=True` to load this model'): a__: Union[str, Any] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only') def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: List[Any] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert') with RequestCounter() as counter: a__: str = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0) # With a sharded checkpoint a__: Dict = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded') with RequestCounter() as counter: a__: int = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
290
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
268
0
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> list[list[int]]: """simple docstring""" UpperCamelCase :list[list[int]] = [] create_all_state(1 , __magic_name__ , __magic_name__ , [] , __magic_name__ ) return result def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : list[list[int]] , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(__magic_name__ , total_number - level + 2 ): current_list.append(__magic_name__ ) create_all_state(i + 1 , __magic_name__ , level - 1 , __magic_name__ , __magic_name__ ) current_list.pop() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] ) -> None: """simple docstring""" for i in total_list: print(*__magic_name__ ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = 4 UpperCAmelCase_ : Tuple = 2 UpperCAmelCase_ : Optional[Any] = generate_all_combinations(n, k) print_all_state(total_list)
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Optional[int] = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
62
0
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: int ): while second != 0: __SCREAMING_SNAKE_CASE : Dict = first & second first ^= second __SCREAMING_SNAKE_CASE : Optional[int] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : Optional[int] = int(input('''Enter the first number: ''').strip()) UpperCamelCase__ : str = int(input('''Enter the second number: ''').strip()) print(f"{add(first, second) = }")
112
'''simple docstring''' from collections import defaultdict def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> bool: lowercase_ : Tuple = first_str.lower().strip() lowercase_ : List[Any] = second_str.lower().strip() # Remove whitespace lowercase_ : Dict = first_str.replace(""" """ , """""" ) lowercase_ : Tuple = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): return False # Default values for count should be 0 lowercase_ : defaultdict[str, int] = defaultdict(UpperCAmelCase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(UpperCAmelCase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : int = input("Enter the first string ").strip() _lowercase : Tuple = input("Enter the second string ").strip() _lowercase : Union[str, Any] = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
239
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowerCamelCase : Tuple = logging.get_logger(__name__) class A( __a ): '''simple docstring''' def __init__( self : str , *A_ : str , **A_ : Any ) -> None: """simple docstring""" warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
369
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class A( unittest.TestCase ): '''simple docstring''' def __init__( self : str , A_ : int , A_ : Any=7 , A_ : Tuple=3 , A_ : Union[str, Any]=18 , A_ : Tuple=30 , A_ : Union[str, Any]=400 , A_ : Optional[int]=True , A_ : List[Any]=None , A_ : Dict=True , A_ : Union[str, Any]=None , A_ : Optional[int]=True , A_ : str=[0.48145466, 0.4578275, 0.40821073] , A_ : Tuple=[0.26862954, 0.26130258, 0.27577711] , A_ : Any=True , ) -> str: """simple docstring""" lowerCamelCase_ = size if size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std lowerCamelCase_ = do_convert_rgb def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def a__ ( self : Any , A_ : Any=False , A_ : Dict=False , A_ : str=False ) -> Union[str, Any]: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCamelCase_ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowerCamelCase_ = [] for i in range(self.batch_size ): lowerCamelCase_ , lowerCamelCase_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCamelCase_ = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] if torchify: lowerCamelCase_ = [torch.from_numpy(A_ ) for x in image_inputs] return image_inputs @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def a__ ( self : int ) -> Any: """simple docstring""" lowerCamelCase_ = ChineseCLIPImageProcessingTester(self , do_center_crop=A_ ) @property def a__ ( self : str ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_center_crop' ) ) self.assertTrue(hasattr(A_ , 'center_crop' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_convert_rgb' ) ) def a__ ( self : Any ) -> Any: """simple docstring""" lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 224, 'width': 224} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def a__ ( self : str ) -> str: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=A_ ) lowerCamelCase_ = 3 @property def a__ ( self : Any ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_center_crop' ) ) self.assertTrue(hasattr(A_ , 'center_crop' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_convert_rgb' ) ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
208
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : UNetaDModel snake_case__ : ScoreSdeVeScheduler def __init__( self : str , SCREAMING_SNAKE_CASE__ : UNetaDModel , SCREAMING_SNAKE_CASE__ : ScoreSdeVeScheduler ) -> Optional[int]: super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self : str , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 2_0_0_0 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : str , ) -> Union[ImagePipelineOutput, Tuple]: a_ : Tuple = self.unet.config.sample_size a_ : Optional[Any] = (batch_size, 3, img_size, img_size) a_ : Optional[Any] = self.unet a_ : List[str] = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) * self.scheduler.init_noise_sigma a_ : Tuple = sample.to(self.device ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) self.scheduler.set_sigmas(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): a_ : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): a_ : Tuple = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample a_ : Optional[Any] = self.scheduler.step_correct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample # prediction step a_ : Optional[int] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample a_ : Tuple = self.scheduler.step_pred(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) a_ , a_ : Union[str, Any] = output.prev_sample, output.prev_sample_mean a_ : Dict = sample_mean.clamp(0 , 1 ) a_ : Optional[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a_ : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
32
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> str: """simple docstring""" a_ : Tuple = [] for line in lines: a_ : Any = re.sub(R'#.*' , '' , __A ) # remove comments if line: filtered_lines.append(__A ) a_ : Tuple = '\n'.join(__A ) # Make a hash from all this code a_ : Tuple = full_str.encode('utf-8' ) return shaaaa(__A ).hexdigest() # get importable module names and hash for caching UpperCAmelCase_ : List[Any] = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase_ : Dict = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase_ : Optional[int] = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCAmelCase_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
32
1
import sys from collections import defaultdict class UpperCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" A_ : Optional[int] = [] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.node_position[vertex] def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" A_ : Any = pos def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A_ : Optional[int] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A_ : Any = 2 * start + 1 else: A_ : int = 2 * start + 2 if heap[smallest_child] < heap[start]: A_ : Optional[Any] = heap[smallest_child], positions[smallest_child] A_ : List[str] = ( heap[start], positions[start], ) A_ : str = temp, tempa A_ : List[str] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowercase ) self.top_to_bottom(lowercase , lowercase , lowercase , lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" A_ : List[Any] = position[index] while index != 0: A_ : Tuple = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A_ : List[str] = heap[parent] A_ : Union[str, Any] = position[parent] self.set_position(position[parent] , lowercase ) else: A_ : Union[str, Any] = val A_ : int = temp self.set_position(lowercase , lowercase ) break A_ : Optional[Any] = parent else: A_ : List[str] = val A_ : Tuple = temp self.set_position(lowercase , 0 ) def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" A_ : str = len(lowercase ) // 2 - 1 for i in range(lowercase , -1 , -1 ): self.top_to_bottom(lowercase , lowercase , len(lowercase ) , lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" A_ : int = positions[0] A_ : str = sys.maxsize self.top_to_bottom(lowercase , 0 , len(lowercase ) , lowercase ) return temp def UpperCamelCase ( __lowercase : Any ): '''simple docstring''' A_ : Dict = Heap() A_ : List[Any] = [0] * len(__lowercase ) A_ : str = [-1] * len(__lowercase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A_ : Any = [] # Heap of Distance of vertices from their neighboring vertex A_ : Dict = [] for vertex in range(len(__lowercase ) ): distance_tv.append(sys.maxsize ) positions.append(__lowercase ) heap.node_position.append(__lowercase ) A_ : Dict = [] A_ : Optional[Any] = 1 A_ : str = sys.maxsize for neighbor, distance in adjacency_list[0]: A_ : List[str] = 0 A_ : Tuple = distance heap.heapify(__lowercase ,__lowercase ) for _ in range(1 ,len(__lowercase ) ): A_ : Any = heap.delete_minimum(__lowercase ,__lowercase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A_ : List[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__lowercase )] ): A_ : Optional[Any] = distance heap.bottom_to_top( __lowercase ,heap.get_position(__lowercase ) ,__lowercase ,__lowercase ) A_ : Optional[Any] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _UpperCAmelCase = int(input("""Enter number of edges: """).strip()) _UpperCAmelCase = defaultdict(list) for _ in range(edges_number): _UpperCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase = { """configuration_bridgetower""": [ """BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BridgeTowerConfig""", """BridgeTowerTextConfig""", """BridgeTowerVisionConfig""", ], """processing_bridgetower""": ["""BridgeTowerProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""BridgeTowerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""", """BridgeTowerForContrastiveLearning""", """BridgeTowerForImageAndTextRetrieval""", """BridgeTowerForMaskedLM""", """BridgeTowerModel""", """BridgeTowerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
192
0
'''simple docstring''' import string def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Union[str, Any] = '''''' for i in sequence: lowercase__ : Union[str, Any] = ord(UpperCAmelCase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Tuple = string.ascii_letters lowercase__ : int = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(UpperCAmelCase )] if c in letters else c for c in sequence ) def __UpperCamelCase ( ): from timeit import timeit print('''Running performance benchmarks...''' ) lowercase__ : Union[str, Any] = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F"""> atbash_slow(): {timeit('atbash_slow(printable)' , setup=UpperCAmelCase )} seconds""" ) print(F"""> atbash(): {timeit('atbash(printable)' , setup=UpperCAmelCase )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'{example} encrypted in atbash: {atbash(example)}') benchmark()
198
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCAmelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self , __lowerCAmelCase ) -> List[str]: super().__init__() lowercase__ : List[str] = model lowercase__ : Dict = 2 lowercase__ : Any = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase( self ) -> str: pass def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): # load longformer model from model identifier lowercase__ : Dict = LongformerModel.from_pretrained(UpperCAmelCase ) lowercase__ : List[str] = LightningModel(UpperCAmelCase ) lowercase__ : List[Any] = torch.load(UpperCAmelCase , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model lowercase__ : Optional[int] = LongformerForQuestionAnswering.from_pretrained(UpperCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCAmelCase ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __a: Tuple = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
198
1
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowerCAmelCase_ = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(_UpperCamelCase ) , version.parse(_UpperCamelCase ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase = None ) -> None: """simple docstring""" snake_case_ : int = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , _UpperCamelCase ): snake_case_ , snake_case_ , snake_case_ : int = requirement, None, None else: snake_case_ : Dict = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , _UpperCamelCase ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) snake_case_ , snake_case_ : Union[str, Any] = match[0] snake_case_ : int = want_full.split(''',''' ) # there could be multiple requirements snake_case_ : List[Any] = {} for w in want_range: snake_case_ : int = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , _UpperCamelCase ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) snake_case_ , snake_case_ : Tuple = match[0] snake_case_ : Dict = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": snake_case_ : str = '''.'''.join([str(_UpperCamelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return # check if any version is installed try: snake_case_ : Dict = importlib.metadata.version(_UpperCamelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : Any = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(_UpperCamelCase , _UpperCamelCase )
279
def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) snake_case_ : List[str] = len(bin(_UpperCamelCase )[3:] ) snake_case_ : str = bin(abs(_UpperCamelCase ) - (1 << binary_number_length) )[3:] snake_case_ : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_UpperCamelCase )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
279
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowerCamelCase_ : '''simple docstring''' @staticmethod def UpperCamelCase__ ( *__lowercase , **__lowercase) -> Union[str, Any]: pass def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' a__ : Tuple = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> Tuple: __UpperCamelCase :Optional[int] = DepthEstimationPipeline(model=A_ , image_processor=A_) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Tuple: __UpperCamelCase :Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''') self.assertEqual({'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)} , A_) import datasets __UpperCamelCase :Dict = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''') __UpperCamelCase :List[Any] = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ]) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, ] , A_ , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''') def UpperCamelCase__ ( self) -> Optional[Any]: pass @slow @require_torch def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :List[str] = '''Intel/dpt-large''' __UpperCamelCase :int = pipeline('''depth-estimation''' , model=A_) __UpperCamelCase :Tuple = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''') __UpperCamelCase :List[Any] = hashimage(outputs['''depth''']) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item()) , 29.3_04) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item()) , 2.6_62) @require_torch def UpperCamelCase__ ( self) -> List[Any]: # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''')
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __get__(self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int=None) ->Union[str, Any]: '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") lowerCamelCase__: int ="__cached_" + self.fget.__name__ lowerCamelCase__: Any =getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if cached is None: lowerCamelCase__: str =self.fget(UpperCAmelCase_) setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return cached def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: List[str] =val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" if is_torch_fx_proxy(__a ): return True if is_torch_available(): import torch if isinstance(__a , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__a , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__a , (jnp.ndarray, Tracer) ): return True return isinstance(__a , np.ndarray ) def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" return isinstance(__a , np.ndarray ) def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" return _is_numpy(__a ) def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" import torch return isinstance(__a , torch.Tensor ) def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" return False if not is_torch_available() else _is_torch(__a ) def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" import torch return isinstance(__a , torch.device ) def lowerCAmelCase_ ( __a ) -> Optional[int]: """simple docstring""" return False if not is_torch_available() else _is_torch_device(__a ) def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" import torch if isinstance(__a , __a ): if hasattr(__a , __a ): lowerCamelCase__: List[Any] =getattr(__a , __a ) else: return False return isinstance(__a , torch.dtype ) def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(__a ) def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" import tensorflow as tf return isinstance(__a , tf.Tensor ) def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" return False if not is_tf_available() else _is_tensorflow(__a ) def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__a , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(__a ) return type(__a ) == tf.Tensor def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(__a ) def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(__a , jnp.ndarray ) def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" return False if not is_flax_available() else _is_jax(__a ) def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" if isinstance(__a , (dict, UserDict) ): return {k: to_py_obj(__a ) for k, v in obj.items()} elif isinstance(__a , (list, tuple) ): return [to_py_obj(__a ) for o in obj] elif is_tf_tensor(__a ): return obj.numpy().tolist() elif is_torch_tensor(__a ): return obj.detach().cpu().tolist() elif is_jax_tensor(__a ): return np.asarray(__a ).tolist() elif isinstance(__a , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" if isinstance(__a , (dict, UserDict) ): return {k: to_numpy(__a ) for k, v in obj.items()} elif isinstance(__a , (list, tuple) ): return np.array(__a ) elif is_tf_tensor(__a ): return obj.numpy() elif is_torch_tensor(__a ): return obj.detach().cpu().numpy() elif is_jax_tensor(__a ): return np.asarray(__a ) else: return obj class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =fields(self) # Safety and consistency checks if not len(UpperCAmelCase_): raise ValueError(F"""{self.__class__.__name__} has no fields.""") if not all(field.default is None for field in class_fields[1:]): raise ValueError(F"""{self.__class__.__name__} should not have more than one required field.""") lowerCamelCase__: Union[str, Any] =getattr(self , class_fields[0].name) lowerCamelCase__: Dict =all(getattr(self , field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(UpperCAmelCase_): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =first_field.items() lowerCamelCase__: Any =True else: try: lowerCamelCase__: Optional[int] =iter(UpperCAmelCase_) lowerCamelCase__: Tuple =True except TypeError: lowerCamelCase__: Optional[int] =False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(UpperCAmelCase_): if ( not isinstance(UpperCAmelCase_ , (list, tuple)) or not len(UpperCAmelCase_) == 2 or not isinstance(element[0] , UpperCAmelCase_) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCamelCase__: Optional[Any] =first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""") break setattr(self , element[0] , element[1]) if element[1] is not None: lowerCamelCase__: List[Any] =element[1] elif first_field is not None: lowerCamelCase__: Optional[int] =first_field else: for field in class_fields: lowerCamelCase__: Optional[int] =getattr(self , field.name) if v is not None: lowerCamelCase__: Optional[int] =v def __delitem__(self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[str]) ->int: '''simple docstring''' raise Exception(F"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""") def SCREAMING_SNAKE_CASE_ (self : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : int) ->Any: '''simple docstring''' raise Exception(F"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""") def SCREAMING_SNAKE_CASE_ (self : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict) ->List[Any]: '''simple docstring''' raise Exception(F"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""") def SCREAMING_SNAKE_CASE_ (self : str , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any]) ->List[Any]: '''simple docstring''' raise Exception(F"""You cannot use ``update`` on a {self.__class__.__name__} instance.""") def __getitem__(self : Dict , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any) ->List[str]: '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(UpperCAmelCase_ , UpperCAmelCase_) super().__setattr__(UpperCAmelCase_ , UpperCAmelCase_) def __setitem__(self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' super().__setitem__(UpperCAmelCase_ , UpperCAmelCase_) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple[Any]: '''simple docstring''' return tuple(self[k] for k in self.keys()) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict , UpperCAmelCase_ : Dict) ->Tuple: '''simple docstring''' raise ValueError( F"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}""") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longest" lowercase_ = "max_length" lowercase_ = "do_not_pad" class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "pt" lowercase_ = "tf" lowercase_ = "np" lowercase_ = "jax" class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Union[str, Any] , UpperCAmelCase_ : List[ContextManager]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Tuple =context_managers lowerCamelCase__: Dict =ExitStack() def __enter__(self : int) ->List[Any]: '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(UpperCAmelCase_) def __exit__(self : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any]) ->int: '''simple docstring''' self.stack.__exit__(*UpperCAmelCase_ , **UpperCAmelCase_) def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" lowerCamelCase__: List[str] =infer_framework(__a ) if framework == "tf": lowerCamelCase__: Union[str, Any] =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__: Any =inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__: Dict =inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" lowerCamelCase__: Dict =model_class.__name__ lowerCamelCase__: List[Any] =infer_framework(__a ) if framework == "tf": lowerCamelCase__: Dict =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__: Optional[Any] =inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__: Optional[Any] =inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCAmelCase_ ( __a , __a = "" , __a = "." ) -> Optional[int]: """simple docstring""" def _flatten_dict(__a , __a="" , __a="." ): for k, v in d.items(): lowerCamelCase__: Union[str, Any] =str(__a ) + delimiter + str(__a ) if parent_key else k if v and isinstance(__a , __a ): yield from flatten_dict(__a , __a , delimiter=__a ).items() else: yield key, v return dict(_flatten_dict(__a , __a , __a ) ) @contextmanager def lowerCAmelCase_ ( __a , __a = False ) -> Optional[int]: """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCAmelCase_ ( __a , __a=None ) -> Union[str, Any]: """simple docstring""" if is_numpy_array(__a ): return np.transpose(__a , axes=__a ) elif is_torch_tensor(__a ): return array.T if axes is None else array.permute(*__a ) elif is_tf_tensor(__a ): import tensorflow as tf return tf.transpose(__a , perm=__a ) elif is_jax_tensor(__a ): return jnp.transpose(__a , axes=__a ) else: raise ValueError(F"""Type not supported for transpose: {type(__a )}.""" ) def lowerCAmelCase_ ( __a , __a ) -> Dict: """simple docstring""" if is_numpy_array(__a ): return np.reshape(__a , __a ) elif is_torch_tensor(__a ): return array.reshape(*__a ) elif is_tf_tensor(__a ): import tensorflow as tf return tf.reshape(__a , __a ) elif is_jax_tensor(__a ): return jnp.reshape(__a , __a ) else: raise ValueError(F"""Type not supported for reshape: {type(__a )}.""" ) def lowerCAmelCase_ ( __a , __a=None ) -> List[str]: """simple docstring""" if is_numpy_array(__a ): return np.squeeze(__a , axis=__a ) elif is_torch_tensor(__a ): return array.squeeze() if axis is None else array.squeeze(dim=__a ) elif is_tf_tensor(__a ): import tensorflow as tf return tf.squeeze(__a , axis=__a ) elif is_jax_tensor(__a ): return jnp.squeeze(__a , axis=__a ) else: raise ValueError(F"""Type not supported for squeeze: {type(__a )}.""" ) def lowerCAmelCase_ ( __a , __a ) -> List[str]: """simple docstring""" if is_numpy_array(__a ): return np.expand_dims(__a , __a ) elif is_torch_tensor(__a ): return array.unsqueeze(dim=__a ) elif is_tf_tensor(__a ): import tensorflow as tf return tf.expand_dims(__a , axis=__a ) elif is_jax_tensor(__a ): return jnp.expand_dims(__a , axis=__a ) else: raise ValueError(F"""Type not supported for expand_dims: {type(__a )}.""" ) def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" if is_numpy_array(__a ): return np.size(__a ) elif is_torch_tensor(__a ): return array.numel() elif is_tf_tensor(__a ): import tensorflow as tf return tf.size(__a ) elif is_jax_tensor(__a ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(__a )}.""" ) def lowerCAmelCase_ ( __a , __a ) -> Optional[int]: """simple docstring""" for key, value in auto_map.items(): if isinstance(__a , (tuple, list) ): lowerCamelCase__: Union[str, Any] =[F"""{repo_id}--{v}""" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: lowerCamelCase__: Tuple =F"""{repo_id}--{value}""" return auto_map def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" for base_class in inspect.getmro(__a ): lowerCamelCase__: Tuple =base_class.__module__ lowerCamelCase__: str =base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
273
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A = direct_transformers_import(PATH_TO_TRANSFORMERS) __A = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A = re.compile(R"\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", } def lowerCAmelCase_ ( __a ) -> Optional[int]: """simple docstring""" lowerCamelCase__: List[Any] =None # source code of `config_class` lowerCamelCase__: List[Any] =inspect.getsource(__a ) lowerCamelCase__: str =_re_checkpoint.findall(__a ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): lowerCamelCase__: str =ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__: Optional[int] =F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowerCamelCase__: List[Any] =ckpt_name break return checkpoint def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" lowerCamelCase__: Union[str, Any] =[] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowerCamelCase__: List[Any] =get_checkpoint_from_config_class(__a ) lowerCamelCase__: Tuple =config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: lowerCamelCase__: List[str] ="\n".join(sorted(__a ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
273
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : str = logging.get_logger(__name__) a__ : Optional[int] = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class lowercase_ ( a__ , a__ ): __UpperCAmelCase = 'convnextv2' def __init__( self , a=3 , a=4 , a=4 , a=None , a=None , a="gelu" , a=0.02 , a=1e-12 , a=0.0 , a=2_24 , a=None , a=None , **a , ): super().__init__(**a ) UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = num_stages UpperCamelCase__ = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes UpperCamelCase__ = [3, 3, 9, 3] if depths is None else depths UpperCamelCase__ = hidden_act UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = drop_path_rate UpperCamelCase__ = image_size UpperCamelCase__ = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase__ , UpperCamelCase__ = get_aligned_output_features_output_indices( out_features=a , out_indices=a , stage_names=self.stage_names )
80
'''simple docstring''' _UpperCamelCase = tuple[float, float, float] _UpperCamelCase = tuple[float, float, float] def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Vectorad: __lowerCamelCase : Any = end_pointa[0] - end_pointa[0] __lowerCamelCase : str = end_pointa[1] - end_pointa[1] __lowerCamelCase : Tuple = end_pointa[2] - end_pointa[2] return (x, y, z) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Vectorad: __lowerCamelCase : List[str] = ab[1] * ac[2] - ab[2] * ac[1] # *i __lowerCamelCase : Dict = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __lowerCamelCase : List[Any] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> bool: return tuple(round(_lowerCAmelCase ,_lowerCAmelCase ) for x in vector ) == (0, 0, 0) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = 10 ) -> bool: __lowerCamelCase : str = create_vector(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : Dict = create_vector(_lowerCAmelCase ,_lowerCAmelCase ) return is_zero_vector(get_ad_vectors_cross(_lowerCAmelCase ,_lowerCAmelCase ) ,_lowerCAmelCase )
208
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ = '''src/diffusers''' UpperCamelCase__ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ = spec.loader.load_module() def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ): return line.startswith(SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , SCREAMING_SNAKE_CASE_ ) is not None def _a ( SCREAMING_SNAKE_CASE_ : Any ): __lowerCAmelCase = object_name.split("." ) __lowerCAmelCase = 0 # First let's find the module where our object lives. __lowerCAmelCase = parts[i] while i < len(SCREAMING_SNAKE_CASE_ ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , F"""{module}.py""" ) ): i += 1 if i < len(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , parts[i] ) if i >= len(SCREAMING_SNAKE_CASE_ ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , F"""{module}.py""" ) , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.readlines() # Now let's find the class / func in the code! __lowerCAmelCase = """""" __lowerCAmelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(SCREAMING_SNAKE_CASE_ ) and re.search(RF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE_ ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __lowerCAmelCase = line_index while line_index < len(SCREAMING_SNAKE_CASE_ ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE_ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __lowerCAmelCase = lines[start_index:line_index] return "".join(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = re.compile(R"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") UpperCamelCase__ = re.compile(R"""^\s*(\S+)->(\S+)(\s+.*|$)""") UpperCamelCase__ = re.compile(R"""<FILL\s+[^>]*>""") def _a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): __lowerCAmelCase = code.split("\n" ) __lowerCAmelCase = 0 while idx < len(SCREAMING_SNAKE_CASE_ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(SCREAMING_SNAKE_CASE_ ): return re.search(R"^(\s*)\S" , lines[idx] ).groups()[0] return "" def _a ( SCREAMING_SNAKE_CASE_ : Tuple ): __lowerCAmelCase = len(get_indent(SCREAMING_SNAKE_CASE_ ) ) > 0 if has_indent: __lowerCAmelCase = F"""class Bla:\n{code}""" __lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = black.format_str(SCREAMING_SNAKE_CASE_ , mode=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = style_docstrings_in_code(SCREAMING_SNAKE_CASE_ ) return result[len("class Bla:\n" ) :] if has_indent else result def _a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any=False ): with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = [] __lowerCAmelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __lowerCAmelCase = search.groups() __lowerCAmelCase = find_code_in_diffusers(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = get_indent(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 __lowerCAmelCase = theoretical_indent __lowerCAmelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __lowerCAmelCase = True while line_index < len(SCREAMING_SNAKE_CASE_ ) and should_continue: line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE_ ): break __lowerCAmelCase = lines[line_index] __lowerCAmelCase = _should_continue(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and re.search(F"""^{indent}# End copy""" , SCREAMING_SNAKE_CASE_ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __lowerCAmelCase = lines[start_index:line_index] __lowerCAmelCase = """""".join(SCREAMING_SNAKE_CASE_ ) # Remove any nested `Copied from` comments to avoid circular copies __lowerCAmelCase = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE_ ) is None] __lowerCAmelCase = """\n""".join(SCREAMING_SNAKE_CASE_ ) # Before comparing, use the `replace_pattern` on the original code. if len(SCREAMING_SNAKE_CASE_ ) > 0: __lowerCAmelCase = replace_pattern.replace("with" , "" ).split("," ) __lowerCAmelCase = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE_ ) for p in patterns] for pattern in patterns: if pattern is None: continue __lowerCAmelCase = pattern.groups() __lowerCAmelCase = re.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if option.strip() == "all-casing": __lowerCAmelCase = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE_ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __lowerCAmelCase = blackify(lines[start_index - 1] + theoretical_code ) __lowerCAmelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __lowerCAmelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] __lowerCAmelCase = start_index + 1 if overwrite and len(SCREAMING_SNAKE_CASE_ ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(SCREAMING_SNAKE_CASE_ ) return diffs def _a ( SCREAMING_SNAKE_CASE_ : bool = False ): __lowerCAmelCase = glob.glob(os.path.join(SCREAMING_SNAKE_CASE_ , "**/*.py" ) , recursive=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = [] for filename in all_files: __lowerCAmelCase = is_copy_consistent(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(SCREAMING_SNAKE_CASE_ ) > 0: __lowerCAmelCase = """\n""".join(SCREAMING_SNAKE_CASE_ ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCamelCase__ = parser.parse_args() check_copies(args.fix_and_overwrite)
368
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a__ : def __init__( self , _A , _A=1_3 , _A=3_0 , _A=2 , _A=3 , _A=True , _A=True , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_0 , _A=0.02 , _A=3 , _A=None , _A=2 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDeiTModel(config=_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDeiTForMaskedImageModeling(config=_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = TFDeiTForMaskedImageModeling(_A ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = TFDeiTForImageClassification(_A ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = TFDeiTForImageClassification(_A ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _a : Optional[Any] = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _a : str = False _a : str = False _a : List[str] = False _a : Optional[int] = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Dense ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) __lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=False ): """simple docstring""" __lowerCAmelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFDeiTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _a ( ): __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="tf" ) # forward pass __lowerCAmelCase = model(**_A ) # verify the logits __lowerCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) __lowerCAmelCase = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
102
0
"""simple docstring""" from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowercase__( __SCREAMING_SNAKE_CASE : bool = True , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Any ): if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) lowercase_ : int = False if main_process_only: lowercase_ : Optional[Any] = PartialState().local_process_index == 0 return _tqdm(*lowercase_ , **lowercase_ , disable=lowercase_ )
213
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): A_ : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A_ : Tuple = 12_8022 A_ : Optional[Any] = 12_8028 @require_sentencepiece class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Tuple = MaMaaaTokenizer UpperCAmelCase__: List[Any] = False UpperCAmelCase__: Any = False UpperCAmelCase__: Optional[Any] = True def __A ( self ): super().setUp() A__ : Union[str, Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] A__ : Optional[Any] = dict(zip(A__ , range(len(A__ ) ) ) ) A__ : Optional[int] = Path(self.tmpdirname ) save_json(A__ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(A__ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) A__ : Tuple = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self , **A__ ): return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **A__ ) def __A ( self , A__ ): return ( "This is a test", "This is a test", ) def __A ( self ): A__ : Any = """</s>""" A__ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A__ ) , A__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A__ ) , A__ ) def __A ( self ): A__ : str = self.get_tokenizer() A__ : Dict = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<s>""" ) self.assertEqual(len(A__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def __A ( self ): pass def __A ( self ): A__ : Optional[int] = self.get_tokenizer() A__ : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A__ ) , [2, 3, 4, 5, 6] , ) A__ : Dict = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(A__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) A__ : Any = tokenizer.convert_tokens_to_string(A__ ) self.assertEqual(A__ , """This is a test""" ) @slow def __A ( self ): # fmt: off A__ : int = {"""input_ids""": [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A__ , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , ) @require_torch @require_sentencepiece @require_tokenizers class _a (unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Optional[int] = '''facebook/m2m100_418M''' UpperCAmelCase__: Any = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__: Any = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__: List[str] = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def __A ( cls ): A__ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" ) A__ : int = 1 return cls def __A ( self ): self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 12_8063 ) def __A ( self ): A__ : Optional[Any] = self.tokenizer.get_vocab() self.assertEqual(len(A__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] , 3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) , A__ ) def __A ( self ): A__ : List[Any] = """en""" A__ : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A__ ) def __A ( self ): self.assertIn(A__ , self.tokenizer.all_special_ids ) # fmt: off A__ : Dict = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on A__ : Dict = self.tokenizer.decode(A__ , skip_special_tokens=A__ ) A__ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A__ ) self.assertEqual(A__ , A__ ) self.assertNotIn(self.tokenizer.eos_token , A__ ) def __A ( self ): A__ : str = tempfile.mkdtemp() A__ : Dict = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(A__ ) A__ : List[Any] = MaMaaaTokenizer.from_pretrained(A__ ) self.assertDictEqual(new_tok.lang_token_to_id , A__ ) @require_torch def __A ( self ): A__ : List[str] = """en""" A__ : List[str] = """fr""" A__ : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A__ , return_tensors="""pt""" ) A__ : int = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: A__ : Any = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __A ( self ): A__ : List[str] = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) A__ : Any = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __A ( self ): A__ : Optional[int] = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) A__ : Any = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __A ( self ): A__ : Any = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" ) self.assertEqual( nested_simplify(A__ ) , { # en_XX, A, test, EOS """input_ids""": [[12_8022, 58, 4183, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 12_8006, } , )
192
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase): _UpperCamelCase:List[str] = ViTImageProcessor if is_vision_available() else None @property def _snake_case ( self )-> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self )-> Any: lowerCamelCase_ =(3, 32, 128) lowerCamelCase_ =tempfile.mkdtemp() # fmt: off lowerCamelCase_ =["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowerCamelCase_ =dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) lowerCamelCase_ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + """\n""" ) lowerCamelCase_ ={ """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } lowerCamelCase_ =os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )-> Union[str, Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )-> str: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[int]: shutil.rmtree(self.tmpdirname ) def _snake_case ( self )-> Dict: lowerCamelCase_ =np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) lowerCamelCase_ =Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) return image_input def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ =MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ =self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCamelCase_ =self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) lowerCamelCase_ =MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.prepare_image_inputs() lowerCamelCase_ =image_processor(_SCREAMING_SNAKE_CASE , return_tensors="""np""" ) lowerCamelCase_ =processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self )-> int: lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ="""test""" lowerCamelCase_ =processor(text=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tokenizer(_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ="""test""" lowerCamelCase_ =self.prepare_image_inputs() lowerCamelCase_ =processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ =processor.char_decode(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =None lowerCamelCase_ =self.prepare_image_inputs() lowerCamelCase_ =processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.randn(1 , 27 , 38 ) lowerCamelCase_ =torch.randn(1 , 27 , 5_0257 ) lowerCamelCase_ =torch.randn(1 , 27 , 3_0522 ) lowerCamelCase_ =processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
361
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A : Any = '▁' __A : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Any = BertGenerationTokenizer _UpperCamelCase:List[str] = False _UpperCamelCase:List[Any] = True def _snake_case ( self )-> Optional[int]: super().setUp() lowerCamelCase_ =BertGenerationTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self )-> Any: lowerCamelCase_ ="""<s>""" lowerCamelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1002 ) def _snake_case ( self )-> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _snake_case ( self )-> Any: lowerCamelCase_ =BertGenerationTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [285, 46, 10, 170, 382] , ) lowerCamelCase_ =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase_ =tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase_ =tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _snake_case ( self )-> str: return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def _snake_case ( self )-> Optional[int]: lowerCamelCase_ ="""Hello World!""" lowerCamelCase_ =[1_8536, 2260, 101] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def _snake_case ( self )-> List[str]: lowerCamelCase_ =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCamelCase_ =[ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @require_torch @slow def _snake_case ( self )-> Any: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase_ =list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase_ =""" """.join(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.big_tokenizer.encode_plus(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =BertGenerationConfig() lowerCamelCase_ =BertGenerationEncoder(_SCREAMING_SNAKE_CASE ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_SCREAMING_SNAKE_CASE ) model(**_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> int: # fmt: off lowerCamelCase_ ={"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
49
0
"""simple docstring""" import os from collections.abc import Iterator def UpperCamelCase_ ( lowerCAmelCase__ : Union[str, Any] = "." ) -> List[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(_A ): lowerCAmelCase_ : Dict = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_A )[1] in (".py", ".ipynb"): yield os.path.join(_A , _A ).lstrip('./' ) def UpperCamelCase_ ( lowerCAmelCase__ : List[str] ) -> List[Any]: """simple docstring""" return f"{i * ' '}*" if i else "\n##" def UpperCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : List[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_A ) or old_parts[i] != new_part) and new_part: print(f"{md_prefix(_A )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def UpperCamelCase_ ( lowerCAmelCase__ : int = "." ) -> Any: """simple docstring""" lowerCAmelCase_ : Tuple = '' for filepath in sorted(good_file_paths(_A ) ): lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = os.path.split(_A ) if filepath != old_path: lowerCAmelCase_ : Optional[int] = print_path(_A , _A ) lowerCAmelCase_ : Optional[Any] = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase_ : int = f"{filepath}/{filename}".replace(' ' , '%20' ) lowerCAmelCase_ : Dict = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(f"{md_prefix(_A )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(""".""")
224
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __UpperCamelCase ( _A ): lowerCAmelCase_ = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_A , _A ) def __UpperCamelCase ( _A ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(_A , _A , bias=_A ) lowerCAmelCase_ = emb.weight.data return lin_layer def __UpperCamelCase ( _A ): lowerCAmelCase_ = torch.load(_A , map_location='''cpu''' ) lowerCAmelCase_ = Namespace(**checkpoint['''cfg''']['''model'''] ) lowerCAmelCase_ = checkpoint['''model'''] remove_ignore_keys_(_A ) lowerCAmelCase_ = state_dict['''decoder.embed_tokens.weight'''].shape[0] lowerCAmelCase_ = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} lowerCAmelCase_ = XGLMConfig( vocab_size=_A , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowerCAmelCase_ = XGLMForCausalLM(_A ) lowerCAmelCase_ = model.load_state_dict(_A , strict=_A ) print(_A ) lowerCAmelCase_ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _A = parser.parse_args() _A = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
278
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Dict ,_snake_case : Dict ,_snake_case : Optional[int]=13 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : List[str]=4 ,_snake_case : List[Any]=[10, 20, 30, 40] ,_snake_case : Optional[int]=[2, 2, 3, 2] ,_snake_case : List[Any]=True ,_snake_case : int=True ,_snake_case : Dict=37 ,_snake_case : Optional[int]="gelu" ,_snake_case : Union[str, Any]=10 ,_snake_case : List[Any]=0.02 ,_snake_case : List[Any]=["stage2", "stage3", "stage4"] ,_snake_case : Any=[2, 3, 4] ,_snake_case : str=None ,) -> List[str]: """simple docstring""" lowercase__ : Tuple = parent lowercase__ : str = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Union[str, Any] = num_channels lowercase__ : Tuple = num_stages lowercase__ : int = hidden_sizes lowercase__ : Dict = depths lowercase__ : Optional[int] = is_training lowercase__ : Any = use_labels lowercase__ : Optional[int] = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : int = num_labels lowercase__ : Optional[Any] = initializer_range lowercase__ : List[str] = out_features lowercase__ : Optional[int] = out_indices lowercase__ : int = scope def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" lowercase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Dict = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Dict ,_snake_case : Any ,_snake_case : Any ) -> List[str]: """simple docstring""" lowercase__ : str = ConvNextVaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Any = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Tuple ,_snake_case : Optional[int] ,_snake_case : Dict ,_snake_case : List[str] ) -> str: """simple docstring""" lowercase__ : Tuple = ConvNextVaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : int ,_snake_case : Any ,_snake_case : List[Any] ,_snake_case : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : int = ConvNextVaBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[str] = model(_snake_case ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ : Dict = None lowercase__ : Any = ConvNextVaBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : str = {'''pixel_values''': pixel_values} return config, inputs_dict def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Dict = config_and_inputs lowercase__ : str = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Any = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : Tuple = False lowerCAmelCase : Dict = False lowerCAmelCase : Dict = False lowerCAmelCase : str = False lowerCAmelCase : Tuple = False def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = ConvNextVaModelTester(self ) lowercase__ : List[Any] = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ,hidden_size=37 ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ : Any = True if model_class.__name__ in [ *get_values(_snake_case ), *get_values(_snake_case ), ]: continue lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.train() lowercase__ : List[Any] = self._prepare_for_class(_snake_case ,_snake_case ,return_labels=_snake_case ) lowercase__ : Dict = model(**_snake_case ).loss loss.backward() def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ : Union[str, Any] = False lowercase__ : List[Any] = True if ( model_class.__name__ in [*get_values(_snake_case ), *get_values(_snake_case )] or not model_class.supports_gradient_checkpointing ): continue lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.gradient_checkpointing_enable() model.train() lowercase__ : Tuple = self._prepare_for_class(_snake_case ,_snake_case ,return_labels=_snake_case ) lowercase__ : Optional[int] = model(**_snake_case ).loss loss.backward() def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(_snake_case ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Tuple ,_snake_case : int ,_snake_case : Any ): lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : List[Any] = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Optional[Any] = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Tuple = ConvNextVaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(_snake_case ) lowercase__ : Any = self.default_image_processor lowercase__ : Any = prepare_img() lowercase__ : List[Any] = preprocessor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**_snake_case ) # verify the logits lowercase__ : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Optional[Any] = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A_ (a_ ): UpperCAmelCase__ = (UnCLIPScheduler,) def _lowercase ( self , **_A ): '''simple docstring''' UpperCAmelCase = { '''num_train_timesteps''': 1_0_0_0, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_A ) return config def _lowercase ( self ): '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_A ) def _lowercase ( self ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_A ) def _lowercase ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def _lowercase ( self ): '''simple docstring''' for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=_A ) def _lowercase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_A ) def _lowercase ( self ): '''simple docstring''' for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_A , prev_timestep=_A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(variance_type='''fixed_small_log''' ) UpperCAmelCase = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_99_49_87 ) ) < 1E-5 def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(variance_type='''learned_range''' ) UpperCAmelCase = scheduler_class(**_A ) UpperCAmelCase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_A ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(4_8_7 , predicted_variance=_A ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(9_9_9 , predicted_variance=_A ) - -0.0_01_00_11 < 1E-5 def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**_A ) UpperCAmelCase = scheduler.timesteps UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter UpperCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(_A ): # 1. predict noise residual UpperCAmelCase = model(_A , _A ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase = scheduler.step(_A , _A , _A , generator=_A ).prev_sample UpperCAmelCase = pred_prev_sample UpperCAmelCase = torch.sum(torch.abs(_A ) ) UpperCAmelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**_A ) scheduler.set_timesteps(2_5 ) UpperCAmelCase = scheduler.timesteps UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter UpperCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(_A ): # 1. predict noise residual UpperCAmelCase = model(_A , _A ) if i + 1 == timesteps.shape[0]: UpperCAmelCase = None else: UpperCAmelCase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCAmelCase = scheduler.step( _A , _A , _A , prev_timestep=_A , generator=_A ).prev_sample UpperCAmelCase = pred_prev_sample UpperCAmelCase = torch.sum(torch.abs(_A ) ) UpperCAmelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def _lowercase ( self ): '''simple docstring''' pass def _lowercase ( self ): '''simple docstring''' pass
273
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self , _A , _A=1_3 , _A=3_0 , _A=2 , _A=3 , _A=True , _A=True , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_0 , _A=0.02 , _A=3 , _A=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 1 def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowercase ( self ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , ) def _lowercase ( self , _A , _A , _A ): '''simple docstring''' UpperCAmelCase = TFViTModel(config=_A ) UpperCAmelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase = self.image_size // 2 UpperCAmelCase = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase = model(_A , interpolate_pos_encoding=_A , training=_A ) UpperCAmelCase = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _lowercase ( self , _A , _A , _A ): '''simple docstring''' UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = TFViTForImageClassification(_A ) UpperCAmelCase = model(_A , labels=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase = self.image_size // 2 UpperCAmelCase = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase = model(_A , interpolate_pos_encoding=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = TFViTForImageClassification(_A ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A_ (a_ , a_ , unittest.TestCase ): UpperCAmelCase__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCAmelCase__ = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = TFViTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def _lowercase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _lowercase ( self ): '''simple docstring''' pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _lowercase ( self ): '''simple docstring''' pass def _lowercase ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(_A ) UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(_A ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A_ (unittest.TestCase ): @cached_property def _lowercase ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=_A , return_tensors='''tf''' ) # forward pass UpperCAmelCase = model(**_A ) # verify the logits UpperCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase = tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _A , atol=1E-4 )
273
1
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __UpperCamelCase = logging.getLogger() def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: snake_case_ = {} snake_case_ = os.path.join(UpperCAmelCase , 'all_results.json' ) if os.path.exists(UpperCAmelCase ): with open(UpperCAmelCase , 'r' ) as f: snake_case_ = json.load(UpperCAmelCase ) else: raise ValueError(f'can\'t find {path}' ) return results __UpperCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCamelCase ( lowerCAmelCase__ ): def a_ ( self) -> List[str]: import xla_spawn snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(lowerCAmelCase__, 'argv', lowerCAmelCase__): snake_case_ = time() xla_spawn.main() snake_case_ = time() snake_case_ = get_results(lowerCAmelCase__) self.assertGreaterEqual(result['eval_accuracy'], 0.75) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start, 500) def a_ ( self) -> Dict: import xla_spawn snake_case_ = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(lowerCAmelCase__, 'argv', lowerCAmelCase__): xla_spawn.main()
312
"""simple docstring""" import functools def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase ) == 0: return 0 if min(UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) snake_case_ = set(UpperCAmelCase ) @functools.cache def dynamic_programming(UpperCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
312
1
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES snake_case__ : int = logging.get_logger(__name__) snake_case__ : int = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) snake_case__ : Dict = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) snake_case__ : Dict = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) snake_case__ : Tuple = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) snake_case__ : int = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) snake_case__ : List[str] = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) snake_case__ : Any = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) snake_case__ : str = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) snake_case__ : List[str] = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) snake_case__ : Optional[Any] = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) snake_case__ : Union[str, Any] = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) snake_case__ : str = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) snake_case__ : List[Any] = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) snake_case__ : List[Any] = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) snake_case__ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) snake_case__ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) snake_case__ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) snake_case__ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) snake_case__ : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) snake_case__ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) snake_case__ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) snake_case__ : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) snake_case__ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) snake_case__ : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) snake_case__ : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class snake_case_( _BaseAutoModelClass ): __UpperCamelCase = FLAX_MODEL_MAPPING snake_case__ : List[Any] = auto_class_update(FlaxAutoModel) class snake_case_( _BaseAutoModelClass ): __UpperCamelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING snake_case__ : List[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class snake_case_( _BaseAutoModelClass ): __UpperCamelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING snake_case__ : List[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class snake_case_( _BaseAutoModelClass ): __UpperCamelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING snake_case__ : Dict = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class snake_case_( _BaseAutoModelClass ): __UpperCamelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case__ : Any = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class snake_case_( _BaseAutoModelClass ): __UpperCamelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case__ : Dict = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class snake_case_( _BaseAutoModelClass ): __UpperCamelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING snake_case__ : str = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class snake_case_( _BaseAutoModelClass ): __UpperCamelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING snake_case__ : int = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class snake_case_( _BaseAutoModelClass ): __UpperCamelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING snake_case__ : Dict = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class snake_case_( _BaseAutoModelClass ): __UpperCamelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING snake_case__ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class snake_case_( _BaseAutoModelClass ): __UpperCamelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING snake_case__ : List[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class snake_case_( _BaseAutoModelClass ): __UpperCamelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING snake_case__ : Optional[Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class snake_case_( _BaseAutoModelClass ): __UpperCamelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING snake_case__ : List[str] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
60
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins SCREAMING_SNAKE_CASE : List[Any] = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def lowercase ( _snake_case : Optional[int] , _snake_case : Optional[int] ) ->Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def lowercase ( _snake_case : List[str] ) ->Optional[int]: """simple docstring""" config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=_snake_case ) def lowercase ( _snake_case : Optional[Any] , _snake_case : Dict ) ->Any: """simple docstring""" __snake_case : List[Any] = tmp_path_factory.getbasetemp() / '''cache''' __snake_case : int = test_hf_cache_home / '''datasets''' __snake_case : Tuple = test_hf_cache_home / '''metrics''' __snake_case : List[str] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(_snake_case ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(_snake_case ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(_snake_case ) ) __snake_case : Optional[int] = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(_snake_case ) ) __snake_case : Tuple = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_snake_case ) ) @pytest.fixture(autouse=_snake_case , scope='''session''' ) def lowercase ( ) ->Any: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_snake_case ) def lowercase ( _snake_case : Tuple ) ->Union[str, Any]: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , _snake_case ) @pytest.fixture def lowercase ( _snake_case : Any ) ->Optional[Any]: """simple docstring""" monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , _snake_case )
102
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __UpperCAmelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowercase_ , "hidden_sizes")) self.parent.assertTrue(hasattr(lowercase_ , "neck_hidden_sizes")) self.parent.assertTrue(hasattr(lowercase_ , "num_attention_heads")) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Any , lowercase_ : Dict , lowercase_ : str=13 , lowercase_ : int=32 , lowercase_ : Any=2 , lowercase_ : Tuple=3 , lowercase_ : Optional[int]=640 , lowercase_ : Union[str, Any]=4 , lowercase_ : Optional[int]="silu" , lowercase_ : Tuple=3 , lowercase_ : List[str]=32 , lowercase_ : int=0.1 , lowercase_ : str=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : str=0.02 , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=True , lowercase_ : str=10 , lowercase_ : List[str]=None , ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = last_hidden_size _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = conv_kernel_size _UpperCamelCase = output_stride _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = classifier_dropout_prob _UpperCamelCase = use_labels _UpperCamelCase = is_training _UpperCamelCase = num_labels _UpperCamelCase = initializer_range _UpperCamelCase = scope def __UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]) -> Tuple: """simple docstring""" _UpperCamelCase = MobileViTModel(config=lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model(lowercase_) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Optional[Any]) -> str: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = MobileViTForImageClassification(lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCAmelCase ( self : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int]) -> List[Any]: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = MobileViTForSemanticSegmentation(lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model(lowercase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _UpperCamelCase = model(lowercase_ , labels=lowercase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __A = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCamelCase = MobileViTModelTester(self) _UpperCamelCase = MobileViTConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds") def __UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" pass @unittest.skip(reason="MobileViT does not support input and output embeddings") def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="MobileViT does not output attentions") def __UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" pass def __UpperCAmelCase ( self : Dict) -> Any: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def __UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" pass def __UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" def check_hidden_states_output(lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]): _UpperCamelCase = model_class(lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(lowercase_ , lowercase_)) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = 5 self.assertEqual(len(lowercase_) , lowercase_) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _UpperCamelCase = 2 for i in range(len(lowercase_)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) def __UpperCAmelCase ( self : int) -> int: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) def __UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_) @slow def __UpperCAmelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = MobileViTModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def lowerCAmelCase__ ( ) ->List[str]: '''simple docstring''' _UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small") if is_vision_available() else None @slow def __UpperCAmelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small").to(lowercase_) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowercase_ , return_tensors="pt").to(lowercase_) # forward pass with torch.no_grad(): _UpperCamelCase = model(**lowercase_) # verify the logits _UpperCamelCase = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase_) _UpperCamelCase = torch.tensor([-1.93_64, -1.23_27, -0.46_53]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4)) @slow def __UpperCAmelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCamelCase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small") _UpperCamelCase = model.to(lowercase_) _UpperCamelCase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small") _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowercase_ , return_tensors="pt").to(lowercase_) # forward pass with torch.no_grad(): _UpperCamelCase = model(**lowercase_) _UpperCamelCase = outputs.logits # verify the logits _UpperCamelCase = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape , lowercase_) _UpperCamelCase = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ] , device=lowercase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1e-4)) @slow def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" _UpperCamelCase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small") _UpperCamelCase = model.to(lowercase_) _UpperCamelCase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small") _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowercase_ , return_tensors="pt").to(lowercase_) # forward pass with torch.no_grad(): _UpperCamelCase = model(**lowercase_) _UpperCamelCase = outputs.logits.detach().cpu() _UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=lowercase_ , target_sizes=[(50, 60)]) _UpperCamelCase = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape , lowercase_) _UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=lowercase_) _UpperCamelCase = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape , lowercase_)
63
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase__ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } lowerCamelCase__ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } lowerCamelCase__ = '''▁''' # Segments (not really needed) lowerCamelCase__ = 0 lowerCamelCase__ = 1 lowerCamelCase__ = 2 lowerCamelCase__ = 3 lowerCamelCase__ = 4 class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = '''left''' __A = XLNetTokenizer def __init__( self : Tuple , lowercase_ : Optional[Any]=None , lowercase_ : int=None , lowercase_ : int=False , lowercase_ : str=True , lowercase_ : List[str]=False , lowercase_ : List[str]="<s>" , lowercase_ : Union[str, Any]="</s>" , lowercase_ : List[str]="<unk>" , lowercase_ : Optional[Any]="<sep>" , lowercase_ : List[Any]="<pad>" , lowercase_ : List[Any]="<cls>" , lowercase_ : str="<mask>" , lowercase_ : Union[str, Any]=["<eop>", "<eod>"] , **lowercase_ : Tuple , ) -> List[str]: """simple docstring""" _UpperCamelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_) if isinstance(lowercase_ , lowercase_) else mask_token super().__init__( vocab_file=lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) _UpperCamelCase = 3 _UpperCamelCase = do_lower_case _UpperCamelCase = remove_space _UpperCamelCase = keep_accents _UpperCamelCase = vocab_file _UpperCamelCase = False if not self.vocab_file else True def __UpperCAmelCase ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __UpperCAmelCase ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __UpperCAmelCase ( self : Any , lowercase_ : str , lowercase_ : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(lowercase_): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return _UpperCamelCase = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_): copyfile(self.vocab_file , lowercase_) return (out_vocab_file,)
63
1
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ = list[tuple[int, int]] lowerCAmelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _lowerCamelCase : def __init__(self , __a , __a , __a , __a , __a , __a , ) -> Union[str, Any]: UpperCamelCase = pos_x UpperCamelCase = pos_y UpperCamelCase = (pos_y, pos_x) UpperCamelCase = goal_x UpperCamelCase = goal_y UpperCamelCase = g_cost UpperCamelCase = parent UpperCamelCase = self.calculate_heuristic() def snake_case_ (self ) -> Tuple: UpperCamelCase = abs(self.pos_x - self.goal_x ) UpperCamelCase = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__(self , __a ) -> List[Any]: return self.f_cost < other.f_cost class _lowerCamelCase : def __init__(self , __a , __a ) -> Dict: UpperCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __SCREAMING_SNAKE_CASE ) UpperCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , __SCREAMING_SNAKE_CASE ) UpperCamelCase = [self.start] UpperCamelCase = [] UpperCamelCase = False def snake_case_ (self ) -> Optional[int]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: UpperCamelCase = True return self.retrace_path(__SCREAMING_SNAKE_CASE ) self.closed_nodes.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase = self.get_successors(__SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__SCREAMING_SNAKE_CASE ) else: # retrieve the best current path UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(__SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(__SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def snake_case_ (self , __a ) -> List[str]: UpperCamelCase = [] for action in delta: UpperCamelCase = parent.pos_x + action[1] UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __SCREAMING_SNAKE_CASE , ) ) return successors def snake_case_ (self , __a ) -> Any: UpperCamelCase = node UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase = current_node.parent path.reverse() return path if __name__ == "__main__": lowerCAmelCase__ = (0, 0) lowerCAmelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') lowerCAmelCase__ = GreedyBestFirst(init, goal) lowerCAmelCase__ = greedy_bf.search() if path: for pos_x, pos_y in path: lowerCAmelCase__ = 2 for elem in grid: print(elem)
153
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Initialise PyTorch model __a = LxmertConfig.from_json_file(_UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) __a = LxmertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": __snake_case :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case :Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
49
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = KandinskyImgaImgPipeline lowerCAmelCase__ = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] lowerCAmelCase__ = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] lowerCAmelCase__ = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCAmelCase__ = False @property def UpperCAmelCase__ ( self : Dict ): return 32 @property def UpperCAmelCase__ ( self : Any ): return 32 @property def UpperCAmelCase__ ( self : str ): return self.time_input_dim @property def UpperCAmelCase__ ( self : Any ): return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any] ): return 100 @property def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[Any] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def UpperCAmelCase__ ( self : Tuple ): torch.manual_seed(0 ) __snake_case: str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) __snake_case: Any = MultilingualCLIP(A ) __snake_case: List[Any] = text_encoder.eval() return text_encoder @property def UpperCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) __snake_case: str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case: Union[str, Any] = UNetaDConditionModel(**A ) return model @property def UpperCAmelCase__ ( self : Optional[Any] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) __snake_case: Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Any = self.dummy_text_encoder __snake_case: Optional[Any] = self.dummy_tokenizer __snake_case: Dict = self.dummy_unet __snake_case: Optional[int] = self.dummy_movq __snake_case: Dict = { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case: List[str] = DDIMScheduler(**A ) __snake_case: Union[str, Any] = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCAmelCase__ ( self : Optional[int] , A : Optional[Any] , A : Tuple=0 ): __snake_case: List[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(A ) ).to(A ) __snake_case: Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(A ) # create init_image __snake_case: int = floats_tensor((1, 3, 64, 64) , rng=random.Random(A ) ).to(A ) __snake_case: Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case: Dict = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ).resize((256, 256) ) if str(A ).startswith("""mps""" ): __snake_case: List[Any] = torch.manual_seed(A ) else: __snake_case: Union[str, Any] = torch.Generator(device=A ).manual_seed(A ) __snake_case: Any = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def UpperCAmelCase__ ( self : Tuple ): __snake_case: Optional[Any] = """cpu""" __snake_case: int = self.get_dummy_components() __snake_case: List[str] = self.pipeline_class(**A ) __snake_case: List[Any] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) __snake_case: int = pipe(**self.get_dummy_inputs(A ) ) __snake_case: Optional[int] = output.images __snake_case: Union[str, Any] = pipe( **self.get_dummy_inputs(A ) , return_dict=A , )[0] __snake_case: Tuple = image[0, -3:, -3:, -1] __snake_case: int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case: int = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case: List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case: int = """A red cartoon frog, 4k""" __snake_case: Any = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(A ) __snake_case: List[Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case: List[str] = pipeline.to(A ) pipeline.set_progress_bar_config(disable=A ) __snake_case: Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case: Tuple = pipe_prior( A , generator=A , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case: int = pipeline( A , image=A , image_embeds=A , negative_image_embeds=A , generator=A , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) __snake_case: List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A , A )
293
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : int = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """rwkv""" lowerCAmelCase__ = {"""max_position_embeddings""": """context_length"""} def __init__( self : Dict , A : List[Any]=50_277 , A : List[Any]=1_024 , A : Union[str, Any]=4_096 , A : Tuple=32 , A : List[Any]=None , A : Tuple=None , A : Tuple=1E-5 , A : int=0 , A : Optional[int]=0 , A : Dict=6 , A : Dict=False , A : int=True , **A : List[Any] , ): __snake_case: Tuple = vocab_size __snake_case: Any = context_length __snake_case: Dict = hidden_size __snake_case: Dict = num_hidden_layers __snake_case: Union[str, Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size __snake_case: str = intermediate_size if intermediate_size is not None else 4 * hidden_size __snake_case: Any = layer_norm_epsilon __snake_case: int = rescale_every __snake_case: str = use_cache __snake_case: Dict = bos_token_id __snake_case: Union[str, Any] = eos_token_id super().__init__( tie_word_embeddings=A , bos_token_id=A , eos_token_id=A , **A )
293
1
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" __a = tmp_path / """cache""" __a = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a = TextDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read() _check_text_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" __a = tmp_path / """cache""" __a = {"""text""": """string"""} __a = features.copy() if features else default_expected_features __a = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __a = TextDatasetReader(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_text_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" __a = tmp_path / """cache""" __a = {"""text""": """string"""} __a = TextDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE ).read() _check_text_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a = text_path elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a = [text_path] __a = tmp_path / """cache""" __a = {"""text""": """string"""} __a = TextDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_text_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str=("train",) ): """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for split in splits: __a = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" __a = tmp_path / """cache""" __a = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a = TextDatasetReader({"""train""": text_path} , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" __a = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __a = {"""text""": """string"""} __a = features.copy() if features else default_expected_features __a = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __a = TextDatasetReader({"""train""": text_path} , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if split: __a = {split: text_path} else: __a = """train""" __a = {"""train""": text_path, """test""": text_path} __a = tmp_path / """cache""" __a = {"""text""": """string"""} __a = TextDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
302
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase__ = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] ='albert' def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __a = vocab_size __a = embedding_size __a = hidden_size __a = num_hidden_layers __a = num_hidden_groups __a = num_attention_heads __a = inner_group_num __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = classifier_dropout_prob __a = position_embedding_type class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
302
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A__ : def __init__( self , A_ , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=2 , ): '''simple docstring''' UpperCamelCase : List[str] = parent UpperCamelCase : Tuple = batch_size UpperCamelCase : Union[str, Any] = image_size UpperCamelCase : Optional[int] = patch_size UpperCamelCase : List[str] = num_channels UpperCamelCase : Any = is_training UpperCamelCase : Dict = use_labels UpperCamelCase : List[str] = hidden_size UpperCamelCase : Dict = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : str = intermediate_size UpperCamelCase : Optional[int] = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : List[Any] = type_sequence_label_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : Union[str, Any] = scope UpperCamelCase : Union[str, Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCamelCase : Optional[Any] = (image_size // patch_size) ** 2 UpperCamelCase : int = num_patches + 2 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Tuple = None if self.use_labels: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase( self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = TFDeiTModel(config=A_ ) UpperCamelCase : Tuple = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[str] = TFDeiTForMaskedImageModeling(config=A_ ) UpperCamelCase : Optional[Any] = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase : Dict = 1 UpperCamelCase : Optional[Any] = TFDeiTForMaskedImageModeling(A_ ) UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : Any = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.type_sequence_label_size UpperCamelCase : List[Any] = TFDeiTForImageClassification(A_ ) UpperCamelCase : Optional[int] = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase : List[Any] = 1 UpperCamelCase : Optional[Any] = TFDeiTForImageClassification(A_ ) UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : List[Any] = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase : int = config_and_inputs UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class A__ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :str = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _UpperCAmelCase :Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _UpperCAmelCase :Dict = False _UpperCAmelCase :List[str] = False _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :Optional[int] = False def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = TFDeiTModelTester(self ) UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __UpperCamelCase( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def __UpperCamelCase( self ): '''simple docstring''' pass def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Optional[int] = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , tf.keras.layers.Dense ) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : str = model_class(A_ ) UpperCamelCase : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Optional[Any] = [*signature.parameters.keys()] UpperCamelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def __UpperCamelCase( self , A_ , A_ , A_=False ): '''simple docstring''' UpperCamelCase : List[str] = super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = TFDeiTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_ ( ) -> str: UpperCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A__ ( unittest.TestCase ): @cached_property def __UpperCamelCase( self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) UpperCamelCase : List[Any] = self.default_image_processor UpperCamelCase : Union[str, Any] = prepare_img() UpperCamelCase : Union[str, Any] = image_processor(images=A_ , return_tensors="tf" ) # forward pass UpperCamelCase : str = model(**A_ ) # verify the logits UpperCamelCase : Dict = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase : Tuple = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
359
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __lowerCamelCase : Optional[int] = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def A_ ( _lowerCAmelCase , _lowerCAmelCase=None ) -> Optional[Any]: require_version(deps[pkg] , _lowerCAmelCase )
140
0
from __future__ import annotations def snake_case__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' lowercase__ : List[str] = str(SCREAMING_SNAKE_CASE_ ) return n == n[::-1] def snake_case__ ( SCREAMING_SNAKE_CASE_ : str = 1_000_000 ): '''simple docstring''' lowercase__ : Tuple = 0 for i in range(1 , SCREAMING_SNAKE_CASE_ ): if is_palindrome(SCREAMING_SNAKE_CASE_ ) and is_palindrome(bin(SCREAMING_SNAKE_CASE_ ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
214
'''simple docstring''' import argparse from collections import defaultdict import yaml a : str = "docs/source/en/_toctree.yml" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = defaultdict(__magic_name__ ) for doc in model_doc: counts[doc["local"]] += 1 UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] UpperCAmelCase : Dict = [] for duplicate_key in duplicates: UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(__magic_name__ ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() ) def lowercase ( __magic_name__=False ): '''simple docstring''' with open(__magic_name__ , encoding="utf-8" ) as f: UpperCAmelCase : Any = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"] # Then to the model doc UpperCAmelCase : Any = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCAmelCase : str = api_doc[model_idx]["sections"] UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section] UpperCAmelCase : Optional[int] = False for idx, modality_doc in modalities_docs: UpperCAmelCase : int = modality_doc["sections"] UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ ) if old_modality_doc != new_modality_doc: UpperCAmelCase : int = True if overwrite: UpperCAmelCase : Dict = new_modality_doc if diff: if overwrite: UpperCAmelCase : Any = model_doc UpperCAmelCase : Any = api_doc with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a : Optional[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
311
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): A__ : List[str] =["""pixel_values"""] def __init__( self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : List[Any] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = size if size is not None else {'height': 384, 'width': 384} SCREAMING_SNAKE_CASE__ = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = resample SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE__ = do_convert_rgb def A_ ( self : Any , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ): SCREAMING_SNAKE_CASE__ = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) SCREAMING_SNAKE_CASE__ = (size['height'], size['width']) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Tuple , ): return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : str , ): return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : Optional[int] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : str , ): SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE__ = size if size is not None else self.size SCREAMING_SNAKE_CASE__ = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE__ = [convert_to_rgb(UpperCAmelCase_ ) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE__ = BatchFeature(data={'pixel_values': images} , tensor_type=UpperCAmelCase_ ) return encoded_outputs
169
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES else: SCREAMING_SNAKE_CASE__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES[tokenizer_name] SCREAMING_SNAKE_CASE__ = True if checkpoint_name is None: SCREAMING_SNAKE_CASE__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: SCREAMING_SNAKE_CASE__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = checkpoint.split('/' ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: SCREAMING_SNAKE_CASE__ = checkpoint SCREAMING_SNAKE_CASE__ = dump_path else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: SCREAMING_SNAKE_CASE__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] SCREAMING_SNAKE_CASE__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) SCREAMING_SNAKE_CASE__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(UpperCamelCase_ ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) __snake_case = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
169
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =None __a =None def _lowerCamelCase ( ) -> Node | None: _a = Node(1 ) _a = Node(2 ) _a = Node(3 ) _a = Node(4 ) _a = Node(5 ) return tree def _lowerCamelCase ( lowercase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _lowerCamelCase ( lowercase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _lowerCamelCase ( lowercase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _lowerCamelCase ( lowercase : Node | None ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _lowerCamelCase ( lowercase : Node | None ) -> Sequence[Node | None]: _a = [] if root is None: return output _a = deque([root] ) while process_queue: _a = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _lowerCamelCase ( lowercase : Node | None , lowercase : int ) -> Sequence[Node | None]: _a = [] def populate_output(lowercase : Node | None , lowercase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowercase , lowercase ) return output def _lowerCamelCase ( lowercase : Node | None , lowercase : int ) -> Sequence[Node | None]: _a = [] def populate_output(lowercase : Node | None , lowercase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowercase , lowercase ) return output def _lowerCamelCase ( lowercase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _a = [] _a = 0 _a = height(lowercase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowercase , lowercase ) ) _a = 1 else: output.append(get_nodes_from_right_to_left(lowercase , lowercase ) ) _a = 0 return output def _lowerCamelCase ( ) -> None: # Main function for testing. _a = make_tree() print(F'In-order Traversal: {inorder(lowercase )}' ) print(F'Pre-order Traversal: {preorder(lowercase )}' ) print(F'Post-order Traversal: {postorder(lowercase )}' , "\n" ) print(F'Height of Tree: {height(lowercase )}' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(lowercase ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(lowercase ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(lowercase , level=lowercase ) ) print("\nZigZag order Traversal: " ) print(zigzag(lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
63
'''simple docstring''' def _lowerCamelCase ( lowercase : str ) -> list: if n_term == "": return [] _a = [] for temp in range(int(lowercase ) ): series.append(F'1/{temp + 1}' if series else "1" ) return series if __name__ == "__main__": lowerCAmelCase_ : Union[str, Any] = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
63
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase__ : Optional[int] = logging.getLogger(__name__) def lowerCamelCase__ ( a , a ) -> Union[str, Any]: # save results if os.path.exists(a ): if os.path.exists(os.path.join(a , '''config.json''' ) ) and os.path.isfile( os.path.join(a , '''config.json''' ) ): os.remove(os.path.join(a , '''config.json''' ) ) if os.path.exists(os.path.join(a , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(a , '''pytorch_model.bin''' ) ): os.remove(os.path.join(a , '''pytorch_model.bin''' ) ) else: os.makedirs(a ) model.save_pretrained(a ) def lowerCamelCase__ ( a , a=False ) -> Union[str, Any]: _A: str = 2 if unlogit: _A: Optional[Any] = torch.pow(a , a ) _A: Dict = p * torch.log(a ) _A: int = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase__ ( a ) -> Dict: logger.info('''lv, h >\t''' + '''\t'''.join(f"""{x + 1}""" for x in range(len(a ) ) ) ) for row in range(len(a ) ): if tensor.dtype != torch.long: logger.info(f"""layer {row + 1}:\t""" + '''\t'''.join(f"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(f"""layer {row + 1}:\t""" + '''\t'''.join(f"""{x:d}""" for x in tensor[row].cpu().data ) ) def lowerCamelCase__ ( a , a , a , a=True , a=True , a=None , a=False ) -> List[Any]: _A , _A: str = model.config.num_hidden_layers, model.config.num_attention_heads _A: List[str] = torch.zeros(a , a ).to(args.device ) _A: int = torch.zeros(a , a ).to(args.device ) if head_mask is None: _A: Optional[Any] = torch.ones(a , a ).to(args.device ) head_mask.requires_grad_(requires_grad=a ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _A: List[Any] = None _A: str = 0.0 _A: int = 0.0 for step, inputs in enumerate(tqdm(a , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _A: List[str] = tuple(t.to(args.device ) for t in inputs ) ((_A) , ): Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _A: List[str] = model(a , labels=a , head_mask=a ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _A , _A , _A: int = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(a ): _A: Optional[Any] = entropy(attn.detach() , a ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(a ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _A: Optional[Any] = 2 _A: Any = torch.pow(torch.pow(a , a ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _A: Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(a ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(a ) logger.info('''Head ranked by importance scores''' ) _A: Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _A: List[Any] = torch.arange( head_importance.numel() , device=args.device ) _A: Dict = head_ranks.view_as(a ) print_ad_tensor(a ) return attn_entropy, head_importance, total_loss def lowerCamelCase__ ( a , a , a ) -> List[Any]: _A , _A , _A: Optional[Any] = compute_heads_importance(a , a , a , compute_entropy=a ) _A: List[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , a , original_score * args.masking_threshold ) _A: Tuple = torch.ones_like(a ) _A: Dict = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _A: List[Any] = original_score while current_score >= original_score * args.masking_threshold: _A: str = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _A: List[Any] = float('''Inf''' ) _A: Optional[Any] = head_importance.view(-1 ).sort()[1] if len(a ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _A: List[Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _A: List[Any] = new_head_mask.view(-1 ) _A: Dict = 0.0 _A: List[str] = new_head_mask.view_as(a ) _A: List[Any] = new_head_mask.clone().detach() print_ad_tensor(a ) # Compute metric and head importance again _A , _A , _A: Dict = compute_heads_importance( a , a , a , compute_entropy=a , head_mask=a ) _A: List[str] = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , a , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('''Final head mask''' ) print_ad_tensor(a ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase__ ( a , a , a , a ) -> Union[str, Any]: _A: List[Any] = datetime.now() _A , _A , _A: Optional[int] = compute_heads_importance( a , a , a , compute_entropy=a , compute_importance=a , head_mask=a ) _A: List[Any] = 1 / loss _A: List[Any] = datetime.now() - before_time _A: Optional[int] = sum(p.numel() for p in model.parameters() ) _A: List[str] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(a ) ) } for k, v in heads_to_prune.items(): if isinstance(a , a ): _A: Union[str, Any] = [ v, ] assert sum(len(a ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(a ) _A: Dict = sum(p.numel() for p in model.parameters() ) _A: Tuple = datetime.now() _A , _A , _A: List[Any] = compute_heads_importance( a , a , a , compute_entropy=a , compute_importance=a , head_mask=a , actually_pruned=a , ) _A: str = 1 / loss _A: List[str] = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , a , a , pruned_num_params / original_num_params * 1_00 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , a , a ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_00 ) save_model(a , args.output_dir ) def lowerCamelCase__ ( ) -> int: _A: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=a , type=a , required=a , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a , type=a , required=a , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=a , type=a , required=a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=a , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=a , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=a , type=a , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=a , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=a , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=a , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=a , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=a , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=a , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=a , default=42 ) parser.add_argument('''--local_rank''' , type=a , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=a , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=a , default='''''' , help='''Can be used for distant debugging.''' ) _A: Any = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _A: Optional[int] = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _A: Union[str, Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _A: Optional[int] = torch.device('''cuda''' , args.local_rank ) _A: List[Any] = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _A: List[str] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _A: str = nn.parallel.DistributedDataParallel( a , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=a ) elif args.n_gpu > 1: _A: Optional[int] = nn.DataParallel(a ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=a ) torch.save(a , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , a ) # Prepare dataset _A: str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _A: Tuple = (torch.from_numpy(a ),) _A: Optional[Any] = TensorDataset(*a ) _A: Any = RandomSampler(a ) _A: Optional[Any] = DataLoader(a , sampler=a , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(a , a , a ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _A: Optional[Any] = mask_heads(a , a , a ) prune_heads(a , a , a , a ) if __name__ == "__main__": main()
301
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
1
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __A (_SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->Optional[Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :str = field( metadata={"""help""": """The csv file to plot."""} , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) __magic_name__ :bool = field( default=a , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) __magic_name__ :Optional[List[str]] = list_field( default=a , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" try: int(_SCREAMING_SNAKE_CASE ) return True except ValueError: return False def __A (_SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" try: float(_SCREAMING_SNAKE_CASE ) return True except ValueError: return False class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = args lowerCAmelCase__ :int = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: lowerCAmelCase__ :Optional[Any] = csv.DictReader(__UpperCAmelCase ) for row in reader: lowerCAmelCase__ :List[str] = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None lowerCAmelCase__ :List[str] = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None lowerCAmelCase__ :Optional[int] = float(row['result'] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :int = plt.subplots() lowerCAmelCase__ :List[str] = 'Time usage' if self.args.is_time else 'Memory usage' lowerCAmelCase__ :Tuple = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowerCAmelCase__ :List[str] = sorted(set(self.result_dict[model_name]['bsz'] ) ) lowerCAmelCase__ :List[Any] = sorted(set(self.result_dict[model_name]['seq_len'] ) ) lowerCAmelCase__ :Tuple = self.result_dict[model_name]['result'] ((lowerCAmelCase__) , (lowerCAmelCase__)) :str = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowerCAmelCase__ :int = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowerCAmelCase__ :List[str] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__UpperCAmelCase , ) else: lowerCAmelCase__ :List[str] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((lowerCAmelCase__) , (lowerCAmelCase__)) :Optional[Any] = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) lowerCAmelCase__ :Tuple = np.asarray(__UpperCAmelCase , __UpperCAmelCase )[: len(__UpperCAmelCase )] plt.scatter( __UpperCAmelCase , __UpperCAmelCase , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(__UpperCAmelCase , __UpperCAmelCase , '--' ) title_str += F" {label_model_name} vs." lowerCAmelCase__ :int = title_str[:-4] lowerCAmelCase__ :Dict = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(__UpperCAmelCase ) plt.xlabel(__UpperCAmelCase ) plt.ylabel(__UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __A () ->List[str]: """simple docstring""" lowerCAmelCase__ :List[Any] = HfArgumentParser(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase__ :Dict = Plot(args=_SCREAMING_SNAKE_CASE ) plot.plot() if __name__ == "__main__": main()
293
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[str] = XGLMTokenizer __magic_name__ :Any = XGLMTokenizerFast __magic_name__ :Dict = True __magic_name__ :Union[str, Any] = True def snake_case ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ :int = XGLMTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = '<pad>' lowerCAmelCase__ :int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(__UpperCAmelCase ) , 1_0_0_8 ) def snake_case ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = XGLMTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase__ :int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase__ :Tuple = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowerCAmelCase__ :Optional[int] = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def snake_case ( self ): '''simple docstring''' return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def snake_case ( self ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__UpperCAmelCase , f.name ) lowerCAmelCase__ :Dict = XGLMTokenizer(f.name , keep_accents=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = pickle.dumps(__UpperCAmelCase ) pickle.loads(__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase__ :Optional[Any] = self.get_tokenizer() lowerCAmelCase__ :List[str] = self.get_rust_tokenizer() lowerCAmelCase__ :Optional[Any] = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ :Dict = tokenizer.tokenize(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :int = self.get_rust_tokenizer() lowerCAmelCase__ :Dict = tokenizer.encode(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = 'Hello World!' lowerCAmelCase__ :Tuple = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowerCAmelCase__ :List[str] = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = { 'input_ids': [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='facebook/xglm-564M' , padding=__UpperCAmelCase , )
293
1
'''simple docstring''' import argparse import json import subprocess def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] __lowercase = ( F"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) __lowercase = subprocess.run(A__ , shell=A__ , stdout=subprocess.PIPE ) __lowercase = output.stdout.decode('''utf-8''' ) __lowercase = json.loads(A__ ) __lowercase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(A__ ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(A__ ) ) if len(A__ ) > 0: __lowercase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def _A ( A__ ): """simple docstring""" return values.split(''',''' ) lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) lowerCAmelCase__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
52
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = OpenAIGPTTokenizer SCREAMING_SNAKE_CASE : str = OpenAIGPTTokenizerFast SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False def SCREAMING_SNAKE_CASE ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __lowercase = dict(zip(lowercase__ ,range(len(lowercase__ ) ) ) ) __lowercase = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ) as fp: fp.write(json.dumps(lowercase__ ) ) with open(self.merges_file ,'''w''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[Any] ): return "lower newer", "lower newer" def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = OpenAIGPTTokenizer(self.vocab_file ,self.merges_file ) __lowercase = '''lower''' __lowercase = ['''low''', '''er</w>'''] __lowercase = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = tokens + ['''<unk>'''] __lowercase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Dict=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.rust_tokenizer_class.from_pretrained(lowercase__ ,**lowercase__ ) # Simple input __lowercase = '''This is a simple input''' __lowercase = ['''This is a simple input 1''', '''This is a simple input 2'''] __lowercase = ('''This is a simple input''', '''This is a pair''') __lowercase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowercase__ ,tokenizer_r.encode ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Simple input self.assertRaises(lowercase__ ,tokenizer_r.encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Simple input self.assertRaises( lowercase__ ,tokenizer_r.batch_encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ,) # Pair input self.assertRaises(lowercase__ ,tokenizer_r.encode ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Pair input self.assertRaises(lowercase__ ,tokenizer_r.encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Pair input self.assertRaises( lowercase__ ,tokenizer_r.batch_encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): pass @require_ftfy @require_spacy @require_tokenizers class lowercase_ (lowerCamelCase__ ): """simple docstring""" pass
52
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCAmelCase__ : Any = 2 class __snake_case : def __init__( self , *, # begin keyword-only arguments __UpperCamelCase="<s>" , __UpperCamelCase="<pad>" , __UpperCamelCase="</s>" , __UpperCamelCase="<unk>" , __UpperCamelCase=None , ) -> Any: '''simple docstring''' snake_case__ : Tuple = bos, unk, pad, eos snake_case__ : Optional[Any] = [] snake_case__ : Dict = [] snake_case__ : List[Any] = {} snake_case__ : int = self.add_symbol(__UpperCamelCase ) snake_case__ : Union[str, Any] = self.add_symbol(__UpperCamelCase ) snake_case__ : Union[str, Any] = self.add_symbol(__UpperCamelCase ) snake_case__ : Any = self.add_symbol(__UpperCamelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__UpperCamelCase ) snake_case__ : Tuple = len(self.symbols ) def __eq__( self , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' return self.indices == other.indices def __getitem__( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> List[str]: '''simple docstring''' return len(self.symbols ) def __contains__( self , __UpperCamelCase ) -> Dict: '''simple docstring''' return sym in self.indices @classmethod def __a ( cls , __UpperCamelCase ) -> Tuple: '''simple docstring''' snake_case__ : int = cls() d.add_from_file(__UpperCamelCase ) return d def __a ( self , __UpperCamelCase , __UpperCamelCase=1 , __UpperCamelCase=False ) -> Dict: '''simple docstring''' if word in self.indices and not overwrite: snake_case__ : List[Any] = self.indices[word] snake_case__ : List[str] = self.count[idx] + n return idx else: snake_case__ : int = len(self.symbols ) snake_case__ : Optional[Any] = idx self.symbols.append(__UpperCamelCase ) self.count.append(__UpperCamelCase ) return idx def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return 0 def __a ( self , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): try: with open(__UpperCamelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(__UpperCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(__UpperCamelCase ) ) return snake_case__ : Any = f.readlines() snake_case__ : List[Any] = self._load_meta(__UpperCamelCase ) for line in lines[indices_start_line:]: try: snake_case__ : int = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": snake_case__ : Optional[int] = True snake_case__ : str = line.rsplit(' ' , 1 ) else: snake_case__ : Optional[int] = False snake_case__ : Optional[int] = int(__UpperCamelCase ) snake_case__ : Tuple = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(__UpperCamelCase ) ) self.add_symbol(__UpperCamelCase , n=__UpperCamelCase , overwrite=__UpperCamelCase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def UpperCamelCase__ ( A__ ) -> Optional[Any]: snake_case__ : Optional[Any] = dict((re.sub(r'@@$' , '' , __lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , __lowercase ), v) for k, v in d.items() ) snake_case__ : Optional[Any] = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] snake_case__ : Union[str, Any] = d[k] # restore return da def UpperCamelCase__ ( A__ , A__ ) -> Union[str, Any]: if not os.path.exists(__lowercase ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(__lowercase , exist_ok=__lowercase ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models snake_case__ : Optional[Any] = os.path.join(__lowercase , 'checkpoint.pt' ) if not os.path.isfile(__lowercase ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) snake_case__ : Any = torch.load(__lowercase , map_location='cpu' ) snake_case__ : str = chkpt['cfg']['model'] # dicts snake_case__ : Any = os.path.join(__lowercase , 'dict.txt' ) if not os.path.isfile(__lowercase ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) snake_case__ : Optional[int] = Dictionary.load(__lowercase ) snake_case__ : Union[str, Any] = rewrite_dict_keys(src_dict.indices ) snake_case__ : List[Any] = len(__lowercase ) snake_case__ : Tuple = os.path.join(__lowercase , VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(__lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowercase , ensure_ascii=__lowercase , indent=__lowercase ) ) # merges_file (bpecodes) snake_case__ : List[Any] = os.path.join(__lowercase , 'bpecodes' ) if not os.path.isfile(__lowercase ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) snake_case__ : Optional[Any] = os.path.join(__lowercase , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(__lowercase , __lowercase ) # model config snake_case__ : Dict = os.path.join(__lowercase , 'config.json' ) snake_case__ : List[Any] = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.0_2, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(__lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowercase , ensure_ascii=__lowercase , indent=__lowercase ) ) # tokenizer config snake_case__ : List[Any] = os.path.join(__lowercase , __lowercase ) snake_case__ : Dict = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(__lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowercase , ensure_ascii=__lowercase , indent=__lowercase ) ) # model snake_case__ : Any = chkpt['model'] # remove unneeded keys snake_case__ : List[Any] = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(__lowercase , __lowercase ) snake_case__ : int = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): snake_case__ : Union[str, Any] = model_state_dict.pop(__lowercase ) else: snake_case__ : str = model_state_dict.pop(__lowercase ) snake_case__ : Optional[int] = BioGptConfig.from_pretrained(__lowercase ) snake_case__ : List[Any] = BioGptForCausalLM(__lowercase ) # check that it loads ok model_new.load_state_dict(__lowercase ) # save snake_case__ : List[str] = os.path.join(__lowercase , __lowercase ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(__lowercase , __lowercase ) print('Conversion is done!' ) if __name__ == "__main__": lowerCAmelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ : List[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
143
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _UpperCAmelCase = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] _UpperCAmelCase = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] _UpperCAmelCase = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) _UpperCAmelCase = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) _UpperCAmelCase = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Tuple ): '''simple docstring''' for tf_name, hf_name in patterns: A_ : Tuple = k.replace(__lowercase ,__lowercase ) return k def UpperCamelCase ( __lowercase : dict ,__lowercase : dict ): '''simple docstring''' A_ : int = BigBirdPegasusConfig(**__lowercase ) A_ : Any = BigBirdPegasusForConditionalGeneration(__lowercase ) A_ : Union[str, Any] = torch_model.state_dict() A_ : Any = {} # separating decoder weights A_ : Any = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} A_ : str = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() ,'tf -> hf conversion' ): A_ : Optional[int] = [k.endswith(__lowercase ) for ending in KEYS_TO_IGNORE] if any(__lowercase ): continue A_ : Optional[Any] = DECODER_PATTERNS A_ : Tuple = rename_state_dict_key(__lowercase ,__lowercase ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): A_ : Any = v.T A_ : Any = torch.from_numpy(__lowercase ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() ,'tf -> hf conversion' ): A_ : int = [k.endswith(__lowercase ) for ending in KEYS_TO_IGNORE] if any(__lowercase ): continue A_ : Any = REMAINING_PATTERNS A_ : List[str] = rename_state_dict_key(__lowercase ,__lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): A_ : int = v.T A_ : Dict = torch.from_numpy(__lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' A_ : Optional[int] = mapping['model.embed_positions.weight'] A_ : Tuple = mapping.pop('model.embed_positions.weight' ) A_ , A_ : Optional[Any] = torch_model.load_state_dict(__lowercase ,strict=__lowercase ) A_ : Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( __lowercase : Union[str, Any] ): '''simple docstring''' A_ : str = tf.train.list_variables(__lowercase ) A_ : Union[str, Any] = {} A_ : Optional[Any] = ['global_step'] for name, shape in tqdm(__lowercase ,desc='converting tf checkpoint to dict' ): A_ : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue A_ : Tuple = tf.train.load_variable(__lowercase ,__lowercase ) A_ : Dict = array return tf_weights def UpperCamelCase ( __lowercase : str ,__lowercase : str ,__lowercase : dict ): '''simple docstring''' A_ : Optional[Any] = get_tf_weights_as_numpy(__lowercase ) A_ : Dict = convert_bigbird_pegasus(__lowercase ,__lowercase ) torch_model.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
140
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } UpperCAmelCase__ : Union[str, Any] = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(_A ) , _A ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_A ) , x.transpose() ) ) UpperCAmelCase__ : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase__ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ) , transpose(_A ).numpy() ) ) UpperCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase__ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , transpose(_A , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) UpperCAmelCase__ : List[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ) , transpose(_A ).numpy() ) ) UpperCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase__ : List[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , transpose(_A , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase__ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ) , np.asarray(transpose(_A ) ) ) ) UpperCAmelCase__ : Tuple = np.random.randn(3 , 4 , 5 ) UpperCAmelCase__ : Optional[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , np.asarray(transpose(_A , axes=(1, 2, 0) ) ) ) ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , np.reshape(_A , (4, 3) ) ) ) UpperCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , np.reshape(_A , (12, 5) ) ) ) @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase__ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , reshape(_A , (4, 3) ).numpy() ) ) UpperCAmelCase__ : int = np.random.randn(3 , 4 , 5 ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , reshape(_A , (12, 5) ).numpy() ) ) @require_tf def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase__ : List[str] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , reshape(_A , (4, 3) ).numpy() ) ) UpperCAmelCase__ : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase__ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , reshape(_A , (12, 5) ).numpy() ) ) @require_flax def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = np.random.randn(3 , 4 ) UpperCAmelCase__ : Any = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , np.asarray(reshape(_A , (4, 3) ) ) ) ) UpperCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase__ : Optional[Any] = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , np.asarray(reshape(_A , (12, 5) ) ) ) ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_A ) , np.squeeze(_A ) ) ) UpperCAmelCase__ : List[Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , np.squeeze(_A , axis=2 ) ) ) @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = np.random.randn(1 , 3 , 4 ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ) , squeeze(_A ).numpy() ) ) UpperCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase__ : int = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , squeeze(_A , axis=2 ).numpy() ) ) @require_tf def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = np.random.randn(1 , 3 , 4 ) UpperCAmelCase__ : List[str] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ) , squeeze(_A ).numpy() ) ) UpperCAmelCase__ : Dict = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase__ : int = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , squeeze(_A , axis=2 ).numpy() ) ) @require_flax def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase__ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ) , np.asarray(squeeze(_A ) ) ) ) UpperCAmelCase__ : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase__ : Any = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , np.asarray(squeeze(_A , axis=2 ) ) ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , np.expand_dims(_A , axis=1 ) ) ) @require_torch def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase__ : Optional[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , expand_dims(_A , axis=1 ).numpy() ) ) @require_tf def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase__ : Tuple = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , expand_dims(_A , axis=1 ).numpy() ) ) @require_flax def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = np.random.randn(3 , 4 ) UpperCAmelCase__ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , np.asarray(expand_dims(_A , axis=1 ) ) ) )
299
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( lowerCAmelCase__ ) -> None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = analyze_text(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase__ : str = sum(single_char_strings.values() ) # one length string UpperCAmelCase__ : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase__ : Optional[int] = single_char_strings[ch] UpperCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(lowerCAmelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string UpperCAmelCase__ : str = sum(two_char_strings.values() ) UpperCAmelCase__ : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: UpperCAmelCase__ : Dict = two_char_strings[sequence] UpperCAmelCase__ : Optional[int] = int(lowerCAmelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCAmelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def a__ ( lowerCAmelCase__ ) -> tuple[dict, dict]: UpperCAmelCase__ : Union[str, Any] = Counter() # type: ignore UpperCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCAmelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
299
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _UpperCamelCase ( unittest.TestCase ): def __init__( self :List[str] , lowerCamelCase :Optional[Any] , lowerCamelCase :int=7 , lowerCamelCase :Any=3 , lowerCamelCase :Optional[Any]=18 , lowerCamelCase :List[str]=30 , lowerCamelCase :List[Any]=400 , lowerCamelCase :List[Any]=True , lowerCamelCase :Any=None , lowerCamelCase :Tuple=True , ) -> Union[str, Any]: UpperCAmelCase__ = size if size is not None else {"height": 18, "width": 18} UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = image_size UpperCAmelCase__ = min_resolution UpperCAmelCase__ = max_resolution UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = apply_ocr def UpperCAmelCase_ ( self :Any ) -> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _UpperCamelCase ( lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase_ ( self :str ) -> Any: UpperCAmelCase__ = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self :Optional[int] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self :Tuple ) -> Dict: UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) self.assertTrue(hasattr(lowerCamelCase , "apply_ocr" ) ) def UpperCAmelCase_ ( self :List[str] ) -> Optional[int]: UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def UpperCAmelCase_ ( self :List[str] ) -> List[str]: pass def UpperCAmelCase_ ( self :int ) -> Dict: # Initialize image_processing UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , lowerCamelCase ) self.assertIsInstance(encoding.boxes , lowerCamelCase ) # Test batched UpperCAmelCase__ = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self :int ) -> Optional[int]: # Initialize image_processing UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCAmelCase__ = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self :Optional[int] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCAmelCase__ = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self :List[Any] ) -> Any: # with apply_OCR = True UpperCAmelCase__ = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCAmelCase__ = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) UpperCAmelCase__ = Image.open(ds[0]["file"] ).convert("RGB" ) UpperCAmelCase__ = image_processing(lowerCamelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCAmelCase__ = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 UpperCAmelCase__ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowerCamelCase ) self.assertListEqual(encoding.boxes , lowerCamelCase ) # with apply_OCR = False UpperCAmelCase__ = LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase ) UpperCAmelCase__ = image_processing(lowerCamelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
169
def lowerCAmelCase ( _lowerCAmelCase : str ): """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(_lowerCAmelCase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
169
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self :Dict , __magic_name__ :int , __magic_name__ :Optional[int]=7 , __magic_name__ :Optional[Any]=3 , __magic_name__ :Union[str, Any]=30 , __magic_name__ :List[Any]=400 , __magic_name__ :Optional[int]=True , __magic_name__ :Dict=None , __magic_name__ :List[Any]=True , __magic_name__ :int=[0.5, 0.5, 0.5] , __magic_name__ :Optional[Any]=[0.5, 0.5, 0.5] , __magic_name__ :Optional[Any]=True , __magic_name__ :str=1 / 255 , __magic_name__ :Union[str, Any]=True , ): '''simple docstring''' a = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} a = parent a = batch_size a = num_channels a = min_resolution a = max_resolution a = do_resize a = size a = do_normalize a = image_mean a = image_std a = do_rescale a = rescale_factor a = do_pad def lowerCamelCase__ ( self :Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase__ ( self :str , __magic_name__ :str , __magic_name__ :Tuple=False ): '''simple docstring''' if not batched: a = image_inputs[0] if isinstance(__magic_name__ , Image.Image ): a , a = image.size else: a , a = image.shape[1], image.shape[2] if w < h: a = int(self.size["""shortest_edge"""] * h / w ) a = self.size["""shortest_edge"""] elif w > h: a = self.size["""shortest_edge"""] a = int(self.size["""shortest_edge"""] * w / h ) else: a = self.size["""shortest_edge"""] a = self.size["""shortest_edge"""] else: a = [] for image in image_inputs: a , a = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a = max(__magic_name__ , key=lambda __magic_name__ : item[0] )[0] a = max(__magic_name__ , key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = YolosImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = YolosImageProcessingTester(self ) @property def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , """image_mean""" ) ) self.assertTrue(hasattr(__magic_name__ , """image_std""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_normalize""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_resize""" ) ) self.assertTrue(hasattr(__magic_name__ , """size""" ) ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __magic_name__ ) a = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__magic_name__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __magic_name__ ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' pass def lowerCamelCase__ ( self :str ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values a , a = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a , a = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) a = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values a , a = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values a , a = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self :int ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values a , a = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values a , a = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) a = self.image_processing_class(do_resize=__magic_name__ , do_normalize=__magic_name__ , do_rescale=__magic_name__ ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors a = image_processing_a.pad(__magic_name__ , return_tensors="""pt""" ) a = image_processing_a(__magic_name__ , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: a = json.loads(f.read() ) a = {"""image_id""": 3_9769, """annotations""": target} # encode them a = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) a = image_processing(images=__magic_name__ , annotations=__magic_name__ , return_tensors="""pt""" ) # verify pixel values a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __magic_name__ ) a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __magic_name__ , atol=1E-4 ) ) # verify area a = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __magic_name__ ) ) # verify boxes a = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __magic_name__ ) a = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __magic_name__ , atol=1E-3 ) ) # verify image_id a = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __magic_name__ ) ) # verify is_crowd a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __magic_name__ ) ) # verify class_labels a = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __magic_name__ ) ) # verify orig_size a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __magic_name__ ) ) # verify size a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __magic_name__ ) ) @slow def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: a = json.loads(f.read() ) a = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} a = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them a = YolosImageProcessor(format="""coco_panoptic""" ) a = image_processing(images=__magic_name__ , annotations=__magic_name__ , masks_path=__magic_name__ , return_tensors="""pt""" ) # verify pixel values a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __magic_name__ ) a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __magic_name__ , atol=1E-4 ) ) # verify area a = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __magic_name__ ) ) # verify boxes a = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __magic_name__ ) a = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __magic_name__ , atol=1E-3 ) ) # verify image_id a = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __magic_name__ ) ) # verify is_crowd a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __magic_name__ ) ) # verify class_labels a = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __magic_name__ ) ) # verify masks a = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __magic_name__ ) # verify orig_size a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __magic_name__ ) ) # verify size a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __magic_name__ ) )
371
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowerCAmelCase ( unittest.TestCase ): def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def lowerCamelCase__ ( self :int ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = True a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = True UpperCamelCase__ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = FlaxRobertaModelTester(self ) @slow def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ )
347
0
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm SCREAMING_SNAKE_CASE_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 256 def lowercase (_lowerCAmelCase ): if len(_lowerCAmelCase ) < MIN_NUM_TOKENS: return None __lowerCAmelCase = MinHash(num_perm=_lowerCAmelCase ) for token in set(_lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def lowercase (_lowerCAmelCase ): return {t for t in NON_ALPHA.split(_lowerCAmelCase ) if len(t.strip() ) > 0} class lowerCAmelCase_ : '''simple docstring''' def __init__( self , *, snake_case_ = 0.85 , ) -> Optional[int]: __lowerCAmelCase = duplication_jaccard_threshold __lowerCAmelCase = NUM_PERM __lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowerCAmelCase = defaultdict(snake_case_ ) def A__ ( self , snake_case_ , snake_case_ ) -> None: __lowerCAmelCase = self._index.query(snake_case_ ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(snake_case_ , snake_case_ ) if len(snake_case_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(snake_case_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(snake_case_ ) def A__ ( self ) -> List[List[Dict]]: __lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): __lowerCAmelCase = [base] + list(snake_case_ ) # reformat the cluster to be a list of dict __lowerCAmelCase = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(snake_case_ ) return duplicate_clusters def A__ ( self , snake_case_ ) -> None: __lowerCAmelCase = self.get_duplicate_clusters() with open(snake_case_ , """w""" ) as f: json.dump(snake_case_ , snake_case_ ) def lowercase (_lowerCAmelCase ): __lowerCAmelCase , __lowerCAmelCase = element __lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowercase (_lowerCAmelCase ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_lowerCAmelCase , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowerCAmelCase ) ) , max_queue_size=100 ) ): di.add(_lowerCAmelCase , _lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_tokens(_lowerCAmelCase ) __lowerCAmelCase = get_tokens(_lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) SCREAMING_SNAKE_CASE_ = None def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] for elementa in cluster: __lowerCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowerCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(_lowerCAmelCase , _lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowerCAmelCase = 1 extremes.append(_lowerCAmelCase ) return extremes def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): global _shared_dataset __lowerCAmelCase = dataset __lowerCAmelCase = [] __lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowerCAmelCase , _lowerCAmelCase , ) , total=len(_lowerCAmelCase ) , ): extremes_list.append(_lowerCAmelCase ) return extremes_list def lowercase (_lowerCAmelCase , _lowerCAmelCase = 0.85 ): __lowerCAmelCase = make_duplicate_clusters(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowerCAmelCase = {} __lowerCAmelCase = find_extremes(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: __lowerCAmelCase = element __lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) __lowerCAmelCase = dataset.filter(lambda _lowerCAmelCase , _lowerCAmelCase : idx not in remove_indices , with_indices=_lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowerCAmelCase = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowerCAmelCase = extreme_dict[element["""base_index"""]]["""copies"""] print(f"""Original dataset size: {len(_lowerCAmelCase )}""" ) print(f"""Number of duplicate clusters: {len(_lowerCAmelCase )}""" ) print(f"""Files in duplicate cluster: {len(_lowerCAmelCase )}""" ) print(f"""Unique files in duplicate cluster: {len(_lowerCAmelCase )}""" ) print(f"""Filtered dataset size: {len(_lowerCAmelCase )}""" ) return ds_filter, duplicate_clusters
301
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
1
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase : Union[str, Any] = '''BlipImageProcessor''' __UpperCAmelCase : Any = '''AutoTokenizer''' def __init__( self : Optional[Any] ,_a : Any ,_a : List[str] ,_a : Optional[int] ): '''simple docstring''' super().__init__(_a ,_a ) # add QFormer tokenizer _a : Dict = qformer_tokenizer def __call__( self : List[str] ,_a : ImageInput = None ,_a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,_a : bool = True ,_a : Union[bool, str, PaddingStrategy] = False ,_a : Union[bool, str, TruncationStrategy] = None ,_a : Optional[int] = None ,_a : int = 0 ,_a : Optional[int] = None ,_a : Optional[bool] = None ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = True ,_a : Optional[Union[str, TensorType]] = None ,**_a : Optional[Any] ,): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) _a : List[str] = BatchFeature() if text is not None: _a : int = self.tokenizer( text=_a ,add_special_tokens=_a ,padding=_a ,truncation=_a ,max_length=_a ,stride=_a ,pad_to_multiple_of=_a ,return_attention_mask=_a ,return_overflowing_tokens=_a ,return_special_tokens_mask=_a ,return_offsets_mapping=_a ,return_token_type_ids=_a ,return_length=_a ,verbose=_a ,return_tensors=_a ,**_a ,) encoding.update(_a ) _a : str = self.qformer_tokenizer( text=_a ,add_special_tokens=_a ,padding=_a ,truncation=_a ,max_length=_a ,stride=_a ,pad_to_multiple_of=_a ,return_attention_mask=_a ,return_overflowing_tokens=_a ,return_special_tokens_mask=_a ,return_offsets_mapping=_a ,return_token_type_ids=_a ,return_length=_a ,verbose=_a ,return_tensors=_a ,**_a ,) _a : Optional[Any] = qformer_text_encoding.pop('input_ids' ) _a : Union[str, Any] = qformer_text_encoding.pop('attention_mask' ) if images is not None: _a : Optional[int] = self.image_processor(_a ,return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self : str ,*_a : List[Any] ,**_a : str ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def __lowercase ( self : int ,*_a : Tuple ,**_a : Tuple ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __lowercase ( self : List[str] ): '''simple docstring''' _a : Union[str, Any] = self.tokenizer.model_input_names _a : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __lowercase ( self : List[str] ,_a : Union[str, Any] ,**_a : Tuple ): '''simple docstring''' if os.path.isfile(_a ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_a ,exist_ok=_a ) _a : List[Any] = os.path.join(_a ,'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(_a ) return super().save_pretrained(_a ,**_a ) @classmethod def __lowercase ( cls : Union[str, Any] ,_a : Optional[int] ,**_a : int ): '''simple docstring''' _a : List[str] = AutoTokenizer.from_pretrained(_a ,subfolder='qformer_tokenizer' ) _a : str = cls._get_arguments_from_pretrained(_a ,**_a ) args.append(_a ) return cls(*_a )
362
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase_ (__a : str = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _a : List[str] = BeautifulSoup(requests.get(__a ).text , 'html.parser' ) _a : Dict = soup.findAll('h1' ) _a : Union[str, Any] = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __lowerCamelCase : Optional[Any] = get_logger(__name__) class A__ ( enum.Enum ): _UpperCAmelCase :Union[str, Any] = 'all_checks' _UpperCAmelCase :Union[str, Any] = 'basic_checks' _UpperCAmelCase :List[str] = 'no_checks' class A__ ( __snake_case ): pass class A__ ( __snake_case ): pass class A__ ( __snake_case ): pass class A__ ( __snake_case ): pass def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ) -> int: if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) ) if len(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) ) UpperCamelCase : Dict = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] UpperCamelCase : List[Any] = " for " + verification_name if verification_name is not None else "" if len(_lowerCAmelCase ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class A__ ( __snake_case ): pass class A__ ( __snake_case ): pass class A__ ( __snake_case ): pass class A__ ( __snake_case ): pass def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) ) if len(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) ) UpperCamelCase : str = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(_lowerCAmelCase ) ) logger.info("All the splits matched successfully." ) def A_ ( _lowerCAmelCase , _lowerCAmelCase = True ) -> dict: if record_checksum: UpperCamelCase : int = shaaaa() with open(_lowerCAmelCase , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b"" ): m.update(_lowerCAmelCase ) UpperCamelCase : str = m.hexdigest() else: UpperCamelCase : Tuple = None return {"num_bytes": os.path.getsize(_lowerCAmelCase ), "checksum": checksum} def A_ ( _lowerCAmelCase ) -> Any: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
52
import pickle import numpy as np from matplotlib import pyplot as plt class A__ : def __init__( self , A_ , A_ , A_ , A_ , A_ , A_=0.2 , A_=0.2 ): '''simple docstring''' UpperCamelCase : int = bp_numa UpperCamelCase : int = bp_numa UpperCamelCase : List[Any] = bp_numa UpperCamelCase : Optional[int] = conva_get[:2] UpperCamelCase : Optional[Any] = conva_get[2] UpperCamelCase : Dict = size_pa UpperCamelCase : Union[str, Any] = rate_w UpperCamelCase : Dict = rate_t UpperCamelCase : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCamelCase : Any = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCamelCase : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCamelCase : Optional[Any] = -2 * np.random.rand(self.conva[1] ) + 1 UpperCamelCase : Any = -2 * np.random.rand(self.num_bpa ) + 1 UpperCamelCase : int = -2 * np.random.rand(self.num_bpa ) + 1 def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(A_ , "wb" ) as f: pickle.dump(A_ , A_ ) print(F"""Model saved: {save_path}""" ) @classmethod def __UpperCamelCase( cls , A_ ): '''simple docstring''' with open(A_ , "rb" ) as f: UpperCamelCase : Optional[Any] = pickle.load(A_ ) # noqa: S301 UpperCamelCase : List[Any] = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) UpperCamelCase : Union[str, Any] = model_dic.get("size_pooling1" ) UpperCamelCase : List[Any] = model_dic.get("num_bp1" ) UpperCamelCase : Dict = model_dic.get("num_bp2" ) UpperCamelCase : Dict = model_dic.get("num_bp3" ) UpperCamelCase : Dict = model_dic.get("rate_weight" ) UpperCamelCase : str = model_dic.get("rate_thre" ) # create model instance UpperCamelCase : Any = CNN(A_ , A_ , A_ , A_ , A_ , A_ , A_ ) # modify model parameter UpperCamelCase : str = model_dic.get("w_conv1" ) UpperCamelCase : Optional[Any] = model_dic.get("wkj" ) UpperCamelCase : int = model_dic.get("vji" ) UpperCamelCase : Any = model_dic.get("thre_conv1" ) UpperCamelCase : Optional[int] = model_dic.get("thre_bp2" ) UpperCamelCase : Union[str, Any] = model_dic.get("thre_bp3" ) return conv_ins def __UpperCamelCase( self , A_ ): '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def __UpperCamelCase( self , A_ ): '''simple docstring''' return round(A_ , 3 ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : str = convs[0] UpperCamelCase : Optional[Any] = convs[1] UpperCamelCase : Optional[Any] = np.shape(A_ )[0] # get the data slice of original image data, data_focus UpperCamelCase : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , A_ ): for j_focus in range(0 , size_data - size_conv + 1 , A_ ): UpperCamelCase : Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(A_ ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(A_ ): UpperCamelCase : str = [] for i_focus in range(len(A_ ) ): UpperCamelCase : List[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(A_ ) ) UpperCamelCase : Optional[int] = np.asmatrix(A_ ).reshape( A_ , A_ ) data_featuremap.append(A_ ) # expanding the data slice to One dimenssion UpperCamelCase : List[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(A_ ) ) UpperCamelCase : Tuple = np.asarray(A_ ) return focus_list, data_featuremap def __UpperCamelCase( self , A_ , A_ , A_="average_pool" ): '''simple docstring''' UpperCamelCase : Any = len(featuremaps[0] ) UpperCamelCase : str = int(size_map / size_pooling ) UpperCamelCase : Optional[int] = [] for i_map in range(len(A_ ) ): UpperCamelCase : Tuple = featuremaps[i_map] UpperCamelCase : Any = [] for i_focus in range(0 , A_ , A_ ): for j_focus in range(0 , A_ , A_ ): UpperCamelCase : int = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(A_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(A_ ) ) UpperCamelCase : Optional[Any] = np.asmatrix(A_ ).reshape(A_ , A_ ) featuremap_pooled.append(A_ ) return featuremap_pooled def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = [] for i in range(len(A_ ) ): UpperCamelCase : List[Any] = np.shape(data[i] ) UpperCamelCase : str = data[i].reshape(1 , shapes[0] * shapes[1] ) UpperCamelCase : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(A_ ) UpperCamelCase : Any = np.asarray(A_ ) return data_expanded def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = np.asarray(A_ ) UpperCamelCase : List[Any] = np.shape(A_ ) UpperCamelCase : Any = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : int = [] UpperCamelCase : Optional[int] = 0 for i_map in range(A_ ): UpperCamelCase : int = np.ones((size_map, size_map) ) for i in range(0 , A_ , A_ ): for j in range(0 , A_ , A_ ): UpperCamelCase : str = pd_pool[ i_pool ] UpperCamelCase : str = i_pool + 1 UpperCamelCase : str = np.multiply( A_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(A_ ) return pd_all def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_=bool ): '''simple docstring''' print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(A_ )) ) print((" - - Shape: Teach_Data ", np.shape(A_ )) ) UpperCamelCase : List[str] = 0 UpperCamelCase : Union[str, Any] = [] UpperCamelCase : int = 1_0000 while rp < n_repeat and mse >= error_accuracy: UpperCamelCase : Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(A_ ) ): # print('------------Learning Image: %d--------------'%p) UpperCamelCase : Any = np.asmatrix(datas_train[p] ) UpperCamelCase : List[str] = np.asarray(datas_teach[p] ) UpperCamelCase , UpperCamelCase : Dict = self.convolute( A_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase : Tuple = self.pooling(A_ , self.size_poolinga ) UpperCamelCase : int = np.shape(A_ ) UpperCamelCase : List[str] = self._expand(A_ ) UpperCamelCase : Optional[int] = data_bp_input UpperCamelCase : str = np.dot(A_ , self.vji.T ) - self.thre_bpa UpperCamelCase : Optional[int] = self.sig(A_ ) UpperCamelCase : List[Any] = np.dot(A_ , self.wkj.T ) - self.thre_bpa UpperCamelCase : Dict = self.sig(A_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCamelCase : List[Any] = np.multiply( (data_teach - bp_outa) , np.multiply(A_ , (1 - bp_outa) ) ) UpperCamelCase : str = np.multiply( np.dot(A_ , self.wkj ) , np.multiply(A_ , (1 - bp_outa) ) ) UpperCamelCase : Any = np.dot(A_ , self.vji ) UpperCamelCase : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCamelCase : List[Any] = pd_conva_pooled.T.getA().tolist() UpperCamelCase : List[Any] = self._calculate_gradient_from_pool( A_ , A_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCamelCase : List[Any] = self._expand_mat(pd_conva_all[k_conv] ) UpperCamelCase : List[Any] = self.rate_weight * np.dot(A_ , A_ ) UpperCamelCase : str = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCamelCase : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCamelCase : Optional[Any] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCamelCase : List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCamelCase : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre UpperCamelCase : List[str] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCamelCase : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCamelCase : Any = rp + 1 UpperCamelCase : Union[str, Any] = error_count / patterns all_mse.append(A_ ) def draw_error(): UpperCamelCase : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(A_ , "+-" ) plt.plot(A_ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(A_ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(A_ )) ) for p in range(len(A_ ) ): UpperCamelCase : int = np.asmatrix(datas_test[p] ) UpperCamelCase , UpperCamelCase : Any = self.convolute( A_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase : List[str] = self.pooling(A_ , self.size_poolinga ) UpperCamelCase : Dict = self._expand(A_ ) UpperCamelCase : List[Any] = data_bp_input UpperCamelCase : Any = bp_outa * self.vji.T - self.thre_bpa UpperCamelCase : List[Any] = self.sig(A_ ) UpperCamelCase : int = bp_outa * self.wkj.T - self.thre_bpa UpperCamelCase : Optional[int] = self.sig(A_ ) produce_out.extend(bp_outa.getA().tolist() ) UpperCamelCase : List[str] = [list(map(self.do_round , A_ ) ) for each in produce_out] return np.asarray(A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = np.asmatrix(A_ ) UpperCamelCase , UpperCamelCase : List[Any] = self.convolute( A_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase : str = self.pooling(A_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
52
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase = 25_0004 UpperCAmelCase = 25_0020 @require_sentencepiece @require_tokenizers class __snake_case( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = MBartTokenizer UpperCAmelCase : Optional[int] = MBartTokenizerFast UpperCAmelCase : Optional[int] = True UpperCAmelCase : str = True def __snake_case ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = MBartTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self ) -> Any: lowerCAmelCase = MBartTokenizer(A_ , keep_accents=A_ ) lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __snake_case ( self ) -> int: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCAmelCase = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(A_ ) lowerCAmelCase = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCAmelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A_ , A_ ) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(A_ ) lowerCAmelCase = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(A_ , legacy_format=A_ ) lowerCAmelCase = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files self.assertSequenceEqual(A_ , A_ ) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(A_ ) lowerCAmelCase = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(A_ , legacy_format=A_ ) lowerCAmelCase = tokenizer_p.save_pretrained(A_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(A_ ) lowerCAmelCase = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : str = "facebook/mbart-large-en-ro" UpperCAmelCase : Dict = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] UpperCAmelCase : Tuple = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] UpperCAmelCase : str = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def __snake_case ( cls ) -> int: lowerCAmelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) lowerCAmelCase = 1 return cls def __snake_case ( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_0020 ) def __snake_case ( self ) -> List[str]: lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A_ ) def __snake_case ( self ) -> List[str]: self.assertIn(A_ , self.tokenizer.all_special_ids ) lowerCAmelCase = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] lowerCAmelCase = self.tokenizer.decode(A_ , skip_special_tokens=A_ ) lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ ) self.assertNotIn(self.tokenizer.eos_token , A_ ) def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , A_ ) lowerCAmelCase = 10 lowerCAmelCase = self.tokenizer(A_ , max_length=A_ , truncation=A_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , A_ ) self.assertEqual(len(A_ ) , A_ ) def __snake_case ( self ) -> List[Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_0026, 25_0001] ) def __snake_case ( self ) -> str: lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A_ ) lowerCAmelCase = MBartTokenizer.from_pretrained(A_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A_ ) @require_torch def __snake_case ( self ) -> Dict: lowerCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A_ , return_tensors="""pt""" ) lowerCAmelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCAmelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(A_ , A_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.tokenizer(self.src_text , padding=A_ , truncation=A_ , max_length=3 , return_tensors="""pt""" ) lowerCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=10 , return_tensors="""pt""" ) lowerCAmelCase = targets["""input_ids"""] lowerCAmelCase = shift_tokens_right(A_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __snake_case ( self ) -> Any: lowerCAmelCase = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(A_ ) , { # A, test, EOS, en_XX """input_ids""": [[62, 3034, 2, 25_0004]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_0001, } , )
187
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = "timm_backbone" def __init__( self , A_=None , A_=3 , A_=True , A_=True , A_=None , **A_ , ) -> int: super().__init__(**A_ ) lowerCAmelCase = backbone lowerCAmelCase = num_channels lowerCAmelCase = features_only lowerCAmelCase = use_pretrained_backbone lowerCAmelCase = True lowerCAmelCase = out_indices if out_indices is not None else (-1,)
187
1