code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
299
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> str: if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(UpperCamelCase , UpperCamelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) lowerCamelCase__ : str = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
129
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A : Union[str, Any] =logging.get_logger(__name__) _A : List[Any] ={ '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowercase ( _lowercase ): a = """deformable_detr""" a = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self: Optional[int] , UpperCamelCase__: Tuple=True , UpperCamelCase__: Tuple=None , UpperCamelCase__: List[str]=3 , UpperCamelCase__: Any=300 , UpperCamelCase__: Optional[int]=1_024 , UpperCamelCase__: int=6 , UpperCamelCase__: str=1_024 , UpperCamelCase__: Optional[Any]=8 , UpperCamelCase__: Optional[Any]=6 , UpperCamelCase__: Union[str, Any]=1_024 , UpperCamelCase__: Tuple=8 , UpperCamelCase__: str=0.0 , UpperCamelCase__: Tuple=True , UpperCamelCase__: Any="relu" , UpperCamelCase__: Any=256 , UpperCamelCase__: List[Any]=0.1 , UpperCamelCase__: Optional[int]=0.0 , UpperCamelCase__: Any=0.0 , UpperCamelCase__: List[str]=0.02 , UpperCamelCase__: str=1.0 , UpperCamelCase__: Any=True , UpperCamelCase__: List[Any]=False , UpperCamelCase__: str="sine" , UpperCamelCase__: Optional[Any]="resnet50" , UpperCamelCase__: Optional[int]=True , UpperCamelCase__: Optional[int]=False , UpperCamelCase__: List[Any]=4 , UpperCamelCase__: Any=4 , UpperCamelCase__: int=4 , UpperCamelCase__: int=False , UpperCamelCase__: Optional[Any]=300 , UpperCamelCase__: str=False , UpperCamelCase__: int=1 , UpperCamelCase__: Tuple=5 , UpperCamelCase__: List[Any]=2 , UpperCamelCase__: Optional[int]=1 , UpperCamelCase__: int=1 , UpperCamelCase__: Tuple=5 , UpperCamelCase__: str=2 , UpperCamelCase__: str=0.1 , UpperCamelCase__: List[str]=0.25 , UpperCamelCase__: Any=False , **UpperCamelCase__: Optional[Any] , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCamelCase__ : Union[str, Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase__ : Tuple = backbone_config.get("""model_type""" ) lowerCamelCase__ : Dict = CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ : Optional[Any] = config_class.from_dict(UpperCamelCase__ ) lowerCamelCase__ : Tuple = use_timm_backbone lowerCamelCase__ : Tuple = backbone_config lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = num_queries lowerCamelCase__ : int = max_position_embeddings lowerCamelCase__ : str = d_model lowerCamelCase__ : Dict = encoder_ffn_dim lowerCamelCase__ : Union[str, Any] = encoder_layers lowerCamelCase__ : int = encoder_attention_heads lowerCamelCase__ : str = decoder_ffn_dim lowerCamelCase__ : Optional[Any] = decoder_layers lowerCamelCase__ : Optional[int] = decoder_attention_heads lowerCamelCase__ : int = dropout lowerCamelCase__ : Optional[Any] = attention_dropout lowerCamelCase__ : List[Any] = activation_dropout lowerCamelCase__ : List[Any] = activation_function lowerCamelCase__ : int = init_std lowerCamelCase__ : Dict = init_xavier_std lowerCamelCase__ : Tuple = encoder_layerdrop lowerCamelCase__ : str = auxiliary_loss lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : Tuple = backbone lowerCamelCase__ : Tuple = use_pretrained_backbone lowerCamelCase__ : Optional[int] = dilation # deformable attributes lowerCamelCase__ : Optional[int] = num_feature_levels lowerCamelCase__ : Tuple = encoder_n_points lowerCamelCase__ : Tuple = decoder_n_points lowerCamelCase__ : Dict = two_stage lowerCamelCase__ : int = two_stage_num_proposals lowerCamelCase__ : Any = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowerCamelCase__ : Optional[int] = class_cost lowerCamelCase__ : List[str] = bbox_cost lowerCamelCase__ : Any = giou_cost # Loss coefficients lowerCamelCase__ : Union[str, Any] = mask_loss_coefficient lowerCamelCase__ : Tuple = dice_loss_coefficient lowerCamelCase__ : int = bbox_loss_coefficient lowerCamelCase__ : Optional[Any] = giou_loss_coefficient lowerCamelCase__ : Dict = eos_coefficient lowerCamelCase__ : Any = focal_alpha lowerCamelCase__ : Optional[Any] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def lowerCamelCase_ ( self: Dict ): return self.encoder_attention_heads @property def lowerCamelCase_ ( self: Any ): return self.d_model def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCamelCase__ : int = self.backbone_config.to_dict() lowerCamelCase__ : int = self.__class__.model_type return output
129
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): lowercase = StableDiffusionInstructPixaPixPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case_ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) A_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase_ ) torch.manual_seed(0 ) A_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ = CLIPTextModel(UpperCAmelCase_ ) A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> List[str]: '''simple docstring''' A_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) A_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("""RGB""" ) if str(UpperCAmelCase_ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCAmelCase_ ) else: A_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) A_ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = StableDiffusionInstructPixaPixPipeline(**UpperCAmelCase_ ) A_ = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) A_ = self.get_dummy_inputs(UpperCAmelCase_ ) A_ = sd_pipe(**UpperCAmelCase_ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = StableDiffusionInstructPixaPixPipeline(**UpperCAmelCase_ ) A_ = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) A_ = self.get_dummy_inputs(UpperCAmelCase_ ) A_ = """french fries""" A_ = sd_pipe(**UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ ) A_ = output.images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = StableDiffusionInstructPixaPixPipeline(**UpperCAmelCase_ ) A_ = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) A_ = self.get_dummy_inputs(UpperCAmelCase_ ) A_ = [inputs["""prompt"""]] * 2 A_ = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 A_ = torch.from_numpy(UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ ) A_ = image / 2 + 0.5 A_ = image.permute(0 , 3 , 1 , 2 ) A_ = image.repeat(2 , 1 , 1 , 1 ) A_ = sd_pipe(**UpperCAmelCase_ ).images A_ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A_ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) A_ = StableDiffusionInstructPixaPixPipeline(**UpperCAmelCase_ ) A_ = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) A_ = self.get_dummy_inputs(UpperCAmelCase_ ) A_ = sd_pipe(**UpperCAmelCase_ ).images A_ = image[0, -3:, -3:, -1] A_ = [round(UpperCAmelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(UpperCAmelCase_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A_ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.get_dummy_components() A_ = StableDiffusionInstructPixaPixPipeline(**UpperCAmelCase_ ) A_ = VaeImageProcessor(do_resize=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ ) A_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) A_ = pipe(**self.get_dummy_inputs_by_type(UpperCAmelCase_ , input_image_type="""pt""" ) )[0] A_ = components["""vae"""] A_ = self.get_dummy_inputs_by_type(UpperCAmelCase_ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A_ = vae.encode(inputs[image_param] ).latent_dist.mode() A_ = pipe(**UpperCAmelCase_ )[0] A_ = np.abs(out - out_latents_inputs ).max() self.assertLess(UpperCAmelCase_ , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , UpperCamelCase__=0 ) -> List[Any]: '''simple docstring''' A_ = torch.manual_seed(UpperCAmelCase_ ) A_ = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) A_ = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() A_ = self.get_inputs() A_ = pipe(**UpperCAmelCase_ ).images A_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A_ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCAmelCase_ ) A_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() A_ = self.get_inputs() A_ = pipe(**UpperCAmelCase_ ).images A_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A_ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCAmelCase_ ) A_ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() A_ = self.get_inputs() A_ = pipe(**UpperCAmelCase_ ).images A_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A_ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def snake_case_ ( self ) -> str: '''simple docstring''' A_ = 0 def callback_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: A_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A_ = latents[0, -3:, -3:, -1] A_ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A_ = latents[0, -3:, -3:, -1] A_ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A_ = False A_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCAmelCase_ , torch_dtype=torch.floataa ) A_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() A_ = self.get_inputs() pipe(**UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCAmelCase_ , torch_dtype=torch.floataa ) A_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A_ = self.get_inputs() A_ = pipe(**UpperCAmelCase_ ) A_ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A_ = inputs["""image"""].resize((504, 504) ) A_ = """timbrooks/instruct-pix2pix""" A_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() A_ = pipe(**UpperCAmelCase_ ) A_ = output.images[0] A_ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) A_ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
162
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE = 1_000_000 ) -> int: snake_case_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _SCREAMING_SNAKE_CASE ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
347
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
30
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = """""" else: _UpperCAmelCase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = dct.pop(lowercase ) _UpperCAmelCase = val def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = BitConfig( global_padding="""same""" ,layer_type="""bottleneck""" ,depths=(3, 4, 9) ,out_features=["""stage3"""] ,embedding_dynamic_padding=lowercase ,) _UpperCAmelCase = ViTHybridConfig(backbone_config=lowercase ,image_size=3_84 ,num_labels=10_00 ) _UpperCAmelCase = False # load original model from timm _UpperCAmelCase = timm.create_model(lowercase ,pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowercase ) _UpperCAmelCase = create_rename_keys(lowercase ,lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase = ViTHybridModel(lowercase ).eval() else: _UpperCAmelCase = ViTHybridForImageClassification(lowercase ).eval() model.load_state_dict(lowercase ) # create image processor _UpperCAmelCase = create_transform(**resolve_data_config({} ,model=lowercase ) ) _UpperCAmelCase = transform.transforms _UpperCAmelCase = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } _UpperCAmelCase = ViTHybridImageProcessor( do_resize=lowercase ,size={"""shortest_edge""": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=lowercase ,crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} ,do_normalize=lowercase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) _UpperCAmelCase = prepare_img() _UpperCAmelCase = transform(lowercase ).unsqueeze(0 ) _UpperCAmelCase = processor(lowercase ,return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase ,lowercase ) # verify logits with torch.no_grad(): _UpperCAmelCase = model(lowercase ) _UpperCAmelCase = outputs.logits print("""Predicted class:""" ,logits.argmax(-1 ).item() ) if base_model: _UpperCAmelCase = timm_model.forward_features(lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase ,outputs.pooler_output ,atol=1E-3 ) else: _UpperCAmelCase = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase ,outputs.logits ,atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
30
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : Any = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A__(a_ ): """simple docstring""" _A : Dict = '''data2vec-audio''' def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0_2 , _lowercase=1e-5 , _lowercase="gelu" , _lowercase=(512, 512, 512, 512, 512, 512, 512) , _lowercase=(5, 2, 2, 2, 2, 2, 2) , _lowercase=(10, 3, 3, 3, 3, 2, 2) , _lowercase=False , _lowercase=16 , _lowercase=19 , _lowercase=5 , _lowercase=0.0_5 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase="sum" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=(512, 512, 512, 512, 1_500) , _lowercase=(5, 3, 3, 1, 1) , _lowercase=(1, 2, 3, 1, 1) , _lowercase=512 , _lowercase=0 , _lowercase=1 , _lowercase=2 , _lowercase=False , _lowercase=3 , _lowercase=2 , _lowercase=3 , _lowercase=None , **_lowercase , ) -> List[Any]: super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) a_ : Union[str, Any] = hidden_size a_ : Tuple = feat_extract_activation a_ : Union[str, Any] = list(_lowercase ) a_ : Tuple = list(_lowercase ) a_ : Optional[Any] = list(_lowercase ) a_ : int = conv_bias a_ : int = num_conv_pos_embeddings a_ : Optional[Any] = num_conv_pos_embedding_groups a_ : Tuple = conv_pos_kernel_size a_ : List[str] = len(self.conv_dim ) a_ : List[Any] = num_hidden_layers a_ : str = intermediate_size a_ : Union[str, Any] = hidden_act a_ : int = num_attention_heads a_ : str = hidden_dropout a_ : Any = attention_dropout a_ : Tuple = activation_dropout a_ : Tuple = feat_proj_dropout a_ : Optional[Any] = final_dropout a_ : Tuple = layerdrop a_ : Any = layer_norm_eps a_ : int = initializer_range a_ : Dict = vocab_size a_ : Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a_ : Any = mask_time_prob a_ : Tuple = mask_time_length a_ : Optional[int] = mask_time_min_masks a_ : List[str] = mask_feature_prob a_ : Optional[Any] = mask_feature_length a_ : Union[str, Any] = mask_feature_min_masks # ctc loss a_ : Dict = ctc_loss_reduction a_ : List[str] = ctc_zero_infinity # adapter a_ : int = add_adapter a_ : Optional[Any] = adapter_kernel_size a_ : int = adapter_stride a_ : Dict = num_adapter_layers a_ : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a_ : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a_ : int = list(_lowercase ) a_ : Union[str, Any] = list(_lowercase ) a_ : Optional[Any] = list(_lowercase ) a_ : Tuple = xvector_output_dim @property def UpperCamelCase__ ( self ) -> int: return math.prod(self.conv_stride )
248
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _a : _lowercase : CommonSchedulerState # setable values _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : Optional[int] = None @classmethod def lowerCamelCase_ ( cls: Dict , UpperCamelCase_: CommonSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray ) -> List[str]: """simple docstring""" return cls(common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_ ) @dataclass class _a ( UpperCamelCase__ ): _lowercase : DDPMSchedulerState class _a ( UpperCamelCase__ , UpperCamelCase__ ): _lowercase : Tuple = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowercase : jnp.dtype @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return True @register_to_config def __init__( self: Any , UpperCamelCase_: int = 1_000 , UpperCamelCase_: float = 0.0001 , UpperCamelCase_: float = 0.02 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[jnp.ndarray] = None , UpperCamelCase_: str = "fixed_small" , UpperCamelCase_: bool = True , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: jnp.dtype = jnp.floataa , ) -> int: """simple docstring""" lowercase__ = dtype def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: lowercase__ = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase__ = jnp.array(1.0 , dtype=self.dtype ) lowercase__ = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: Optional[int] = None ) -> jnp.ndarray: """simple docstring""" return sample def lowerCamelCase_ ( self: Dict , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: int , UpperCamelCase_: Tuple = () ) -> DDPMSchedulerState: """simple docstring""" lowercase__ = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase__ = (jnp.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: str=None ) -> List[Any]: """simple docstring""" lowercase__ = state.common.alphas_cumprod[t] lowercase__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase__ = jnp.clip(UpperCamelCase_ , a_min=1E-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase__ = jnp.log(jnp.clip(UpperCamelCase_ , a_min=1E-2_0 ) ) elif variance_type == "fixed_large": lowercase__ = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase__ = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase__ = variance lowercase__ = state.common.betas[t] lowercase__ = (predicted_variance + 1) / 2 lowercase__ = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase_ ( self: Any , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: int , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: Optional[jax.random.KeyArray] = None , UpperCamelCase_: bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" lowercase__ = timestep if key is None: lowercase__ = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase__ , lowercase__ = jnp.split(UpperCamelCase_ , sample.shape[1] , axis=1 ) else: lowercase__ = None # 1. compute alphas, betas lowercase__ = state.common.alphas_cumprod[t] lowercase__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowercase__ = 1 - alpha_prod_t lowercase__ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ = model_output elif self.config.prediction_type == "v_prediction": lowercase__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ = jnp.clip(UpperCamelCase_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase__ = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase__ = jax.random.split(UpperCamelCase_ , num=1 ) lowercase__ = jax.random.normal(UpperCamelCase_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(UpperCamelCase_ , UpperCamelCase_ , predicted_variance=UpperCamelCase_ ) ** 0.5) * noise lowercase__ = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowercase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=UpperCamelCase_ , state=UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __len__( self: str ) -> List[Any]: """simple docstring""" return self.config.num_train_timesteps
93
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = ShapEImgaImgPipeline _lowercase : Optional[Any] = ['''image'''] _lowercase : Optional[int] = ['''image'''] _lowercase : Optional[int] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _lowercase : Tuple = False @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" return 8 @property def lowerCamelCase_ ( self: int ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase_ ) return model def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[int]=0 ) -> Tuple: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self: List[str] ) -> List[Any]: """simple docstring""" lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
93
1
def lowerCamelCase__ ( _A = 2000000 ): '''simple docstring''' snake_case_ = [0 for i in range(n + 1 )] snake_case_ = 1 snake_case_ = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _A ): snake_case_ = 1 snake_case_ = 0 for i in range(_A ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
187
from __future__ import annotations def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = str(_A ) return len(_A ) == 9 and set(_A ) == set("123456789" ) def lowerCamelCase__ ( ): '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): snake_case_ = 100002 * base_num if is_9_pandigital(_A ): return candidate for base_num in range(333 , 99 , -1 ): snake_case_ = 1002003 * base_num if is_9_pandigital(_A ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
187
1
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _lowercase : Dict = getLogger(__name__) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :str , snake_case_ :str , snake_case_ :int = 8 , snake_case_ :int = 1_024 , snake_case_ :Union[str, Any]="val" , snake_case_ :Any=None , snake_case_ :Any=False , snake_case_ :List[str]="summarization" , snake_case_ :Optional[int]=None , snake_case_ :Dict=1 , snake_case_ :Dict = None , snake_case_ :List[Any]="" , **snake_case_ :int , ): __UpperCAmelCase = str(snake_case_ ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=snake_case_ ) __UpperCAmelCase = Path(snake_case_ ) __UpperCAmelCase = save_dir.joinpath(F'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(snake_case_ ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda() if fpaa: __UpperCAmelCase = model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case_ , snake_case_ ) # update config with task specific params __UpperCAmelCase = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __UpperCAmelCase = num_return_sequences __UpperCAmelCase = AutoTokenizer.from_pretrained(snake_case_ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: __UpperCAmelCase = tokenizer.model_max_length if prefix is None: __UpperCAmelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' __UpperCAmelCase = SeqaSeqDataset( snake_case_ , snake_case_ , snake_case_ , max_target_length=1_024 , type_path=snake_case_ , n_obs=snake_case_ , prefix=snake_case_ , **snake_case_ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __UpperCAmelCase = ds.make_sortish_sampler(snake_case_ , distributed=snake_case_ , add_extra_examples=snake_case_ , shuffle=snake_case_ ) __UpperCAmelCase = DataLoader(snake_case_ , sampler=snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn ) __UpperCAmelCase = [] for batch in tqdm(snake_case_ ): __UpperCAmelCase = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=snake_case_ , num_beams=snake_case_ , **snake_case_ , ) __UpperCAmelCase = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) __UpperCAmelCase = batch['''ids'''] if num_return_sequences > 1: __UpperCAmelCase = chunks(snake_case_ , snake_case_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case_ ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(snake_case_ , snake_case_ ) return results, sampler.num_replicas def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=snake_case_ , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=snake_case_ , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=snake_case_ , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=snake_case_ , default=snake_case_ ) parser.add_argument( '''--type_path''' , type=snake_case_ , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=snake_case_ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case_ , default=8 , required=snake_case_ , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=snake_case_ , default=-1 , required=snake_case_ , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=snake_case_ , default=snake_case_ , required=snake_case_ , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=snake_case_ , default=1 , required=snake_case_ , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=snake_case_ , default=600 , required=snake_case_ , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=snake_case_ , default=snake_case_ , required=snake_case_ ) parser.add_argument('''--tgt_lang''' , type=snake_case_ , default=snake_case_ , required=snake_case_ ) parser.add_argument( '''--prefix''' , type=snake_case_ , required=snake_case_ , default=snake_case_ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) __UpperCAmelCase = time.time() __UpperCAmelCase , __UpperCAmelCase = parser.parse_known_args() __UpperCAmelCase = parse_numeric_n_bool_cl_kwargs(snake_case_ ) if generate_kwargs and args.local_rank <= 0: print(F'''parsed the following generate kwargs: {generate_kwargs}''' ) __UpperCAmelCase = Path(args.save_dir + '''_tmp''' ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking. __UpperCAmelCase = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(F'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __UpperCAmelCase = {} if args.src_lang is not None: __UpperCAmelCase = args.src_lang if args.tgt_lang is not None: __UpperCAmelCase = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = eval_data_dir( args.data_dir , snake_case_ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=snake_case_ , **snake_case_ , ) if args.local_rank <= 0: __UpperCAmelCase = Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case_ ) __UpperCAmelCase = gather_results_from_each_node(snake_case_ , snake_case_ , args.sync_timeout ) __UpperCAmelCase = combine_partial_results(snake_case_ ) if args.num_return_sequences > 1: __UpperCAmelCase = save_dir.joinpath('''pseudolabel_results.json''' ) print(F'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(snake_case_ , snake_case_ ) return __UpperCAmelCase = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(snake_case_ ) as f: __UpperCAmelCase = [x.rstrip() for x in f.readlines()][: len(snake_case_ )] # Calculate metrics, save metrics, and save _generations.txt __UpperCAmelCase = '''translation''' in args.task __UpperCAmelCase = calculate_bleu if calc_bleu else calculate_rouge __UpperCAmelCase = '''bleu''' if calc_bleu else '''rouge''' __UpperCAmelCase = score_fn(snake_case_ , snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = time.time() - start_time __UpperCAmelCase = round(runtime / metrics['''n_obs'''] , 4 ) __UpperCAmelCase = num_replicas # TODO(@stas00): add whatever metadata to metrics __UpperCAmelCase = save_dir.joinpath(F'''{args.type_path}_{metric_name}.json''' ) save_json(snake_case_ , snake_case_ , indent=snake_case_ ) print(snake_case_ ) write_txt_file(snake_case_ , save_dir.joinpath(F'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(snake_case_ , save_dir.joinpath(F'''{args.type_path}.target''' ) ) else: shutil.rmtree(snake_case_ ) def lowercase__ ( snake_case_ :Dict ): __UpperCAmelCase = [] for partial_result in partial_results: records.extend(snake_case_ ) __UpperCAmelCase = sorted(snake_case_ , key=lambda snake_case_ : x["id"] ) __UpperCAmelCase = [x['''pred'''] for x in records] return preds def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] , snake_case_ :Optional[Any] ): # WAIT FOR lots of .json files __UpperCAmelCase = time.time() logger.info('''waiting for all nodes to finish''' ) __UpperCAmelCase = None while (time.time() - start_wait) < timeout: __UpperCAmelCase = list(save_dir.glob('''rank_*.json''' ) ) if len(snake_case_ ) < num_replicas: continue try: # make sure all json files are fully saved __UpperCAmelCase = lmap(snake_case_ , snake_case_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
86
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _lowercase : Any = True except ImportError: _lowercase : str = False try: from torch.hub import _get_torch_home _lowercase : Any = _get_torch_home() except ImportError: _lowercase : Dict = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) _lowercase : Tuple = os.path.join(torch_cache_home, 'transformers') _lowercase : int = 'https://cdn.huggingface.co' _lowercase : Union[str, Any] = 'https://s3.amazonaws.com/models.huggingface.co/bert' _lowercase : str = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) _lowercase : str = os.path.join(PATH, 'config.yaml') _lowercase : int = os.path.join(PATH, 'attributes.txt') _lowercase : List[str] = os.path.join(PATH, 'objects.txt') _lowercase : Optional[int] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) _lowercase : int = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) _lowercase : Dict = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) _lowercase : Union[str, Any] = 'pytorch_model.bin' _lowercase : List[str] = 'config.yaml' def lowercase__ ( snake_case_ :int=OBJECTS , snake_case_ :Optional[int]=ATTRIBUTES ): __UpperCAmelCase = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __UpperCAmelCase = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = OrderedDict() with open(snake_case_ , '''rb''' ) as f: __UpperCAmelCase = pkl.load(snake_case_ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __UpperCAmelCase = ckp.pop(snake_case_ ) if isinstance(snake_case_ , np.ndarray ): __UpperCAmelCase = torch.tensor(snake_case_ ) else: assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ ) __UpperCAmelCase = v return r class _UpperCAmelCase : a__ : Tuple = {} def __init__( self : List[str] , _lowercase : dict , _lowercase : str = "root" , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = name __UpperCAmelCase = level __UpperCAmelCase = {} for k, v in dictionary.items(): if v is None: raise ValueError() __UpperCAmelCase = copy.deepcopy(_lowercase ) __UpperCAmelCase = copy.deepcopy(_lowercase ) if isinstance(_lowercase , _lowercase ): __UpperCAmelCase = Config(_lowercase , name=_lowercase , level=level + 1 ) __UpperCAmelCase = v setattr(self , _lowercase , _lowercase ) __UpperCAmelCase = d def __repr__( self : Any ): return str(list((self._pointer.keys()) ) ) def __setattr__( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Dict ): __UpperCAmelCase = val __UpperCAmelCase = val __UpperCAmelCase = key.split('''.''' ) __UpperCAmelCase = len(_lowercase ) - 1 __UpperCAmelCase = self._pointer if len(_lowercase ) > 1: for i, l in enumerate(_lowercase ): if hasattr(self , _lowercase ) and isinstance(getattr(self , _lowercase ) , _lowercase ): setattr(getattr(self , _lowercase ) , '''.'''.join(levels[i:] ) , _lowercase ) if l == last_level: __UpperCAmelCase = val else: __UpperCAmelCase = pointer[l] def a ( self : int ): return self._pointer def a ( self : List[str] , _lowercase : Dict , _lowercase : str ): with open(F'''{file_name}''' , '''w''' ) as stream: dump(_lowercase , _lowercase ) def a ( self : int , _lowercase : Dict , _lowercase : Tuple ): with open(F'''{file_name}''' , '''w''' ) as stream: json.dump(_lowercase , _lowercase ) @staticmethod def a ( _lowercase : str ): with open(_lowercase ) as stream: __UpperCAmelCase = load(_lowercase , Loader=_lowercase ) return data def __str__( self : Dict ): __UpperCAmelCase = ''' ''' if self._name != "root": __UpperCAmelCase = F'''{t * (self._level-1)}{self._name}:\n''' else: __UpperCAmelCase = '''''' __UpperCAmelCase = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_lowercase , _lowercase ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(_lowercase ).__name__})\n''' __UpperCAmelCase = level return r[:-1] @classmethod def a ( cls : str , _lowercase : str , **_lowercase : Any ): __UpperCAmelCase , __UpperCAmelCase = cls.get_config_dict(_lowercase , **_lowercase ) return cls(_lowercase ) @classmethod def a ( cls : Any , _lowercase : str , **_lowercase : str ): __UpperCAmelCase = kwargs.pop('''cache_dir''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''force_download''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''resume_download''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''proxies''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''local_files_only''' , _lowercase ) if os.path.isdir(_lowercase ): __UpperCAmelCase = os.path.join(_lowercase , _lowercase ) elif os.path.isfile(_lowercase ) or is_remote_url(_lowercase ): __UpperCAmelCase = pretrained_model_name_or_path else: __UpperCAmelCase = hf_bucket_url(_lowercase , filename=_lowercase , use_cdn=_lowercase ) try: # Load from URL or cache if already cached __UpperCAmelCase = cached_path( _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , local_files_only=_lowercase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __UpperCAmelCase = Config.load_yaml(_lowercase ) except EnvironmentError: __UpperCAmelCase = '''Can\'t load config for''' raise EnvironmentError(_lowercase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(_lowercase ), kwargs def lowercase__ ( snake_case_ :List[str] ): __UpperCAmelCase = torch.load('''dump.pt''' , map_location=in_tensor.device ) __UpperCAmelCase = in_tensor.numpy() __UpperCAmelCase = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase__ ( snake_case_ :List[str] ): __UpperCAmelCase = urlparse(snake_case_ ) return parsed.scheme in ("http", "https") def lowercase__ ( snake_case_ :str , snake_case_ :str , snake_case_ :List[str]=True ): __UpperCAmelCase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __UpperCAmelCase = '''/''' not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase__ ( snake_case_ :str , snake_case_ :Tuple , snake_case_ :List[str]=None , snake_case_ :List[str]=0 , snake_case_ :List[Any]=None , ): __UpperCAmelCase = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(snake_case_ , snake_case_ ): ua += "; " + "; ".join('''{}/{}'''.format(snake_case_ , snake_case_ ) for k, v in user_agent.items() ) elif isinstance(snake_case_ , snake_case_ ): ua += "; " + user_agent __UpperCAmelCase = {'''user-agent''': ua} if resume_size > 0: __UpperCAmelCase = '''bytes=%d-''' % (resume_size,) __UpperCAmelCase = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ ) if response.status_code == 416: # Range not satisfiable return __UpperCAmelCase = response.headers.get('''Content-Length''' ) __UpperCAmelCase = resume_size + int(snake_case_ ) if content_length is not None else None __UpperCAmelCase = tqdm( unit='''B''' , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(snake_case_ ) ) temp_file.write(snake_case_ ) progress.close() def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :str=None , snake_case_ :Optional[int]=False , snake_case_ :List[Any]=None , snake_case_ :List[Any]=10 , snake_case_ :Optional[int]=False , snake_case_ :List[str]=None , snake_case_ :Union[str, Any]=False , ): if cache_dir is None: __UpperCAmelCase = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = str(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) __UpperCAmelCase = None if not local_files_only: try: __UpperCAmelCase = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ ) if response.status_code == 200: __UpperCAmelCase = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __UpperCAmelCase = url_to_filename(snake_case_ , snake_case_ ) # get cache path to put the file __UpperCAmelCase = os.path.join(snake_case_ , snake_case_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(snake_case_ ): return cache_path else: __UpperCAmelCase = [ file for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(snake_case_ ) > 0: return os.path.join(snake_case_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(snake_case_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __UpperCAmelCase = cache_path + '''.lock''' with FileLock(snake_case_ ): # If the download just completed while the lock was activated. if os.path.exists(snake_case_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __UpperCAmelCase = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(snake_case_ , '''a+b''' ) as f: yield f __UpperCAmelCase = _resumable_file_manager if os.path.exists(snake_case_ ): __UpperCAmelCase = os.stat(snake_case_ ).st_size else: __UpperCAmelCase = 0 else: __UpperCAmelCase = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ ) __UpperCAmelCase = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , snake_case_ , temp_file.name , ) http_get( snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , ) os.replace(temp_file.name , snake_case_ ) __UpperCAmelCase = {'''url''': url, '''etag''': etag} __UpperCAmelCase = cache_path + '''.json''' with open(snake_case_ , '''w''' ) as meta_file: json.dump(snake_case_ , snake_case_ ) return cache_path def lowercase__ ( snake_case_ :int , snake_case_ :str=None ): __UpperCAmelCase = url.encode('''utf-8''' ) __UpperCAmelCase = shaaaa(snake_case_ ) __UpperCAmelCase = url_hash.hexdigest() if etag: __UpperCAmelCase = etag.encode('''utf-8''' ) __UpperCAmelCase = shaaaa(snake_case_ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase__ ( snake_case_ :Dict , snake_case_ :List[Any]=None , snake_case_ :List[Any]=False , snake_case_ :Optional[int]=None , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=None , snake_case_ :Any=False , snake_case_ :int=False , snake_case_ :Optional[int]=False , ): if cache_dir is None: __UpperCAmelCase = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = str(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = str(snake_case_ ) if is_remote_url(snake_case_ ): # URL, so get it from the cache (downloading if necessary) __UpperCAmelCase = get_from_cache( snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , ) elif os.path.exists(snake_case_ ): # File, and it exists. __UpperCAmelCase = url_or_filename elif urlparse(snake_case_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(snake_case_ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(snake_case_ ) ) if extract_compressed_file: if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __UpperCAmelCase , __UpperCAmelCase = os.path.split(snake_case_ ) __UpperCAmelCase = output_file.replace('''.''' , '''-''' ) + '''-extracted''' __UpperCAmelCase = os.path.join(snake_case_ , snake_case_ ) if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions __UpperCAmelCase = output_path + '''.lock''' with FileLock(snake_case_ ): shutil.rmtree(snake_case_ , ignore_errors=snake_case_ ) os.makedirs(snake_case_ ) if is_zipfile(snake_case_ ): with ZipFile(snake_case_ , '''r''' ) as zip_file: zip_file.extractall(snake_case_ ) zip_file.close() elif tarfile.is_tarfile(snake_case_ ): __UpperCAmelCase = tarfile.open(snake_case_ ) tar_file.extractall(snake_case_ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(snake_case_ ) ) return output_path_extracted return output_path def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any]="," ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): with open(snake_case_ ) as f: __UpperCAmelCase = eval(f.read() ) else: __UpperCAmelCase = requests.get(snake_case_ ) try: __UpperCAmelCase = requests.json() except Exception: __UpperCAmelCase = req.content.decode() assert data is not None, "could not connect" try: __UpperCAmelCase = eval(snake_case_ ) except Exception: __UpperCAmelCase = data.split('''\n''' ) req.close() return data def lowercase__ ( snake_case_ :Union[str, Any] ): __UpperCAmelCase = requests.get(snake_case_ ) __UpperCAmelCase = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase__ ( snake_case_ :List[str] ): __UpperCAmelCase = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(snake_case_ ) with open(snake_case_ , '''rb''' ) as stream: __UpperCAmelCase = pkl.load(snake_case_ ) __UpperCAmelCase = weights.pop('''model''' ) __UpperCAmelCase = {} for k, v in model.items(): __UpperCAmelCase = torch.from_numpy(snake_case_ ) if "running_var" in k: __UpperCAmelCase = torch.tensor([0] ) __UpperCAmelCase = k.replace('''running_var''' , '''num_batches_tracked''' ) __UpperCAmelCase = zero return new def lowercase__ ( ): print(F'''{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb''' ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :Tuple="RGB" ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): __UpperCAmelCase = cva.imread(snake_case_ ) else: __UpperCAmelCase = get_image_from_url(snake_case_ ) assert img is not None, F'''could not connect to: {im}''' __UpperCAmelCase = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": __UpperCAmelCase = img[:, :, ::-1] return img def lowercase__ ( snake_case_ :Any , snake_case_ :int=1 ): return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ ))
86
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __snake_case : Optional[Any] =None __snake_case : Any =logging.get_logger(__name__) __snake_case : Optional[Any] ={'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[int] ={ 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } __snake_case : Tuple ={ 'facebook/mbart-large-en-ro': 1_0_2_4, 'facebook/mbart-large-cc25': 1_0_2_4, } # fmt: off __snake_case : List[str] =['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =VOCAB_FILES_NAMES snake_case_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ =PRETRAINED_VOCAB_FILES_MAP snake_case_ =["""input_ids""", """attention_mask"""] snake_case_ =MBartTokenizer snake_case_ =[] snake_case_ =[] def __init__(self ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase="<s>" ,__lowerCamelCase="</s>" ,__lowerCamelCase="</s>" ,__lowerCamelCase="<s>" ,__lowerCamelCase="<unk>" ,__lowerCamelCase="<pad>" ,__lowerCamelCase="<mask>" ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,**__lowerCamelCase ,) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Dict = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else mask_token super().__init__( vocab_file=__lowerCamelCase ,tokenizer_file=__lowerCamelCase ,bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,src_lang=__lowerCamelCase ,tgt_lang=__lowerCamelCase ,additional_special_tokens=__lowerCamelCase ,**__lowerCamelCase ,) lowerCAmelCase__ : Optional[int] = vocab_file lowerCAmelCase__ : str = False if not self.vocab_file else True lowerCAmelCase__ : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) lowerCAmelCase__ : int = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCAmelCase__ : Union[str, Any] = src_lang if src_lang is not None else '''en_XX''' lowerCAmelCase__ : Tuple = self.convert_tokens_to_ids(self._src_lang ) lowerCAmelCase__ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def lowerCAmelCase__ (self ,__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> List[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [self.sep_token_id] lowerCAmelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) -> List[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowerCAmelCase__ : List[str] = src_lang lowerCAmelCase__ : Optional[Any] = self(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,return_tensors=__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : Dict = self.convert_tokens_to_ids(__lowerCamelCase ) lowerCAmelCase__ : int = tgt_lang_id return inputs def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = "en_XX" ,__lowerCamelCase = None ,__lowerCamelCase = "ro_RO" ,**__lowerCamelCase ,) -> BatchEncoding: """simple docstring""" lowerCAmelCase__ : Tuple = src_lang lowerCAmelCase__ : Dict = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : str = self.convert_tokens_to_ids(__lowerCamelCase ) lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] lowerCAmelCase__ : int = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase__ : int = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str ,pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : str = self.convert_tokens_to_ids(__lowerCamelCase ) lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] lowerCAmelCase__ : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase__ : str = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase__ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str ,pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCAmelCase__ : Union[str, Any] = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file ,__lowerCamelCase ) return (out_vocab_file,)
129
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =["""image_processor""", """tokenizer"""] snake_case_ ="""Pix2StructImageProcessor""" snake_case_ =("""T5Tokenizer""", """T5TokenizerFast""") def __init__(self ,__lowerCamelCase ,__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : str = False super().__init__(__lowerCamelCase ,__lowerCamelCase ) def __call__(self ,__lowerCamelCase=None ,__lowerCamelCase = None ,__lowerCamelCase = True ,__lowerCamelCase = False ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = 20_48 ,__lowerCamelCase = 0 ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = False ,__lowerCamelCase = False ,__lowerCamelCase = False ,__lowerCamelCase = False ,__lowerCamelCase = False ,__lowerCamelCase = True ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: lowerCAmelCase__ : List[str] = self.tokenizer lowerCAmelCase__ : List[str] = self.tokenizer( text=__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,max_length=__lowerCamelCase ,stride=__lowerCamelCase ,pad_to_multiple_of=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,return_overflowing_tokens=__lowerCamelCase ,return_special_tokens_mask=__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,return_token_type_ids=__lowerCamelCase ,return_length=__lowerCamelCase ,verbose=__lowerCamelCase ,return_tensors=__lowerCamelCase ,**__lowerCamelCase ,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowerCAmelCase__ : int = self.image_processor( __lowerCamelCase ,return_tensors=__lowerCamelCase ,max_patches=__lowerCamelCase ,**__lowerCamelCase ) else: # add pixel_values and bbox lowerCAmelCase__ : List[str] = self.image_processor( __lowerCamelCase ,return_tensors=__lowerCamelCase ,max_patches=__lowerCamelCase ,header_text=__lowerCamelCase ,**__lowerCamelCase ) if text is not None and not self.image_processor.is_vqa: lowerCAmelCase__ : List[str] = self.tokenizer( text=__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,max_length=__lowerCamelCase ,stride=__lowerCamelCase ,pad_to_multiple_of=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,return_overflowing_tokens=__lowerCamelCase ,return_special_tokens_mask=__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,return_token_type_ids=__lowerCamelCase ,return_length=__lowerCamelCase ,verbose=__lowerCamelCase ,return_tensors=__lowerCamelCase ,**__lowerCamelCase ,) if "attention_mask" in text_encoding: lowerCAmelCase__ : List[str] = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: lowerCAmelCase__ : Dict = text_encoding.pop('''input_ids''' ) else: lowerCAmelCase__ : int = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> str: """simple docstring""" return self.tokenizer.decode(*__lowerCamelCase ,**__lowerCamelCase ) @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Dict = self.tokenizer.model_input_names lowerCAmelCase__ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
129
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : int = BertTokenizer lowercase__ : Optional[Any] = BertTokenizerFast lowercase__ : Any = True lowercase__ : Optional[int] = True lowercase__ : Optional[int] = filter_non_english def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: super().setUp() lowerCAmelCase__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Any: lowerCAmelCase__ = '''UNwant\u00E9d,running''' lowerCAmelCase__ = '''unwanted, running''' return input_text, output_text def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCamelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [9, 6, 7, 12, 10, 11] ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: if not self.test_rust_tokenizer: return lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = '''UNwant\u00E9d,running''' lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # With lower casing lowerCAmelCase__ = self.get_tokenizer(do_lower_case=lowerCamelCase_ ) lowerCAmelCase__ = self.get_rust_tokenizer(do_lower_case=lowerCamelCase_ ) lowerCAmelCase__ = '''UNwant\u00E9d,running''' lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = BasicTokenizer() lowerCAmelCase__ = '''a\n\'ll !!to?\'d of, can\'t.''' lowerCAmelCase__ = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(lowerCamelCase_ ) , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCAmelCase__ = {} for i, token in enumerate(lowerCamelCase_ ): lowerCAmelCase__ = i lowerCAmelCase__ = WordpieceTokenizer(vocab=lowerCamelCase_ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> str: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase_ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase_ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) lowerCAmelCase__ = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def __SCREAMING_SNAKE_CASE ( self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCAmelCase__ = tokenizer_r.encode_plus( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , ) lowerCAmelCase__ = tokenizer_r.do_lower_case if hasattr(lowerCamelCase_ , '''do_lower_case''' ) else False lowerCAmelCase__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = ['''的''', '''人''', '''有'''] lowerCAmelCase__ = ''''''.join(lowerCamelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = True lowerCAmelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.convert_ids_to_tokens(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.convert_ids_to_tokens(lowerCamelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = False lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.convert_ids_to_tokens(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.convert_ids_to_tokens(lowerCamelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase__ = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCamelCase_ ) ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
360
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __UpperCAmelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class a__ ( unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase__ : List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase__ : Optional[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase__ : Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) lowerCAmelCase__ = text_classifier('''This is great !''' , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] ) lowerCAmelCase__ = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) lowerCAmelCase__ = text_classifier('''This is great !''' , top_k=1 ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) # Legacy behavior lowerCAmelCase__ = text_classifier('''This is great !''' , return_all_scores=lowerCamelCase_ ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) lowerCAmelCase__ = text_classifier('''This is great !''' , return_all_scores=lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] ) lowerCAmelCase__ = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) lowerCAmelCase__ = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ {'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_0''', '''score''': 0.504}, ] , ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> int: import torch lowerCAmelCase__ = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @require_tf def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @slow @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = pipeline('''text-classification''' ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) lowerCAmelCase__ = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) lowerCAmelCase__ = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) @slow @require_tf def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = pipeline('''text-classification''' , framework='''tf''' ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) lowerCAmelCase__ = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) lowerCAmelCase__ = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: lowerCAmelCase__ = TextClassificationPipeline(model=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) return text_classifier, ["HuggingFace is in", "This is another test"] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: lowerCAmelCase__ = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowerCAmelCase__ = '''HuggingFace is in''' lowerCAmelCase__ = text_classifier(lowerCamelCase_ ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) lowerCAmelCase__ = ['''HuggingFace is in ''', '''Paris is in France'''] lowerCAmelCase__ = text_classifier(lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}, {'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowerCAmelCase__ = text_classifier(lowerCamelCase_ , top_k=lowerCamelCase_ ) lowerCAmelCase__ = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [[{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] * N, [{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] * N] , ) lowerCAmelCase__ = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} lowerCAmelCase__ = text_classifier(lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , {'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )} , ) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowerCAmelCase__ = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(lowerCamelCase_ ): text_classifier(lowerCamelCase_ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowerCAmelCase__ = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
228
0
def a ( snake_case__: int , snake_case__: list[int] , snake_case__: int ): '''simple docstring''' def count_of_possible_combinations(snake_case__: int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def a ( snake_case__: int , snake_case__: list[int] , snake_case__: int ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case__: int , snake_case__: list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase_ = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) lowercase_ = answer return answer lowercase_ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def a ( snake_case__: int , snake_case__: list[int] , snake_case__: int ): '''simple docstring''' lowercase_ = [0] * (target + 1) lowercase_ = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __a = 3 __a = 5 __a = [1, 2, 5] print(combination_sum_iv(n, array, target))
30
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def a ( snake_case__: int , snake_case__: Tuple , snake_case__: Dict , snake_case__: Dict , snake_case__: List[Any] , snake_case__: int , snake_case__: List[Any] , snake_case__: Optional[int] , snake_case__: str , snake_case__: Union[str, Any] , snake_case__: List[str] , snake_case__: int , ): '''simple docstring''' lowercase_ = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } lowercase_ , lowercase_ = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase_ = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case__ ) assert base_extractor.is_extractable(snake_case__ ) lowercase_ = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(snake_case__ , snake_case__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase_ = file_path.read_text(encoding='''utf-8''' ) else: lowercase_ = output_path.read_text(encoding='''utf-8''' ) lowercase_ = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def a ( snake_case__: List[Any] , snake_case__: int , snake_case__: Optional[int] , snake_case__: Union[str, Any] , snake_case__: List[Any] , snake_case__: Tuple , snake_case__: Optional[int] , snake_case__: List[str] , snake_case__: Union[str, Any] , snake_case__: Tuple , snake_case__: int , snake_case__: Optional[int] , ): '''simple docstring''' lowercase_ = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } lowercase_ = input_paths[compression_format] if input_path is None: lowercase_ = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case__ ) lowercase_ = Extractor.infer_extractor_format(snake_case__ ) assert extractor_format is not None lowercase_ = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(snake_case__ , snake_case__ , snake_case__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase_ = file_path.read_text(encoding='''utf-8''' ) else: lowercase_ = output_path.read_text(encoding='''utf-8''' ) lowercase_ = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def a ( snake_case__: Union[str, Any] , snake_case__: List[Any] ): '''simple docstring''' import tarfile lowercase_ = tmp_path / '''data_dot_dot''' directory.mkdir() lowercase_ = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(snake_case__ , '''w''' ) as f: f.add(snake_case__ , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def a ( snake_case__: int ): '''simple docstring''' import tarfile lowercase_ = tmp_path / '''data_sym_link''' directory.mkdir() lowercase_ = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=snake_case__ ) with tarfile.TarFile(snake_case__ , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def a ( snake_case__: List[Any] , snake_case__: Optional[int] , snake_case__: List[str] , snake_case__: List[str] , snake_case__: int , snake_case__: Optional[Any] ): '''simple docstring''' lowercase_ = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } lowercase_ = insecure_tar_files[insecure_tar_file] lowercase_ = tmp_path / '''extracted''' TarExtractor.extract(snake_case__ , snake_case__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def a ( snake_case__: Optional[int] ): '''simple docstring''' # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase_ = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 lowercase_ = ( B'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' B'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' B'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' B'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(snake_case__ ) assert zipfile.is_zipfile(str(snake_case__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(snake_case__ ) # but we're right
30
1
'''simple docstring''' import csv import tweepy # Twitter API credentials UpperCAmelCase = '' UpperCAmelCase = '' UpperCAmelCase = '' UpperCAmelCase = '' def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = tweepy.OAuthHandler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) auth.set_access_token(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = tweepy.API(_SCREAMING_SNAKE_CASE ) # initialize a list to hold all the tweepy Tweets lowerCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowerCAmelCase = api.user_timeline(screen_name=_SCREAMING_SNAKE_CASE , count=200 ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # save the id of the oldest tweet less one lowerCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_SCREAMING_SNAKE_CASE ) > 0: print(f'getting tweets before {oldest}' ) # all subsequent requests use the max_id param to prevent duplicates lowerCAmelCase = api.user_timeline( screen_name=_SCREAMING_SNAKE_CASE , count=200 , max_id=_SCREAMING_SNAKE_CASE ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # update the id of the oldest tweet less one lowerCAmelCase = alltweets[-1].id - 1 print(f'...{len(_SCREAMING_SNAKE_CASE )} tweets downloaded so far' ) # transform the tweepy tweets into a 2D array that will populate the csv lowerCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'new_{screen_name}_tweets.csv' , """w""" ) as f: lowerCAmelCase = csv.writer(_SCREAMING_SNAKE_CASE ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
355
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[Any] = "time_series_transformer" UpperCAmelCase : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = [1, 2, 3, 4, 5, 6, 7] , A_ = "mean" , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 32 , A_ = 32 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = True , A_ = "gelu" , A_ = 64 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 100 , A_ = 0.0_2 , A_=True , **A_ , ) -> Optional[Any]: # time series specific configuration lowerCAmelCase = prediction_length lowerCAmelCase = context_length or prediction_length lowerCAmelCase = distribution_output lowerCAmelCase = loss lowerCAmelCase = input_size lowerCAmelCase = num_time_features lowerCAmelCase = lags_sequence lowerCAmelCase = scaling lowerCAmelCase = num_dynamic_real_features lowerCAmelCase = num_static_real_features lowerCAmelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) lowerCAmelCase = cardinality else: lowerCAmelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) lowerCAmelCase = embedding_dimension else: lowerCAmelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase = num_parallel_samples # Transformer architecture configuration lowerCAmelCase = input_size * len(A_ ) + self._number_of_features lowerCAmelCase = d_model lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_attention_heads lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = decoder_layers lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = use_cache super().__init__(is_encoder_decoder=A_ , **A_ ) @property def __snake_case ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
187
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowercase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowercase : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int]=8 ): """simple docstring""" lowercase_ : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=512 , __SCREAMING_SNAKE_CASE : Dict=512 ): """simple docstring""" lowercase_ : str = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : Any = np.array(pil_image.convert('''RGB''' ) ) lowercase_ : List[str] = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ : List[str] = np.transpose(__SCREAMING_SNAKE_CASE , [2, 0, 1] ) lowercase_ : Union[str, Any] = torch.from_numpy(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) return image class lowerCAmelCase__ ( lowerCamelCase_ ): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__() self.register_modules( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , movq=__SCREAMING_SNAKE_CASE , ) lowercase_ : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[int] = min(int(num_inference_steps * strength ) , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__SCREAMING_SNAKE_CASE )}''' ) lowercase_ : Union[str, Any] = image.to(device=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : Tuple = image else: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__SCREAMING_SNAKE_CASE )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Tuple = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__SCREAMING_SNAKE_CASE ) ] lowercase_ : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) else: lowercase_ : List[Any] = self.movq.encode(__SCREAMING_SNAKE_CASE ).latent_dist.sample(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = self.movq.config.scaling_factor * init_latents lowercase_ : List[Any] = torch.cat([init_latents] , dim=0 ) lowercase_ : List[Any] = init_latents.shape lowercase_ : str = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE ) # get latents lowercase_ : str = self.scheduler.add_noise(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Any = init_latents return latents def _snake_case ( self , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase_ : Tuple = torch.device(F'''cuda:{gpu_id}''' ) lowercase_ : str = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) lowercase_ : str = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=__SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : str = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prev_module_hook=__SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. lowercase_ : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__SCREAMING_SNAKE_CASE , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 5_12 , __SCREAMING_SNAKE_CASE = 5_12 , __SCREAMING_SNAKE_CASE = 1_00 , __SCREAMING_SNAKE_CASE = 4.0 , __SCREAMING_SNAKE_CASE = 0.3 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , ): """simple docstring""" lowercase_ : Tuple = self._execution_device lowercase_ : str = guidance_scale > 1.0 if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) lowercase_ : Union[str, Any] = image_embeds.shape[0] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[Any] = image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 ) lowercase_ : Optional[Any] = negative_image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 ) lowercase_ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__SCREAMING_SNAKE_CASE ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Dict = [image] if not all(isinstance(__SCREAMING_SNAKE_CASE , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'''Input is in incorrect format: {[type(__SCREAMING_SNAKE_CASE ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) lowercase_ : Any = torch.cat([prepare_image(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in image] , dim=0 ) lowercase_ : Optional[Any] = image.to(dtype=image_embeds.dtype , device=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = self.movq.encode(__SCREAMING_SNAKE_CASE )['''latents'''] lowercase_ : List[Any] = latents.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 ) self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : List[str] = self.get_timesteps(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Optional[Any] = downscale_height_and_width(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.movq_scale_factor ) lowercase_ : Tuple = self.prepare_latents( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , image_embeds.dtype , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(__SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance lowercase_ : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : Optional[int] = {'''image_embeds''': image_embeds} lowercase_ : List[Any] = self.unet( sample=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , added_cond_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : str = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Optional[int] = variance_pred.chunk(2 ) lowercase_ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Dict = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Tuple = self.scheduler.step( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , )[0] # post-processing lowercase_ : Optional[int] = self.movq.decode(__SCREAMING_SNAKE_CASE , force_not_quantize=__SCREAMING_SNAKE_CASE )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowercase_ : Tuple = image * 0.5 + 0.5 lowercase_ : int = image.clamp(0 , 1 ) lowercase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : Optional[Any] = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
93
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() lowercase_ : Tuple = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = torch.nn.CosineSimilarity(3 , 1E-0_8 ) lowercase_ : Optional[Any] = torch.nn.Softmax(dim=1 ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = W_supports['''sizes'''].tolist() lowercase_ : Dict = W_supports['''start_token_id'''].item() lowercase_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowercase_ : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = self.BERT(**__SCREAMING_SNAKE_CASE ) lowercase_ : str = None lowercase_ : Dict = None lowercase_ : Tuple = W_supports['''input_ids'''] == start_token_id lowercase_ : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: lowercase_ : List[str] = 0 else: lowercase_ : List[Any] = support_sizes[i - 1] lowercase_ : str = S[s : s + size][start_token_masks[s : s + size]] lowercase_ : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] lowercase_ : List[str] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowercase_ : List[str] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowercase_ : Tuple = torch.vstack((p_starts, p_start) ) lowercase_ : Optional[Any] = torch.vstack((p_ends, p_end) ) else: lowercase_ : str = p_start lowercase_ : int = p_end return p_starts, p_ends
93
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(__UpperCAmelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
2
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
1
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase (_UpperCamelCase ): return len(set(_UpperCamelCase ) ) == len(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
86
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _lowerCamelCase , unittest.TestCase): A_ : Union[str, Any] = DiTPipeline A_ : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS A_ : List[Any] = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } A_ : Optional[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS A_ : Tuple = False def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : List[str] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn='gelu-approximate' , num_embeds_ada_norm=10_00 , norm_type='ada_norm_zero' , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = AutoencoderKL() __lowerCAmelCase : Union[str, Any] = DDIMScheduler() __lowerCAmelCase : Dict = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): __lowerCAmelCase : List[str] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : List[str] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = 'cpu' __lowerCAmelCase : Any = self.get_dummy_components() __lowerCAmelCase : Union[str, Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = pipe(**_SCREAMING_SNAKE_CASE ).images __lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __lowerCAmelCase : Optional[int] = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) __lowerCAmelCase : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 ) def __lowerCamelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = torch.manual_seed(0 ) __lowerCAmelCase : int = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) __lowerCAmelCase : Optional[Any] = ['vase', 'umbrella', 'white shark', 'white wolf'] __lowerCAmelCase : Optional[Any] = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type='np' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = load_numpy( f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCamelCase ( self ): __lowerCAmelCase : Any = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) __lowerCAmelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) __lowerCAmelCase : Dict = ['vase', 'umbrella'] __lowerCAmelCase : List[str] = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = torch.manual_seed(0 ) __lowerCAmelCase : Optional[Any] = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type='np' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1E-1
86
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : List[str] = """autoformer""" a__ : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "student_t" , SCREAMING_SNAKE_CASE__ : str = "nll" , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 1_00 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : int = 25 , SCREAMING_SNAKE_CASE__ : int = 3 , **SCREAMING_SNAKE_CASE__ : Any , ) -> Union[str, Any]: # time series specific configuration __lowerCamelCase = prediction_length __lowerCamelCase = context_length if context_length is not None else prediction_length __lowerCamelCase = distribution_output __lowerCamelCase = loss __lowerCamelCase = input_size __lowerCamelCase = num_time_features __lowerCamelCase = lags_sequence __lowerCamelCase = scaling __lowerCamelCase = num_dynamic_real_features __lowerCamelCase = num_static_real_features __lowerCamelCase = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __lowerCamelCase = cardinality else: __lowerCamelCase = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __lowerCamelCase = embedding_dimension else: __lowerCamelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowerCamelCase = num_parallel_samples # Transformer architecture configuration __lowerCamelCase = input_size * len(self.lags_sequence ) + self._number_of_features __lowerCamelCase = d_model __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_attention_heads __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = use_cache # Autoformer __lowerCamelCase = label_length __lowerCamelCase = moving_average __lowerCamelCase = autocorrelation_factor super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __A ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
339
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ : str = "" SCREAMING_SNAKE_CASE__ : Any = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def __magic_name__ ( ) -> None: __lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print('''Processing...''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase = random_chars(32 ) __lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) __lowerCamelCase = [] for anno in new_annos[index]: __lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]: __lowerCamelCase = [] __lowerCamelCase = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ): __lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__lowerCAmelCase ) as in_file: __lowerCamelCase = in_file.readlines() __lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' ) __lowerCamelCase = [] for obj_list in obj_lists: __lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for idx in range(len(__lowerCAmelCase ) ): __lowerCamelCase = [] __lowerCamelCase = img_list[idx] path_list.append(__lowerCAmelCase ) __lowerCamelCase = anno_list[idx] __lowerCamelCase = cva.imread(__lowerCAmelCase ) if flip_type == 1: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
339
1
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowercase ( A__ ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase_ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(UpperCamelCase_ , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(UpperCamelCase_ , '''num_encoder_blocks''' ) ) class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=64 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=[2, 2, 2, 2] , UpperCamelCase_=[8, 4, 2, 1] , UpperCamelCase_=[16, 32, 64, 128] , UpperCamelCase_=[1, 4, 8, 16] , UpperCamelCase_=[1, 2, 4, 8] , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.02 , UpperCamelCase_=3 , UpperCamelCase_=None , ): '''simple docstring''' UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = batch_size UpperCamelCase__ :Tuple = image_size UpperCamelCase__ :Tuple = num_channels UpperCamelCase__ :List[str] = num_encoder_blocks UpperCamelCase__ :Any = sr_ratios UpperCamelCase__ :Any = depths UpperCamelCase__ :Union[str, Any] = hidden_sizes UpperCamelCase__ :Union[str, Any] = downsampling_rates UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Optional[int] = is_training UpperCamelCase__ :str = use_labels UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Union[str, Any] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Optional[int] = initializer_range UpperCamelCase__ :Optional[int] = num_labels UpperCamelCase__ :Any = scope def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase__ :Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = SegformerModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :List[str] = model(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = self.num_labels UpperCamelCase__ :Any = SegformerForSemanticSegmentation(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :List[Any] = model(UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) UpperCamelCase__ :Union[str, Any] = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = 1 UpperCamelCase__ :Dict = SegformerForSemanticSegmentation(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :Optional[Any] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(UpperCamelCase_ ) UpperCamelCase__ :Tuple = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = config_and_inputs UpperCamelCase__ :int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase ( A__ , A__ , unittest.TestCase ): """simple docstring""" _a = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _a = ( { 'feature-extraction': SegformerModel, 'image-classification': SegformerForImageClassification, 'image-segmentation': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _a = True _a = False _a = False _a = False def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = SegformerModelTester(self ) UpperCamelCase__ :Tuple = SegformerConfigTester(self , config_class=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*UpperCamelCase_ ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :List[Any] = model_class(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ :List[Any] = [*signature.parameters.keys()] UpperCamelCase__ :Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :Union[str, Any] = True for model_class in self.all_model_classes: UpperCamelCase__ :List[str] = True UpperCamelCase__ :List[Any] = False UpperCamelCase__ :Optional[Any] = True UpperCamelCase__ :List[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase__ :int = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase__ :str = outputs.attentions UpperCamelCase__ :Any = sum(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase__ :Optional[Any] = True UpperCamelCase__ :Tuple = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase__ :Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase__ :int = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # verify the first attentions (first block, first layer) UpperCamelCase__ :str = (self.model_tester.image_size // 4) ** 2 UpperCamelCase__ :str = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) UpperCamelCase__ :Union[str, Any] = (self.model_tester.image_size // 32) ** 2 UpperCamelCase__ :List[str] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) UpperCamelCase__ :Union[str, Any] = len(UpperCamelCase_ ) # Check attention is always last and order is fine UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :Tuple = True UpperCamelCase__ :str = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase__ :Any = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase_ ) ) UpperCamelCase__ :Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # verify the first attentions (first block, first layer) UpperCamelCase__ :Any = (self.model_tester.image_size // 4) ** 2 UpperCamelCase__ :List[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowerCAmelCase__ ( self ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase__ :Optional[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase__ :Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase__ :str = outputs.hidden_states UpperCamelCase__ :Optional[Any] = self.model_tester.num_encoder_blocks self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCamelCase__ , UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Union[str, Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ :str = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase__ , UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase_ ): continue UpperCamelCase__ :Tuple = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() UpperCamelCase__ :int = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) UpperCamelCase__ :Dict = model(**UpperCamelCase_ ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @slow def lowerCAmelCase__ ( self ): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :List[str] = SegformerModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def a ( ) -> str: '''simple docstring''' UpperCamelCase__ :Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_ ) UpperCamelCase__ :Dict = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( UpperCamelCase_ ) UpperCamelCase__ :Dict = prepare_img() UpperCamelCase__ :Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ) UpperCamelCase__ :Any = encoded_inputs.pixel_values.to(UpperCamelCase_ ) with torch.no_grad(): UpperCamelCase__ :Optional[Any] = model(UpperCamelCase_ ) UpperCamelCase__ :Tuple = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) UpperCamelCase__ :int = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_ ) UpperCamelCase__ :List[str] = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = prepare_img() UpperCamelCase__ :Any = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ) UpperCamelCase__ :Tuple = encoded_inputs.pixel_values.to(UpperCamelCase_ ) with torch.no_grad(): UpperCamelCase__ :Tuple = model(UpperCamelCase_ ) UpperCamelCase__ :int = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-1 ) ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_ ) UpperCamelCase__ :str = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( UpperCamelCase_ ) UpperCamelCase__ :List[Any] = prepare_img() UpperCamelCase__ :List[Any] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ) UpperCamelCase__ :str = encoded_inputs.pixel_values.to(UpperCamelCase_ ) with torch.no_grad(): UpperCamelCase__ :str = model(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = outputs.logits.detach().cpu() UpperCamelCase__ :Dict = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_ , target_sizes=[(500, 300)] ) UpperCamelCase__ :Any = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , UpperCamelCase_ ) UpperCamelCase__ :Any = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , UpperCamelCase_ )
97
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Dict[Optional[str], Type[Formatter]] = {} __UpperCamelCase : Dict[Optional[str], str] = {} __UpperCamelCase : Dict[Optional[str], Exception] = {} def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , ) -> Optional[int]: a = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) a = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) a = format_type def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None ) -> List[str]: a = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): a = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: __UpperCamelCase : str = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: __UpperCamelCase : List[str] = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: __UpperCamelCase : List[str] = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def __A ( __lowerCamelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __A ( __lowerCamelCase , **__lowerCamelCase ) -> Formatter: a = get_format_type_from_alias(__lowerCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__lowerCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
228
0
'''simple docstring''' import math import sys import cva import numpy as np def a_ ( __snake_case : np.ndarray , __snake_case : float ) -> np.ndarray: """simple docstring""" # For applying gaussian function for each element in matrix. lowerCamelCase_ =math.sqrt(__snake_case ) lowerCamelCase_ =1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def a_ ( __snake_case : np.ndarray , __snake_case : int , __snake_case : int , __snake_case : int ) -> np.ndarray: """simple docstring""" lowerCamelCase_ =kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def a_ ( __snake_case : int , __snake_case : float ) -> np.ndarray: """simple docstring""" # Creates a gaussian kernel of given dimension. lowerCamelCase_ =np.zeros((kernel_size, kernel_size) ) for i in range(0 , __snake_case ): for j in range(0 , __snake_case ): lowerCamelCase_ =math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__snake_case , __snake_case ) def a_ ( __snake_case : np.ndarray , __snake_case : float , __snake_case : float , __snake_case : int , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ =np.zeros(img.shape ) lowerCamelCase_ =get_gauss_kernel(__snake_case , __snake_case ) lowerCamelCase_, lowerCamelCase_ =img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCamelCase_ =get_slice(__snake_case , __snake_case , __snake_case , __snake_case ) lowerCamelCase_ =img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCamelCase_ =vec_gaussian(__snake_case , __snake_case ) lowerCamelCase_ =np.multiply(__snake_case , __snake_case ) lowerCamelCase_ =np.multiply(__snake_case , __snake_case ) lowerCamelCase_ =np.sum(__snake_case ) / np.sum(__snake_case ) lowerCamelCase_ =val return imga def a_ ( __snake_case : list ) -> tuple: """simple docstring""" lowerCamelCase_ =args[1] if args[1:] else '''../image_data/lena.jpg''' lowerCamelCase_ =float(args[2] ) if args[2:] else 1.0 lowerCamelCase_ =float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCamelCase_ =int(args[4] ) lowerCamelCase_ =kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCamelCase_ =5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a_ , a_ , a_ , a_ : Union[str, Any] = parse_args(sys.argv) a_ : Dict = cva.imread(filename, 0) cva.imshow("""input image""", img) a_ : Tuple = img / 2_55 a_ : Optional[Any] = out.astype("""float32""") a_ : List[str] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a_ : Union[str, Any] = out * 2_55 a_ : Union[str, Any] = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
6
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a_ ( __snake_case : Tuple ) -> str: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __UpperCamelCase ( lowerCamelCase__ ): @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', ) download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model lowerCamelCase_ =cache lowerCamelCase_ =force lowerCamelCase_ =trust_remote_code def lowercase__ ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
6
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Dict = ['pixel_values'] def __init__( self : Union[str, Any] ,_UpperCAmelCase : bool = True ,_UpperCAmelCase : Optional[Dict[str, int]] = None ,_UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC ,_UpperCAmelCase : bool = True ,_UpperCAmelCase : bool = True ,_UpperCAmelCase : Union[int, float] = 1 / 255 ,_UpperCAmelCase : Dict[str, int] = None ,_UpperCAmelCase : bool = True ,_UpperCAmelCase : Optional[Union[float, List[float]]] = None ,_UpperCAmelCase : Optional[Union[float, List[float]]] = None ,**_UpperCAmelCase : int ,): super().__init__(**_UpperCAmelCase ) _a : Union[str, Any] = size if size is not None else {'height': 224, 'width': 224} _a : Optional[int] = get_size_dict(_UpperCAmelCase ) _a : int = crop_size if crop_size is not None else {'height': 224, 'width': 224} _a : int = get_size_dict(_UpperCAmelCase ,default_to_square=_UpperCAmelCase ,param_name='crop_size' ) _a : Any = do_resize _a : str = do_rescale _a : Optional[Any] = do_normalize _a : Optional[Any] = do_center_crop _a : Any = crop_size _a : Optional[Any] = size _a : Optional[int] = resample _a : str = rescale_factor _a : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _a : int = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowercase ( self : List[str] ,_UpperCAmelCase : np.ndarray ,_UpperCAmelCase : Dict[str, int] ,_UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR ,_UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None ,**_UpperCAmelCase : Optional[Any] ,): _a : Dict = get_size_dict(_UpperCAmelCase ) if "shortest_edge" in size: _a : Union[str, Any] = get_resize_output_image_size(_UpperCAmelCase ,size=size['shortest_edge'] ,default_to_square=_UpperCAmelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _a : str = (size['height'], size['width']) else: raise ValueError(F"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_UpperCAmelCase ,size=_UpperCAmelCase ,resample=_UpperCAmelCase ,data_format=_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : List[str] ,_UpperCAmelCase : np.ndarray ,_UpperCAmelCase : Dict[str, int] ,_UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None ,**_UpperCAmelCase : Any ,): _a : Union[str, Any] = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_UpperCAmelCase ,size=(size['height'], size['width']) ,data_format=_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : np.ndarray ,_UpperCAmelCase : float ,_UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None ,**_UpperCAmelCase : str ): return rescale(_UpperCAmelCase ,scale=_UpperCAmelCase ,data_format=_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : List[Any] ,_UpperCAmelCase : np.ndarray ,_UpperCAmelCase : Union[float, List[float]] ,_UpperCAmelCase : Union[float, List[float]] ,_UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None ,**_UpperCAmelCase : List[Any] ,): return normalize(_UpperCAmelCase ,mean=_UpperCAmelCase ,std=_UpperCAmelCase ,data_format=_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : ImageInput ,_UpperCAmelCase : Optional[bool] = None ,_UpperCAmelCase : Dict[str, int] = None ,_UpperCAmelCase : PILImageResampling = None ,_UpperCAmelCase : bool = None ,_UpperCAmelCase : int = None ,_UpperCAmelCase : Optional[bool] = None ,_UpperCAmelCase : Optional[float] = None ,_UpperCAmelCase : Optional[bool] = None ,_UpperCAmelCase : Optional[Union[float, List[float]]] = None ,_UpperCAmelCase : Optional[Union[float, List[float]]] = None ,_UpperCAmelCase : Optional[Union[str, TensorType]] = None ,_UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_UpperCAmelCase : Any ,): _a : str = do_resize if do_resize is not None else self.do_resize _a : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _a : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize _a : int = do_center_crop if do_center_crop is not None else self.do_center_crop _a : Dict = crop_size if crop_size is not None else self.crop_size _a : Union[str, Any] = get_size_dict(_UpperCAmelCase ,param_name='crop_size' ,default_to_square=_UpperCAmelCase ) _a : str = resample if resample is not None else self.resample _a : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : Optional[Any] = image_mean if image_mean is not None else self.image_mean _a : Optional[Any] = image_std if image_std is not None else self.image_std _a : Union[str, Any] = size if size is not None else self.size _a : Optional[int] = get_size_dict(_UpperCAmelCase ) if not is_batched(_UpperCAmelCase ): _a : Tuple = [images] if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _a : int = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: _a : Dict = [self.resize(image=_UpperCAmelCase ,size=_UpperCAmelCase ,resample=_UpperCAmelCase ) for image in images] if do_center_crop: _a : Tuple = [self.center_crop(image=_UpperCAmelCase ,size=_UpperCAmelCase ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_UpperCAmelCase ,scale=_UpperCAmelCase ) for image in images] if do_normalize: _a : str = [self.normalize(image=_UpperCAmelCase ,mean=_UpperCAmelCase ,std=_UpperCAmelCase ) for image in images] _a : Optional[Any] = [to_channel_dimension_format(_UpperCAmelCase ,_UpperCAmelCase ) for image in images] _a : Optional[Any] = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase ,tensor_type=_UpperCAmelCase )
89
def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = [] snake_case_ = 1 while len(_A ) < 1E6: constant.append(str(_A ) ) i += 1 snake_case_ = "".join(_A ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
187
0
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : torch.FloatTensor SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None def __a ( __lowerCamelCase, __lowerCamelCase=0.999, __lowerCamelCase="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase_ : Optional[int] = [] for i in range(__lowerCamelCase ): UpperCAmelCase_ : Dict = i / num_diffusion_timesteps UpperCAmelCase_ : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCamelCase ) / alpha_bar_fn(__lowerCamelCase ), __lowerCamelCase ) ) return torch.tensor(__lowerCamelCase, dtype=torch.floataa ) class A_ (lowercase__ ,lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowercase_ = 1000 , lowercase_ = "fixed_small_log" , lowercase_ = True , lowercase_ = 1.0 , lowercase_ = "epsilon" , lowercase_ = "squaredcos_cap_v2" , ): """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) UpperCAmelCase_ : Optional[int] = betas_for_alpha_bar(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = 1.0 - self.betas UpperCAmelCase_ : Tuple = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase_ : Union[str, Any] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase_ : List[str] = 1.0 # setable values UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : str = torch.from_numpy(np.arange(0 , lowercase_ )[::-1].copy() ) UpperCAmelCase_ : str = variance_type def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" return sample def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = num_inference_steps UpperCAmelCase_ : Optional[Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase_ : Dict = (np.arange(0 , lowercase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase_ : Union[str, Any] = torch.from_numpy(lowercase_ ).to(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ): """simple docstring""" if prev_timestep is None: UpperCAmelCase_ : str = t - 1 UpperCAmelCase_ : List[Any] = self.alphas_cumprod[t] UpperCAmelCase_ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase_ : Tuple = 1 - alpha_prod_t UpperCAmelCase_ : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase_ : List[Any] = self.betas[t] else: UpperCAmelCase_ : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase_ : Optional[int] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase_ : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase_ : str = torch.log(torch.clamp(lowercase_ , min=1E-2_0 ) ) UpperCAmelCase_ : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase_ : Tuple = variance.log() UpperCAmelCase_ : Optional[Any] = beta.log() UpperCAmelCase_ : Optional[int] = (predicted_variance + 1) / 2 UpperCAmelCase_ : List[str] = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_=None , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : Dict = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase_ , UpperCAmelCase_ : Dict = torch.split(lowercase_ , sample.shape[1] , dim=1 ) else: UpperCAmelCase_ : Any = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase_ : Union[str, Any] = t - 1 UpperCAmelCase_ : List[str] = self.alphas_cumprod[t] UpperCAmelCase_ : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase_ : str = 1 - alpha_prod_t UpperCAmelCase_ : Tuple = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase_ : Tuple = self.betas[t] UpperCAmelCase_ : Union[str, Any] = self.alphas[t] else: UpperCAmelCase_ : Any = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase_ : List[str] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase_ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase_ : List[Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase_ : int = torch.clamp( lowercase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase_ : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase_ : Union[str, Any] = 0 if t > 0: UpperCAmelCase_ : Dict = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowercase_ , device=model_output.device ) UpperCAmelCase_ : Any = self._get_variance( lowercase_ , predicted_variance=lowercase_ , prev_timestep=lowercase_ , ) if self.variance_type == "fixed_small_log": UpperCAmelCase_ : Any = variance elif self.variance_type == "learned_range": UpperCAmelCase_ : Dict = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) UpperCAmelCase_ : List[Any] = variance * variance_noise UpperCAmelCase_ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowercase_ , pred_original_sample=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCAmelCase_ : Union[str, Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase_ : Union[str, Any] = timesteps.to(original_samples.device ) UpperCAmelCase_ : List[str] = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase_ : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase_ : Dict = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase_ : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase_ : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase_ : Optional[int] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase_ : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
23
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) return (preds == labels).mean() def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0] UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
23
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A , A ) -> list[str]: """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(A ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
2
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = """mvp""" lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""] lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = classifier_dropout lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_prompt lowercase__ = prompt_length lowercase__ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ): lowercase__ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
2
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) A_ : str = logging.get_logger(__name__) A_ : Tuple = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) A_ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCamelCase_ ( _lowerCamelCase ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase__ : Optional[int] = model_type_to_module_name(__lowerCAmelCase ) lowerCamelCase__ : int = importlib.import_module(f'''.{module_name}''' , 'transformers.models' ) try: return getattr(__lowerCAmelCase , __lowerCAmelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__lowerCAmelCase , '__name__' , __lowerCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase__ : List[Any] = importlib.import_module('transformers' ) if hasattr(__lowerCAmelCase , __lowerCAmelCase ): return getattr(__lowerCAmelCase , __lowerCAmelCase ) return None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , **_lowerCamelCase , ): lowerCamelCase__ : Union[str, Any] = get_file_from_repo( __lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(__lowerCAmelCase , encoding='utf-8' ) as reader: return json.load(__lowerCAmelCase ) class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(snake_case__ ) def a__ (cls, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = kwargs.pop('config', snake_case__ ) lowerCamelCase__ : List[Any] = kwargs.pop('trust_remote_code', snake_case__ ) lowerCamelCase__ : int = True lowerCamelCase__ : str = ImageProcessingMixin.get_image_processor_dict(snake_case__, **snake_case__ ) lowerCamelCase__ : int = config_dict.get('image_processor_type', snake_case__ ) lowerCamelCase__ : List[str] = None if "AutoImageProcessor" in config_dict.get('auto_map', {} ): lowerCamelCase__ : Optional[int] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowerCamelCase__ : str = config_dict.pop('feature_extractor_type', snake_case__ ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) lowerCamelCase__ : List[str] = feature_extractor_class.replace('FeatureExtractor', 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map', {} ): lowerCamelCase__ : Union[str, Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] lowerCamelCase__ : Union[str, Any] = feature_extractor_auto_map.replace('FeatureExtractor', 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(snake_case__, snake_case__ ): lowerCamelCase__ : int = AutoConfig.from_pretrained(snake_case__, **snake_case__ ) # It could be in `config.image_processor_type`` lowerCamelCase__ : Optional[Any] = getattr(snake_case__, 'image_processor_type', snake_case__ ) if hasattr(snake_case__, 'auto_map' ) and "AutoImageProcessor" in config.auto_map: lowerCamelCase__ : Union[str, Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: lowerCamelCase__ : List[Any] = image_processor_class_from_name(snake_case__ ) lowerCamelCase__ : Optional[int] = image_processor_auto_map is not None lowerCamelCase__ : Union[str, Any] = image_processor_class is not None or type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING lowerCamelCase__ : Any = resolve_trust_remote_code( snake_case__, snake_case__, snake_case__, snake_case__ ) if has_remote_code and trust_remote_code: lowerCamelCase__ : Optional[Any] = get_class_from_dynamic_module( snake_case__, snake_case__, **snake_case__ ) lowerCamelCase__ : int = kwargs.pop('code_revision', snake_case__ ) if os.path.isdir(snake_case__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(snake_case__, **snake_case__ ) elif image_processor_class is not None: return image_processor_class.from_dict(snake_case__, **snake_case__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING: lowerCamelCase__ : List[str] = IMAGE_PROCESSOR_MAPPING[type(snake_case__ )] return image_processor_class.from_dict(snake_case__, **snake_case__ ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(snake_case__, snake_case__ )
362
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
0
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''autoformer''' UpperCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Any , A : Optional[int] = None , A : Optional[int] = None , A : str = "student_t" , A : str = "nll" , A : int = 1 , A : List[int] = [1, 2, 3, 4, 5, 6, 7] , A : bool = True , A : int = 0 , A : int = 0 , A : int = 0 , A : int = 0 , A : Optional[List[int]] = None , A : Optional[List[int]] = None , A : int = 64 , A : int = 2 , A : int = 2 , A : int = 2 , A : int = 2 , A : int = 32 , A : int = 32 , A : str = "gelu" , A : float = 0.1 , A : float = 0.1 , A : float = 0.1 , A : float = 0.1 , A : float = 0.1 , A : int = 1_00 , A : float = 0.0_2 , A : bool = True , A : List[str]=True , A : int = 10 , A : int = 25 , A : int = 3 , **A : Tuple , ) -> str: """simple docstring""" _UpperCAmelCase = prediction_length _UpperCAmelCase = context_length if context_length is not None else prediction_length _UpperCAmelCase = distribution_output _UpperCAmelCase = loss _UpperCAmelCase = input_size _UpperCAmelCase = num_time_features _UpperCAmelCase = lags_sequence _UpperCAmelCase = scaling _UpperCAmelCase = num_dynamic_real_features _UpperCAmelCase = num_static_real_features _UpperCAmelCase = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(A) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') _UpperCAmelCase = cardinality else: _UpperCAmelCase = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(A) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') _UpperCAmelCase = embedding_dimension else: _UpperCAmelCase = [min(50 , (cat + 1) // 2) for cat in self.cardinality] _UpperCAmelCase = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase = input_size * len(self.lags_sequence) + self._number_of_features _UpperCAmelCase = d_model _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = decoder_layers _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = use_cache # Autoformer _UpperCAmelCase = label_length _UpperCAmelCase = moving_average _UpperCAmelCase = autocorrelation_factor super().__init__(is_encoder_decoder=A , **A) @property def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
339
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration UpperCAmelCase__ = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def A ( _UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' _UpperCAmelCase = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def A ( _UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = list(s_dict.keys() ) for key in keys: _UpperCAmelCase = key for k, v in WHISPER_MAPPING.items(): if k in key: _UpperCAmelCase = new_key.replace(_UpperCAmelCase , _UpperCAmelCase ) print(F"{key} -> {new_key}" ) _UpperCAmelCase = s_dict.pop(_UpperCAmelCase ) return s_dict def A ( _UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = emb.weight.shape _UpperCAmelCase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) _UpperCAmelCase = emb.weight.data return lin_layer def A ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> bytes: '''simple docstring''' os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _UpperCAmelCase = os.path.basename(_UpperCAmelCase ) _UpperCAmelCase = url.split('/' )[-2] _UpperCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if os.path.exists(_UpperCAmelCase ) and not os.path.isfile(_UpperCAmelCase ): raise RuntimeError(F"{download_target} exists and is not a regular file" ) if os.path.isfile(_UpperCAmelCase ): _UpperCAmelCase = open(_UpperCAmelCase , 'rb' ).read() if hashlib.shaaaa(_UpperCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(_UpperCAmelCase ) as source, open(_UpperCAmelCase , 'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) , ncols=80 , unit='iB' , unit_scale=_UpperCAmelCase , unit_divisor=1_024 ) as loop: while True: _UpperCAmelCase = source.read(8_192 ) if not buffer: break output.write(_UpperCAmelCase ) loop.update(len(_UpperCAmelCase ) ) _UpperCAmelCase = open(_UpperCAmelCase , 'rb' ).read() if hashlib.shaaaa(_UpperCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' if ".pt" not in checkpoint_path: _UpperCAmelCase = _download(_MODELS[checkpoint_path] ) else: _UpperCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) _UpperCAmelCase = original_checkpoint['dims'] _UpperCAmelCase = original_checkpoint['model_state_dict'] _UpperCAmelCase = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(_UpperCAmelCase ) rename_keys(_UpperCAmelCase ) _UpperCAmelCase = True _UpperCAmelCase = state_dict['decoder.layers.0.fc1.weight'].shape[0] _UpperCAmelCase = WhisperConfig( vocab_size=dimensions['n_vocab'] , encoder_ffn_dim=_UpperCAmelCase , decoder_ffn_dim=_UpperCAmelCase , num_mel_bins=dimensions['n_mels'] , d_model=dimensions['n_audio_state'] , max_target_positions=dimensions['n_text_ctx'] , encoder_layers=dimensions['n_audio_layer'] , encoder_attention_heads=dimensions['n_audio_head'] , decoder_layers=dimensions['n_text_layer'] , decoder_attention_heads=dimensions['n_text_state'] , max_source_positions=dimensions['n_audio_ctx'] , ) _UpperCAmelCase = WhisperForConditionalGeneration(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0 and not set(_UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F" but all the following weights are missing {missing}" ) if tie_embeds: _UpperCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _UpperCAmelCase = proj_out_weights model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
339
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class lowercase_ ( lowercase__ ): _lowerCamelCase = """ctrl""" _lowerCamelCase = ["""past_key_values"""] _lowerCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=246_534 , lowercase_=256 , lowercase_=1_280 , lowercase_=8_192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1e-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): _snake_case : Tuple = vocab_size _snake_case : Union[str, Any] = n_positions _snake_case : List[str] = n_embd _snake_case : Dict = n_layer _snake_case : Optional[int] = n_head _snake_case : List[str] = dff _snake_case : Tuple = resid_pdrop _snake_case : Optional[Any] = embd_pdrop _snake_case : str = layer_norm_epsilon _snake_case : List[str] = initializer_range _snake_case : List[str] = use_cache super().__init__(**lowercase_ )
351
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Optional[int] = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Any = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
284
0
import math import sys import cva import numpy as np def __lowerCAmelCase ( a__ , a__ ) -> np.ndarray: # For applying gaussian function for each element in matrix. __a = math.sqrt(a__ ) __a = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> np.ndarray: __a = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __lowerCAmelCase ( a__ , a__ ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __a = np.zeros((kernel_size, kernel_size) ) for i in range(0 , a__ ): for j in range(0 , a__ ): __a = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ , ) -> np.ndarray: __a = np.zeros(img.shape ) __a = get_gauss_kernel(a__ , a__ ) __a , __a = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __a = get_slice(a__ , a__ , a__ , a__ ) __a = img_s - img_s[kernel_size // 2, kernel_size // 2] __a = vec_gaussian(a__ , a__ ) __a = np.multiply(a__ , a__ ) __a = np.multiply(a__ , a__ ) __a = np.sum(a__ ) / np.sum(a__ ) __a = val return imga def __lowerCAmelCase ( a__ ) -> tuple: __a = args[1] if args[1:] else '''../image_data/lena.jpg''' __a = float(args[2] ) if args[2:] else 1.0 __a = float(args[3] ) if args[3:] else 1.0 if args[4:]: __a = int(args[4] ) __a = kernel_size + abs(kernel_size % 2 - 1 ) else: __a = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": A , A , A , A : Any = parse_args(sys.argv) A : Any = cva.imread(filename, 0) cva.imshow('input image', img) A : str = img / 2_5_5 A : Dict = out.astype('float32') A : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) A : Union[str, Any] = out * 2_5_5 A : Any = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
6
def __lowerCAmelCase ( a__ , a__ , a__ ) -> list: __a = len(a__ ) __a = [[0] * n for i in range(a__ )] for i in range(a__ ): __a = y_points[i] for i in range(2 , a__ ): for j in range(a__ , a__ ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCamelCase_ : Tuple = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] lowerCamelCase_ : Union[str, Any] = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] lowerCamelCase_ : int = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) lowerCamelCase_ : List[str] = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) lowerCamelCase_ : List[Any] = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): for tf_name, hf_name in patterns: __a = k.replace(__lowerCamelCase , __lowerCamelCase ) return k def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = BigBirdPegasusConfig(**__lowerCamelCase ) __a = BigBirdPegasusForConditionalGeneration(__lowerCamelCase ) __a = torch_model.state_dict() __a = {} # separating decoder weights __a = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} __a = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): __a = [k.endswith(__lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCamelCase ): continue __a = DECODER_PATTERNS __a = rename_state_dict_key(__lowerCamelCase , __lowerCamelCase ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __a = v.T __a = torch.from_numpy(__lowerCamelCase ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): __a = [k.endswith(__lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCamelCase ): continue __a = REMAINING_PATTERNS __a = rename_state_dict_key(__lowerCamelCase , __lowerCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __a = v.T __a = torch.from_numpy(__lowerCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __a = mapping['model.embed_positions.weight'] __a = mapping.pop('model.embed_positions.weight' ) __a , __a = torch_model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) __a = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def lowerCAmelCase( __lowerCamelCase ): __a = tf.train.list_variables(__lowerCamelCase ) __a = {} __a = ['global_step'] for name, shape in tqdm(__lowerCamelCase , desc='converting tf checkpoint to dict' ): __a = any(pat in name for pat in ignore_name ) if skip_key: continue __a = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) __a = array return tf_weights def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = get_tf_weights_as_numpy(__lowerCamelCase ) __a = convert_bigbird_pegasus(__lowerCamelCase , __lowerCamelCase ) torch_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCamelCase_ : Dict = parser.parse_args() lowerCamelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
197
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
1
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) UpperCamelCase__: str = None UpperCamelCase__: int = { "7B": 11008, "13B": 13824, "30B": 17920, "65B": 22016, "70B": 28672, } UpperCamelCase__: List[Any] = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : List[Any]=256 ) -> Optional[Any]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: with open(_lowerCAmelCase , '''r''' ) as f: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ) -> Optional[Any]: with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=True ) -> List[Any]: os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp''' ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[str] = read_json(os.path.join(_lowerCAmelCase , '''params.json''' ) ) UpperCAmelCase : str = NUM_SHARDS[model_size] UpperCAmelCase : Any = params['''n_layers'''] UpperCAmelCase : str = params['''n_heads'''] UpperCAmelCase : Any = n_heads // num_shards UpperCAmelCase : List[str] = params['''dim'''] UpperCAmelCase : Optional[Any] = dim // n_heads UpperCAmelCase : str = 1_0_0_0_0.0 UpperCAmelCase : Optional[int] = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase : Tuple = params['''n_kv_heads'''] # for GQA / MQA UpperCAmelCase : Optional[int] = n_heads_per_shard // num_key_value_heads UpperCAmelCase : Optional[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase : List[str] = n_heads UpperCAmelCase : Optional[int] = n_heads_per_shard UpperCAmelCase : List[str] = dim # permute for sliced rotary def permute(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=n_heads , _lowerCAmelCase : int=dim , _lowerCAmelCase : Dict=dim ): return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase : int = torch.load(os.path.join(_lowerCAmelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded UpperCAmelCase : Optional[Any] = [ torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' ) for i in range(_lowerCAmelCase ) ] UpperCAmelCase : Any = 0 UpperCAmelCase : str = {'''weight_map''': {}} for layer_i in range(_lowerCAmelCase ): UpperCAmelCase : Optional[Any] = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : Optional[int] = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase : List[str] = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } UpperCAmelCase : Union[str, Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) UpperCAmelCase : str = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Any = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : str = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Tuple = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : Any = inv_freq for k, v in state_dict.items(): UpperCAmelCase : List[Any] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[int] = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : str = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: UpperCAmelCase : Any = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(_lowerCAmelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_lowerCAmelCase )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase : Optional[int] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) # Write configs UpperCAmelCase : Union[str, Any] = {'''total_size''': param_count * 2} write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , '''pytorch_model.bin.index.json''' ) ) UpperCAmelCase : int = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 UpperCAmelCase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 256 UpperCAmelCase : Any = LlamaConfig( hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_lowerCAmelCase , ) config.save_pretrained(_lowerCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> List[str]: # Initialize the tokenizer based on the `spm` model UpperCAmelCase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) UpperCAmelCase : List[Any] = tokenizer_class(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) def snake_case_ ( ) -> List[Any]: UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=_lowerCAmelCase , help='''Whether or not to save using `safetensors`.''' ) UpperCAmelCase : List[Any] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , _lowerCAmelCase ) if __name__ == "__main__": main()
23
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: Optional[int] = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: UpperCAmelCase : Tuple = 1024 UpperCAmelCase : List[Any] = 4096 UpperCAmelCase : str = 24 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = [5, 11, 17, 23] UpperCAmelCase : List[Any] = [256, 512, 1024, 1024] UpperCAmelCase : Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase : Optional[Any] = 768 UpperCAmelCase : Tuple = [1, 1, 1, 0.5] UpperCAmelCase : int = [256, 512, 768, 768] UpperCAmelCase : Any = 150 UpperCAmelCase : Tuple = 16 UpperCAmelCase : Any = (1, 384, 384) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = '''project''' if "ade" in checkpoint_url: UpperCAmelCase : Any = True UpperCAmelCase : str = 768 UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5] UpperCAmelCase : List[Any] = 150 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = '''huggingface/label-files''' UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase : str = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : int = in_proj_bias[: config.hidden_size] UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def snake_case_ ( ) -> List[str]: UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase ) UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384 UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase ) UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' ) # forward pass UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: UpperCAmelCase : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) UpperCamelCase__: Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
23
1
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : Union[str, Any] = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } _UpperCAmelCase : List[Any] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py _UpperCAmelCase : Optional[Any] = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCAmelCase_ , output_all_encodings=lowerCAmelCase_ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCAmelCase_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later _UpperCAmelCase : Dict = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab _UpperCAmelCase : Optional[int] = os.path.join(get_home_dir() , """models""" ) _UpperCAmelCase : Optional[Any] = _load_vocab(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , cls=lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = nlp.model.BERTModel( lowerCAmelCase_ , len(lowerCAmelCase_ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCAmelCase_ , use_token_type_embed=lowerCAmelCase_ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCAmelCase_ , use_decoder=lowerCAmelCase_ , ) original_bort.load_parameters(lowerCAmelCase_ , cast_dtype=lowerCAmelCase_ , ignore_extra=lowerCAmelCase_ ) _UpperCAmelCase : str = original_bort._collect_params_with_prefix() # Build our config 🤗 _UpperCAmelCase : Tuple = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCAmelCase_ ), } _UpperCAmelCase : List[str] = BertConfig.from_dict(lowerCAmelCase_ ) _UpperCAmelCase : int = BertForMaskedLM(lowerCAmelCase_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCAmelCase_ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = hf_param.shape _UpperCAmelCase : str = to_torch(params[gluon_param] ) _UpperCAmelCase : Optional[int] = gluon_param.shape assert ( shape_hf == shape_gluon ), f"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param _UpperCAmelCase : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) _UpperCAmelCase : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) _UpperCAmelCase : Optional[int] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) _UpperCAmelCase : Dict = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) _UpperCAmelCase : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): _UpperCAmelCase : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention _UpperCAmelCase : BertSelfAttention = layer.attention.self _UpperCAmelCase : str = check_and_map_params( self_attn.key.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) _UpperCAmelCase : str = check_and_map_params( self_attn.key.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) _UpperCAmelCase : Tuple = check_and_map_params( self_attn.query.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) _UpperCAmelCase : str = check_and_map_params( self_attn.query.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) _UpperCAmelCase : Optional[Any] = check_and_map_params( self_attn.value.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) _UpperCAmelCase : int = check_and_map_params( self_attn.value.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output _UpperCAmelCase : BertSelfOutput = layer.attention.output _UpperCAmelCase : Any = check_and_map_params( self_output.dense.bias , f"encoder.transformer_cells.{i}.proj.bias" ) _UpperCAmelCase : List[Any] = check_and_map_params( self_output.dense.weight , f"encoder.transformer_cells.{i}.proj.weight" ) _UpperCAmelCase : List[Any] = check_and_map_params( self_output.LayerNorm.bias , f"encoder.transformer_cells.{i}.layer_norm.beta" ) _UpperCAmelCase : Tuple = check_and_map_params( self_output.LayerNorm.weight , f"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate _UpperCAmelCase : BertIntermediate = layer.intermediate _UpperCAmelCase : Dict = check_and_map_params( intermediate.dense.bias , f"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) _UpperCAmelCase : Optional[int] = check_and_map_params( intermediate.dense.weight , f"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output _UpperCAmelCase : BertOutput = layer.output _UpperCAmelCase : str = check_and_map_params( bert_output.dense.bias , f"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) _UpperCAmelCase : Union[str, Any] = check_and_map_params( bert_output.dense.weight , f"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) _UpperCAmelCase : Optional[Any] = check_and_map_params( bert_output.LayerNorm.bias , f"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) _UpperCAmelCase : Dict = check_and_map_params( bert_output.LayerNorm.weight , f"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models _UpperCAmelCase : int = RobertaTokenizer.from_pretrained("""roberta-base""" ) _UpperCAmelCase : Any = tokenizer.encode_plus(lowerCAmelCase_ )["""input_ids"""] # Get gluon output _UpperCAmelCase : List[str] = mx.nd.array([input_ids] ) _UpperCAmelCase : Any = original_bort(inputs=lowerCAmelCase_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : Any = BertModel.from_pretrained(lowerCAmelCase_ ) hf_bort_model.eval() _UpperCAmelCase : Dict = tokenizer.encode_plus(lowerCAmelCase_ , return_tensors="""pt""" ) _UpperCAmelCase : Any = hf_bort_model(**lowerCAmelCase_ )[0] _UpperCAmelCase : Optional[int] = output_gluon[0].asnumpy() _UpperCAmelCase : Optional[int] = output_hf[0].detach().numpy() _UpperCAmelCase : Dict = np.max(np.abs(hf_layer - gluon_layer ) ).item() _UpperCAmelCase : Dict = np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase_ : Tuple = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
170
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __lowerCAmelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = None , ): super().__init__() _UpperCAmelCase : str = initial_learning_rate _UpperCAmelCase : str = warmup_steps _UpperCAmelCase : str = power _UpperCAmelCase : Any = decay_schedule_fn _UpperCAmelCase : List[Any] = name def __call__(self , lowerCAmelCase__ ): with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. _UpperCAmelCase : List[Any] = tf.cast(lowerCAmelCase__ , tf.floataa ) _UpperCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) _UpperCAmelCase : Union[str, Any] = global_step_float / warmup_steps_float _UpperCAmelCase : List[Any] = self.initial_learning_rate * tf.math.pow(lowerCAmelCase__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowerCAmelCase__ , ) def snake_case_ (self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 0.9 , lowerCAmelCase_ = 0.999 , lowerCAmelCase_ = 1e-8 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 1.0 , lowerCAmelCase_ = None , ): _UpperCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowerCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowerCAmelCase_ , ) if num_warmup_steps: _UpperCAmelCase : Optional[int] = WarmUp( initial_learning_rate=lowerCAmelCase_ , decay_schedule_fn=lowerCAmelCase_ , warmup_steps=lowerCAmelCase_ , ) if weight_decay_rate > 0.0: _UpperCAmelCase : Any = AdamWeightDecay( learning_rate=lowerCAmelCase_ , weight_decay_rate=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , epsilon=lowerCAmelCase_ , clipnorm=lowerCAmelCase_ , global_clipnorm=lowerCAmelCase_ , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=lowerCAmelCase_ , ) else: _UpperCAmelCase : str = tf.keras.optimizers.Adam( learning_rate=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , epsilon=lowerCAmelCase_ , clipnorm=lowerCAmelCase_ , global_clipnorm=lowerCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ = 0.0_0_1 , lowerCAmelCase__ = 0.9 , lowerCAmelCase__ = 0.9_9_9 , lowerCAmelCase__ = 1e-7 , lowerCAmelCase__ = False , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "AdamWeightDecay" , **lowerCAmelCase__ , ): super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = weight_decay_rate _UpperCAmelCase : Tuple = include_in_weight_decay _UpperCAmelCase : List[Any] = exclude_from_weight_decay @classmethod def snake_case_ (cls , lowerCAmelCase__ ): _UpperCAmelCase : str = {"""WarmUp""": WarmUp} return super(lowerCAmelCase__ , cls ).from_config(lowerCAmelCase__ , custom_objects=lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): super(lowerCAmelCase__ , self )._prepare_local(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ): _UpperCAmelCase , _UpperCAmelCase : Dict = list(zip(*lowerCAmelCase__ ) ) return super(lowerCAmelCase__ , self ).apply_gradients(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , name=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} _UpperCAmelCase : List[Any] = apply_state or {} _UpperCAmelCase : Optional[int] = apply_state.get((var_device, var_dtype) ) if coefficients is None: _UpperCAmelCase : Dict = self._fallback_apply_state(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): _UpperCAmelCase , _UpperCAmelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase__ , self )._resource_apply_dense(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase__ , self )._resource_apply_sparse(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : Optional[Any] = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def snake_case_ (self , lowerCAmelCase__ ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__ ) is not None: return False return True class __lowerCAmelCase ( __a ): def __init__(self ): _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[Any] = None @property def snake_case_ (self ): if self._accum_steps is None: _UpperCAmelCase : str = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def snake_case_ (self ): if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__(self , lowerCAmelCase__ ): if not self._gradients: _UpperCAmelCase : Optional[int] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase__ ) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCAmelCase__ ) != len(self._gradients ): raise ValueError(F"Expected {len(self._gradients )} gradients, but got {len(lowerCAmelCase__ )}" ) for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase__ ) self._accum_steps.assign_add(1 ) def snake_case_ (self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase__ ) )
170
1
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm A__ : str =re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex A__ : Any =10 A__ : Optional[int] =2_56 def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if len(lowerCAmelCase ) < MIN_NUM_TOKENS: return None _lowerCAmelCase = MinHash(num_perm=lowerCAmelCase ) for token in set(lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" return {t for t in NON_ALPHA.split(lowerCAmelCase ) if len(t.strip() ) > 0} class UpperCAmelCase : def __init__( self : Any , *, __snake_case : float = 0.85 , ) -> List[Any]: _lowerCAmelCase = duplication_jaccard_threshold _lowerCAmelCase = NUM_PERM _lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase = defaultdict(__snake_case ) def lowercase__ ( self : List[Any] , __snake_case : Tuple , __snake_case : MinHash ) -> None: _lowerCAmelCase = self._index.query(__snake_case ) if code_key in self._index.keys: print(f"Duplicate key {code_key}" ) return self._index.insert(__snake_case , __snake_case ) if len(__snake_case ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__snake_case ) break else: self._duplicate_clusters[close_duplicates[0]].add(__snake_case ) def lowercase__ ( self : Optional[Any] ) -> List[List[Dict]]: _lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase = [base] + list(__snake_case ) # reformat the cluster to be a list of dict _lowerCAmelCase = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__snake_case ) return duplicate_clusters def lowercase__ ( self : str , __snake_case : Any ) -> None: _lowerCAmelCase = self.get_duplicate_clusters() with open(__snake_case , """w""" ) as f: json.dump(__snake_case , __snake_case ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = element _lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(lowerCAmelCase , lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = get_tokens(lowerCAmelCase ) _lowerCAmelCase = get_tokens(lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) A__ : Tuple =None def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [] for elementa in cluster: _lowerCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _lowerCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase , lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase = 1 extremes.append(lowerCAmelCase ) return extremes def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" global _shared_dataset _lowerCAmelCase = dataset _lowerCAmelCase = [] _lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase , lowerCAmelCase , ) , total=len(lowerCAmelCase ) , ): extremes_list.append(lowerCAmelCase ) return extremes_list def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase = 0.85 ): """simple docstring""" _lowerCAmelCase = make_duplicate_clusters(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase = {} _lowerCAmelCase = find_extremes(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase = element _lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase = dataset.filter(lambda lowerCAmelCase , lowerCAmelCase : idx not in remove_indices , with_indices=lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase = element["""base_index"""] in extreme_dict if element["is_extreme"]: _lowerCAmelCase = extreme_dict[element["""base_index"""]]["""copies"""] print(f"Original dataset size: {len(lowerCAmelCase )}" ) print(f"Number of duplicate clusters: {len(lowerCAmelCase )}" ) print(f"Files in duplicate cluster: {len(lowerCAmelCase )}" ) print(f"Unique files in duplicate cluster: {len(lowerCAmelCase )}" ) print(f"Filtered dataset size: {len(lowerCAmelCase )}" ) return ds_filter, duplicate_clusters
70
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: # Initialise PyTorch model UpperCAmelCase : str = FunnelConfig.from_json_file(UpperCAmelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase : List[str] = FunnelBaseModel(UpperCAmelCase ) if base_model else FunnelModel(UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _lowerCamelCase : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
99
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCAmelCase : List[Any] = str(bin(UpperCAmelCase ) )[2:] # remove the leading "0b" UpperCAmelCase : List[str] = str(bin(UpperCAmelCase ) )[2:] UpperCAmelCase : Optional[Any] = max(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase ) , b_binary.zfill(UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
99
1
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/grid.txt''' ) as f: lowercase__ : Optional[int] = [] # noqa: E741 for _ in range(20 ): l.append([int(__lowerCamelCase ) for x in f.readline().split()] ) lowercase__ : Optional[int] = 0 # right for i in range(20 ): for j in range(17 ): lowercase__ : int = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowercase__ : Tuple = temp # down for i in range(17 ): for j in range(20 ): lowercase__ : str = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowercase__ : List[str] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowercase__ : Any = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowercase__ : int = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowercase__ : Tuple = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowercase__ : List[str] = temp return maximum if __name__ == "__main__": print(solution())
16
def a_ ( lowerCAmelCase_ : int ): if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __lowerCAmelCase = 4 __lowerCAmelCase = (1 << p) - 1 for _ in range(p - 2 ): __lowerCAmelCase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
284
0
"""simple docstring""" import copy import re class __UpperCamelCase : SCREAMING_SNAKE_CASE = "hp" SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = None @classmethod def SCREAMING_SNAKE_CASE__ (cls : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str): A = prefix A = defaults cls.build_naming_info() @staticmethod def SCREAMING_SNAKE_CASE__ (__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any]): if len(__SCREAMING_SNAKE_CASE) == 0: return "" A = None if any(char.isdigit() for char in word): raise Exception(F"""Parameters should not contain numbers: '{word}' contains a number""") if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__SCREAMING_SNAKE_CASE) + 1): A = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: A = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__SCREAMING_SNAKE_CASE : Optional[int]): A = "" while integer != 0: A = chr(ord("A") + integer % 1_0) + s integer //= 1_0 return s A = 0 while True: A = word + "#" + int_to_alphabetic(__SCREAMING_SNAKE_CASE) if sword in info["reverse_short_word"]: continue else: A = sword break A = short_word A = word return short_word @staticmethod def SCREAMING_SNAKE_CASE__ (__SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]): A = param_name.split("_") A = [TrialShortNamer.shortname_for_word(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name A = ["", "_"] for separator in separators: A = separator.join(__SCREAMING_SNAKE_CASE) if shortname not in info["reverse_short_param"]: A = shortname A = param_name return shortname return param_name @staticmethod def SCREAMING_SNAKE_CASE__ (__SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any): A = TrialShortNamer.shortname_for_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = short_name A = param_name @classmethod def SCREAMING_SNAKE_CASE__ (cls : Optional[Any]): if cls.NAMING_INFO is not None: return A = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } A = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = info @classmethod def SCREAMING_SNAKE_CASE__ (cls : Optional[int] , __SCREAMING_SNAKE_CASE : List[str]): cls.build_naming_info() assert cls.PREFIX is not None A = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"""You should provide a default value for the param name {k} with value {v}""") if v == cls.DEFAULTS[k]: # The default value is not added to the name continue A = cls.NAMING_INFO["short_param"][k] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): A = 1 if v else 0 A = "" if isinstance(__SCREAMING_SNAKE_CASE , (int, float)) else "-" A = F"""{key}{sep}{v}""" name.append(__SCREAMING_SNAKE_CASE) return "_".join(__SCREAMING_SNAKE_CASE) @classmethod def SCREAMING_SNAKE_CASE__ (cls : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple): A = repr[len(cls.PREFIX) + 1 :] if repr == "": A = [] else: A = repr.split("_") A = {} for value in values: if "-" in value: A , A = value.split("-") else: A = re.sub("[0-9.]" , "" , __SCREAMING_SNAKE_CASE) A = float(re.sub("[^0-9.]" , "" , __SCREAMING_SNAKE_CASE)) A = cls.NAMING_INFO["reverse_short_param"][p_k] A = p_v for k in cls.DEFAULTS: if k not in parameters: A = cls.DEFAULTS[k] return parameters
363
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A : int = logging.get_logger(__name__) __A : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __A : str = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models A = "lm_head" A = getattr(lowercase__ , lowercase__ ) if weight_type is not None: A = getattr(lowercase__ , lowercase__ ).shape else: A = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" A = [] A = fairseq_model.state_dict() A = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == "group" , ) A = True else: for key, mapped_key in MAPPING.items(): A = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A = True if "*" in mapped_key: A = name.split(lowercase__ )[0].split("." )[-2] A = mapped_key.replace("*" , lowercase__ ) if "weight_g" in name: A = "weight_g" elif "weight_v" in name: A = "weight_v" elif "bias" in name: A = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj A = "weight" else: A = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" A = full_name.split("conv_layers." )[-1] A = name.split("." ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=True ): """simple docstring""" if config_path is not None: A = UniSpeechConfig.from_pretrained(lowercase__ ) else: A = UniSpeechConfig() if is_finetuned: if dict_path: A = Dictionary.load_from_json(lowercase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A = target_dict.pad_index A = target_dict.bos_index A = target_dict.eos_index A = len(target_dict.symbols ) A = os.path.join(lowercase__ , "vocab.json" ) if not os.path.isdir(lowercase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase__ ) ) return os.makedirs(lowercase__ , exist_ok=lowercase__ ) A = target_dict.indices # fairseq has the <pad> and <s> switched A = 42 A = 43 with open(lowercase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowercase__ , lowercase__ ) A = WavaVecaPhonemeCTCTokenizer( lowercase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowercase__ , ) A = True if config.feat_extract_norm == "layer" else False A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowercase__ , return_attention_mask=lowercase__ , ) A = WavaVecaProcessor(feature_extractor=lowercase__ , tokenizer=lowercase__ ) processor.save_pretrained(lowercase__ ) A = UniSpeechForCTC(lowercase__ ) else: A = UniSpeechForPreTraining(lowercase__ ) if is_finetuned: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A = model[0].eval() recursively_load_weights(lowercase__ , lowercase__ , lowercase__ ) hf_unispeech.save_pretrained(lowercase__ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __A : int = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
57
0
"""simple docstring""" import numpy as np from PIL import Image def UpperCAmelCase__ ( lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> np.ndarray: '''simple docstring''' lowercase = np.array(lowerCAmelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 0 # compute the shape of the output matrix lowercase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowercase = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowercase = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowercase = 0 lowercase = 0 return updated_arr def UpperCAmelCase__ ( lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> np.ndarray: '''simple docstring''' lowercase = np.array(lowerCAmelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 0 # compute the shape of the output matrix lowercase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowercase = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowercase = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowercase = 0 lowercase = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image __lowerCAmelCase : Union[str, Any] =Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
197
"""simple docstring""" from __future__ import annotations import numpy as np def UpperCAmelCase__ ( lowerCAmelCase__ :list[float] ) -> Optional[Any]: '''simple docstring''' return np.maximum(0 , lowerCAmelCase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
197
1
"""simple docstring""" from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowercase__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase__ : Dict = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=8) -> Tuple: a = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 a = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class a__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self , A , A , A , A , A , ) -> Dict: '''simple docstring''' super().__init__() self.register_modules( text_encoder=A__ , tokenizer=A__ , unet=A__ , scheduler=A__ , movq=A__ , ) a = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase_ ( self , A , A , A , A , A , A ) -> Tuple: '''simple docstring''' if latents is None: a = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) a = latents.to(A__ ) a = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self , A , A , A , A , A=None , ) -> Dict: '''simple docstring''' a = len(A__ ) if isinstance(A__ , A__ ) else 1 # get prompt text embeddings a = self.tokenizer( A__ , padding="max_length" , truncation=A__ , max_length=77 , return_attention_mask=A__ , add_special_tokens=A__ , return_tensors="pt" , ) a = text_inputs.input_ids a = self.tokenizer(A__ , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(A__ , A__ ): a = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) a = text_input_ids.to(A__ ) a = text_inputs.attention_mask.to(A__ ) a , a = self.text_encoder( input_ids=A__ , attention_mask=A__ ) a = prompt_embeds.repeat_interleave(A__ , dim=0 ) a = text_encoder_hidden_states.repeat_interleave(A__ , dim=0 ) a = text_mask.repeat_interleave(A__ , dim=0 ) if do_classifier_free_guidance: a = 42 if negative_prompt is None: a = [""] * batch_size elif type(A__ ) is not type(A__ ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(A__ )} !=''' F''' {type(A__ )}.''' ) elif isinstance(A__ , A__ ): a = [negative_prompt] elif batch_size != len(A__ ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(A__ )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: a = negative_prompt a = self.tokenizer( A__ , padding="max_length" , max_length=77 , truncation=A__ , return_attention_mask=A__ , add_special_tokens=A__ , return_tensors="pt" , ) a = uncond_input.input_ids.to(A__ ) a = uncond_input.attention_mask.to(A__ ) a , a = self.text_encoder( input_ids=A__ , attention_mask=A__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method a = negative_prompt_embeds.shape[1] a = negative_prompt_embeds.repeat(1 , A__ ) a = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A__ ) a = uncond_text_encoder_hidden_states.shape[1] a = uncond_text_encoder_hidden_states.repeat(1 , A__ , 1 ) a = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , A__ , -1 ) a = uncond_text_mask.repeat_interleave(A__ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a = torch.cat([negative_prompt_embeds, prompt_embeds] ) a = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) a = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowerCAmelCase_ ( self , A=0 ) -> List[str]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) a = torch.device(F'''cuda:{gpu_id}''' ) a = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A__ , A__ ) def lowerCAmelCase_ ( self , A=0 ) -> Dict: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) a = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=A__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: a , a = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ ) if self.safety_checker is not None: a , a = cpu_offload_with_hook(self.safety_checker , A__ , prev_module_hook=A__ ) # We'll offload the last model manually. a = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(A__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A__ ) def __call__( self , A , A , A , A = None , A = 512 , A = 512 , A = 100 , A = 4.0 , A = 1 , A = None , A = None , A = "pil" , A = True , ) -> List[str]: '''simple docstring''' if isinstance(A__ , A__ ): a = 1 elif isinstance(A__ , A__ ): a = len(A__ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A__ )}''' ) a = self._execution_device a = batch_size * num_images_per_prompt a = guidance_scale > 1.0 a , a , a = self._encode_prompt( A__ , A__ , A__ , A__ , A__ ) if isinstance(A__ , A__ ): a = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a = torch.cat(A__ , dim=0 ) if do_classifier_free_guidance: a = image_embeds.repeat_interleave(A__ , dim=0 ) a = negative_image_embeds.repeat_interleave(A__ , dim=0 ) a = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=A__ ) self.scheduler.set_timesteps(A__ , device=A__ ) a = self.scheduler.timesteps a = self.unet.config.in_channels a , a = get_new_h_w(A__ , A__ , self.movq_scale_factor ) # create initial latent a = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , A__ , A__ , A__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} a = self.unet( sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0] if do_classifier_free_guidance: a , a = noise_pred.split(latents.shape[1] , dim=1 ) a , a = noise_pred.chunk(2 ) a , a = variance_pred.chunk(2 ) a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a , a = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a = self.scheduler.step( A__ , A__ , A__ , generator=A__ , ).prev_sample # post-processing a = self.movq.decode(A__ , force_not_quantize=A__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: a = image * 0.5 + 0.5 a = image.clamp(0 , 1 ) a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
359
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowercase__ : Optional[int] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowercase__ : int = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowercase__ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowercase__ : Tuple = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase_ ( self , A ) -> List[str]: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase_ ( self , A , A , A=0.9 , A=3 , A=0.5 ) -> Tuple: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): a = [ meteor_score.single_meteor_score( word_tokenize(A ) , word_tokenize(A ) , alpha=A , beta=A , gamma=A ) for ref, pred in zip(A , A ) ] else: a = [ meteor_score.single_meteor_score(A , A , alpha=A , beta=A , gamma=A ) for ref, pred in zip(A , A ) ] return {"meteor": np.mean(A )}
180
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _lowercase : Union[str, Any] =logging.get_logger(__name__) class snake_case__ (A__ ): """simple docstring""" def __init__( self , *__lowercase , **__lowercase ) -> None: """simple docstring""" warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
170
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _lowercase : Optional[int] =logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class snake_case__ (A__ ): """simple docstring""" def __init__( self , *__lowercase , __lowercase=None , __lowercase=None , __lowercase=None , **__lowercase ) -> Optional[Any]: """simple docstring""" super().__init__(*__lowercase , **__lowercase ) a__ : List[str] = eval_examples a__ : List[str] = post_process_function a__ : Union[str, Any] = quant_trainer_args a__ : Optional[Any] = 1_2_8 # default number of calibration samples def SCREAMING_SNAKE_CASE__( self , __lowercase=None ) -> Any: """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) a__ : Optional[int] = calib_dataset if calib_dataset is not None else self.calib_dataset a__ : List[Any] = self._remove_unused_columns(__lowercase , description="""Calibration""" ) return DataLoader( __lowercase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__lowercase , ) def SCREAMING_SNAKE_CASE__( self , __lowercase=None ) -> str: """simple docstring""" a__ : List[Any] = self.train_dataset if calib_dataset is None else calib_dataset a__ : Tuple = self.get_calib_dataloader(__lowercase ) a__ : Tuple = self.model quant_trainer.configure_model(__lowercase , self.quant_trainer_args , calib=__lowercase ) model.eval() quant_trainer.enable_calibration(__lowercase ) logger.info("""***** Running calibration *****""" ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(__lowercase ): # Prediction step a__ , a__ , a__ : List[str] = self.prediction_step(__lowercase , __lowercase , prediction_loss_only=__lowercase ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__lowercase , self.quant_trainer_args ) a__ : Union[str, Any] = model def SCREAMING_SNAKE_CASE__( self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase = "eval" ) -> int: """simple docstring""" a__ : Dict = self.eval_dataset if eval_dataset is None else eval_dataset a__ : List[Any] = self.get_eval_dataloader(__lowercase ) a__ : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a__ : Dict = self.compute_metrics a__ : Dict = None a__ : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a__ : str = eval_loop( __lowercase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowercase , ) finally: a__ : Tuple = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: a__ : int = self.post_process_function(__lowercase , __lowercase , output.predictions ) a__ : str = self.compute_metrics(__lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a__ : Any = metrics.pop(__lowercase ) self.log(__lowercase ) else: a__ : Any = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a__ : Any = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowercase ) return metrics def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase=None , __lowercase = "test" ) -> List[str]: """simple docstring""" a__ : str = self.get_test_dataloader(__lowercase ) # Temporarily disable metric computation, we will do it in the loop here. a__ : str = self.compute_metrics a__ : List[str] = None a__ : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a__ : Dict = eval_loop( __lowercase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowercase , ) finally: a__ : Optional[int] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output a__ : Optional[Any] = self.post_process_function(__lowercase , __lowercase , output.predictions , """predict""" ) a__ : Any = self.compute_metrics(__lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a__ : Any = metrics.pop(__lowercase ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase="./" ) -> str: """simple docstring""" a__ : Any = self.eval_dataset a__ : Optional[Any] = self.get_eval_dataloader(__lowercase ) a__ : List[str] = next(iter(__lowercase ) ) # saving device - to make it consistent a__ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple a__ : Any = tuple(v.to(__lowercase ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer a__ : Dict = True a__ : Tuple = self.model.to(__lowercase ) model.eval() model.float() a__ : Optional[Any] = model.module if hasattr(__lowercase , """module""" ) else model quant_trainer.configure_model(__lowercase , self.quant_trainer_args ) a__ : int = os.path.join(__lowercase , """model.onnx""" ) logger.info(F'''exporting model to {output_model_file}''' ) a__ : List[Any] = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( __lowercase , __lowercase , __lowercase , export_params=__lowercase , opset_version=1_3 , do_constant_folding=__lowercase , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=__lowercase , ) logger.info("""onnx export finished""" )
170
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def _A (*lowerCAmelCase , **lowerCAmelCase ): pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): UpperCamelCase_ : str =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) __lowercase= [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= vqa_pipeline(lowerCAmelCase , top_k=1 ) self.assertEqual( lowerCAmelCase , [ [{'score': ANY(lowerCAmelCase ), 'answer': ANY(lowerCAmelCase )}], [{'score': ANY(lowerCAmelCase ), 'answer': ANY(lowerCAmelCase )}], ] , ) @require_torch def _A (self ): __lowercase= pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) __lowercase= './tests/fixtures/tests_samples/COCO/000000039769.png' __lowercase= 'How many cats are there?' __lowercase= vqa_pipeline(image=lowerCAmelCase , question='How many cats are there?' , top_k=2 ) self.assertEqual( lowerCAmelCase , [{'score': ANY(lowerCAmelCase ), 'answer': ANY(lowerCAmelCase )}, {'score': ANY(lowerCAmelCase ), 'answer': ANY(lowerCAmelCase )}] ) __lowercase= vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( lowerCAmelCase , [{'score': ANY(lowerCAmelCase ), 'answer': ANY(lowerCAmelCase )}, {'score': ANY(lowerCAmelCase ), 'answer': ANY(lowerCAmelCase )}] ) @slow @require_torch def _A (self ): __lowercase= pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) __lowercase= './tests/fixtures/tests_samples/COCO/000000039769.png' __lowercase= 'How many cats are there?' __lowercase= vqa_pipeline(image=lowerCAmelCase , question=lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [{'score': 0.87_99, 'answer': '2'}, {'score': 0.2_96, 'answer': '1'}] ) __lowercase= vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [{'score': 0.87_99, 'answer': '2'}, {'score': 0.2_96, 'answer': '1'}] ) __lowercase= vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [[{'score': 0.87_99, 'answer': '2'}, {'score': 0.2_96, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def _A (self ): pass
304
from math import factorial, radians def _lowerCamelCase( lowercase__ , lowercase__ = 1_8 , lowercase__ = 1_0 ) -> float: '''simple docstring''' __lowercase= angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __lowercase= radians(lowercase__ ) __lowercase= angle_in_radians __lowercase= 3 __lowercase= -1 for _ in range(lowercase__ ): result += (b * (angle_in_radians**a)) / factorial(lowercase__ ) __lowercase= -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase__ , lowercase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
304
1
lowercase : List[Any] = 2_5_6 # Modulus to hash a string lowercase : Any = 1_0_0_0_0_0_3 def A_ ( A__ , A__ ) -> bool: a__ : List[str] = len(A__ ) a__ : List[Any] = len(A__ ) if p_len > t_len: return False a__ : Union[str, Any] = 0 a__ : Union[str, Any] = 0 a__ : Tuple = 1 # Calculating the hash of pattern and substring of text for i in range(A__ ): a__ : Any = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus a__ : int = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue a__ : List[Any] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash a__ : Optional[int] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def A_ ( ) -> None: a__ : str = 'abc1abc12' a__ : Optional[Any] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' a__ : List[Any] = 'alskfjaldsk23adsfabcabc' assert rabin_karp(A__ , A__ ) and not rabin_karp(A__ , A__ ) # Test 2) a__ : int = 'ABABX' a__ : int = 'ABABZABABYABABX' assert rabin_karp(A__ , A__ ) # Test 3) a__ : List[Any] = 'AAAB' a__ : Optional[Any] = 'ABAAAAAB' assert rabin_karp(A__ , A__ ) # Test 4) a__ : List[str] = 'abcdabcy' a__ : Optional[int] = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(A__ , A__ ) # Test 5) a__ : Optional[Any] = 'Lü' a__ : Tuple = 'Lüsai' assert rabin_karp(A__ , A__ ) a__ : Dict = 'Lue' assert not rabin_karp(A__ , A__ ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
99
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase : List[str] = logging.get_logger(__name__) lowercase : Any = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off lowercase : List[str] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowercase : List[Any] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class A__ ( __UpperCAmelCase ): """simple docstring""" __A : int = '''whisper''' __A : List[Any] = ['''past_key_values'''] __A : Optional[int] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowercase=5_1865 , lowercase=80 , lowercase=6 , lowercase=4 , lowercase=6 , lowercase=4 , lowercase=1536 , lowercase=1536 , lowercase=0.0 , lowercase=0.0 , lowercase=5_0257 , lowercase=True , lowercase=True , lowercase="gelu" , lowercase=256 , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=False , lowercase=1500 , lowercase=448 , lowercase=5_0256 , lowercase=5_0256 , lowercase=5_0256 , lowercase=None , lowercase=[220, 5_0256] , lowercase=False , lowercase=256 , lowercase=False , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase=7 , **lowercase , ) -> str: '''simple docstring''' a__ : int = vocab_size a__ : int = num_mel_bins a__ : Optional[int] = d_model a__ : List[str] = encoder_layers a__ : Dict = encoder_attention_heads a__ : List[str] = decoder_layers a__ : Tuple = decoder_attention_heads a__ : List[str] = decoder_ffn_dim a__ : Optional[Any] = encoder_ffn_dim a__ : Tuple = dropout a__ : Optional[int] = attention_dropout a__ : Any = activation_dropout a__ : Any = activation_function a__ : List[Any] = init_std a__ : Optional[int] = encoder_layerdrop a__ : Union[str, Any] = decoder_layerdrop a__ : Tuple = use_cache a__ : List[str] = encoder_layers a__ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True a__ : Dict = max_source_positions a__ : Dict = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. a__ : Optional[int] = classifier_proj_size a__ : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a__ : List[Any] = apply_spec_augment a__ : int = mask_time_prob a__ : int = mask_time_length a__ : List[Any] = mask_time_min_masks a__ : str = mask_feature_prob a__ : Optional[int] = mask_feature_length a__ : Union[str, Any] = mask_feature_min_masks a__ : Tuple = median_filter_width super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , suppress_tokens=lowercase , begin_suppress_tokens=lowercase , **lowercase , ) class A__ ( __UpperCAmelCase ): """simple docstring""" @property def __lowercase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' a__ : List[str] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ]) if self.use_past: a__ : Optional[Any] = {0: 'batch'} else: a__ : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='inputs') return common_inputs def __lowercase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , lowercase = 2_2050 , lowercase = 5.0 , lowercase = 220 , ) -> Mapping[str, Any]: '''simple docstring''' a__ : Union[str, Any] = OrderedDict() a__ : int = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase , framework=lowercase , sampling_rate=lowercase , time_duration=lowercase , frequency=lowercase , ) a__ : List[Any] = encoder_inputs['input_features'].shape[2] a__ : Optional[int] = encoder_sequence_length // 2 if self.use_past else seq_length a__ : Any = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase , lowercase , lowercase , lowercase) a__ : List[str] = encoder_inputs.pop('input_features') a__ : Optional[int] = decoder_inputs.pop('decoder_input_ids') if "past_key_values" in decoder_inputs: a__ : List[str] = decoder_inputs.pop('past_key_values') return dummy_inputs @property def __lowercase ( self) -> float: '''simple docstring''' return 1e-3
99
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = KandinskyVaaPriorPipeline UpperCAmelCase__ : List[Any] = ["prompt"] UpperCAmelCase__ : List[str] = ["prompt", "negative_prompt"] UpperCAmelCase__ : List[str] = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] UpperCAmelCase__ : Union[str, Any] = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> Optional[Any]: return 3_2 @property def __lowercase ( self ) -> Union[str, Any]: return self.time_input_dim @property def __lowercase ( self ) -> Optional[int]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Union[str, Any]: return 1_0_0 @property def __lowercase ( self ) -> str: _a : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowercase ( self ) -> Any: torch.manual_seed(0 ) _a : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(_a ) @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : Union[str, Any] = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_2, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } _a : Dict = PriorTransformer(**_a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _a : str = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __lowercase ( self ) -> int: torch.manual_seed(0 ) _a : str = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) _a : Optional[Any] = CLIPVisionModelWithProjection(_a ) return model @property def __lowercase ( self ) -> Optional[Any]: _a : str = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=_a , do_normalize=_a , do_resize=_a , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def __lowercase ( self ) -> Dict: _a : int = self.dummy_prior _a : int = self.dummy_image_encoder _a : int = self.dummy_text_encoder _a : Optional[int] = self.dummy_tokenizer _a : Any = self.dummy_image_processor _a : Union[str, Any] = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_0_0_0 , clip_sample=_a , clip_sample_range=10.0 , ) _a : Tuple = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def __lowercase ( self , _a , _a=0 ) -> Tuple: if str(_a ).startswith('''mps''' ): _a : Dict = torch.manual_seed(_a ) else: _a : List[Any] = torch.Generator(device=_a ).manual_seed(_a ) _a : Tuple = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : List[str] = '''cpu''' _a : Tuple = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : Dict = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Optional[Any] = pipe(**self.get_dummy_inputs(_a ) ) _a : Any = output.image_embeds _a : Optional[int] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Dict = image[0, -1_0:] _a : Dict = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) _a : str = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __lowercase ( self ) -> int: _a : Union[str, Any] = torch_device == '''cpu''' _a : Dict = True _a : Any = False self._test_inference_batch_single_identical( test_max_difference=_a , relax_max_difference=_a , test_mean_pixel_difference=_a , ) @skip_mps def __lowercase ( self ) -> Union[str, Any]: _a : List[Any] = torch_device == '''cpu''' _a : Any = False self._test_attention_slicing_forward_pass( test_max_difference=_a , test_mean_pixel_difference=_a , )
15
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) a__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) a__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' a__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' a__ = '''''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[str] ) -> Optional[int]: """simple docstring""" assert ReadMe.from_string(__a ,__a ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): _a : List[Any] = ReadMe.from_string(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> Tuple: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" ReadMe.from_string(__a ,__a ,suppress_parsing_errors=__a ) @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Tuple = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[Any] = ReadMe.from_readme(__a ,__a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[int] = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): _a : Any = ReadMe.from_readme(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Optional[Any] = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : str = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): ReadMe.from_readme(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) ReadMe.from_readme(__a ,__a ,suppress_parsing_errors=__a )
15
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) _SCREAMING_SNAKE_CASE = "bert-base-cased" _SCREAMING_SNAKE_CASE = "fp16" _SCREAMING_SNAKE_CASE = "bf16" _SCREAMING_SNAKE_CASE = [FPaa, BFaa] @require_fsdp @require_cuda class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase__ ): def lowerCamelCase_ ( self : str ): """simple docstring""" super().setUp() UpperCamelCase = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__a ): UpperCamelCase = self.dist_env.copy() UpperCamelCase = f"""{i + 1}""" UpperCamelCase = strategy with mockenv_context(**__a ): UpperCamelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__a ): UpperCamelCase = self.dist_env.copy() UpperCamelCase = prefetch_policy with mockenv_context(**__a ): UpperCamelCase = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__a ): UpperCamelCase = self.dist_env.copy() UpperCamelCase = state_dict_type with mockenv_context(**__a ): UpperCamelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = AutoModel.from_pretrained(__a ) for policy in FSDP_AUTO_WRAP_POLICY: UpperCamelCase = self.dist_env.copy() UpperCamelCase = policy if policy == "TRANSFORMER_BASED_WRAP": UpperCamelCase = """BertLayer""" elif policy == "SIZE_BASED_WRAP": UpperCamelCase = """2000""" with mockenv_context(**__a ): UpperCamelCase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) UpperCamelCase = self.dist_env.copy() UpperCamelCase = """TRANSFORMER_BASED_WRAP""" UpperCamelCase = """T5Layer""" with mockenv_context(**__a ): UpperCamelCase = FullyShardedDataParallelPlugin() with self.assertRaises(__a ) as cm: fsdp_plugin.set_auto_wrap_policy(__a ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) UpperCamelCase = self.dist_env.copy() UpperCamelCase = """SIZE_BASED_WRAP""" UpperCamelCase = """0""" with mockenv_context(**__a ): UpperCamelCase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def lowerCamelCase_ ( self : Any ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: UpperCamelCase = self.dist_env.copy() UpperCamelCase = mp_dtype with mockenv_context(**__a ): UpperCamelCase = Accelerator() if mp_dtype == "fp16": UpperCamelCase = torch.floataa elif mp_dtype == "bf16": UpperCamelCase = torch.bfloataa UpperCamelCase = MixedPrecision(param_dtype=__a , reduce_dtype=__a , buffer_dtype=__a ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __a ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __a ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__a ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: UpperCamelCase = self.dist_env.copy() UpperCamelCase = str(__a ).lower() with mockenv_context(**__a ): UpperCamelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__a ) ) @require_fsdp @require_multi_gpu @slow class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase__ ): def lowerCamelCase_ ( self : int ): """simple docstring""" super().setUp() UpperCamelCase = 0.8_2 UpperCamelCase = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] UpperCamelCase = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } UpperCamelCase = 160 UpperCamelCase = 160 UpperCamelCase = inspect.getfile(accelerate.test_utils ) UpperCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = os.path.join(self.test_scripts_folder , """test_performance.py""" ) UpperCamelCase = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: UpperCamelCase = cmd.copy() for i, strategy in enumerate(__a ): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) UpperCamelCase = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__a ): UpperCamelCase = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue UpperCamelCase = len(__a ) for state_dict_type in FSDP_STATE_DICT_TYPE: UpperCamelCase = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) UpperCamelCase = cmd_config[:-1] UpperCamelCase = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) UpperCamelCase = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): UpperCamelCase = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__a ): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
343
"""simple docstring""" import argparse import os import re import packaging.version A : Any = "examples/" A : Optional[Any] = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } A : Optional[int] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } A : List[Any] = "README.md" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' with open(_UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase , __lowerCAmelCase = REPLACE_PATTERNS[pattern] __lowerCAmelCase = replace.replace("VERSION" , _UpperCamelCase ) __lowerCAmelCase = re_pattern.sub(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' for folder, directories, fnames in os.walk(_UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase , pattern="examples" ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not patch: update_version_in_examples(_UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "🤗 Transformers currently provides the following architectures" __lowerCAmelCase = "1. Want to contribute a new model?" with open(_UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.readlines() # Find the start of the list. __lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): __lowerCAmelCase = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(_UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' with open(REPLACE_FILES["init"] , "r" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase = REPLACE_PATTERNS["init"][0].search(_UpperCamelCase ).groups()[0] return packaging.version.parse(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase=False ): '''simple docstring''' __lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: __lowerCAmelCase = default_version.base_version elif patch: __lowerCAmelCase = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __lowerCAmelCase = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __lowerCAmelCase = input(f"Which version are you releasing? [{default_version}]" ) if len(_UpperCamelCase ) == 0: __lowerCAmelCase = default_version print(f"Updating version to {version}." ) global_version_update(_UpperCamelCase , patch=_UpperCamelCase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = get_version() __lowerCAmelCase = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __lowerCAmelCase = current_version.base_version # Check with the user we got that right. __lowerCAmelCase = input(f"Which version are we developing now? [{dev_version}]" ) if len(_UpperCamelCase ) == 0: __lowerCAmelCase = dev_version print(f"Updating version to {version}." ) global_version_update(_UpperCamelCase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") A : Dict = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
57
0
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCAmelCase = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] UpperCAmelCase = 0 for log in Path().glob('''*.log'''): UpperCAmelCase = 0 with open(log, '''r''') as f: for line in f: UpperCAmelCase = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCAmelCase = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCAmelCase = F"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase = [] log.unlink() UpperCAmelCase = '''''' UpperCAmelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase = [] UpperCAmelCase = {} for test in failed_tests: UpperCAmelCase = test[0].split('''::''') UpperCAmelCase = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCAmelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase = [test[0] for test in failed_table] UpperCAmelCase = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: UpperCAmelCase = '''Too many failed tests, please see the full report in the Action results.''' UpperCAmelCase = len(err) + 10 UpperCAmelCase = message[: 3_000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCAmelCase = '''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCAmelCase = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCAmelCase = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCAmelCase = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCAmelCase = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase = row[0] else: UpperCAmelCase = '''''' UpperCAmelCase = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
172
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class __magic_name__ ( __UpperCAmelCase ): def __init__( self : int , snake_case__ : Dict=None , snake_case__ : List[str]=None , *snake_case__ : str , **snake_case__ : Optional[Any] ): '''simple docstring''' super().__init__(*snake_case__ , **snake_case__ ) if config is None: assert isinstance(self.model , snake_case__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f""" {self.model.__class__}""" ) lowercase :int = self.model.config else: lowercase :str = config lowercase :Dict = data_args lowercase :int = self.config.tgt_vocab_size if isinstance(self.config , snake_case__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ''' padding..''' ) if self.args.label_smoothing == 0: lowercase :List[str] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase :Union[str, Any] = label_smoothed_nll_loss def __snake_case ( self : Union[str, Any] , snake_case__ : int ): '''simple docstring''' if self.optimizer is None: lowercase :Optional[int] = ['''bias''', '''LayerNorm.weight'''] lowercase :int = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowercase :List[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase :Union[str, Any] = Adafactor lowercase :Dict = {'''scale_parameter''': False, '''relative_step''': False} else: lowercase :List[str] = AdamW lowercase :Union[str, Any] = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowercase :Tuple = self.args.learning_rate if self.sharded_ddp: lowercase :Union[str, Any] = OSS( params=snake_case__ , optim=snake_case__ , **snake_case__ , ) else: lowercase :Dict = optimizer_cls(snake_case__ , **snake_case__ ) if self.lr_scheduler is None: lowercase :List[Any] = self._get_lr_scheduler(snake_case__ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def __snake_case ( self : Any , snake_case__ : List[str] ): '''simple docstring''' lowercase :Tuple = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase :Dict = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase :str = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowercase :int = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=snake_case__ ) return scheduler def __snake_case ( self : Tuple ): '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __snake_case ( self : Any , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Tuple ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase :List[Any] = model(**snake_case__ , use_cache=snake_case__ )[0] lowercase :Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowercase , lowercase :str = model(**snake_case__ , labels=snake_case__ , use_cache=snake_case__ )[:2] else: # compute label smoothed loss lowercase :str = model(**snake_case__ , use_cache=snake_case__ )[0] lowercase :Tuple = torch.nn.functional.log_softmax(snake_case__ , dim=-1 ) lowercase , lowercase :Optional[int] = self.loss_fn(snake_case__ , snake_case__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __snake_case ( self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' lowercase :List[str] = inputs.pop('''labels''' ) lowercase , lowercase :Union[str, Any] = self._compute_loss(snake_case__ , snake_case__ , snake_case__ ) return loss def __snake_case ( self : List[str] , snake_case__ : nn.Module , snake_case__ : Dict[str, Union[torch.Tensor, Any]] , snake_case__ : bool , snake_case__ : Optional[List[str]] = None , ): '''simple docstring''' lowercase :List[str] = self._prepare_inputs(snake_case__ ) lowercase :Optional[Any] = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase :Optional[Any] = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **snake_case__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase :int = self._pad_tensors_to_max_len(snake_case__ , gen_kwargs['''max_length'''] ) lowercase :Any = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowercase , lowercase :List[str] = self._compute_loss(snake_case__ , snake_case__ , snake_case__ ) lowercase :List[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase :Any = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase :Tuple = self._pad_tensors_to_max_len(snake_case__ , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def __snake_case ( self : int , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' lowercase :Union[str, Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f""" padded to `max_length`={max_length}""" ) lowercase :Optional[Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowercase :Any = tensor return padded_tensor
172
1
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Any = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' lowercase_ : Dict = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(__SCREAMING_SNAKE_CASE ).content if __name__ == "__main__": _lowercase : Optional[Any] = input("Enter Video/IGTV url: ").strip() _lowercase : Optional[Any] = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
93
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class a ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :Dict = WavaVecaPhonemeCTCTokenizer lowerCamelCase :Optional[int] = False def UpperCAmelCase ( self ) -> Optional[int]: super().setUp() _A = ( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) _A = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=20 , lowerCAmelCase_=5 ) -> Tuple[str, list]: _A = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase_ )) for i in range(len(lowerCAmelCase_ ) )] _A = list(filter(lambda lowerCAmelCase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowerCAmelCase_ ) , lowerCAmelCase_ ) ) if max_length is not None and len(lowerCAmelCase_ ) > max_length: _A = toks[:max_length] if min_length is not None and len(lowerCAmelCase_ ) < min_length and len(lowerCAmelCase_ ) > 0: while len(lowerCAmelCase_ ) < min_length: _A = toks + toks # toks_str = [t[1] for t in toks] _A = [t[0] for t in toks] # Ensure consistency _A = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) if " " not in output_txt and len(lowerCAmelCase_ ) > 1: _A = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase_ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase_ ) ) if with_prefix_space: _A = """ """ + output_txt _A = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) return output_txt, output_ids def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Any: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) _A = tokenizer("""m xxx ɪ""" , do_phonemize=lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) _A = tokenizer("""m aaa ɪ ccc""" , do_phonemize=lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa _A = tokenizer("""maɪ c""" , do_phonemize=lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , [3, 2_00] ) # mai should be <unk> (=3) def UpperCAmelCase ( self ) -> int: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(lowerCAmelCase_ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) def UpperCAmelCase ( self ) -> List[str]: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowerCAmelCase_ ).input_ids , tokenizer(lowerCAmelCase_ , do_phonemize=lowerCAmelCase_ ).input_ids ) def UpperCAmelCase ( self ) -> List[str]: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) _A = tokenizer.decode(tokenizer(lowerCAmelCase_ ).input_ids ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] _A = tokenizer.decode(sample_ids[0] ) _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch_tokens[0] ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def UpperCAmelCase ( self ) -> str: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(lowerCAmelCase_ , """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowerCAmelCase_ ).input_ids , tokenizer(lowerCAmelCase_ , do_phonemize=lowerCAmelCase_ ).input_ids ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off _A = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter _A = tokenizer.decode(sample_ids[0] ) _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch_tokens[0] ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter _A = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowerCAmelCase_ ) _A = tokenizer.batch_decode(lowerCAmelCase_ , filter_word_delimiter_token=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch_tokens[0] ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def UpperCAmelCase ( self ) -> Dict: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) _A = tokenizer.decode(tokenizer(lowerCAmelCase_ ).input_ids , filter_word_delimiter_token=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) _A = tokenizer.decode(tokenizer(lowerCAmelCase_ ).input_ids , filter_word_delimiter_token=lowerCAmelCase_ ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=lowerCAmelCase_ ) _A = """Hello how are you""" _A = tokenizer(lowerCAmelCase_ , phonemizer_lang="""en-us""" ).input_ids _A = tokenizer(lowerCAmelCase_ , phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A = tokenizer.decode(lowerCAmelCase_ ) _A = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(lowerCAmelCase_ , """ɛ l o h aʊ a ʁ j u""" ) def UpperCAmelCase ( self ) -> Any: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = """Hello how Are you""" _A = """hello how are you""" _A = tokenizer(lowerCAmelCase_ ).input_ids _A = tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off _A = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _A = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase ( self ) -> Tuple: _A = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" _A = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on _A = tokenizer.decode(lowerCAmelCase_ , output_char_offsets=lowerCAmelCase_ , filter_word_delimiter_token=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertTrue(isinstance(outputs_list[0] , lowerCAmelCase_ ) ) # transform list to ModelOutput _A = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] ) def recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): [recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) for la, la in zip(lowerCAmelCase_ , lowerCAmelCase_ )] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] ) # fmt: off _A = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char _A = tokenizer.batch_decode(lowerCAmelCase_ , output_char_offsets=lowerCAmelCase_ ) _A = [tokenizer.decode(lowerCAmelCase_ , output_char_offsets=lowerCAmelCase_ ) for ids in sample_ids] check_list_tuples_equal(lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def UpperCAmelCase ( self ) -> int: pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def UpperCAmelCase ( self ) -> Optional[int]: pass def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = tokenizer.vocab_size _A = len(lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _A = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] _A = tokenizer.add_tokens(lowerCAmelCase_ ) _A = tokenizer.vocab_size _A = len(lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , 0 ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) self.assertEqual(lowerCAmelCase_ , all_size + len(lowerCAmelCase_ ) ) _A = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=lowerCAmelCase_ ) self.assertGreaterEqual(len(lowerCAmelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _A = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} _A = tokenizer.add_special_tokens(lowerCAmelCase_ ) _A = tokenizer.vocab_size _A = len(lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , 0 ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) self.assertEqual(lowerCAmelCase_ , all_size_a + len(lowerCAmelCase_ ) ) _A = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=lowerCAmelCase_ ) self.assertGreaterEqual(len(lowerCAmelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def UpperCAmelCase ( self ) -> Union[str, Any]: pass def UpperCAmelCase ( self ) -> str: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. _A = self.get_tokenizers(fast=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] _A = tokenizer.convert_tokens_to_string(lowerCAmelCase_ ) self.assertIsInstance(output["""text"""] , lowerCAmelCase_ )
180
0
from math import ceil def UpperCamelCase( lowercase_ = 1001 ) -> int: '''simple docstring''' snake_case_ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): snake_case_ = 2 * i + 1 snake_case_ = 2 * i snake_case_ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowerCamelCase_ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
356
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __lowerCamelCase : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=True , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ) -> Union[str, Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_multiple_size snake_case_ = hidden_act snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = weight_tying snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def lowerCAmelCase_ ( self ) -> str: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase_ ( self ) -> Optional[int]: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self ) -> int: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.prepare_config_and_inputs() snake_case_ = True return config, input_ids, input_mask, token_labels def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: snake_case_ = GPTNeoXJapaneseModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase ) snake_case_ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: snake_case_ = True snake_case_ = GPTNeoXJapaneseModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: snake_case_ = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: snake_case_ = True snake_case_ = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase ) snake_case_ = output_from_no_past["""hidden_states"""][0] snake_case_ = model( lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )["""hidden_states"""][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( __snake_case , __snake_case , unittest.TestCase ): lowerCamelCase_ : Any = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase_ : str = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase_ : Any = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase_ : Tuple = False lowerCamelCase_ : Dict = False lowerCamelCase_ : Tuple = False lowerCamelCase_ : Optional[int] = False def lowerCAmelCase_ ( self ) -> Tuple: snake_case_ = GPTNeoXJapaneseModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self ) -> str: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> str: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: # This regression test was failing with PyTorch < 1.3 snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case_ = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Any: snake_case_ = """abeja/gpt-neox-japanese-2.7b""" snake_case_ = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] snake_case_ = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] snake_case_ = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase ) snake_case_ = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase ) snake_case_ = [] for prompt in prompts: snake_case_ = tokenizer(lowerCamelCase , return_tensors="""pt""" ).input_ids snake_case_ = model.generate(lowerCamelCase , max_length=50 ) snake_case_ = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase , lowerCamelCase )
34
0
'''simple docstring''' import colorsys from PIL import Image # type: ignore def __UpperCAmelCase ( A : float , A : float , A : int ) -> float: UpperCAmelCase_ : Dict = x UpperCAmelCase_ : List[str] = y for step in range(A ): # noqa: B007 UpperCAmelCase_ : Dict = a * a - b * b + x UpperCAmelCase_ : Tuple = 2 * a * b + y UpperCAmelCase_ : Dict = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __UpperCAmelCase ( A : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def __UpperCAmelCase ( A : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(A , 1 , 1 ) ) def __UpperCAmelCase ( A : int = 8_0_0 , A : int = 6_0_0 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 5_0 , A : bool = True , ) -> Image.Image: UpperCAmelCase_ : Union[str, Any] = Image.new('''RGB''' , (image_width, image_height) ) UpperCAmelCase_ : Any = img.load() # loop through the image-coordinates for image_x in range(A ): for image_y in range(A ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ : Tuple = figure_width / image_width * image_height UpperCAmelCase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ : int = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ : Optional[Any] = get_distance(A , A , A ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ : Dict = get_color_coded_rgb(A ) else: UpperCAmelCase_ : Tuple = get_black_and_white_rgb(A ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _UpperCamelCase : List[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
304
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
1
'''simple docstring''' def UpperCAmelCase__ ( ) -> list[list[int]]: return [list(range(10_00 - i, -10_00 - i, -1 ) ) for i in range(10_00 )] __lowerCamelCase = generate_large_matrix() __lowerCamelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: assert all(row == sorted(UpperCAmelCase__, reverse=UpperCAmelCase__ ) for row in grid ) assert all(list(UpperCAmelCase__ ) == sorted(UpperCAmelCase__, reverse=UpperCAmelCase__ ) for col in zip(*UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = len(UpperCAmelCase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: A_ = (left + right) // 2 A_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: A_ = mid + 1 else: A_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = len(grid[0] ) for i in range(len(UpperCAmelCase__ ) ): A_ = find_negative_index(grid[i][:bound] ) total += bound return (len(UpperCAmelCase__ ) * len(grid[0] )) - total def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 for row in grid: for i, number in enumerate(UpperCAmelCase__ ): if number < 0: total += len(UpperCAmelCase__ ) - i break return total def UpperCAmelCase__ ( ) -> None: from timeit import timeit print("""Running benchmarks""" ) A_ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): A_ = timeit(F'''{func}(grid=grid)''', setup=UpperCAmelCase__, number=5_00 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
101
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) __lowerCamelCase = logging.getLogger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = git.Repo(search_parent_directories=UpperCAmelCase__ ) A_ = { """repo_id""": str(UpperCAmelCase__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(UpperCAmelCase__, """git_log.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__, indent=4 ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: if params.n_gpu <= 0: A_ = 0 A_ = -1 A_ = True A_ = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 A_ = int(os.environ["""WORLD_SIZE"""] ) A_ = int(os.environ["""N_GPU_NODE"""] ) A_ = int(os.environ["""RANK"""] ) # number of nodes / node ID A_ = params.world_size // params.n_gpu_per_node A_ = params.global_rank // params.n_gpu_per_node A_ = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 A_ = 1 A_ = 0 A_ = 0 A_ = 0 A_ = 1 A_ = 1 A_ = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode A_ = params.node_id == 0 and params.local_rank == 0 A_ = params.n_nodes > 1 # summary A_ = F'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""", backend="""nccl""", ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
101
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = KandinskyVaaPriorPipeline snake_case_ = ["prompt"] snake_case_ = ["prompt", "negative_prompt"] snake_case_ = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] snake_case_ = False @property def UpperCamelCase_ ( self : Optional[int] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : Optional[int] ): return self.time_input_dim @property def UpperCamelCase_ ( self : int ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 1_00 @property def UpperCamelCase_ ( self : Optional[Any] ): __A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def UpperCamelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) __A = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) return CLIPTextModelWithProjection(A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) __A = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } __A = PriorTransformer(**A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __A = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) __A = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=2_24 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=14 ,) __A = CLIPVisionModelWithProjection(A ) return model @property def UpperCamelCase_ ( self : Tuple ): __A = CLIPImageProcessor( crop_size=2_24 ,do_center_crop=A ,do_normalize=A ,do_resize=A ,image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] ,image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] ,resample=3 ,size=2_24 ,) return image_processor def UpperCamelCase_ ( self : List[str] ): __A = self.dummy_prior __A = self.dummy_image_encoder __A = self.dummy_text_encoder __A = self.dummy_tokenizer __A = self.dummy_image_processor __A = UnCLIPScheduler( variance_type="fixed_small_log" ,prediction_type="sample" ,num_train_timesteps=10_00 ,clip_sample=A ,clip_sample_range=10.0 ,) __A = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def UpperCamelCase_ ( self : Dict ,A : int ,A : List[Any]=0 ): if str(A ).startswith("mps" ): __A = torch.manual_seed(A ) else: __A = torch.Generator(device=A ).manual_seed(A ) __A = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def UpperCamelCase_ ( self : Union[str, Any] ): __A = "cpu" __A = self.get_dummy_components() __A = self.pipeline_class(**A ) __A = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) __A = pipe(**self.get_dummy_inputs(A ) ) __A = output.image_embeds __A = pipe( **self.get_dummy_inputs(A ) ,return_dict=A ,)[0] __A = image[0, -10:] __A = image_from_tuple[0, -10:] assert image.shape == (1, 32) __A = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : Optional[Any] ): __A = torch_device == "cpu" __A = True __A = False self._test_inference_batch_single_identical( test_max_difference=A ,relax_max_difference=A ,test_mean_pixel_difference=A ,) @skip_mps def UpperCamelCase_ ( self : Optional[Any] ): __A = torch_device == "cpu" __A = False self._test_attention_slicing_forward_pass( test_max_difference=A ,test_mean_pixel_difference=A ,)
15
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE :Optional[int] = NewType('DataClass', Any) SCREAMING_SNAKE_CASE :int = NewType('DataClassType', Any) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" if isinstance(a_ , a_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def UpperCAmelCase ( a_ ) -> Callable[[str], Any]: """simple docstring""" __A = {str(a_ ): choice for choice in choices} return lambda a_ : str_to_choice.get(a_ , a_ ) def UpperCAmelCase ( *, a_ = None , a_ = None , a_ = dataclasses.MISSING , a_ = dataclasses.MISSING , a_ = None , **a_ , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __A = {} if aliases is not None: __A = aliases if help is not None: __A = help return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_ ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 def __init__( self : Union[str, Any] ,A : Union[DataClassType, Iterable[DataClassType]] ,**A : List[Any] ): # To make the default appear when using --help if "formatter_class" not in kwargs: __A = ArgumentDefaultsHelpFormatter super().__init__(**A ) if dataclasses.is_dataclass(A ): __A = [dataclass_types] __A = list(A ) for dtype in self.dataclass_types: self._add_dataclass_arguments(A ) @staticmethod def UpperCamelCase_ ( A : ArgumentParser ,A : dataclasses.Field ): __A = f'''--{field.name}''' __A = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,A ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) __A = kwargs.pop("aliases" ,[] ) if isinstance(A ,A ): __A = [aliases] __A = getattr(field.type ,"__origin__" ,field.type ) if origin_type is Union or (hasattr(A ,"UnionType" ) and isinstance(A ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(A ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f''' Problem encountered in field \'{field.name}\'.''' ) if type(A ) not in field.type.__args__: # filter `str` in Union __A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __A = getattr(field.type ,"__origin__" ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __A = ( field.type.__args__[0] if isinstance(A ,field.type.__args__[1] ) else field.type.__args__[1] ) __A = getattr(field.type ,"__origin__" ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __A = {} if origin_type is Literal or (isinstance(field.type ,A ) and issubclass(field.type ,A )): if origin_type is Literal: __A = field.type.__args__ else: __A = [x.value for x in field.type] __A = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: __A = field.default else: __A = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __A = copy(A ) # Hack because type=bool in argparse does not behave as we want. __A = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __A = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __A = default # This tells argparse we accept 0 or 1 value after --field_name __A = "?" # This is the value that will get picked if we do --field_name (without value) __A = True elif isclass(A ) and issubclass(A ,A ): __A = field.type.__args__[0] __A = "+" if field.default_factory is not dataclasses.MISSING: __A = field.default_factory() elif field.default is dataclasses.MISSING: __A = True else: __A = field.type if field.default is not dataclasses.MISSING: __A = field.default elif field.default_factory is not dataclasses.MISSING: __A = field.default_factory() else: __A = True parser.add_argument(A ,*A ,**A ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __A = False parser.add_argument(f'''--no_{field.name}''' ,action="store_false" ,dest=field.name ,**A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : DataClassType ): if hasattr(A ,"_argument_group_name" ): __A = self.add_argument_group(dtype._argument_group_name ) else: __A = self try: __A = get_type_hints(A ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A ): __A = ".".join(map(A ,sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(A ): if not field.init: continue __A = type_hints[field.name] self._parse_dataclass_field(A ,A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=None ,A : List[Any]=False ,A : Optional[Any]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __A = [] if args_filename: args_files.append(Path(A ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __A = ArgumentParser() args_file_parser.add_argument(A ,type=A ,action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) __A , __A = args_file_parser.parse_known_args(args=A ) __A = vars(A ).get(args_file_flag.lstrip("-" ) ,A ) if cmd_args_file_paths: args_files.extend([Path(A ) for p in cmd_args_file_paths] ) __A = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __A = file_args + args if args is not None else file_args + sys.argv[1:] __A , __A = self.parse_known_args(args=A ) __A = [] for dtype in self.dataclass_types: __A = {f.name for f in dataclasses.fields(A ) if f.init} __A = {k: v for k, v in vars(A ).items() if k in keys} for k in keys: delattr(A ,A ) __A = dtype(**A ) outputs.append(A ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(A ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def UpperCamelCase_ ( self : Dict ,A : Dict[str, Any] ,A : bool = False ): __A = set(args.keys() ) __A = [] for dtype in self.dataclass_types: __A = {f.name for f in dataclasses.fields(A ) if f.init} __A = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __A = dtype(**A ) outputs.append(A ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(A )}''' ) return tuple(A ) def UpperCamelCase_ ( self : List[str] ,A : str ,A : bool = False ): with open(Path(A ) ,encoding="utf-8" ) as open_json_file: __A = json.loads(open_json_file.read() ) __A = self.parse_dict(A ,allow_extra_keys=A ) return tuple(A ) def UpperCamelCase_ ( self : int ,A : str ,A : bool = False ): __A = self.parse_dict(yaml.safe_load(Path(A ).read_text() ) ,allow_extra_keys=A ) return tuple(A )
15
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = (UnCLIPScheduler,) def __magic_name__ ( self : Optional[int], **__A : Union[str, Any] ): UpperCAmelCase : int = { '''num_train_timesteps''': 1_0_0_0, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__A ) return config def __magic_name__ ( self : Tuple ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__A ) def __magic_name__ ( self : List[Any] ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__A ) def __magic_name__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__A ) def __magic_name__ ( self : Dict ): for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=__A ) def __magic_name__ ( self : int ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__A ) def __magic_name__ ( self : int ): for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__A, prev_timestep=__A ) def __magic_name__ ( self : int ): UpperCAmelCase : List[Any] = self.scheduler_classes[0] UpperCAmelCase : List[Any] = self.get_scheduler_config(variance_type='''fixed_small_log''' ) UpperCAmelCase : List[Any] = scheduler_class(**__A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_5_4_9_6_2_5 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_9_9_4_9_8_7 ) ) < 1E-5 def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase : List[Any] = self.get_scheduler_config(variance_type='''learned_range''' ) UpperCAmelCase : str = scheduler_class(**__A ) UpperCAmelCase : int = 0.5 assert scheduler._get_variance(1, predicted_variance=__A ) - -1_0.1_7_1_2_7_9_0 < 1E-5 assert scheduler._get_variance(4_8_7, predicted_variance=__A ) - -5.7_9_9_8_0_5_2 < 1E-5 assert scheduler._get_variance(9_9_9, predicted_variance=__A ) - -0.0_0_1_0_0_1_1 < 1E-5 def __magic_name__ ( self : List[str] ): UpperCAmelCase : str = self.scheduler_classes[0] UpperCAmelCase : List[Any] = self.get_scheduler_config() UpperCAmelCase : Optional[int] = scheduler_class(**__A ) UpperCAmelCase : int = scheduler.timesteps UpperCAmelCase : Tuple = self.dummy_model() UpperCAmelCase : int = self.dummy_sample_deter UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(__A ): # 1. predict noise residual UpperCAmelCase : Optional[int] = model(__A, __A ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase : Optional[int] = scheduler.step(__A, __A, __A, generator=__A ).prev_sample UpperCAmelCase : List[Any] = pred_prev_sample UpperCAmelCase : int = torch.sum(torch.abs(__A ) ) UpperCAmelCase : Tuple = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1E-3 def __magic_name__ ( self : Tuple ): UpperCAmelCase : int = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config() UpperCAmelCase : Union[str, Any] = scheduler_class(**__A ) scheduler.set_timesteps(2_5 ) UpperCAmelCase : Dict = scheduler.timesteps UpperCAmelCase : int = self.dummy_model() UpperCAmelCase : Optional[int] = self.dummy_sample_deter UpperCAmelCase : Any = torch.manual_seed(0 ) for i, t in enumerate(__A ): # 1. predict noise residual UpperCAmelCase : str = model(__A, __A ) if i + 1 == timesteps.shape[0]: UpperCAmelCase : Optional[int] = None else: UpperCAmelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCAmelCase : Any = scheduler.step( __A, __A, __A, prev_timestep=__A, generator=__A ).prev_sample UpperCAmelCase : List[Any] = pred_prev_sample UpperCAmelCase : Tuple = torch.sum(torch.abs(__A ) ) UpperCAmelCase : Optional[int] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1E-3 def __magic_name__ ( self : List[str] ): pass def __magic_name__ ( self : List[Any] ): pass
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : str = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
99
0
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> tuple[float, float]: '''simple docstring''' if not len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients __snake_case , __snake_case , __snake_case : Dict = equationa __snake_case , __snake_case , __snake_case : Tuple = equationa # Calculate the determinants of the matrices __snake_case : Dict = aa * ba - aa * ba __snake_case : List[Any] = ca * ba - ca * ba __snake_case : Union[str, Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __snake_case : Optional[int] = determinant_x / determinant __snake_case : Union[str, Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
172
"""simple docstring""" def __UpperCAmelCase ( ) -> int: '''simple docstring''' return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(UpperCAmelCase_ , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
172
1
from __future__ import annotations from collections import deque class lowerCamelCase_ : '''simple docstring''' def __init__( self : Dict , __lowerCamelCase : list[str] ) -> Union[str, Any]: A : Any = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(_UpperCAmelCase ) self.set_fail_transitions() def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : str ) -> Optional[Any]: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def SCREAMING_SNAKE_CASE__ ( self : int , __lowerCamelCase : str ) -> Tuple: A : Dict = 0 for character in keyword: A : int = self.find_next_state(_UpperCAmelCase , _UpperCAmelCase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) A : Union[str, Any] = len(self.adlist ) - 1 else: A : List[str] = next_state self.adlist[current_state]["output"].append(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[Any]: A : Optional[Any] = deque() for node in self.adlist[0]["next_states"]: q.append(_UpperCAmelCase ) A : Any = 0 while q: A : Optional[Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_UpperCAmelCase ) A : Dict = self.adlist[r]["fail_state"] while ( self.find_next_state(_UpperCAmelCase , self.adlist[child]["value"] ) is None and state != 0 ): A : Any = self.adlist[state]["fail_state"] A : List[str] = self.find_next_state( _UpperCAmelCase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: A : Union[str, Any] = 0 A : List[Any] = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : str ) -> List[Any]: A : Optional[int] = {} # returns a dict with keywords and list of its occurrences A : Optional[Any] = 0 for i in range(len(_UpperCAmelCase ) ): while ( self.find_next_state(_UpperCAmelCase , string[i] ) is None and current_state != 0 ): A : Any = self.adlist[current_state]["fail_state"] A : int = self.find_next_state(_UpperCAmelCase , string[i] ) if next_state is None: A : List[Any] = 0 else: A : List[str] = next_state for key in self.adlist[current_state]["output"]: if key not in result: A : int = [] result[key].append(i - len(_UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
367
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = ["image_processor", "tokenizer"] a__ = "BridgeTowerImageProcessor" a__ = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Any ) -> Optional[int]: super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Union[bool, str, TruncationStrategy] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : Dict , ) -> BatchEncoding: A : List[Any] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) # add pixel_values + pixel_mask A : List[Any] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , do_normalize=__lowerCamelCase , do_center_crop=__lowerCamelCase , **__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def SCREAMING_SNAKE_CASE__ ( self : int , *__lowerCamelCase : List[str] , **__lowerCamelCase : str ) -> List[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : str ) -> Any: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: A : Dict = self.tokenizer.model_input_names A : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
256
0
"""simple docstring""" lowerCAmelCase__ = '''Alexander Joslin''' import operator as op from .stack import Stack def snake_case_ ( A_ : str ): '''simple docstring''' _lowerCamelCase : Tuple = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} _lowerCamelCase : Stack[int] = Stack() _lowerCamelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(A_ ) ) elif i in operators: # RULE 2 operator_stack.push(A_ ) elif i == ")": # RULE 4 _lowerCamelCase : int = operator_stack.peek() operator_stack.pop() _lowerCamelCase : Dict = operand_stack.peek() operand_stack.pop() _lowerCamelCase : Any = operand_stack.peek() operand_stack.pop() _lowerCamelCase : Optional[int] = operators[opr](A_, A_ ) operand_stack.push(A_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCAmelCase__ = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
72
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A =input('Enter image url: ').strip() print(f"""Downloading image from {url} ...""") A =BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image A =soup.find('meta', {'property': 'og:image'})['content'] A =requests.get(image_url).content A =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
34
0
'''simple docstring''' lowerCAmelCase_ : List[str] = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase_ : Tuple = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase_ : Optional[int] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
364
'''simple docstring''' from maths.prime_check import is_prime def __A ( lowerCAmelCase_ ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = f"Input value of [number={number}] must be an integer" raise TypeError(lowerCAmelCase_ ) if is_prime(lowerCAmelCase_ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
170
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowercase ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self ,A__ ,A__ ,A__ ,A__ = 1.0 ,A__ = None ,): super().__init__() lowercase = initial_learning_rate lowercase = warmup_steps lowercase = power lowercase = decay_schedule_fn lowercase = name def __call__( self ,A__): with tf.name_scope(self.name or '''WarmUp''') as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowercase = tf.cast(A__ ,tf.floataa) lowercase = tf.cast(self.warmup_steps ,tf.floataa) lowercase = global_step_float / warmup_steps_float lowercase = self.initial_learning_rate * tf.math.pow(A__ ,self.power) return tf.cond( global_step_float < warmup_steps_float ,lambda: warmup_learning_rate ,lambda: self.decay_schedule_fn(step - self.warmup_steps) ,name=A__ ,) def A__ ( self): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 0.9 , lowerCAmelCase__ = 0.9_99 , lowerCAmelCase__ = 1E-8 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = None , ): '''simple docstring''' lowercase = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowerCAmelCase__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowerCAmelCase__ , ) if num_warmup_steps: lowercase = WarmUp( initial_learning_rate=lowerCAmelCase__ , decay_schedule_fn=lowerCAmelCase__ , warmup_steps=lowerCAmelCase__ , ) if weight_decay_rate > 0.0: lowercase = AdamWeightDecay( learning_rate=lowerCAmelCase__ , weight_decay_rate=lowerCAmelCase__ , beta_a=lowerCAmelCase__ , beta_a=lowerCAmelCase__ , epsilon=lowerCAmelCase__ , clipnorm=lowerCAmelCase__ , global_clipnorm=lowerCAmelCase__ , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=lowerCAmelCase__ , ) else: lowercase = tf.keras.optimizers.Adam( learning_rate=lowerCAmelCase__ , beta_a=lowerCAmelCase__ , beta_a=lowerCAmelCase__ , epsilon=lowerCAmelCase__ , clipnorm=lowerCAmelCase__ , global_clipnorm=lowerCAmelCase__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__ = 0.001 ,A__ = 0.9 ,A__ = 0.999 ,A__ = 1E-7 ,A__ = False ,A__ = 0.0 ,A__ = None ,A__ = None ,A__ = "AdamWeightDecay" ,**A__ ,): super().__init__(A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,**A__) lowercase = weight_decay_rate lowercase = include_in_weight_decay lowercase = exclude_from_weight_decay @classmethod def A__ ( cls ,A__): lowercase = {'''WarmUp''': WarmUp} return super(A__ ,cls).from_config(A__ ,custom_objects=A__) def A__ ( self ,A__ ,A__ ,A__): super(A__ ,self)._prepare_local(A__ ,A__ ,A__) lowercase = tf.constant( self.weight_decay_rate ,name='''adam_weight_decay_rate''') def A__ ( self ,A__ ,A__ ,A__): lowercase = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] ,use_locking=self._use_locking ,) return tf.no_op() def A__ ( self ,A__ ,A__=None ,**A__): lowercase , lowercase = list(zip(*A__)) return super(A__ ,self).apply_gradients(zip(A__ ,A__) ,name=A__ ,**A__) def A__ ( self ,A__ ,A__ ,A__): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowercase = apply_state or {} lowercase = apply_state.get((var_device, var_dtype)) if coefficients is None: lowercase = self._fallback_apply_state(A__ ,A__) lowercase = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def A__ ( self ,A__ ,A__ ,A__=None): lowercase , lowercase = self._get_lr(var.device ,var.dtype.base_dtype ,A__) lowercase = self._decay_weights_op(A__ ,A__ ,A__) with tf.control_dependencies([decay]): return super(A__ ,self)._resource_apply_dense(A__ ,A__ ,**A__) def A__ ( self ,A__ ,A__ ,A__ ,A__=None): lowercase , lowercase = self._get_lr(var.device ,var.dtype.base_dtype ,A__) lowercase = self._decay_weights_op(A__ ,A__ ,A__) with tf.control_dependencies([decay]): return super(A__ ,self)._resource_apply_sparse(A__ ,A__ ,A__ ,**A__) def A__ ( self): lowercase = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate}) return config def A__ ( self ,A__): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(A__ ,A__) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(A__ ,A__) is not None: return False return True class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self): lowercase = [] lowercase = None @property def A__ ( self): if self._accum_steps is None: lowercase = tf.Variable( tf.constant(0 ,dtype=tf.intaa) ,trainable=A__ ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,) return self._accum_steps.value() @property def A__ ( self): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''') return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self ,A__): if not self._gradients: lowercase = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(A__) ,trainable=A__ ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,) if gradient is not None else gradient for gradient in gradients ]) if len(A__) != len(self._gradients): raise ValueError(f'Expected {len(self._gradients)} gradients, but got {len(A__)}') for accum_gradient, gradient in zip(self._gradients ,A__): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(A__) self._accum_steps.assign_add(1) def A__ ( self): if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(A__))
101
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Tuple =ShapEPipeline lowercase_ : List[Any] =['''prompt'''] lowercase_ : int =['''prompt'''] lowercase_ : Union[str, Any] =[ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] lowercase_ : Optional[int] =False @property def A__ ( self): return 3_2 @property def A__ ( self): return 3_2 @property def A__ ( self): return self.time_input_dim * 4 @property def A__ ( self): return 8 @property def A__ ( self): lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') return tokenizer @property def A__ ( self): torch.manual_seed(0) lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) return CLIPTextModelWithProjection(A__) @property def A__ ( self): torch.manual_seed(0) lowercase = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_6, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 3_2, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase = PriorTransformer(**A__) return model @property def A__ ( self): torch.manual_seed(0) lowercase = { '''param_shapes''': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 1_2, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase = ShapERenderer(**A__) return model def A__ ( self): lowercase = self.dummy_prior lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_renderer lowercase = HeunDiscreteScheduler( beta_schedule='''exp''' ,num_train_timesteps=1_0_2_4 ,prediction_type='''sample''' ,use_karras_sigmas=A__ ,clip_sample=A__ ,clip_sample_range=1.0 ,) lowercase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 3_2, '''output_type''': '''np''', } return inputs def A__ ( self): lowercase = '''cpu''' lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**A__) lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = pipe(**self.get_dummy_inputs(A__)) lowercase = output.images[0] lowercase = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) lowercase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def A__ ( self): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def A__ ( self): lowercase = torch_device == '''cpu''' lowercase = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=A__ ,relax_max_difference=A__ ,) def A__ ( self): lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**A__) lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = 1 lowercase = 2 lowercase = self.get_dummy_inputs(A__) for key in inputs.keys(): if key in self.batch_params: lowercase = batch_size * [inputs[key]] lowercase = pipe(**A__ ,num_images_per_prompt=A__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''') lowercase = ShapEPipeline.from_pretrained('''openai/shap-e''') lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = torch.Generator(device=A__).manual_seed(0) lowercase = pipe( '''a shark''' ,generator=A__ ,guidance_scale=15.0 ,num_inference_steps=6_4 ,frame_size=6_4 ,output_type='''np''' ,).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(A__ ,A__)
101
1
"""simple docstring""" import os def lowerCAmelCase__ ( ) -> Optional[Any]: """simple docstring""" with open(os.path.dirname(_UpperCamelCase ) + '/grid.txt' ) as f: snake_case = [] # noqa: E741 for _ in range(2_0 ): l.append([int(_UpperCamelCase ) for x in f.readline().split()] ) snake_case = 0 # right for i in range(2_0 ): for j in range(1_7 ): snake_case = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case = temp # down for i in range(1_7 ): for j in range(2_0 ): snake_case = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case = temp # diagonal 1 for i in range(1_7 ): for j in range(1_7 ): snake_case = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case = temp # diagonal 2 for i in range(1_7 ): for j in range(3 , 2_0 ): snake_case = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case = temp return maximum if __name__ == "__main__": print(solution())
363
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_12 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope def snake_case ( self ): """simple docstring""" snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = ids_tensor([self.batch_size] , self.num_choices ) snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): """simple docstring""" snake_case = BioGptForCausalLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() # create attention mask snake_case = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase ) snake_case = self.seq_length // 2 snake_case = 0 # first forward pass snake_case ,snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case = ids_tensor((1,) , lowerCAmelCase ).item() + 1 snake_case = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case = random_other_next_tokens # append to next input_ids and attn_mask snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowerCAmelCase )] , dim=1 , ) # get two different outputs snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )['last_hidden_state'] snake_case = model(lowerCAmelCase , past_key_values=lowerCAmelCase , attention_mask=lowerCAmelCase )['last_hidden_state'] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -1, random_slice_idx].detach() snake_case = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(config=lowerCAmelCase ).to(lowerCAmelCase ).eval() snake_case = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase ) # first forward pass snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) snake_case ,snake_case = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )['last_hidden_state'] snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase )[ 'last_hidden_state' ] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase , lowerCAmelCase=False ): """simple docstring""" snake_case = BioGptForCausalLM(lowerCAmelCase ) model.to(lowerCAmelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case ( self , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(lowerCAmelCase ) snake_case = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = BioGptForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ): """simple docstring""" snake_case = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) = config_and_inputs snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : List[Any] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : str = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : str = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[str] = False def snake_case ( self ): """simple docstring""" snake_case = BioGptModelTester(self ) snake_case = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case = type self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowerCAmelCase , gradient_checkpointing=lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowerCAmelCase ) @slow def snake_case ( self ): """simple docstring""" snake_case = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(lowerCAmelCase ) snake_case = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) snake_case = 'left' # Define PAD Token = EOS Token = 50256 snake_case = tokenizer.eos_token snake_case = model.config.eos_token_id # use different length sentences to test batching snake_case = [ 'Hello, my dog is a little', 'Today, I', ] snake_case = tokenizer(lowerCAmelCase , return_tensors='pt' , padding=lowerCAmelCase ) snake_case = inputs['input_ids'].to(lowerCAmelCase ) snake_case = model.generate( input_ids=lowerCAmelCase , attention_mask=inputs['attention_mask'].to(lowerCAmelCase ) , ) snake_case = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(lowerCAmelCase ) snake_case = model.generate(input_ids=lowerCAmelCase ) snake_case = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() snake_case = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(lowerCAmelCase ) snake_case = model.generate(input_ids=lowerCAmelCase , max_length=model.config.max_length - num_paddings ) snake_case = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) snake_case = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase ) snake_case = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase ) snake_case = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case ( self ): """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = BioGptModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = 3 snake_case = input_dict['input_ids'] snake_case = input_ids.ne(1 ).to(lowerCAmelCase ) snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case = BioGptForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): """simple docstring""" snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = 3 snake_case = 'multi_label_classification' snake_case = input_dict['input_ids'] snake_case = input_ids.ne(1 ).to(lowerCAmelCase ) snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case = BioGptForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" snake_case = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) snake_case = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) snake_case = model(lowerCAmelCase )[0] snake_case = 4_23_84 snake_case = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase ) snake_case = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=1E-4 ) ) @slow def snake_case ( self ): """simple docstring""" snake_case = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) snake_case = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(lowerCAmelCase ) torch.manual_seed(0 ) snake_case = tokenizer('COVID-19 is' , return_tensors='pt' ).to(lowerCAmelCase ) snake_case = model.generate( **lowerCAmelCase , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=lowerCAmelCase , ) snake_case = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase ) snake_case = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(lowerCAmelCase , lowerCAmelCase )
149
0
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __UpperCAmelCase , unittest.TestCase): lowerCamelCase__ : str = GPTaTokenizer lowerCamelCase__ : Optional[Any] = GPTaTokenizerFast lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : int = {'''add_prefix_space''': True} lowerCamelCase__ : Optional[int] = False def _UpperCAmelCase ( self ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] lowercase__ : List[str] = dict(zip(a , range(len(a ) ) ) ) lowercase__ : List[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowercase__ : Any = {'unk_token': '<unk>'} lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a ) ) def _UpperCAmelCase ( self , **a ) -> str: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **a ) def _UpperCAmelCase ( self , **a ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **a ) def _UpperCAmelCase ( self , a ) -> Dict: lowercase__ : Dict = 'lower newer' lowercase__ : str = 'lower newer' return input_text, output_text def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : List[str] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : List[Any] = 'lower newer' lowercase__ : int = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowercase__ : Optional[Any] = tokenizer.tokenize(a , add_prefix_space=a ) self.assertListEqual(a , a ) lowercase__ : List[Any] = tokens + [tokenizer.unk_token] lowercase__ : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def _UpperCAmelCase ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return lowercase__ : Optional[int] = self.get_tokenizer() lowercase__ : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=a ) lowercase__ : Optional[Any] = 'lower newer' # Testing tokenization lowercase__ : Any = tokenizer.tokenize(a , add_prefix_space=a ) lowercase__ : Optional[Any] = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) # Testing conversion to ids without special tokens lowercase__ : int = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a ) lowercase__ : Tuple = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) # Testing conversion to ids with special tokens lowercase__ : List[str] = self.get_rust_tokenizer(add_prefix_space=a ) lowercase__ : int = tokenizer.encode(a , add_prefix_space=a ) lowercase__ : List[Any] = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) # Testing the unknown token lowercase__ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowercase__ : List[str] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a ) , a ) def _UpperCAmelCase ( self , *a , **a ) -> List[str]: pass def _UpperCAmelCase ( self , a=1_5 ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(a , **a ) # Simple input lowercase__ : Union[str, Any] = 'This is a simple input' lowercase__ : Optional[Any] = ['This is a simple input 1', 'This is a simple input 2'] lowercase__ : int = ('This is a simple input', 'This is a pair') lowercase__ : int = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(a , tokenizer_r.encode , a , max_length=a , padding='max_length' ) # Simple input self.assertRaises(a , tokenizer_r.encode_plus , a , max_length=a , padding='max_length' ) # Simple input self.assertRaises( a , tokenizer_r.batch_encode_plus , a , max_length=a , padding='max_length' , ) # Pair input self.assertRaises(a , tokenizer_r.encode , a , max_length=a , padding='max_length' ) # Pair input self.assertRaises(a , tokenizer_r.encode_plus , a , max_length=a , padding='max_length' ) # Pair input self.assertRaises( a , tokenizer_r.batch_encode_plus , a , max_length=a , padding='max_length' , ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Tuple = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input lowercase__ : Tuple = 'This is a simple input' lowercase__ : Optional[Any] = ['This is a simple input looooooooong', 'This is a simple input'] lowercase__ : Any = ('This is a simple input', 'This is a pair') lowercase__ : List[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] lowercase__ : Optional[int] = tokenizer.pad_token_id lowercase__ : Dict = tokenizer(a , padding='max_length' , max_length=3_0 , return_tensors='np' ) lowercase__ : str = tokenizer(a , padding=a , truncate=a , return_tensors='np' ) lowercase__ : str = tokenizer(*a , padding='max_length' , max_length=6_0 , return_tensors='np' ) lowercase__ : Any = tokenizer(a , padding=a , truncate=a , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Any = '$$$' lowercase__ : int = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=a , add_bos_token=a ) lowercase__ : List[Any] = 'This is a simple input' lowercase__ : List[Any] = ['This is a simple input 1', 'This is a simple input 2'] lowercase__ : Union[str, Any] = tokenizer.bos_token_id lowercase__ : List[str] = tokenizer(a ) lowercase__ : Union[str, Any] = tokenizer(a ) self.assertEqual(out_s.input_ids[0] , a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowercase__ : str = tokenizer.decode(out_s.input_ids ) lowercase__ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : str = [self.get_tokenizer(do_lower_case=a , add_bos_token=a )] for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowercase__ : Optional[int] = 'Encode this.' lowercase__ : Optional[int] = 'This one too please.' lowercase__ : Optional[Any] = tokenizer.encode(a , add_special_tokens=a ) encoded_sequence += tokenizer.encode(a , add_special_tokens=a ) lowercase__ : Optional[int] = tokenizer.encode_plus( a , a , add_special_tokens=a , return_special_tokens_mask=a , ) lowercase__ : Any = encoded_sequence_dict['input_ids'] lowercase__ : int = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(a ) , len(a ) ) lowercase__ : Optional[Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(a ) ] lowercase__ : Tuple = [x for x in filtered_sequence if x is not None] self.assertEqual(a , a ) @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=a ) lowercase__ : int = 'A photo of a cat' lowercase__ : List[Any] = tokenizer.encode( a , ) self.assertEqual(a , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('test_opt' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('./test_opt' ) lowercase__ : Optional[Any] = tokenizer.encode( a , ) self.assertEqual(a , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Any = AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=a ) lowercase__ : str = 'A photo of a cat' lowercase__ : Tuple = tokenizer.encode( a , ) # Same as above self.assertEqual(a , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : List[str] = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=a ) lowercase__ : Tuple = 'bos' lowercase__ : Tuple = tokenizer.get_vocab()['bos'] lowercase__ : Dict = 'A photo of a cat' lowercase__ : Optional[int] = tokenizer.encode( a , ) # We changed the bos token self.assertEqual(a , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('./tok' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) lowercase__ : List[Any] = tokenizer.encode( a , ) self.assertEqual(a , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
77
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
99
0
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowercase : Optional[List[str]] = None _lowercase : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowercase : Optional[int] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __magic_name__ : UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = "PIL.Image.Image" UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : Tuple ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowercase_ , lowercase_ ): lowercase_ : int = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase_ : Union[str, Any] = {} lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase_ ): lowercase_ : int = PIL.Image.open(lowercase_ ) else: lowercase_ : str = path.split("""::""" )[-1] try: lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ ) except ValueError: lowercase_ : str = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Dict = BytesIO(f.read() ) lowercase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE_ ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Dict = storage.field("""path""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase_ : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : Optional[Any] ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : int = f.read() return bytes_ lowercase_ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes: lowercase_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): lowercase_ : int = image.format else: lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__ ) return buffer.getvalue() def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict: if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase_ : List[Any] = array.dtype lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase_ : Dict = dtype.kind lowercase_ : List[Any] = dtype.itemsize lowercase_ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] else: return objs else: return objs
21
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
21
1
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a_ : Optional[int] = logging.get_logger(__name__) a_ : Optional[int] = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class snake_case : """simple docstring""" def __init__( self , UpperCamelCase=None , **UpperCamelCase ): """simple docstring""" logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) lowerCamelCase_ = model lowerCamelCase_ = kwargs.get("model_save_dir" , UpperCamelCase ) lowerCamelCase_ = kwargs.get("latest_model_name" , UpperCamelCase ) def __call__( self , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = {k: np.array(UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase , UpperCamelCase ) @staticmethod def snake_case ( UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None ): """simple docstring""" if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) lowerCamelCase_ = "CPUExecutionProvider" return ort.InferenceSession(UpperCamelCase , providers=[provider] , sess_options=UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase = None , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowerCamelCase_ = self.model_save_dir.joinpath(self.latest_model_name ) lowerCamelCase_ = Path(UpperCamelCase ).joinpath(UpperCamelCase ) try: shutil.copyfile(UpperCamelCase , UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowerCamelCase_ = self.model_save_dir.joinpath(UpperCamelCase ) if src_path.exists(): lowerCamelCase_ = Path(UpperCamelCase ).joinpath(UpperCamelCase ) try: shutil.copyfile(UpperCamelCase , UpperCamelCase ) except shutil.SameFileError: pass def snake_case ( self , UpperCamelCase , **UpperCamelCase , ): """simple docstring""" if os.path.isfile(UpperCamelCase ): logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) # saving model weights/files self._save_pretrained(UpperCamelCase , **UpperCamelCase ) @classmethod def snake_case ( cls , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase ): lowerCamelCase_ = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase , UpperCamelCase ) , provider=UpperCamelCase , sess_options=UpperCamelCase ) lowerCamelCase_ = Path(UpperCamelCase ) # load model from hub else: # download model lowerCamelCase_ = hf_hub_download( repo_id=UpperCamelCase , filename=UpperCamelCase , use_auth_token=UpperCamelCase , revision=UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , ) lowerCamelCase_ = Path(UpperCamelCase ).parent lowerCamelCase_ = Path(UpperCamelCase ).name lowerCamelCase_ = OnnxRuntimeModel.load_model(UpperCamelCase , provider=UpperCamelCase , sess_options=UpperCamelCase ) return cls(model=UpperCamelCase , **UpperCamelCase ) @classmethod def snake_case ( cls , UpperCamelCase , UpperCamelCase = True , UpperCamelCase = None , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = None if len(str(UpperCamelCase ).split("@" ) ) == 2: lowerCamelCase_ ,lowerCamelCase_ = model_id.split("@" ) return cls._from_pretrained( model_id=UpperCamelCase , revision=UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , use_auth_token=UpperCamelCase , **UpperCamelCase , )
55
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( _lowercase): def __init__( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str]=13 , __UpperCamelCase : str=7 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : int=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : Dict=32 , __UpperCamelCase : int=5 , __UpperCamelCase : str=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=512 , __UpperCamelCase : List[str]=16 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : str=False , __UpperCamelCase : Dict=True , __UpperCamelCase : Tuple="None" , __UpperCamelCase : Dict=3 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Any=None , ) -> Tuple: _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = relative_attention _UpperCamelCase = position_biased_input _UpperCamelCase = pos_att_type _UpperCamelCase = scope def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: _UpperCamelCase = self.get_config() _UpperCamelCase = 300 return config def _UpperCamelCase ( self : int , __UpperCamelCase : List[Any] ) -> str: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _UpperCamelCase ( self : Any , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] ) -> List[str]: _UpperCamelCase = DebertaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase )[0] _UpperCamelCase = model(__UpperCamelCase , token_type_ids=__UpperCamelCase )[0] _UpperCamelCase = model(__UpperCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[int] ) -> Tuple: _UpperCamelCase = DebertaForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple ) -> List[Any]: _UpperCamelCase = self.num_labels _UpperCamelCase = DebertaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str ) -> Dict: _UpperCamelCase = self.num_labels _UpperCamelCase = DebertaForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ) -> List[Any]: _UpperCamelCase = DebertaForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : Any ) -> Union[str, Any]: _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase): snake_case__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = True snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: _UpperCamelCase = DebertaModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def _UpperCamelCase ( self : Optional[int] ) -> int: self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ) -> List[str]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCamelCase ) def _UpperCamelCase ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCamelCase ) def _UpperCamelCase ( self : Dict ) -> Tuple: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCamelCase ) @slow def _UpperCamelCase ( self : Any ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = DebertaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): @unittest.skip(reason='''Model not available yet''' ) def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: pass @slow def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) _UpperCamelCase = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] # compare the actual values for a slice. _UpperCamelCase = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1E-4 ) , F'''{output[:, 1:4, 1:4]}''' )
256
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '▁' __A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __A = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __A = {'vinai/bartpho-syllable': 1024} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =vocab_file _lowerCAmelCase =monolingual_vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowerCAmelCase ={} _lowerCAmelCase =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =cnt cnt += 1 with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _lowerCAmelCase =line.strip().split()[0] _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) _lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None _lowerCAmelCase =self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] _lowerCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: return self.fairseq_ids_to_tokens[index] def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__UpperCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
341
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '▁' __A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __A = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __A = {'vinai/bartpho-syllable': 1024} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =vocab_file _lowerCAmelCase =monolingual_vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowerCAmelCase ={} _lowerCAmelCase =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =cnt cnt += 1 with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _lowerCAmelCase =line.strip().split()[0] _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) _lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None _lowerCAmelCase =self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] _lowerCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: return self.fairseq_ids_to_tokens[index] def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__UpperCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
341
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Optional[int] = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( A__ ): '''simple docstring''' __lowerCamelCase : Tuple = "autoformer" __lowerCamelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = "student_t", lowerCamelCase__ = "nll", lowerCamelCase__ = 1, lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7], lowerCamelCase__ = True, lowerCamelCase__ = 0, lowerCamelCase__ = 0, lowerCamelCase__ = 0, lowerCamelCase__ = 0, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = 64, lowerCamelCase__ = 2, lowerCamelCase__ = 2, lowerCamelCase__ = 2, lowerCamelCase__ = 2, lowerCamelCase__ = 32, lowerCamelCase__ = 32, lowerCamelCase__ = "gelu", lowerCamelCase__ = 0.1, lowerCamelCase__ = 0.1, lowerCamelCase__ = 0.1, lowerCamelCase__ = 0.1, lowerCamelCase__ = 0.1, lowerCamelCase__ = 100, lowerCamelCase__ = 0.02, lowerCamelCase__ = True, lowerCamelCase__=True, lowerCamelCase__ = 10, lowerCamelCase__ = 25, lowerCamelCase__ = 3, **lowerCamelCase__, ): A : Union[str, Any] = prediction_length A : Union[str, Any] = context_length if context_length is not None else prediction_length A : Union[str, Any] = distribution_output A : List[Any] = loss A : Optional[int] = input_size A : Dict = num_time_features A : Optional[int] = lags_sequence A : Any = scaling A : Union[str, Any] = num_dynamic_real_features A : Tuple = num_static_real_features A : Any = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) A : Optional[int] = cardinality else: A : str = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) A : List[Any] = embedding_dimension else: A : Dict = [min(50, (cat + 1) // 2 ) for cat in self.cardinality] A : Any = num_parallel_samples # Transformer architecture configuration A : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features A : Any = d_model A : Optional[int] = encoder_attention_heads A : Optional[int] = decoder_attention_heads A : List[Any] = encoder_ffn_dim A : Optional[int] = decoder_ffn_dim A : Tuple = encoder_layers A : Optional[int] = decoder_layers A : Optional[Any] = dropout A : str = attention_dropout A : str = activation_dropout A : str = encoder_layerdrop A : Union[str, Any] = decoder_layerdrop A : Optional[Any] = activation_function A : List[Any] = init_std A : Optional[int] = use_cache # Autoformer A : Any = label_length A : Union[str, Any] = moving_average A : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=__lowercase, **__lowercase ) @property def _lowerCAmelCase ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
116
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : int =logging.get_logger(__name__) _lowercase : Union[str, Any] ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _lowercase : Dict ={ "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } _lowercase : Any ={"facebook/blenderbot_small-90M": 512} def lowerCAmelCase_ ( _lowercase : Any) -> Optional[Any]: """simple docstring""" a__ : List[str] = set() a__ : int = word[0] for char in word[1:]: pairs.add((prev_char, char)) a__ : Optional[Any] = char a__ : Tuple = set(_lowercase) return pairs class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :List[Any] = VOCAB_FILES_NAMES __lowerCAmelCase :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase :Any = ["input_ids", "attention_mask"] def __init__( self , __lowercase , __lowercase , __lowercase="__start__" , __lowercase="__end__" , __lowercase="__unk__" , __lowercase="__null__" , **__lowercase , ) -> Optional[Any]: """simple docstring""" super().__init__(unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , **__lowercase ) with open(__lowercase , encoding="""utf-8""" ) as vocab_handle: a__ : Optional[int] = json.load(__lowercase ) a__ : str = {v: k for k, v in self.encoder.items()} with open(__lowercase , encoding="""utf-8""" ) as merges_handle: a__ : Any = merges_handle.read().split("""\n""" )[1:-1] a__ : Optional[Any] = [tuple(merge.split() ) for merge in merges] a__ : Dict = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) a__ : Dict = {} @property def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" return len(self.encoder ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] a__ : Any = re.sub("""([.,!?()])""" , r""" \1""" , __lowercase ) a__ : int = re.sub("""(')""" , r""" \1 """ , __lowercase ) a__ : Tuple = re.sub(r"""\s{2,}""" , """ """ , __lowercase ) if "\n" in token: a__ : Union[str, Any] = token.replace("""\n""" , """ __newln__""" ) a__ : Optional[int] = token.split(""" """ ) a__ : Union[str, Any] = [] for token in tokens: if not len(__lowercase ): continue a__ : Union[str, Any] = token.lower() a__ : List[Any] = tuple(__lowercase ) a__ : Optional[int] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) a__ : Any = get_pairs(__lowercase ) if not pairs: words.append(__lowercase ) continue while True: a__ : Optional[int] = min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ : str = bigram a__ : str = [] a__ : Optional[Any] = 0 while i < len(__lowercase ): try: a__ : Tuple = word.index(__lowercase , __lowercase ) new_word.extend(word[i:j] ) a__ : Optional[Any] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ : List[Any] = tuple(__lowercase ) a__ : Any = new_word if len(__lowercase ) == 1: break else: a__ : Optional[int] = get_pairs(__lowercase ) a__ : List[Any] = """@@ """.join(__lowercase ) a__ : Optional[Any] = word[:-4] a__ : Any = word words.append(__lowercase ) return " ".join(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[str]: """simple docstring""" a__ : Dict = [] a__ : Optional[Any] = re.findall(r"""\S+\n?""" , __lowercase ) for token in words: split_tokens.extend(list(self.bpe(__lowercase ).split(""" """ ) ) ) return split_tokens def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int: """simple docstring""" a__ : Tuple = token.lower() return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" return self.decoder.get(__lowercase , self.unk_token ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" a__ : int = """ """.join(__lowercase ).replace("""@@ """ , """""" ).strip() return out_string def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : Dict = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) a__ : List[Any] = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + """\n""" ) a__ : List[str] = 0 with open(__lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) a__ : Optional[int] = token_index writer.write(""" """.join(__lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file
170
0
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging A_ : Dict = logging.get_logger(__name__) def UpperCamelCase (lowercase_: List[str] , lowercase_: int ) -> Dict: try: with open(lowercase_ , """rb""" ) as flax_state_f: A__ : Optional[Any] = from_bytes(lowercase_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowercase_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(lowercase_ , lowercase_ ) def UpperCamelCase (lowercase_: Any , lowercase_: Dict ) -> Optional[int]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights A__ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda lowercase_ : x.dtype == jnp.bfloataa , lowercase_ ) ).values() if any(lowercase_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) A__ : Union[str, Any] = jax.tree_util.tree_map( lambda lowercase_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowercase_ ) A__ : str = """""" A__ : Tuple = flatten_dict(lowercase_ , sep=""".""" ) A__ : Dict = pt_model.state_dict() # keep track of unexpected & missing keys A__ : int = [] A__ : List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A__ : Tuple = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A__ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] A__ : Tuple = jnp.transpose(lowercase_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A__ : int = flax_key_tuple_array[:-1] + ["""weight"""] A__ : str = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A__ : List[str] = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowercase_ ): A__ : List[Any] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) A__ : Optional[int] = """.""".join(lowercase_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict A__ : Tuple = np.asarray(lowercase_ ) if not isinstance(lowercase_ , np.ndarray ) else flax_tensor A__ : Tuple = torch.from_numpy(lowercase_ ) # remove from missing keys missing_keys.remove(lowercase_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowercase_ ) pt_model.load_state_dict(lowercase_ ) # re-transform missing_keys to list A__ : str = list(lowercase_ ) if len(lowercase_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(lowercase_ ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) return pt_model
353
from queue import PriorityQueue from typing import Any import numpy as np def UpperCamelCase (lowercase_: dict , lowercase_: str , lowercase_: set , lowercase_: set , lowercase_: dict , lowercase_: dict , lowercase_: PriorityQueue , lowercase_: dict , lowercase_: float | int , ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A__ : Any = cst_fwd.get(lowercase_ , np.inf ) A__ : List[Any] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A__ : Tuple = new_cost_f A__ : Any = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A__ : Optional[int] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCamelCase (lowercase_: str , lowercase_: str , lowercase_: dict , lowercase_: dict ) -> int: A__ : Dict = -1 A__ : List[Any] = set() A__ : Union[str, Any] = set() A__ : Optional[Any] = {source: 0} A__ : int = {destination: 0} A__ : Optional[Any] = {source: None} A__ : Union[str, Any] = {destination: None} A__ : PriorityQueue[Any] = PriorityQueue() A__ : PriorityQueue[Any] = PriorityQueue() A__ : List[Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A__ , A__ : Tuple = queue_forward.get() visited_forward.add(lowercase_ ) A__ , A__ : Optional[Any] = queue_backward.get() visited_backward.add(lowercase_ ) A__ : List[Any] = pass_and_relaxation( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) A__ : List[Any] = pass_and_relaxation( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A__ : int = shortest_distance return shortest_path_distance A_ : List[Any] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } A_ : Optional[int] = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
141
0
from __future__ import annotations def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : List[str] = [True] * limit __snake_case : Any = False __snake_case : Any = False __snake_case : Optional[int] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __snake_case : str = i * 2 while index < limit: __snake_case : Dict = False __snake_case : Union[str, Any] = index + i __snake_case : str = [2] for i in range(3 , A_ , 2 ): if is_prime[i]: primes.append(A_ ) return primes def lowerCAmelCase_ ( __lowerCamelCase = 1_0_0_0_0_0_0 ): __snake_case : List[str] = prime_sieve(A_ ) __snake_case : List[Any] = 0 __snake_case : List[str] = 0 for i in range(len(A_ ) ): for j in range(i + length , len(A_ ) ): __snake_case : List[Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __snake_case : List[Any] = j - i __snake_case : List[str] = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
123
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__: str = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: List[str] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Tuple = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: str = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys A__: Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
149
0
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __magic_name__ ( __UpperCAmelCase ): def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(snake_case__ , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(snake_case__ , '''num_encoder_blocks''' ) ) class __magic_name__ : def __init__( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=1_3 , snake_case__ : int=6_4 , snake_case__ : List[str]=3 , snake_case__ : Union[str, Any]=4 , snake_case__ : Optional[Any]=[2, 2, 2, 2] , snake_case__ : Optional[Any]=[8, 4, 2, 1] , snake_case__ : List[str]=[1_6, 3_2, 6_4, 1_2_8] , snake_case__ : str=[1, 4, 8, 1_6] , snake_case__ : int=[1, 2, 4, 8] , snake_case__ : int=True , snake_case__ : Any=True , snake_case__ : int="gelu" , snake_case__ : Optional[Any]=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Union[str, Any]=0.02 , snake_case__ : Dict=3 , snake_case__ : int=None , ): '''simple docstring''' lowercase :int = parent lowercase :int = batch_size lowercase :Any = image_size lowercase :Union[str, Any] = num_channels lowercase :int = num_encoder_blocks lowercase :Optional[Any] = sr_ratios lowercase :Tuple = depths lowercase :List[str] = hidden_sizes lowercase :List[str] = downsampling_rates lowercase :Union[str, Any] = num_attention_heads lowercase :Any = is_training lowercase :Any = use_labels lowercase :List[Any] = hidden_act lowercase :Union[str, Any] = hidden_dropout_prob lowercase :Dict = attention_probs_dropout_prob lowercase :List[str] = initializer_range lowercase :str = num_labels lowercase :Dict = scope def __snake_case ( self : str ): '''simple docstring''' lowercase :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase :List[str] = None if self.use_labels: lowercase :List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase :Dict = self.get_config() return config, pixel_values, labels def __snake_case ( self : List[str] ): '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __snake_case ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : List[str] ): '''simple docstring''' lowercase :Dict = SegformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Dict = model(snake_case__ ) lowercase :Dict = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def __snake_case ( self : Any , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : List[Any] ): '''simple docstring''' lowercase :Optional[Any] = self.num_labels lowercase :List[Any] = SegformerForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowercase :Optional[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def __snake_case ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : List[str] ): '''simple docstring''' lowercase :Optional[Any] = 1 lowercase :int = SegformerForSemanticSegmentation(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Optional[int] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(snake_case__ ) lowercase :Union[str, Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertGreater(result.loss , 0.0 ) def __snake_case ( self : int ): '''simple docstring''' lowercase :Any = self.prepare_config_and_inputs() lowercase , lowercase , lowercase :Tuple = config_and_inputs lowercase :Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : Tuple = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __A : Optional[Any] = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __A : List[str] = True __A : Union[str, Any] = False __A : Union[str, Any] = False __A : Dict = False def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :List[str] = SegformerModelTester(self ) lowercase :Any = SegformerConfigTester(self , config_class=snake_case__ ) def __snake_case ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*snake_case__ ) def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*snake_case__ ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def __snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def __snake_case ( self : Dict ): '''simple docstring''' pass def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase , lowercase :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :str = model_class(snake_case__ ) lowercase :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase :Any = [*signature.parameters.keys()] lowercase :Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case__ ) def __snake_case ( self : Tuple ): '''simple docstring''' lowercase , lowercase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase :Dict = True for model_class in self.all_model_classes: lowercase :List[Any] = True lowercase :int = False lowercase :int = True lowercase :List[str] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowercase :Dict = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowercase :Any = outputs.attentions lowercase :Optional[Any] = sum(self.model_tester.depths ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase :Optional[int] = True lowercase :Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowercase :Dict = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowercase :Tuple = outputs.attentions self.assertEqual(len(snake_case__ ) , snake_case__ ) # verify the first attentions (first block, first layer) lowercase :Tuple = (self.model_tester.image_size // 4) ** 2 lowercase :Tuple = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) lowercase :int = (self.model_tester.image_size // 3_2) ** 2 lowercase :List[Any] = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) lowercase :Any = len(snake_case__ ) # Check attention is always last and order is fine lowercase :Tuple = True lowercase :List[Any] = True lowercase :Any = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowercase :str = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) self.assertEqual(out_len + 1 , len(snake_case__ ) ) lowercase :Optional[Any] = outputs.attentions self.assertEqual(len(snake_case__ ) , snake_case__ ) # verify the first attentions (first block, first layer) lowercase :Optional[Any] = (self.model_tester.image_size // 4) ** 2 lowercase :List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __snake_case ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : List[Any] ): lowercase :List[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowercase :str = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowercase :Any = outputs.hidden_states lowercase :List[str] = self.model_tester.num_encoder_blocks self.assertEqual(len(snake_case__ ) , snake_case__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowercase , lowercase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :str = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase :str = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def __snake_case ( self : Tuple ): '''simple docstring''' if not self.model_tester.is_training: return lowercase , lowercase :Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase :str = True for model_class in self.all_model_classes: if model_class in get_values(snake_case__ ): continue lowercase :Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowercase :Union[str, Any] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowercase :Any = model(**snake_case__ ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __snake_case ( self : Dict ): '''simple docstring''' pass @slow def __snake_case ( self : Optional[int] ): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase :Union[str, Any] = SegformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowerCamelCase () -> Dict: lowercase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :Dict = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=snake_case__ , align=snake_case__ , do_random_crop=snake_case__ ) lowercase :Dict = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( snake_case__ ) lowercase :str = prepare_img() lowercase :int = image_processor(images=snake_case__ , return_tensors='''pt''' ) lowercase :Optional[Any] = encoded_inputs.pixel_values.to(snake_case__ ) with torch.no_grad(): lowercase :List[Any] = model(snake_case__ ) lowercase :str = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowercase :List[Any] = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :Dict = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=snake_case__ , align=snake_case__ , do_random_crop=snake_case__ ) lowercase :Any = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(snake_case__ ) lowercase :List[str] = prepare_img() lowercase :str = image_processor(images=snake_case__ , return_tensors='''pt''' ) lowercase :Tuple = encoded_inputs.pixel_values.to(snake_case__ ) with torch.no_grad(): lowercase :Any = model(snake_case__ ) lowercase :Optional[int] = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowercase :Tuple = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , snake_case__ , atol=1e-1 ) ) @slow def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :int = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=snake_case__ , align=snake_case__ , do_random_crop=snake_case__ ) lowercase :Tuple = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( snake_case__ ) lowercase :Optional[Any] = prepare_img() lowercase :Optional[int] = image_processor(images=snake_case__ , return_tensors='''pt''' ) lowercase :Dict = encoded_inputs.pixel_values.to(snake_case__ ) with torch.no_grad(): lowercase :Tuple = model(snake_case__ ) lowercase :Optional[int] = outputs.logits.detach().cpu() lowercase :int = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] ) lowercase :str = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case__ ) lowercase :int = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) lowercase :str = torch.Size((1_2_8, 1_2_8) ) self.assertEqual(segmentation[0].shape , snake_case__ )
172
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase (a_ :str , a_ :str) -> str | Literal[False]: lowercase :Union[str, Any] = list(a_) lowercase :Optional[Any] = list(a_) lowercase :str = 0 for i in range(len(a_)): if lista[i] != lista[i]: count += 1 lowercase :str = '''_''' if count > 1: return False else: return "".join(a_) def lowerCamelCase (a_ :list[str]) -> list[str]: lowercase :Optional[Any] = [] while True: lowercase :Tuple = ['''$'''] * len(a_) lowercase :Tuple = [] for i in range(len(a_)): for j in range(i + 1 , len(a_)): lowercase :Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowercase :Tuple = '''*''' lowercase :Any = '''*''' temp.append('''X''') for i in range(len(a_)): if checka[i] == "$": pi.append(binary[i]) if len(a_) == 0: return pi lowercase :str = list(set(a_)) def lowerCamelCase (a_ :int , a_ :Sequence[float]) -> list[str]: lowercase :Optional[int] = [] for minterm in minterms: lowercase :List[str] = '''''' for _ in range(a_): lowercase :List[str] = str(minterm % 2) + string minterm //= 2 temp.append(a_) return temp def lowerCamelCase (a_ :str , a_ :str , a_ :int) -> bool: lowercase :int = list(a_) lowercase :str = list(a_) lowercase :List[str] = 0 for i in range(len(a_)): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase (a_ :list[list[int]] , a_ :list[str]) -> list[str]: lowercase :Any = [] lowercase :List[Any] = [0] * len(a_) for i in range(len(chart[0])): lowercase :List[Any] = 0 lowercase :int = -1 for j in range(len(a_)): if chart[j][i] == 1: count += 1 lowercase :List[Any] = j if count == 1: lowercase :Tuple = 1 for i in range(len(a_)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(a_)): lowercase :List[str] = 0 temp.append(prime_implicants[i]) while True: lowercase :Tuple = 0 lowercase :Dict = -1 lowercase :int = 0 for i in range(len(a_)): lowercase :List[Any] = chart[i].count(1) if count_n > max_n: lowercase :List[Any] = count_n lowercase :int = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(a_)): lowercase :Tuple = 0 def lowerCamelCase (a_ :list[str] , a_ :list[str]) -> list[list[int]]: lowercase :Dict = [[0 for x in range(len(a_))] for x in range(len(a_))] for i in range(len(a_)): lowercase :Any = prime_implicants[i].count('''_''') for j in range(len(a_)): if is_for_table(prime_implicants[i] , binary[j] , a_): lowercase :int = 1 return chart def lowerCamelCase () -> None: lowercase :int = int(input('''Enter the no. of variables\n''')) lowercase :Tuple = [ float(a_) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''').split() ] lowercase :Dict = decimal_to_binary(a_ , a_) lowercase :List[Any] = check(a_) print('''Prime Implicants are:''') print(a_) lowercase :Union[str, Any] = prime_implicant_chart(a_ , a_) lowercase :Dict = selection(a_ , a_) print('''Essential Prime Implicants are:''') print(a_) if __name__ == "__main__": import doctest doctest.testmod() main()
172
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: def get_masked_lm_array(lowerCamelCase_ ): _lowercase : str = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _lowercase : Dict = tf.train.load_variable(lowerCamelCase_ , lowerCamelCase_ ) if "kernel" in name: _lowercase : Any = array.transpose() return torch.from_numpy(lowerCamelCase_ ) def get_encoder_array(lowerCamelCase_ ): _lowercase : Dict = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _lowercase : Union[str, Any] = tf.train.load_variable(lowerCamelCase_ , lowerCamelCase_ ) if "kernel" in name: _lowercase : Optional[Any] = array.transpose() return torch.from_numpy(lowerCamelCase_ ) def get_encoder_layer_array(lowerCamelCase_ , lowerCamelCase_ ): _lowercase : Optional[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _lowercase : Optional[int] = tf.train.load_variable(lowerCamelCase_ , lowerCamelCase_ ) if "kernel" in name: _lowercase : Union[str, Any] = array.transpose() return torch.from_numpy(lowerCamelCase_ ) def get_encoder_attention_layer_array(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): _lowercase : List[str] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _lowercase : Tuple = tf.train.load_variable(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Union[str, Any] = array.reshape(lowerCamelCase_ ) if "kernel" in name: _lowercase : Tuple = array.transpose() return torch.from_numpy(lowerCamelCase_ ) print(F'''Loading model based on config from {config_path}...''' ) _lowercase : List[Any] = BertConfig.from_json_file(lowerCamelCase_ ) _lowercase : Optional[Any] = BertForMaskedLM(lowerCamelCase_ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _lowercase : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention _lowercase : BertSelfAttention = layer.attention.self _lowercase : Optional[Any] = get_encoder_attention_layer_array( lowerCamelCase_ , '_query_dense/kernel' , self_attn.query.weight.data.shape ) _lowercase : Any = get_encoder_attention_layer_array( lowerCamelCase_ , '_query_dense/bias' , self_attn.query.bias.data.shape ) _lowercase : Tuple = get_encoder_attention_layer_array( lowerCamelCase_ , '_key_dense/kernel' , self_attn.key.weight.data.shape ) _lowercase : Tuple = get_encoder_attention_layer_array( lowerCamelCase_ , '_key_dense/bias' , self_attn.key.bias.data.shape ) _lowercase : str = get_encoder_attention_layer_array( lowerCamelCase_ , '_value_dense/kernel' , self_attn.value.weight.data.shape ) _lowercase : Optional[int] = get_encoder_attention_layer_array( lowerCamelCase_ , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output _lowercase : BertSelfOutput = layer.attention.output _lowercase : Tuple = get_encoder_attention_layer_array( lowerCamelCase_ , '_output_dense/kernel' , self_output.dense.weight.data.shape ) _lowercase : List[Any] = get_encoder_attention_layer_array( lowerCamelCase_ , '_output_dense/bias' , self_output.dense.bias.data.shape ) _lowercase : Optional[int] = get_encoder_layer_array(lowerCamelCase_ , '_attention_layer_norm/gamma' ) _lowercase : Union[str, Any] = get_encoder_layer_array(lowerCamelCase_ , '_attention_layer_norm/beta' ) # Intermediate _lowercase : BertIntermediate = layer.intermediate _lowercase : List[str] = get_encoder_layer_array(lowerCamelCase_ , '_intermediate_dense/kernel' ) _lowercase : List[str] = get_encoder_layer_array(lowerCamelCase_ , '_intermediate_dense/bias' ) # Output _lowercase : BertOutput = layer.output _lowercase : List[Any] = get_encoder_layer_array(lowerCamelCase_ , '_output_dense/kernel' ) _lowercase : Tuple = get_encoder_layer_array(lowerCamelCase_ , '_output_dense/bias' ) _lowercase : Optional[Any] = get_encoder_layer_array(lowerCamelCase_ , '_output_layer_norm/gamma' ) _lowercase : Tuple = get_encoder_layer_array(lowerCamelCase_ , '_output_layer_norm/beta' ) # Embeddings _lowercase : Union[str, Any] = get_encoder_array('_position_embedding_layer/embeddings' ) _lowercase : Any = get_encoder_array('_type_embedding_layer/embeddings' ) _lowercase : str = get_encoder_array('_embedding_norm_layer/gamma' ) _lowercase : List[str] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head _lowercase : Any = model.cls.predictions.transform _lowercase : Dict = get_masked_lm_array('dense/kernel' ) _lowercase : List[Any] = get_masked_lm_array('dense/bias' ) _lowercase : str = get_masked_lm_array('layer_norm/gamma' ) _lowercase : str = get_masked_lm_array('layer_norm/beta' ) _lowercase : Union[str, Any] = get_masked_lm_array('embedding_table' ) # Pooling _lowercase : List[Any] = BertPooler(config=lowerCamelCase_ ) _lowercase : BertPooler = get_encoder_array('_pooler_layer/kernel' ) _lowercase : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(lowerCamelCase_ ) # Integration test - should load without any errors ;) _lowercase : Dict = BertForMaskedLM.from_pretrained(lowerCamelCase_ ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
21
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class _lowerCamelCase: def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase ( self) -> str: """simple docstring""" pass def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = np.abs((a - b)).max() self.assertLessEqual(lowerCamelCase, lowerCamelCase, F'''Difference between torch and flax is {diff} (>= {tol}).''') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Any = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : str = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : Tuple = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase) _lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : Tuple = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : str = after_output[0] _lowercase : Optional[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-3) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> str: """simple docstring""" _lowercase , _lowercase : Any = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : Tuple = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : int = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : Optional[Any] = to_atuple(vision_model.config.image_size) _lowercase : Any = to_atuple(vision_model.config.patch_size) _lowercase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : List[str] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" pt_model.to(lowerCamelCase) pt_model.eval() # prepare inputs _lowercase : Any = inputs_dict _lowercase : Optional[int] = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): _lowercase : Tuple = pt_model(**lowerCamelCase).to_tuple() _lowercase : Any = fx_model(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_pt=lowerCamelCase) _lowercase : List[Any] = fx_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase) _lowercase : List[Any] = VisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_flax=lowerCamelCase) pt_model_loaded.to(lowerCamelCase) pt_model_loaded.eval() with torch.no_grad(): _lowercase : Optional[Any] = pt_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(lowerCamelCase, pt_output_loaded.numpy(), 4E-2) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : str = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowerCamelCase) _lowercase : List[Any] = fx_state self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Tuple = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : List[str] = load_flax_weights_in_pytorch_model(lowerCamelCase, fx_model.params) self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase) @is_pt_flax_cross_test def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase : List[str] = config_inputs_dict.pop('vision_config') _lowercase : str = config_inputs_dict.pop('text_config') _lowercase : int = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCamelCase, lowerCamelCase, lowerCamelCase) self.check_equivalence_flax_to_pt(lowerCamelCase, lowerCamelCase, lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.get_pretrained_model_and_inputs() _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Tuple = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : List[Any] = model_a(**lowerCamelCase) _lowercase : Tuple = after_outputs[0] _lowercase : Dict = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) @require_flax class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : List[Any] = 13 _lowercase : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Tuple = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Union[str, Any] = random_attention_mask([batch_size, 4]) _lowercase : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : List[Any] = FlaxViTModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = FlaxViTModelTester(self) _lowercase : Any = FlaxBertModelTester(self) _lowercase : Dict = vit_model_tester.prepare_config_and_inputs() _lowercase : Any = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : List[str] = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : Tuple = 13 _lowercase : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Union[str, Any] = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Any = random_attention_mask([batch_size, 4]) _lowercase : Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Any = FlaxCLIPVisionModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = FlaxCLIPVisionModelTester(self) _lowercase : Union[str, Any] = FlaxBertModelTester(self) _lowercase : Tuple = clip_model_tester.prepare_config_and_inputs() _lowercase : str = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : Dict = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian', logit_scale_init_value=1.0) _lowercase : List[str] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _lowercase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _lowercase : List[Any] = processor( text=['una foto di un gatto', 'una foto di un cane'], images=lowerCamelCase, padding=lowerCamelCase, return_tensors='np') _lowercase : List[Any] = model(**lowerCamelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowercase : Optional[int] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image, lowerCamelCase, atol=1E-3))
21
1
"""simple docstring""" __lowercase = { """a""": """AAAAA""", """b""": """AAAAB""", """c""": """AAABA""", """d""": """AAABB""", """e""": """AABAA""", """f""": """AABAB""", """g""": """AABBA""", """h""": """AABBB""", """i""": """ABAAA""", """j""": """BBBAA""", """k""": """ABAAB""", """l""": """ABABA""", """m""": """ABABB""", """n""": """ABBAA""", """o""": """ABBAB""", """p""": """ABBBA""", """q""": """ABBBB""", """r""": """BAAAA""", """s""": """BAAAB""", """t""": """BAABA""", """u""": """BAABB""", """v""": """BBBAB""", """w""": """BABAA""", """x""": """BABAB""", """y""": """BABBA""", """z""": """BABBB""", """ """: """ """, } __lowercase = {value: key for key, value in encode_dict.items()} def lowercase ( A_ )-> Union[str, Any]: '''simple docstring''' a : str = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def lowercase ( A_ )-> int: '''simple docstring''' if set(A_ ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only \'A\', \'B\' and spaces" ) a : Optional[Any] = '''''' for word in coded.split(): while len(A_ ) != 0: decoded += decode_dict[word[:5]] a : Optional[int] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
367
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
226
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = '▁' __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __lowerCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __lowerCAmelCase = {'vinai/bartpho-syllable': 1_024} class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["input_ids", "attention_mask"] def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) _snake_case = vocab_file _snake_case = monolingual_vocab_file _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _snake_case = {} _snake_case = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _snake_case = cnt cnt += 1 with open(UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _snake_case = line.strip().split()[0] _snake_case = len(self.fairseq_tokens_to_ids ) if str(UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _snake_case = len(self.fairseq_tokens_to_ids ) _snake_case = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ) -> int: _snake_case = self.__dict__.copy() _snake_case = None _snake_case = self.sp_model.serialized_model_proto() return state def __setstate__(self , UpperCAmelCase ) -> Tuple: _snake_case = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase (self ) -> List[Any]: return len(self.fairseq_ids_to_tokens ) def lowercase (self ) -> str: _snake_case = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase (self , UpperCAmelCase ) -> List[str]: return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowercase (self , UpperCAmelCase ) -> Tuple: return self.fairseq_ids_to_tokens[index] def lowercase (self , UpperCAmelCase ) -> Union[str, Any]: _snake_case = """""".join(UpperCAmelCase ).replace(UpperCAmelCase , """ """ ).strip() return out_string def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _snake_case = os.path.join( UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , """wb""" ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(UpperCAmelCase )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCamelCase ( _A : int , _A : Any=False )-> Optional[Any]: """simple docstring""" try: A__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ = default else: # KEY is set, convert it to True or False. try: A__ = strtobool(__a ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value UpperCAmelCase_ : Optional[Any] = parse_flag_from_env("RUN_SLOW", default=False) UpperCAmelCase_ : str = parse_flag_from_env("RUN_REMOTE", default=False) UpperCAmelCase_ : Optional[Any] = parse_flag_from_env("RUN_LOCAL", default=True) UpperCAmelCase_ : Union[str, Any] = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression UpperCAmelCase_ : Union[str, Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") UpperCAmelCase_ : str = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") UpperCAmelCase_ : List[str] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio UpperCAmelCase_ : int = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam UpperCAmelCase_ : List[str] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility UpperCAmelCase_ : List[str] = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows UpperCAmelCase_ : Optional[int] = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def UpperCamelCase ( _A : List[str] )-> Dict: """simple docstring""" try: import faiss # noqa except ImportError: A__ = unittest.skip("test requires faiss" )(__a ) return test_case def UpperCamelCase ( _A : Optional[int] )-> str: """simple docstring""" try: import regex # noqa except ImportError: A__ = unittest.skip("test requires regex" )(__a ) return test_case def UpperCamelCase ( _A : Optional[Any] )-> int: """simple docstring""" try: import elasticsearch # noqa except ImportError: A__ = unittest.skip("test requires elasticsearch" )(__a ) return test_case def UpperCamelCase ( _A : Optional[Any] )-> str: """simple docstring""" try: import sqlalchemy # noqa except ImportError: A__ = unittest.skip("test requires sqlalchemy" )(__a ) return test_case def UpperCamelCase ( _A : Tuple )-> str: """simple docstring""" if not config.TORCH_AVAILABLE: A__ = unittest.skip("test requires PyTorch" )(__a ) return test_case def UpperCamelCase ( _A : str )-> Optional[Any]: """simple docstring""" if not config.TF_AVAILABLE: A__ = unittest.skip("test requires TensorFlow" )(__a ) return test_case def UpperCamelCase ( _A : Optional[int] )-> List[Any]: """simple docstring""" if not config.JAX_AVAILABLE: A__ = unittest.skip("test requires JAX" )(__a ) return test_case def UpperCamelCase ( _A : str )-> str: """simple docstring""" if not config.PIL_AVAILABLE: A__ = unittest.skip("test requires Pillow" )(__a ) return test_case def UpperCamelCase ( _A : List[str] )-> Any: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(__a ) else: return test_case def UpperCamelCase ( _A : str )-> List[str]: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(__a ) else: return test_case def UpperCamelCase ( _A : Any )-> Tuple: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(__a ) else: return test_case def UpperCamelCase ( _A : str )-> Any: """simple docstring""" def _require_spacy_model(_A : str ): try: import spacy # noqa F401 spacy.load(__a ) except ImportError: return unittest.skip("test requires spacy" )(__a ) except OSError: return unittest.skip("test requires spacy model \'{}\'".format(__a ) )(__a ) else: return test_case return _require_spacy_model def UpperCamelCase ( _A : Dict )-> List[Any]: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(__a ) else: return test_case def UpperCamelCase ( _A : str )-> Any: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(__a ) else: return test_case def UpperCamelCase ( _A : Any )-> Optional[Any]: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: A__ = unittest.skip("test is slow" )(__a ) return test_case def UpperCamelCase ( _A : List[str] )-> Any: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: A__ = unittest.skip("test is local" )(__a ) return test_case def UpperCamelCase ( _A : Any )-> int: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: A__ = unittest.skip("test is packaged" )(__a ) return test_case def UpperCamelCase ( _A : Any )-> Any: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: A__ = unittest.skip("test requires remote" )(__a ) return test_case def UpperCamelCase ( *_A : Tuple )-> List[Any]: """simple docstring""" def decorate(cls : List[Any] ): for name, fn in cls.__dict__.items(): if callable(__a ) and name.startswith("test" ): for decorator in decorators: A__ = decorator(__a ) setattr(cls , __a , __a ) return cls return decorate class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( snake_case_ ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : str = 1 lowerCAmelCase : Optional[int] = 2 @contextmanager def UpperCamelCase ( _A : Optional[Any]=OfflineSimulationMode.CONNECTION_FAILS , _A : str=1E-16 )-> Optional[int]: """simple docstring""" A__ = requests.Session().request def timeout_request(_A : Tuple , _A : str , _A : str , **_A : Optional[Any] ): # Change the url to an invalid url so that the connection hangs A__ = 'https://10.255.255.1' if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) A__ = timeout try: return online_request(__a , __a , **__a ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier A__ = url A__ = e.args[0] A__ = (max_retry_error.args[0].replace("10.255.255.1" , f"""OfflineMock[{url}]""" ),) A__ = (max_retry_error,) raise def raise_connection_error(_A : int , _A : Optional[Any] , **_A : List[str] ): raise requests.ConnectionError("Offline mode is enabled." , request=__a ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , __a ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , __a ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , __a ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def UpperCamelCase ( *_A : Dict , **_A : Dict )-> List[Any]: """simple docstring""" A__ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__a , **__a ) as tmp_dir: try: os.chdir(__a ) yield finally: os.chdir(__a ) @contextmanager def UpperCamelCase ( )-> Dict: """simple docstring""" import gc gc.collect() A__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCamelCase ( )-> Union[str, Any]: """simple docstring""" import gc gc.collect() A__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCamelCase ( _A : List[Any] , _A : Union[str, Any] )-> Union[str, Any]: """simple docstring""" return deepcopy(__a ).integers(0 , 100 , 10 ).tolist() == deepcopy(__a ).integers(0 , 100 , 10 ).tolist() def UpperCamelCase ( _A : List[Any] )-> str: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_A : Dict , *_A : int , **_A : Dict ): try: return func(*__a , **__a ) except HTTPError as err: if str(__a ).startswith("500" ) or str(__a ).startswith("502" ): pytest.xfail(str(__a ) ) raise err return decorator.decorator(_wrapper , __a ) class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = returncode A__ = stdout A__ = stderr async def UpperCamelCase ( _A : Dict , _A : int )-> str: """simple docstring""" while True: A__ = await stream.readline() if line: callback(__a ) else: break async def UpperCamelCase ( _A : Any , _A : Tuple=None , _A : Tuple=None , _A : str=None , _A : int=False , _A : List[Any]=False )-> Tuple: """simple docstring""" if echo: print("\nRunning: " , " ".join(__a ) ) A__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__a , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__a , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ = [] A__ = [] def tee(_A : Union[str, Any] , _A : int , _A : Any , _A : Dict="" ): A__ = line.decode("utf-8" ).rstrip() sink.append(__a ) if not quiet: print(__a , __a , file=__a ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _A : tee(__a , __a , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda _A : tee(__a , __a , sys.stderr , label="stderr:" ) ), ] , timeout=__a , ) return _RunOutput(await p.wait() , __a , __a ) def UpperCamelCase ( _A : Union[str, Any] , _A : Optional[int]=None , _A : Dict=None , _A : Dict=180 , _A : Optional[Any]=False , _A : List[Any]=True )-> List[str]: """simple docstring""" A__ = asyncio.get_event_loop() A__ = loop.run_until_complete( _stream_subprocess(__a , env=__a , stdin=__a , timeout=__a , quiet=__a , echo=__a ) ) A__ = ' '.join(__a ) if result.returncode > 0: A__ = '\n'.join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def UpperCamelCase ( )-> Tuple: """simple docstring""" A__ = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) A__ = re.sub(R"^gw" , "" , __a , 0 , re.M ) return int(__a ) def UpperCamelCase ( )-> Optional[int]: """simple docstring""" A__ = 29500 A__ = pytest_xdist_worker_id() return port + uniq_delta
350
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCAmelCase_ : List[Any] = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCamelCase ( _A : List[Any] , _A : int=None )-> Optional[int]: """simple docstring""" require_version(deps[pkg] , _A )
198
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase_ : """simple docstring""" @staticmethod def __magic_name__ (*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" __UpperCamelCase : Union[str, Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) SCREAMING_SNAKE_CASE__ : Tuple = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = vqa_pipeline(__lowercase , top_k=1 ) self.assertEqual( __lowercase , [ [{"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase )}], [{"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase )}], ] , ) @require_torch def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) SCREAMING_SNAKE_CASE__ : int = """./tests/fixtures/tests_samples/COCO/000000039769.png""" SCREAMING_SNAKE_CASE__ : Optional[Any] = """How many cats are there?""" SCREAMING_SNAKE_CASE__ : List[str] = vqa_pipeline(image=__lowercase , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( __lowercase , [{"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase )}, {"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase )}] ) SCREAMING_SNAKE_CASE__ : Any = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( __lowercase , [{"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase )}, {"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase )}] ) @slow @require_torch def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) SCREAMING_SNAKE_CASE__ : Any = """./tests/fixtures/tests_samples/COCO/000000039769.png""" SCREAMING_SNAKE_CASE__ : Tuple = """How many cats are there?""" SCREAMING_SNAKE_CASE__ : Dict = vqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) SCREAMING_SNAKE_CASE__ : str = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def __magic_name__ (self ) -> Tuple: """simple docstring""" pass
25
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCAmelCase = '''\ Text data. Second line of data.''' UpperCAmelCase = '''file''' @pytest.fixture(scope='session' ) def __UpperCamelCase ( lowercase__ : List[Any] ): '''simple docstring''' __lowercase =tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') __lowercase =bytes(lowercase__, 'utf-8' ) with zstd.open(lowercase__, 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture def __UpperCamelCase ( lowercase__ : str ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir, lowercase__ ), 'w' ) as f: f.write(lowercase__ ) return FILE_PATH @pytest.mark.parametrize('compression_format', ['gzip', 'xz', 'zstd'] ) def __UpperCamelCase ( lowercase__ : Any, lowercase__ : List[str], lowercase__ : Optional[int], lowercase__ : str, lowercase__ : int, lowercase__ : Dict ): '''simple docstring''' __lowercase ={'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} __lowercase =input_paths[compression_format] __lowercase =tmp_path / 'cache' __lowercase =DownloadConfig(cache_dir=lowercase__, extract_compressed_file=lowercase__ ) __lowercase =cached_path(lowercase__, download_config=lowercase__ ) with open(lowercase__ ) as f: __lowercase =f.read() with open(lowercase__ ) as f: __lowercase =f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted', [True, False] ) @pytest.mark.parametrize('default_cache_dir', [True, False] ) def __UpperCamelCase ( lowercase__ : Union[str, Any], lowercase__ : Tuple, lowercase__ : int, lowercase__ : int, lowercase__ : Optional[int] ): '''simple docstring''' __lowercase ='custom_cache' __lowercase ='custom_extracted_dir' __lowercase =tmp_path / 'custom_extracted_path' if default_extracted: __lowercase =('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR', lowercase__ ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH', str(lowercase__ ) ) __lowercase =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __lowercase =xz_file __lowercase =( DownloadConfig(extract_compressed_file=lowercase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowercase__ ) ) __lowercase =cached_path(lowercase__, download_config=lowercase__ ) assert Path(lowercase__ ).parent.parts[-2:] == expected def __UpperCamelCase ( lowercase__ : List[Any] ): '''simple docstring''' __lowercase =str(Path(lowercase__ ).resolve() ) assert cached_path(lowercase__ ) == text_file # relative path __lowercase =str(Path(lowercase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowercase__ ) == text_file def __UpperCamelCase ( lowercase__ : Optional[Any] ): '''simple docstring''' __lowercase =str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(lowercase__ ): cached_path(lowercase__ ) # relative path __lowercase ='./__missing_file__.txt' with pytest.raises(lowercase__ ): cached_path(lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] ): '''simple docstring''' __lowercase =get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowercase__ ) as f: __lowercase =f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE', lowercase__ ) def __UpperCamelCase ( ): '''simple docstring''' with pytest.raises(lowercase__ ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE', lowercase__ ) def __UpperCamelCase ( lowercase__ : Any ): '''simple docstring''' __lowercase =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(lowercase__ ): http_get('https://huggingface.co', temp_file=lowercase__ ) with pytest.raises(lowercase__ ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE', lowercase__ ) def __UpperCamelCase ( lowercase__ : Optional[int] ): '''simple docstring''' __lowercase =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(lowercase__ ): ftp_get('ftp://huggingface.co', temp_file=lowercase__ ) with pytest.raises(lowercase__ ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE', lowercase__ ) def __UpperCamelCase ( lowercase__ : Any ): '''simple docstring''' __lowercase =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(lowercase__ ): fsspec_get('s3://huggingface.co', temp_file=lowercase__ ) with pytest.raises(lowercase__ ): fsspec_head('s3://huggingface.co' )
141
0
from collections import namedtuple a =namedtuple("""from_to""", """from_ to""") a ={ """cubicmeter""": from_to(1, 1), """litre""": from_to(0.0_01, 1000), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.0_04_54, 2_64.1_72), """cubicyard""": from_to(0.7_64_55, 1.3_07_95), """cubicfoot""": from_to(0.0_28, 35.31_47), """cup""": from_to(0.0_00_23_65_88, 42_26.75), } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F"Invalid \'from_type\' value: {from_type!r} Supported values are:\n" + ', '.join(a_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"Invalid \'to_type\' value: {to_type!r}. Supported values are:\n" + ', '.join(a_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
364
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[Any]: # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase__ , lowerCamelCase__ ) -> bool: __lowerCamelCase : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __lowerCamelCase : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase__ ) ) # The ratio of the area for circle to square is pi/4. __lowerCamelCase : Any = proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 1.0 , ) -> float: return mean( function_to_integrate(uniform(lowerCamelCase__ , lowerCamelCase__ ) ) for _ in range(lowerCamelCase__ ) ) * (max_value - min_value) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 1.0 ) -> None: def identity_function(lowerCamelCase__ ) -> float: return x __lowerCamelCase : str = area_under_curve_estimator( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : int = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print('******************' ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: def function_to_integrate(lowerCamelCase__ ) -> float: return sqrt(4.0 - x * x ) __lowerCamelCase : Any = area_under_curve_estimator( lowerCamelCase__ , lowerCamelCase__ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
113
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _a : Dict= { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any]= ["ChineseCLIPFeatureExtractor"] _a : Any= ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str]= [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys _a : Optional[Any]= _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
172
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _a : int= datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase ( datasets.BuilderConfig ): UpperCAmelCase : Optional[datasets.Features] = None UpperCAmelCase : str = "utf-8" UpperCAmelCase : Optional[str] = None UpperCAmelCase : Optional[str] = None UpperCAmelCase : bool = True # deprecated UpperCAmelCase : Optional[int] = None # deprecated UpperCAmelCase : int = 10 << 20 # 10MB UpperCAmelCase : Optional[bool] = None class UpperCamelCase ( datasets.ArrowBasedBuilder ): UpperCAmelCase : int = JsonConfig def _lowercase (self : int) -> List[str]: if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead') __snake_case : Any = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.') if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported') return datasets.DatasetInfo(features=self.config.features) def _lowercase (self : Dict , _A : Any) -> Optional[Any]: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") __snake_case : Dict = dl_manager.download_and_extract(self.config.data_files) if isinstance(_A , (str, list, tuple)): __snake_case : str = data_files if isinstance(_A , _A): __snake_case : int = [files] __snake_case : Tuple = [dl_manager.iter_files(_A) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] __snake_case : str = [] for split_name, files in data_files.items(): if isinstance(_A , _A): __snake_case : Optional[int] = [files] __snake_case : int = [dl_manager.iter_files(_A) for file in files] splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'files': files})) return splits def _lowercase (self : Optional[Any] , _A : pa.Table) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): __snake_case : List[Any] = self.config.features.arrow_schema.field(_A).type __snake_case : Any = pa_table.append_column(_A , pa.array([None] * len(_A) , type=_A)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[str] = table_cast(_A , self.config.features.arrow_schema) return pa_table def _lowercase (self : Dict , _A : Any) -> Union[str, Any]: for file_idx, file in enumerate(itertools.chain.from_iterable(_A)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_A , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: __snake_case : Tuple = json.load(_A) # We keep only the field we are interested in __snake_case : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_A , (list, tuple)): __snake_case : Optional[int] = set().union(*[row.keys() for row in dataset]) __snake_case : List[str] = {col: [row.get(_A) for row in dataset] for col in keys} else: __snake_case : Optional[int] = dataset __snake_case : Tuple = pa.Table.from_pydict(_A) yield file_idx, self._cast_table(_A) # If the file has one json object per line else: with open(_A , 'rb') as f: __snake_case : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __snake_case : Tuple = max(self.config.chunksize // 32 , 16 << 10) __snake_case : str = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: __snake_case : Union[str, Any] = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_A) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __snake_case : int = batch.decode(self.config.encoding , errors=_A).encode('utf-8') try: while True: try: __snake_case : Tuple = paj.read_json( io.BytesIO(_A) , read_options=paj.ReadOptions(block_size=_A)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_A , pa.ArrowInvalid) and "straddling" not in str(_A) or block_size > len(_A) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"Batch of {len(_A)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.") block_size *= 2 except pa.ArrowInvalid as e: try: with open( _A , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: __snake_case : List[Any] = json.load(_A) except json.JSONDecodeError: logger.error(f"Failed to read file '{file}' with error {type(_A)}: {e}") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_A , _A): # list is the only sequence type supported in JSON try: __snake_case : List[str] = set().union(*[row.keys() for row in dataset]) __snake_case : List[str] = {col: [row.get(_A) for row in dataset] for col in keys} __snake_case : List[str] = pa.Table.from_pydict(_A) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"Failed to read file '{file}' with error {type(_A)}: {e}") raise ValueError(f"Not able to read records in the JSON file at {file}.") from None yield file_idx, self._cast_table(_A) break else: logger.error(f"Failed to read file '{file}' with error {type(_A)}: {e}") raise ValueError( f"Not able to read records in the JSON file at {file}. " f"You should probably indicate the field of the JSON file containing your records. " f"This JSON file contain the following fields: {str(list(dataset.keys()))}. " f"Select the correct one and provide it as `field='XXX'` to the dataset loading method. ") from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_A) batch_idx += 1
172
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 snake_case_ = 42 def __init__( self : List[Any] ,A : UNetaDModel ,A : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=A ,scheduler=A ) @torch.no_grad() def __call__( self : List[str] ,A : int = 1 ,A : int = 20_00 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : Optional[str] = "pil" ,A : bool = True ,**A : str ,): __A = self.unet.config.sample_size __A = (batch_size, 3, img_size, img_size) __A = self.unet __A = randn_tensor(A ,generator=A ) * self.scheduler.init_noise_sigma __A = sample.to(self.device ) self.scheduler.set_timesteps(A ) self.scheduler.set_sigmas(A ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __A = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __A = self.unet(A ,A ).sample __A = self.scheduler.step_correct(A ,A ,generator=A ).prev_sample # prediction step __A = model(A ,A ).sample __A = self.scheduler.step_pred(A ,A ,A ,generator=A ) __A , __A = output.prev_sample, output.prev_sample_mean __A = sample_mean.clamp(0 ,1 ) __A = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(A ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A )
124
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE :int = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys SCREAMING_SNAKE_CASE :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : str = DiTPipeline __lowercase : List[str] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __lowercase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } __lowercase : Optional[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __lowercase : Union[str, Any] = False def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = TransformeraDModel( sample_size=1_6 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCAmelCase__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_0_0_0 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = AutoencoderKL() __SCREAMING_SNAKE_CASE = DDIMScheduler() __SCREAMING_SNAKE_CASE = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=0): if str(lowerCAmelCase__).startswith("""mps"""): __SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 1_6, 1_6, 3)) __SCREAMING_SNAKE_CASE = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57]) __SCREAMING_SNAKE_CASE = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(lowerCAmelCase__ , 1E-3) def snake_case_ ( self): self._test_inference_batch_single_identical(relax_max_difference=lowerCAmelCase__ , expected_max_diff=1E-3) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def snake_case_ ( self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = torch.manual_seed(0) __SCREAMING_SNAKE_CASE = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""") pipe.to("""cuda""") __SCREAMING_SNAKE_CASE = ["""vase""", """umbrella""", """white shark""", """white wolf"""] __SCREAMING_SNAKE_CASE = pipe.get_label_ids(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe(lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=4_0 , output_type="""np""").images for word, image in zip(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = load_numpy( f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy") assert np.abs((expected_image - image).max()) < 1E-2 def snake_case_ ( self): __SCREAMING_SNAKE_CASE = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""") __SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.to("""cuda""") __SCREAMING_SNAKE_CASE = ["""vase""", """umbrella"""] __SCREAMING_SNAKE_CASE = pipe.get_label_ids(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.manual_seed(0) __SCREAMING_SNAKE_CASE = pipe(lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2_5 , output_type="""np""").images for word, image in zip(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"/dit/{word}_512.npy") assert np.abs((expected_image - image).max()) < 1E-1
100
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , a_ : Dict , a_ : Union[str, Any]=7 , a_ : Optional[Any]=3 , a_ : List[str]=18 , a_ : Union[str, Any]=30 , a_ : Union[str, Any]=4_00 , a_ : Union[str, Any]=True , a_ : Tuple=None , a_ : Optional[int]=True , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 18} __UpperCAmelCase : Dict = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : Optional[int] = min_resolution __UpperCAmelCase : Union[str, Any] = max_resolution __UpperCAmelCase : Tuple = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : List[Any] = apply_ocr def snake_case__ ( self : Optional[int] ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( __UpperCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : str = LayoutLMvaImageProcessingTester(self ) @property def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''apply_ocr''' ) ) def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def snake_case__ ( self : int ): '''simple docstring''' pass def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , a_ ) self.assertIsInstance(encoding.boxes , a_ ) # Test batched __UpperCAmelCase : Optional[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase : int = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase : List[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Any = LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCAmelCase : Any = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) __UpperCAmelCase : Optional[int] = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) __UpperCAmelCase : Any = image_processing(a_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCAmelCase : Any = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 __UpperCAmelCase : Tuple = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , a_ ) self.assertListEqual(encoding.boxes , a_ ) # with apply_OCR = False __UpperCAmelCase : List[str] = LayoutLMvaImageProcessor(apply_ocr=a_ ) __UpperCAmelCase : List[Any] = image_processing(a_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
226
0
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: if number > 0: raise ValueError('input must be a negative integer' ) lowerCamelCase__ : str = len(bin(_UpperCAmelCase )[3:] ) lowerCamelCase__ : Dict = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] lowerCamelCase__ : Optional[int] = ( ( '1' + '0' * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
45
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase : List[str] = logging.getLogger() _UpperCAmelCase : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Optional[int] , UpperCAmelCase : Optional[int] ) -> List[Any]: os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) lowerCamelCase__ : Tuple = {'source': 'What is love ?', 'target': 'life'} lowerCamelCase__ : str = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCamelCase__ : Optional[int] = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def A_ ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : str = "pytorch" ) -> str: lowerCamelCase__ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCamelCase__ : int = os.path.join(UpperCAmelCase , 'output' ) lowerCamelCase__ : int = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) lowerCamelCase__ : Dict = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) lowerCamelCase__ : Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) lowerCamelCase__ : Dict = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: lowerCamelCase__ : Dict = json.load(UpperCAmelCase ) return result @require_torch_gpu def A_ ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase__ : List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def A_ ( self : Any ) -> List[Any]: lowerCamelCase__ : str = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def A_ ( self : Optional[int] ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def A_ ( self : Dict ) -> List[str]: lowerCamelCase__ : Tuple = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
45
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['DeiTFeatureExtractor'] __UpperCAmelCase = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
84
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __a: Tuple = None __a: Tuple = logging.get_logger(__name__) __a: Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __a: Optional[Any] = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 __a: Tuple = { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = TaTokenizer SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase=100 , __lowerCAmelCase=None , **__lowerCAmelCase , ) -> Union[str, Any]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase__ : Union[str, Any] = [F"""<extra_id_{i}>""" for i in range(__lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ : Dict = len(set(filter(lambda __lowerCAmelCase : bool('''extra_id_''' in str(__lowerCAmelCase ) ) , __lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , extra_ids=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase__ : Union[str, Any] = vocab_file lowercase__ : Optional[int] = False if not self.vocab_file else True lowercase__ : Any = extra_ids @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __lowerCAmelCase , ) return max_model_length def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : List[Any] = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) logger.info(F"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ : Dict = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Optional[int] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCAmelCase( self ) -> List[Any]: return list( set(filter(lambda __lowerCAmelCase : bool(re.search(r'''<extra_id_\d+>''' , __lowerCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCAmelCase( self ) -> Tuple: return [self.convert_tokens_to_ids(__lowerCAmelCase ) for token in self.get_sentinel_tokens()]
198
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> list[list[int]]: __lowerCamelCase : list[list[int]] = [] __lowerCamelCase : list[int] = [] __lowerCamelCase : Dict = 0 __lowerCamelCase : Any = sum(lowerCamelCase__ ) create_state_space_tree(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return result def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> None: if sum(lowerCamelCase__ ) > max_sum or (remaining_nums_sum + sum(lowerCamelCase__ )) < max_sum: return if sum(lowerCamelCase__ ) == max_sum: result.append(lowerCamelCase__ ) return for index in range(lowerCamelCase__ , len(lowerCamelCase__ ) ): create_state_space_tree( lowerCamelCase__ , lowerCamelCase__ , index + 1 , [*path, nums[index]] , lowerCamelCase__ , remaining_nums_sum - nums[index] , ) a =[3, 34, 4, 12, 5, 2] a =9 a =generate_sum_of_subsets_soln(nums, max_sum) print(*result)
113
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a =[ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ) -> Optional[int]: __lowerCamelCase : int = True while ask_again: __lowerCamelCase : Dict = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=[] , lowerCamelCase__=None , lowerCamelCase__=0 ) -> str: __lowerCamelCase : Union[str, Any] = BulletMenu(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Tuple = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: __lowerCamelCase : List[str] = int(lowerCamelCase__ ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: __lowerCamelCase : Union[str, Any] = int(lowerCamelCase__ ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: __lowerCamelCase : Union[str, Any] = int(lowerCamelCase__ ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: __lowerCamelCase : Optional[Any] = int(lowerCamelCase__ ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: return {"yes": True, "no": False}[value.lower()] class A_ ( argparse.RawDescriptionHelpFormatter ): def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : int = super()._format_usage(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = usage.replace('<command> [<args>] ' ,'') return usage
113
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCAmelCase__ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCAmelCase__ = get_tests_dir('fixtures/vocab.json') lowerCAmelCase__ = get_tests_dir('fixtures') class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def _lowerCamelCase ( self) -> Any: _A : str = 0 def _lowerCamelCase ( self) -> Optional[Any]: _A : Dict = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") self.assertIsInstance(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> int: with tempfile.TemporaryDirectory() as tmpdirname: _A : Union[str, Any] = WavaVecaConfig() _A : List[Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") # save in new folder model_config.save_pretrained(__lowerCamelCase) processor.save_pretrained(__lowerCamelCase) _A : Dict = AutoProcessor.from_pretrained(__lowerCamelCase) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase)) copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , "vocab.json")) _A : str = AutoProcessor.from_pretrained(__lowerCamelCase) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> int: with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = WavaVecaFeatureExtractor() _A : List[Any] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h") _A : Union[str, Any] = WavaVecaProcessor(__lowerCamelCase , __lowerCamelCase) # save in new folder processor.save_pretrained(__lowerCamelCase) # drop `processor_class` in tokenizer with open(os.path.join(__lowerCamelCase , __lowerCamelCase) , "r") as f: _A : Dict = json.load(__lowerCamelCase) config_dict.pop("processor_class") with open(os.path.join(__lowerCamelCase , __lowerCamelCase) , "w") as f: f.write(json.dumps(__lowerCamelCase)) _A : int = AutoProcessor.from_pretrained(__lowerCamelCase) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = WavaVecaFeatureExtractor() _A : List[str] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h") _A : Union[str, Any] = WavaVecaProcessor(__lowerCamelCase , __lowerCamelCase) # save in new folder processor.save_pretrained(__lowerCamelCase) # drop `processor_class` in feature extractor with open(os.path.join(__lowerCamelCase , __lowerCamelCase) , "r") as f: _A : Optional[Any] = json.load(__lowerCamelCase) config_dict.pop("processor_class") with open(os.path.join(__lowerCamelCase , __lowerCamelCase) , "w") as f: f.write(json.dumps(__lowerCamelCase)) _A : str = AutoProcessor.from_pretrained(__lowerCamelCase) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = WavaVecaConfig(processor_class="Wav2Vec2Processor") model_config.save_pretrained(__lowerCamelCase) # copy relevant files copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , "vocab.json")) # create emtpy sample processor with open(os.path.join(__lowerCamelCase , __lowerCamelCase) , "w") as f: f.write("{}") _A : Optional[int] = AutoProcessor.from_pretrained(__lowerCamelCase) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase): _A : Any = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor") # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase): _A : Optional[Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowerCamelCase) _A : str = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowerCamelCase) self.assertTrue(processor.special_attribute_present) self.assertEqual(processor.__class__.__name__ , "NewProcessor") _A : Any = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor") _A : Dict = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") # Test we can also load the slow version _A : str = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase) _A : List[Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer") else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") def _lowerCamelCase ( self) -> Dict: try: AutoConfig.register("custom" , __lowerCamelCase) AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase) AutoProcessor.register(__lowerCamelCase , __lowerCamelCase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase): AutoProcessor.register(__lowerCamelCase , __lowerCamelCase) # Now that the config is registered, it can be used as any other config with the auto-API _A : Any = CustomFeatureExtractor.from_pretrained(__lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[int] = os.path.join(__lowerCamelCase , "vocab.txt") with open(__lowerCamelCase , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) _A : List[str] = CustomTokenizer(__lowerCamelCase) _A : Tuple = CustomProcessor(__lowerCamelCase , __lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__lowerCamelCase) _A : Tuple = AutoProcessor.from_pretrained(__lowerCamelCase) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowerCamelCase ( self) -> Any: class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = False class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = False class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "AutoFeatureExtractor" __SCREAMING_SNAKE_CASE = "AutoTokenizer" __SCREAMING_SNAKE_CASE = False try: AutoConfig.register("custom" , __lowerCamelCase) AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase) AutoProcessor.register(__lowerCamelCase , __lowerCamelCase) # If remote code is not set, the default is to use local classes. _A : Dict = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor") self.assertEqual(processor.__class__.__name__ , "NewProcessor") self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote code is disabled, we load the local ones. _A : Any = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowerCamelCase) self.assertEqual(processor.__class__.__name__ , "NewProcessor") self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub. _A : Union[str, Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowerCamelCase) self.assertEqual(processor.__class__.__name__ , "NewProcessor") self.assertTrue(processor.special_attribute_present) self.assertTrue(processor.feature_extractor.special_attribute_present) self.assertTrue(processor.tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowerCamelCase ( self) -> Dict: _A : Tuple = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast") def _lowerCamelCase ( self) -> List[Any]: _A : Optional[Any] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext") self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor") @is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _lowerCamelCase ( cls) -> Any: _A : Any = TOKEN HfFolder.save_token(__lowerCamelCase) @classmethod def _lowerCamelCase ( cls) -> List[str]: try: delete_repo(token=cls._token , repo_id="test-processor") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor") except HTTPError: pass def _lowerCamelCase ( self) -> Tuple: _A : Optional[Any] = WavaVecaProcessor.from_pretrained(__lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCamelCase , "test-processor") , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : str = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor") for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(new_processor.feature_extractor , __lowerCamelCase)) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab()) def _lowerCamelCase ( self) -> str: _A : Optional[Any] = WavaVecaProcessor.from_pretrained(__lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCamelCase , "test-processor-org") , push_to_hub=__lowerCamelCase , use_auth_token=self._token , organization="valid_org" , ) _A : List[str] = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org") for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(new_processor.feature_extractor , __lowerCamelCase)) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab()) def _lowerCamelCase ( self) -> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() _A : Any = CustomFeatureExtractor.from_pretrained(__lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: _A : str = os.path.join(__lowerCamelCase , "vocab.txt") with open(__lowerCamelCase , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) _A : List[Any] = CustomTokenizer(__lowerCamelCase) _A : int = CustomProcessor(__lowerCamelCase , __lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token) _A : Optional[Any] = Repository(__lowerCamelCase , clone_from=F"{USER}/test-dynamic-processor" , token=self._token) processor.save_pretrained(__lowerCamelCase) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__lowerCamelCase , "tokenizer_config.json")) as f: _A : Any = json.load(__lowerCamelCase) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , "custom_feature_extraction.py"))) self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , "custom_tokenization.py"))) self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , "custom_processing.py"))) repo.push_to_hub() _A : List[Any] = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=__lowerCamelCase) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor")
11
"""simple docstring""" import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __UpperCamelCase = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 48000, '''sample_size''': 65536, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 48000, '''sample_size''': 65536, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 48000, '''sample_size''': 131072, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 16000, '''sample_size''': 65536, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 16000, '''sample_size''': 65536, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 16000, '''sample_size''': 65536, }, } def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: return torch.atana(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / math.pi * 2 def lowercase (SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: SCREAMING_SNAKE_CASE = torch.sin(t * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' pass class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> int: super().__init__() SCREAMING_SNAKE_CASE = DiffusionAttnUnetaD(lowerCAmelCase__ , n_attn_layers=4 ) SCREAMING_SNAKE_CASE = deepcopy(self.diffusion ) SCREAMING_SNAKE_CASE = torch.quasirandom.SobolEngine(1 , scramble=lowerCAmelCase__ ) def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['url'] os.system(F'wget {url} ./' ) return F'./{model_name}.ckpt' __UpperCamelCase = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } __UpperCamelCase = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } __UpperCamelCase = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } __UpperCamelCase = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } __UpperCamelCase = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } __UpperCamelCase = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[Any]: if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(F'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE_ ) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif name.startswith(SCREAMING_SNAKE_CASE_ ): return [name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for v in value] raise ValueError(F'Attn error with {name}' ) def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=13 ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) SCREAMING_SNAKE_CASE = 0 if string.startswith('net.3.' ): depth += 1 SCREAMING_SNAKE_CASE = string[6:] elif string.startswith('net.' ): SCREAMING_SNAKE_CASE = string[4:] while string.startswith('main.7.' ): depth += 1 SCREAMING_SNAKE_CASE = string[7:] if string.startswith('main.' ): SCREAMING_SNAKE_CASE = string[5:] # mid block if string[:2].isdigit(): SCREAMING_SNAKE_CASE = string[:2] SCREAMING_SNAKE_CASE = string[2:] else: SCREAMING_SNAKE_CASE = string[0] SCREAMING_SNAKE_CASE = string[1:] if depth == max_depth: SCREAMING_SNAKE_CASE = MID_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = 'mid_block' elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) < 7: SCREAMING_SNAKE_CASE = DOWN_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = F'down_blocks.{depth}' elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) > 7: SCREAMING_SNAKE_CASE = UP_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = F'up_blocks.{max_depth - depth - 1}' elif depth == 0: SCREAMING_SNAKE_CASE = DEPTH_0_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = F'up_blocks.{max_depth - 1}' if int(SCREAMING_SNAKE_CASE_ ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(F'Naming error with {input_string} and string_left: {string_left}.' ) SCREAMING_SNAKE_CASE = string_left[1:] if "resnets" in new_layer: SCREAMING_SNAKE_CASE = convert_resconv_naming(SCREAMING_SNAKE_CASE_ ) elif "attentions" in new_layer: SCREAMING_SNAKE_CASE = convert_attn_naming(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = new_string_left if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = prefix + '.' + new_layer + '.' + string_left else: SCREAMING_SNAKE_CASE = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue SCREAMING_SNAKE_CASE = rename(SCREAMING_SNAKE_CASE_ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = transform_conv_attns(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE = v return new_state_dict def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: if len(SCREAMING_SNAKE_CASE_ ) == 1: if len(v.shape ) == 3: # weight SCREAMING_SNAKE_CASE = v[:, :, 0] else: # bias SCREAMING_SNAKE_CASE = v else: # qkv matrices SCREAMING_SNAKE_CASE = v.shape[0] SCREAMING_SNAKE_CASE = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape, :, 0] else: SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) SCREAMING_SNAKE_CASE = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'Make sure to provide one of the official model names {MODELS_MAP.keys()}' SCREAMING_SNAKE_CASE = download(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['sample_rate'] SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['sample_size'] SCREAMING_SNAKE_CASE = Object() SCREAMING_SNAKE_CASE = sample_size SCREAMING_SNAKE_CASE = sample_rate SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE_ , sample_rate=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = diffusers_model.state_dict() SCREAMING_SNAKE_CASE = DiffusionUncond(SCREAMING_SNAKE_CASE_ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE_ )['state_dict'] ) SCREAMING_SNAKE_CASE = orig_model.diffusion_ema.eval() SCREAMING_SNAKE_CASE = orig_model.state_dict() SCREAMING_SNAKE_CASE = rename_orig_weights(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) SCREAMING_SNAKE_CASE = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE_ ) == 0, F'Problem with {renamed_minus_diffusers}' assert all(k.endswith('kernel' ) for k in list(SCREAMING_SNAKE_CASE_ ) ), F'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": SCREAMING_SNAKE_CASE = value.squeeze() SCREAMING_SNAKE_CASE = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 1_00 SCREAMING_SNAKE_CASE = 33 SCREAMING_SNAKE_CASE = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE_ )[:-1] SCREAMING_SNAKE_CASE = get_crash_schedule(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).audios SCREAMING_SNAKE_CASE = sampling.iplms_sample(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {} ) SCREAMING_SNAKE_CASE = generated.clamp(-1 , 1 ) SCREAMING_SNAKE_CASE = (generated - audio).abs().sum() SCREAMING_SNAKE_CASE = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , SCREAMING_SNAKE_CASE_ ) print('Diff max' , SCREAMING_SNAKE_CASE_ ) assert diff_max < 1E-3, F'Diff max: {diff_max} is too much :-/' print(F'Conversion for {model_name} successful!' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() main(args)
113
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'spiece.model'} a_ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } a_ = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } a_ = '▁' class _lowercase ( snake_case_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , snake_case : Any , snake_case : Union[str, Any]=True , snake_case : int=True , snake_case : Optional[int]=False , snake_case : int="[CLS]" , snake_case : List[str]="[SEP]" , snake_case : Optional[int]="<unk>" , snake_case : str="[SEP]" , snake_case : List[str]="<pad>" , snake_case : Dict="[CLS]" , snake_case : Any="[MASK]" , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Optional[Any] , ) -> None: """simple docstring""" UpperCamelCase_ : Optional[int] = ( AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case , normalized=snake_case ) if isinstance(snake_case , snake_case ) else mask_token ) UpperCamelCase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) UpperCamelCase_ : Optional[int] = do_lower_case UpperCamelCase_ : Union[str, Any] = remove_space UpperCamelCase_ : Any = keep_accents UpperCamelCase_ : Dict = vocab_file UpperCamelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Dict = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = self.__dict__.copy() UpperCamelCase_ : List[str] = None return state def __setstate__( self : Tuple , snake_case : Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Any = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase_ : List[Any] = {} UpperCamelCase_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Dict ) -> List[Any]: """simple docstring""" if self.remove_space: UpperCamelCase_ : Tuple = ' '.join(inputs.strip().split() ) else: UpperCamelCase_ : Union[str, Any] = inputs UpperCamelCase_ : Tuple = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: UpperCamelCase_ : Union[str, Any] = unicodedata.normalize('NFKD' , snake_case ) UpperCamelCase_ : Union[str, Any] = ''.join([c for c in outputs if not unicodedata.combining(snake_case )] ) if self.do_lower_case: UpperCamelCase_ : int = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : str ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[str] = self.preprocess_text(snake_case ) UpperCamelCase_ : List[Any] = self.sp_model.encode(snake_case , out_type=snake_case ) UpperCamelCase_ : Optional[Any] = [] for piece in pieces: if len(snake_case ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): UpperCamelCase_ : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCamelCase_ : Optional[int] = cur_pieces[1:] else: UpperCamelCase_ : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case ) else: new_pieces.append(snake_case ) return new_pieces def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : List[Any] ) -> Tuple: """simple docstring""" return self.sp_model.PieceToId(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return self.sp_model.IdToPiece(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : List[str] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Any = [] UpperCamelCase_ : Dict = '' UpperCamelCase_ : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case ) + token UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = [] else: current_sub_tokens.append(snake_case ) UpperCamelCase_ : Dict = False out_string += self.sp_model.decode(snake_case ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ : Optional[int] = [self.sep_token_id] UpperCamelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is not None: return [1] + ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1] def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ : int = [self.sep_token_id] UpperCamelCase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase_ : Optional[int] = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , 'wb' ) as fi: UpperCamelCase_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
362
def __lowercase ( lowerCamelCase : int ): if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError('only integers accepted as input' ) else: UpperCamelCase_ : Any = str(abs(lowerCamelCase ) ) UpperCamelCase_ : Any = [list(lowerCamelCase ) for char in range(len(lowerCamelCase ) )] for index in range(len(lowerCamelCase ) ): num_transpositions[index].pop(lowerCamelCase ) return max( int(''.join(list(lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
50
0
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> int: import diffusers from diffusers.dependency_versions_table import deps snake_case : Tuple = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : int = """k-diffusion""" elif backend == "invisible_watermark": snake_case : List[str] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
124
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if len(lowercase ) != 2 or len(a[0] ) != 2 or len(lowercase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) snake_case : int = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[list, list, list, list]: if len(lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) snake_case : Optional[int] = len(lowercase ) snake_case : str = matrix_length // 2 snake_case : int = [[a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase )] snake_case : str = [ [a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase ,lowercase ) ] snake_case : Optional[Any] = [[a[i][j] for j in range(lowercase )] for i in range(lowercase )] snake_case : str = [[a[i][j] for j in range(lowercase )] for i in range(lowercase ,lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[int, int]: return len(lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: print("""\n""".join(str(lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase ) == (2, 2): return default_matrix_multiplication(lowercase ,lowercase ) snake_case , snake_case , snake_case , snake_case : Optional[Any] = split_matrix(lowercase ) snake_case , snake_case , snake_case , snake_case : Any = split_matrix(lowercase ) snake_case : List[Any] = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : List[str] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : Tuple = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : str = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : Union[str, Any] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : int = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : List[Any] = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : str = matrix_addition(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) snake_case : List[str] = matrix_addition(lowercase ,lowercase ) snake_case : Any = matrix_addition(lowercase ,lowercase ) snake_case : List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) # construct the new matrix from our 4 quadrants snake_case : Optional[Any] = [] for i in range(len(lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase )[1] != matrix_dimensions(lowercase )[0]: snake_case : Optional[Any] = ( """Unable to multiply these matrices, please check the dimensions.\n""" f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(lowercase ) snake_case : str = matrix_dimensions(lowercase ) snake_case : Optional[Any] = matrix_dimensions(lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case : Dict = max(*lowercase ,*lowercase ) snake_case : Optional[Any] = int(math.pow(2 ,math.ceil(math.loga(lowercase ) ) ) ) snake_case : Any = matrixa snake_case : Optional[Any] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case : Optional[int] = actual_strassen(lowercase ,lowercase ) # Removing the additional zeros for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCamelCase : Any = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCamelCase : int = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
124
1
import os from math import logaa def lowerCAmelCase_ ( __lowerCamelCase = "base_exp.txt" ): __snake_case : float = 0 __snake_case : int = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__lowerCamelCase ) , __lowerCamelCase ) ) ): __snake_case , __snake_case : Any = list(map(__lowerCamelCase , line.split("," ) ) ) if x * logaa(__lowerCamelCase ) > largest: __snake_case : Tuple = x * logaa(__lowerCamelCase ) __snake_case : List[Any] = i + 1 return result if __name__ == "__main__": print(solution())
134
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : int = logging.get_logger(__name__) _snake_case : int = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = "beit" def __init__( self : Union[str, Any] , lowerCamelCase : Any=8192 , lowerCamelCase : Dict=768 , lowerCamelCase : int=12 , lowerCamelCase : Optional[Any]=12 , lowerCamelCase : List[str]=3072 , lowerCamelCase : Tuple="gelu" , lowerCamelCase : Union[str, Any]=0.0 , lowerCamelCase : int=0.0 , lowerCamelCase : Dict=0.02 , lowerCamelCase : List[str]=1E-12 , lowerCamelCase : Optional[Any]=224 , lowerCamelCase : Optional[int]=16 , lowerCamelCase : Any=3 , lowerCamelCase : Optional[int]=False , lowerCamelCase : Any=False , lowerCamelCase : Optional[Any]=False , lowerCamelCase : int=False , lowerCamelCase : Any=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Optional[int]=True , lowerCamelCase : int=[3, 5, 7, 11] , lowerCamelCase : str=[1, 2, 3, 6] , lowerCamelCase : int=True , lowerCamelCase : List[Any]=0.4 , lowerCamelCase : int=256 , lowerCamelCase : str=1 , lowerCamelCase : List[str]=False , lowerCamelCase : List[str]=255 , **lowerCamelCase : Dict , ) -> int: super().__init__(**lowerCamelCase ) __snake_case : Any = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = initializer_range __snake_case : str = layer_norm_eps __snake_case : Optional[Any] = image_size __snake_case : List[str] = patch_size __snake_case : Optional[Any] = num_channels __snake_case : Any = use_mask_token __snake_case : List[str] = use_absolute_position_embeddings __snake_case : List[Any] = use_relative_position_bias __snake_case : str = use_shared_relative_position_bias __snake_case : str = layer_scale_init_value __snake_case : Any = drop_path_rate __snake_case : int = use_mean_pooling # decode head attributes (semantic segmentation) __snake_case : Optional[Any] = out_indices __snake_case : List[str] = pool_scales # auxiliary head attributes (semantic segmentation) __snake_case : int = use_auxiliary_head __snake_case : int = auxiliary_loss_weight __snake_case : Optional[int] = auxiliary_channels __snake_case : int = auxiliary_num_convs __snake_case : str = auxiliary_concat_input __snake_case : List[str] = semantic_loss_ignore_index class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = version.parse("1.11" ) @property def __snake_case ( self : Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __snake_case ( self : str ) -> float: return 1E-4
134
1
"""simple docstring""" from collections import defaultdict from math import gcd def lowercase ( lowerCAmelCase__ : int = 1500000 ) -> int: __a = defaultdict(lowerCAmelCase__ ) __a = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCAmelCase__ , 2 ): if gcd(lowerCAmelCase__ , lowerCAmelCase__ ) > 1: continue __a = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCAmelCase__ , limit + 1 , lowerCAmelCase__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
45
"""simple docstring""" def lowercase ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __a = set() # Replace all the whitespace in our sentence __a = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowerCAmelCase__ ) == 26 def lowercase ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __a = [False] * 26 for char in input_str: if char.islower(): __a = True elif char.isupper(): __a = True return all(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def lowercase ( ) -> None: from timeit import timeit __a = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=lowerCAmelCase__ ) ) print(timeit('''is_pangram_faster()''' , setup=lowerCAmelCase__ ) ) print(timeit('''is_pangram_fastest()''' , setup=lowerCAmelCase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
45
1
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase ( snake_case_ ): def __init__( self : Any , UpperCAmelCase__ : Optional[Any]=0.0_1 , UpperCAmelCase__ : Dict=1000 ) -> Optional[Any]: _a : Optional[int] = p_stop _a : List[str] = max_length def __iter__( self : int ) -> Tuple: _a : List[str] = 0 _a : int = False while not stop and count < self.max_length: yield count count += 1 _a : Optional[int] = random.random() < self.p_stop class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : Any=True ) -> Union[str, Any]: _a : Tuple = [ BatchSamplerShard(UpperCAmelCase__ , 2 , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) for i in range(2 ) ] _a : str = [list(UpperCAmelCase__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(UpperCAmelCase__ ) for shard in batch_sampler_shards] , [len(UpperCAmelCase__ ) for e in expected] ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> Optional[int]: # Check the shards when the dataset is a round multiple of total batch size. _a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a : List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) # Check the shards when the dataset is very small. _a : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : int = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: # Check the shards when the dataset is a round multiple of batch size. _a : Tuple = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) _a : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _a : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) _a : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) _a : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) # Check the shards when the dataset is very small. _a : Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) _a : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Tuple = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> Dict: # Check the shards when the dataset is a round multiple of total batch size. _a : Optional[int] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a : List[str] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is very small. _a : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Dict = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) def _lowercase ( self : str ) -> Optional[Any]: # Check the shards when the dataset is a round multiple of batch size. _a : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _a : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is very small. _a : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ) -> List[Any]: _a : Tuple = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _a : Any = [BatchSamplerShard(UpperCAmelCase__ , 2 , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : Any=False ) -> int: random.seed(UpperCAmelCase__ ) _a : Any = list(UpperCAmelCase__ ) _a : Tuple = [ IterableDatasetShard( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , drop_last=UpperCAmelCase__ , num_processes=UpperCAmelCase__ , process_index=UpperCAmelCase__ , split_batches=UpperCAmelCase__ , ) for i in range(UpperCAmelCase__ ) ] _a : Union[str, Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(UpperCAmelCase__ ) iterable_dataset_lists.append(list(UpperCAmelCase__ ) ) _a : str = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _a : Union[str, Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) self.assertTrue(len(UpperCAmelCase__ ) % shard_batch_size == 0 ) _a : List[str] = [] for idx in range(0 , len(UpperCAmelCase__ ) , UpperCAmelCase__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(UpperCAmelCase__ ) < len(UpperCAmelCase__ ): reference += reference self.assertListEqual(UpperCAmelCase__ , reference[: len(UpperCAmelCase__ )] ) def _lowercase ( self : Tuple ) -> List[str]: _a : Any = 42 _a : str = RandomIterableDataset() self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) # Edge case with a very small dataset _a : Optional[int] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> int: _a : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Tuple = SkipBatchSampler(UpperCAmelCase__ , 2 ) self.assertListEqual(list(UpperCAmelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: _a : Optional[int] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self : int ) -> str: _a : int = DataLoader(list(range(16 ) ) , batch_size=4 ) _a : Tuple = skip_first_batches(UpperCAmelCase__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self : int ) -> Any: _a : Union[str, Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(UpperCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase ( self : List[str] ) -> int: Accelerator() _a : int = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(UpperCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
369
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
0
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
113
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] __UpperCamelCase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = {f'''funnel-transformer/{name}''': 512 for name in _model_names} __UpperCamelCase = {f'''funnel-transformer/{name}''': {'''do_lower_case''': True} for name in _model_names} class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : str = FunnelTokenizer SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : int = 2 def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<sep>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<cls>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__="##" , **lowerCAmelCase__ , ) -> Tuple: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , clean_text=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , wordpieces_prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase__ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = do_lower_case def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[Any]: SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
113
1
'''simple docstring''' from __future__ import annotations from collections import deque class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : list[str] ): """simple docstring""" UpperCAmelCase__ = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(_UpperCAmelCase ) self.set_fail_transitions() def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : str ): """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = 0 for character in keyword: UpperCAmelCase__ = self.find_next_state(_UpperCAmelCase , _UpperCAmelCase ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase__ = len(self.adlist ) - 1 else: UpperCAmelCase__ = next_state self.adlist[current_state]["output"].append(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = deque() for node in self.adlist[0]["next_states"]: q.append(_UpperCAmelCase ) UpperCAmelCase__ = 0 while q: UpperCAmelCase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_UpperCAmelCase ) UpperCAmelCase__ = self.adlist[r]["""fail_state"""] while ( self.find_next_state(_UpperCAmelCase , self.adlist[child]["""value"""] ) is None and state != 0 ): UpperCAmelCase__ = self.adlist[state]["""fail_state"""] UpperCAmelCase__ = self.find_next_state( _UpperCAmelCase , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase__ = 0 UpperCAmelCase__ = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase__ = 0 for i in range(len(_UpperCAmelCase ) ): while ( self.find_next_state(_UpperCAmelCase , string[i] ) is None and current_state != 0 ): UpperCAmelCase__ = self.adlist[current_state]["""fail_state"""] UpperCAmelCase__ = self.find_next_state(_UpperCAmelCase , string[i] ) if next_state is None: UpperCAmelCase__ = 0 else: UpperCAmelCase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase__ = [] result[key].append(i - len(_UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
61
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' while b: UpperCAmelCase__ , UpperCAmelCase__ = b, a % b return a def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(SCREAMING_SNAKE_CASE__ , a % b ) def _UpperCamelCase ( ): '''simple docstring''' print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
61
1
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def lowercase_ (A : Tuple , A : int , A : Optional[Any] ): snake_case__ : Tuple = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] snake_case__ : Tuple = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } snake_case__ : str = F'''{src_lang}-{tgt_lang}''' snake_case__ : Any = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) snake_case__ : Dict = os.path.join(_UpperCAmelCase , 'README.md' ) print(F'''Generating {path}''' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(_UpperCAmelCase ) # make sure we are under the root of the project a_ :Tuple = Path(__file__).resolve().parent.parent.parent a_ :List[Any] = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ :int = model_name.split("-") a_ :Tuple = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
277
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None ) -> Tuple: if subparsers is not None: lowerCamelCase__ : Any = subparsers.add_parser('test' ) else: lowerCamelCase__ : int = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCamelCase__ : List[str] = script_name else: lowerCamelCase__ : List[Any] = F"""--config_file={args.config_file} {script_name}""" lowerCamelCase__ : str = ['accelerate-launch'] + test_args.split() lowerCamelCase__ : Dict = execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def SCREAMING_SNAKE_CASE ( ) -> Any: lowerCamelCase__ : Any = test_command_parser() lowerCamelCase__ : List[Any] = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
50
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : list[list[int]] , snake_case : int , snake_case : int , snake_case : list[int] ) -> bool: """simple docstring""" # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def SCREAMING_SNAKE_CASE__ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int ) -> bool: """simple docstring""" # Base Case if curr_ind == len(snake_case ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(snake_case ) ): if valid_connection(snake_case , snake_case , snake_case , snake_case ): # Insert current vertex into path as next transition a : Dict = next_ver # Validate created path if util_hamilton_cycle(snake_case , snake_case , curr_ind + 1 ): return True # Backtrack a : Any = -1 return False def SCREAMING_SNAKE_CASE__ ( snake_case : list[list[int]] , snake_case : int = 0 ) -> list[int]: """simple docstring""" a : Dict = [-1] * (len(snake_case ) + 1) # initialize start and end of path with starting index a : Optional[Any] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(snake_case , snake_case , 1 ) else []
371
'''simple docstring''' import torch def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" if torch.cuda.is_available(): a : int = torch.cuda.device_count() else: a : Any = 0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
345
0
'''simple docstring''' from __future__ import annotations class lowerCamelCase : '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : str ) -> List[Any]: '''simple docstring''' A__ , A__ : List[Any] =text, pattern A__ , A__ : Optional[Any] =len(lowerCAmelCase_ ), len(lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : str ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowercase__ ( self : int ) -> list[int]: '''simple docstring''' # searches pattern in text and returns index positions A__ : List[str] =[] for i in range(self.textLen - self.patLen + 1 ): A__ : Any =self.mismatch_in_text(lowerCAmelCase_ ) if mismatch_index == -1: positions.append(lowerCAmelCase_ ) else: A__ : List[Any] =self.match_in_pattern(self.text[mismatch_index] ) A__ : Optional[Any] =( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __snake_case : str = 'ABAABA' __snake_case : List[str] = 'AB' __snake_case : str = BoyerMooreSearch(text, pattern) __snake_case : List[str] = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
134
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __snake_case : str, __snake_case : dict ) -> str: """simple docstring""" A__ : Optional[Any] =BeautifulSoup(requests.get(__snake_case, params=__snake_case ).content, """html.parser""" ) A__ : List[str] =soup.find("""div""", attrs={"""class""": """gs_ri"""} ) A__ : Tuple =div.find("""div""", attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": __snake_case : Optional[Any] = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
134
1
UpperCAmelCase : Union[str, Any] = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase : Dict = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase : Optional[int] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
370
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" a__ : List[Any] ={ "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a__ : List[Any] ={ "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } a__ : Optional[int] =f'''{src_lang}-{tgt_lang}''' a__ : Any =f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) a__ : Tuple =os.path.join(SCREAMING_SNAKE_CASE , "README.md" ) print(f'''Generating {path}''' ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(SCREAMING_SNAKE_CASE ) # make sure we are under the root of the project UpperCAmelCase : str = Path(__file__).resolve().parent.parent.parent UpperCAmelCase : Dict = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = model_name.split("""-""") UpperCAmelCase : Tuple = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
148
0
"""simple docstring""" import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def __A ( a_ :List[str]) -> str: __a : str = tmp_path / '''file.csv''' __a : Tuple = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''') with open(a_ , '''w''') as f: f.write(a_) return str(a_) @pytest.fixture def __A ( a_ :Dict) -> str: __a : Any = tmp_path / '''malformed_file.csv''' __a : str = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''') with open(a_ , '''w''') as f: f.write(a_) return str(a_) @pytest.fixture def __A ( a_ :List[str] , a_ :Any) -> Union[str, Any]: __a : List[str] = tmp_path / '''csv_with_image.csv''' __a : List[str] = textwrap.dedent( F"""\ image {image_file} """) with open(a_ , '''w''') as f: f.write(a_) return str(a_) @pytest.fixture def __A ( a_ :List[Any]) -> str: __a : int = tmp_path / '''csv_with_label.csv''' __a : Tuple = textwrap.dedent( '''\ label good bad good ''') with open(a_ , '''w''') as f: f.write(a_) return str(a_) @pytest.fixture def __A ( a_ :Optional[Any]) -> Tuple: __a : List[str] = tmp_path / '''csv_with_int_list.csv''' __a : List[Any] = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''') with open(a_ , '''w''') as f: f.write(a_) return str(a_) def __A ( a_ :Dict , a_ :List[str] , a_ :Optional[Any]) -> Any: __a : Optional[Any] = Csv() __a : Tuple = csv._generate_tables([[csv_file, malformed_csv_file]]) with pytest.raises(a_ , match='''Error tokenizing data'''): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a_) in record.message for record in caplog.records) @require_pil def __A ( a_ :Any) -> str: with open(a_ , encoding='''utf-8''') as f: __a : str = f.read().splitlines()[1] __a : Union[str, Any] = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()})) __a : Union[str, Any] = csv._generate_tables([[csv_file_with_image]]) __a : Optional[int] = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field('''image''').type == Image()() __a : List[Any] = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def __A ( a_ :List[Any]) -> List[str]: with open(a_ , encoding='''utf-8''') as f: __a : List[str] = f.read().splitlines()[1:] __a : Optional[int] = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''])})) __a : List[str] = csv._generate_tables([[csv_file_with_label]]) __a : str = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field('''label''').type == ClassLabel(names=['''good''', '''bad'''])() __a : Any = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad''']).straint(a_) for label in labels] def __A ( a_ :Tuple) -> str: __a : Tuple = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a_: [int(a_) for i in x.split()]}) __a : Any = csv._generate_tables([[csv_file_with_int_list]]) __a : Optional[Any] = pa.concat_tables([table for _, table in generator]) assert pa.types.is_list(pa_table.schema.field('''int_list''').type) __a : Dict = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
160
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE lowercase__ : int = 'config.json' lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin' lowercase__ : List[str] = 'diffusion_flax_model.msgpack' lowercase__ : str = 'model.onnx' lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors' lowercase__ : List[str] = 'weights.pb' lowercase__ : str = 'https://huggingface.co' lowercase__ : str = default_cache_path lowercase__ : Optional[int] = 'diffusers_modules' lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) lowercase__ : Tuple = ['fp16', 'non-ema'] lowercase__ : int = '.self_attn'
324
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ) -> List[Any]: if index == r: for j in range(A__ ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __a = arr[i] combination_util(A__ , A__ , A__ , index + 1 , A__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(A__ , A__ , A__ , A__ , A__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] ) -> Dict: __a = [0] * r # Print all combination using temporary array 'data[]' combination_util(A__ , A__ , A__ , 0 , A__ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase_ = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
356
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for param, grad_param in zip(model_a.parameters(), model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=True ): model.train() UpperCAmelCase_ : int = model(__lowerCamelCase ) UpperCAmelCase_ : List[str] = F.mse_loss(__lowerCamelCase, target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase=False ): set_seed(42 ) UpperCAmelCase_ : Dict = RegressionModel() UpperCAmelCase_ : Optional[Any] = deepcopy(__lowerCamelCase ) UpperCAmelCase_ : Tuple = RegressionDataset(length=80 ) UpperCAmelCase_ : List[Any] = DataLoader(__lowerCamelCase, batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase_ : Any = AdamW(params=model.parameters(), lr=1E-3 ) UpperCAmelCase_ : str = AdamW(params=ddp_model.parameters(), lr=1E-3 ) UpperCAmelCase_ : str = LambdaLR(__lowerCamelCase, lr_lambda=lambda __lowerCamelCase : epoch**0.65 ) UpperCAmelCase_ : List[str] = LambdaLR(__lowerCamelCase, lr_lambda=lambda __lowerCamelCase : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = accelerator.prepare(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare(__lowerCamelCase, __lowerCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( __lowerCamelCase ): # Test when on a single CPU or GPU that the context manager does nothing UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_training_setup(__lowerCamelCase ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = next(iter(__lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: # Sync grads step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad, ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase_ : Optional[Any] = ddp_input[torch.randperm(len(__lowerCamelCase ) )] def __a ( __lowerCamelCase ): # Test on distributed setup that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = get_training_setup(__lowerCamelCase ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ : int = next(iter(__lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: # Sync grads step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase_ : Dict = ddp_input[torch.randperm(len(__lowerCamelCase ) )] def __a ( __lowerCamelCase=False, __lowerCamelCase=False ): UpperCAmelCase_ : Tuple = Accelerator( split_batches=__lowerCamelCase, dispatch_batches=__lowerCamelCase, gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = get_training_setup(__lowerCamelCase ) for iteration, batch in enumerate(__lowerCamelCase ): UpperCAmelCase_ , UpperCAmelCase_ : int = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__lowerCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase_ : int = ddp_input[torch.randperm(len(__lowerCamelCase ) )] GradientState._reset_state() def __a ( __lowerCamelCase=False, __lowerCamelCase=False ): UpperCAmelCase_ : List[Any] = Accelerator( split_batches=__lowerCamelCase, dispatch_batches=__lowerCamelCase, gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = get_training_setup(__lowerCamelCase, __lowerCamelCase ) for iteration, batch in enumerate(__lowerCamelCase ): UpperCAmelCase_ , UpperCAmelCase_ : str = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__lowerCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" UpperCAmelCase_ : str = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__lowerCamelCase )) if accelerator.num_processes > 1: check_model_parameters(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __a ( ): UpperCAmelCase_ : Dict = Accelerator() UpperCAmelCase_ : Tuple = RegressionDataset(length=80 ) UpperCAmelCase_ : str = DataLoader(__lowerCamelCase, batch_size=16 ) UpperCAmelCase_ : Optional[Any] = RegressionDataset(length=96 ) UpperCAmelCase_ : List[Any] = DataLoader(__lowerCamelCase, batch_size=16 ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = accelerator.prepare(__lowerCamelCase, __lowerCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase ) if iteration < len(__lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase ) if batch_num < len(__lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ): UpperCAmelCase_ : str = Accelerator() UpperCAmelCase_ : int = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(__lowerCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(__lowerCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, ", f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", ) test_gradient_accumulation(__lowerCamelCase, __lowerCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<", "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, ", "`split_batches=False`, `dispatch_batches=False`**", ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, ", f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", ) test_gradient_accumulation_with_opt_and_scheduler(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
61
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class A_ (unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=30 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.02 , ): """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Union[str, Any] = image_size UpperCAmelCase_ : List[str] = patch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Optional[Any] = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Dict = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : Any = (image_size // patch_size) ** 2 UpperCAmelCase_ : List[str] = num_patches + 1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Dict = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, pixel_values def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = FlaxViTModel(config=lowercase_ ) UpperCAmelCase_ : int = model(lowercase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : Optional[Any] = (self.image_size, self.image_size) UpperCAmelCase_ : List[Any] = (self.patch_size, self.patch_size) UpperCAmelCase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = self.type_sequence_label_size UpperCAmelCase_ : Tuple = FlaxViTForImageClassification(config=lowercase_ ) UpperCAmelCase_ : str = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : Optional[int] = FlaxViTForImageClassification(lowercase_ ) UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = model(lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Tuple = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxViTModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = model_class(lowercase_ ) UpperCAmelCase_ : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : List[str] = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ , **lowercase_ ): return model(pixel_values=lowercase_ , **lowercase_ ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : Union[str, Any] = model_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : Tuple = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class_name.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ : List[str] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowercase_ )
61
1
def __UpperCamelCase ( _A : int ) ->bool: """simple docstring""" return str(_A ) == str(_A )[::-1] def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" return int(_A ) + int(str(_A )[::-1] ) def __UpperCamelCase ( _A : int = 10000 ) ->int: """simple docstring""" lowerCamelCase_ =[] for num in range(1 , _A ): lowerCamelCase_ =0 lowerCamelCase_ =num while iterations < 50: lowerCamelCase_ =sum_reverse(_A ) iterations += 1 if is_palindrome(_A ): break else: lychrel_nums.append(_A ) return len(_A ) if __name__ == "__main__": print(F"""{solution() = }""")
49
from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE )-> None: lowerCamelCase_ =data lowerCamelCase_ =None lowerCamelCase_ =None def __UpperCamelCase ( _A : Node | None ) ->None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __UpperCamelCase ( _A : Node | None ) ->int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __UpperCamelCase ( _A : Node ) ->bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __UpperCamelCase ( ) ->None: # Main function for testing. """simple docstring""" lowerCamelCase_ =Node(1 ) lowerCamelCase_ =Node(2 ) lowerCamelCase_ =Node(3 ) lowerCamelCase_ =Node(4 ) lowerCamelCase_ =Node(5 ) lowerCamelCase_ =Node(6 ) lowerCamelCase_ =Node(7 ) lowerCamelCase_ =Node(8 ) lowerCamelCase_ =Node(9 ) print(is_full_binary_tree(_A ) ) print(depth_of_tree(_A ) ) print("""Tree is: """ ) display(_A ) if __name__ == "__main__": main()
49
1
"""simple docstring""" from itertools import product def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : int ): '''simple docstring''' lowercase = sides_number lowercase = max_face_number * dice_number lowercase = [0] * (max_total + 1) lowercase = 1 lowercase = range(_a , max_face_number + 1 ) for dice_numbers in product(_a , repeat=_a ): lowercase = sum(_a ) totals_frequencies[total] += 1 return totals_frequencies def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowercase = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowercase = 0 lowercase = 9 lowercase = 4 * 9 lowercase = 6 for peter_total in range(_a , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowercase = (4**9) * (6**6) lowercase = peter_wins_count / total_games_number lowercase = round(_a , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
220
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: Optional[int]=32 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: int=16 ,lowerCamelCase_: Optional[Any]=[32, 64, 128] ,lowerCamelCase_: Optional[int]=[1, 2, 1] ,lowerCamelCase_: Union[str, Any]=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[str]=2.0 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Any=False ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: int=True ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: str=True ,lowerCamelCase_: Dict=10 ,lowerCamelCase_: str=8 ,lowerCamelCase_: Union[str, Any]=["stage1", "stage2"] ,lowerCamelCase_: Optional[Any]=[1, 2] ,) -> str: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : Dict = embed_dim UpperCAmelCase_ : Dict = hidden_sizes UpperCAmelCase_ : str = depths UpperCAmelCase_ : int = num_heads UpperCAmelCase_ : List[Any] = window_size UpperCAmelCase_ : Union[str, Any] = mlp_ratio UpperCAmelCase_ : int = qkv_bias UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = drop_path_rate UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : List[Any] = use_absolute_embeddings UpperCAmelCase_ : List[Any] = patch_norm UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = encoder_stride UpperCAmelCase_ : Optional[int] = out_features UpperCAmelCase_ : Optional[int] = out_indices def A__ ( self: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Any = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Tuple: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> List[str]: UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def A__ ( self: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Any = FocalNetForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[str] = FocalNetForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ) -> int: UpperCAmelCase_ : List[Any] = self.type_sequence_label_size UpperCAmelCase_ : int = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs UpperCAmelCase_ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : Any = False A__ : List[str] = False A__ : Any = False A__ : Any = False def A__ ( self: List[str] ) -> Tuple: UpperCAmelCase_ : Dict = FocalNetModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ,has_text_modality=lowerCamelCase_ ) def A__ ( self: List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: List[str] ) -> Union[str, Any]: return def A__ ( self: str ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def A__ ( self: Tuple ) -> int: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: int ) -> int: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def A__ ( self: Optional[Any] ) -> Optional[Any]: pass def A__ ( self: Optional[Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Any = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> List[str]: UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.hidden_states UpperCAmelCase_ : List[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # FocalNet has a different seq_length UpperCAmelCase_ : int = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = reshaped_hidden_states[0].shape UpperCAmelCase_ : List[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) @slow def A__ ( self: Optional[int] ) -> Optional[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = FocalNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Optional[int] ) -> str: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Dict = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else () A__ : int = FocalNetConfig A__ : List[str] = False def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : str = FocalNetModelTester(self )
345
0
'''simple docstring''' __lowerCAmelCase : List[Any] =9.80665 def UpperCamelCase ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float = g ): if fluid_density <= 0: raise ValueError("Impossible fluid density" ) if volume < 0: raise ValueError("Impossible Object volume" ) if gravity <= 0: raise ValueError("Impossible Gravity" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
123
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any ={ "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple =[ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
123
1
import sys _A = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCamelCase__ ( __lowerCAmelCase : str = N ): """simple docstring""" lowerCAmelCase_ = -sys.maxsize - 1 for i in range(len(lowercase__ ) - 12 ): lowerCAmelCase_ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowerCAmelCase_ = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
231
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __A = "base_with_context" def UpperCamelCase__ ( lowercase__ : Optional[Any] , lowercase__ : List[Any] ): snake_case : Dict = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) snake_case : Tuple = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=lowercase__ ) for lyr_num, lyr in enumerate(model.encoders ): snake_case : Tuple = weights[F'''layers_{lyr_num}'''] snake_case : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) snake_case : List[Any] = ly_weight["attention"] snake_case : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case : Any = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) snake_case : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) snake_case : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) snake_case : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) snake_case : List[Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def UpperCamelCase__ ( lowercase__ : Tuple , lowercase__ : List[Any] ): snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) snake_case : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=lowercase__ ) for lyr_num, lyr in enumerate(model.encoders ): snake_case : str = weights[F'''layers_{lyr_num}'''] snake_case : Any = ly_weight["attention"] snake_case : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case : Dict = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case : int = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) snake_case : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) snake_case : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) snake_case : int = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def UpperCamelCase__ ( lowercase__ : str , lowercase__ : Union[str, Any] ): snake_case : int = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) snake_case : List[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) snake_case : Tuple = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=lowercase__ ) snake_case : Tuple = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): snake_case : Union[str, Any] = weights[F'''layers_{lyr_num}'''] snake_case : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) snake_case : Any = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) snake_case : Union[str, Any] = ly_weight["self_attention"] snake_case : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case : Any = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case : str = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case : List[str] = ly_weight["MultiHeadDotProductAttention_0"] snake_case : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case : Dict = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case : str = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) snake_case : Dict = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) snake_case : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) snake_case : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) snake_case : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) snake_case : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) snake_case : List[str] = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) snake_case : List[Any] = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def UpperCamelCase__ ( lowercase__ : Any ): snake_case : Union[str, Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) snake_case : List[Any] = jnp.tree_util.tree_map(onp.array , lowercase__ ) snake_case : Tuple = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] snake_case : List[str] = os.path.join(args.checkpoint_path , ".." , "config.gin" ) snake_case : List[str] = inference.parse_training_gin_file(lowercase__ , lowercase__ ) snake_case : List[Any] = inference.InferenceModel(args.checkpoint_path , lowercase__ ) snake_case : str = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) snake_case : int = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) snake_case : Tuple = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) snake_case : str = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) snake_case : Optional[int] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , lowercase__ ) snake_case : Any = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , lowercase__ ) snake_case : List[Any] = load_decoder(ta_checkpoint["target"]["decoder"] , lowercase__ ) snake_case : int = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) snake_case : Tuple = SpectrogramDiffusionPipeline( notes_encoder=lowercase__ , continuous_encoder=lowercase__ , decoder=lowercase__ , scheduler=lowercase__ , melgan=lowercase__ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f'{MODEL}/checkpoint_500000', type=str, required=False, help="Path to the original jax model checkpoint.", ) __A = parser.parse_args() main(args)
148
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class _A ( _a ): """simple docstring""" UpperCAmelCase : Union[str, Any] = """gpt_neox_japanese""" def __init__( self : Any , __UpperCAmelCase : Optional[int]=32000 , __UpperCAmelCase : str=2560 , __UpperCAmelCase : List[str]=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Optional[Any]=1.00 , __UpperCAmelCase : List[Any]=10000 , __UpperCAmelCase : Any=2048 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : List[Any]=1e-5 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Tuple=31996 , __UpperCAmelCase : Any=31999 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : str=0.0 , **__UpperCAmelCase : int , ): super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a : str = vocab_size a : Optional[int] = max_position_embeddings a : List[Any] = hidden_size a : List[Any] = num_hidden_layers a : str = num_attention_heads a : Tuple = intermediate_multiple_size a : Union[str, Any] = hidden_act a : Dict = rotary_pct a : Union[str, Any] = rotary_emb_base a : Tuple = initializer_range a : Tuple = layer_norm_eps a : str = use_cache a : str = attention_dropout a : Union[str, Any] = hidden_dropout
226
"""simple docstring""" from math import ceil, sqrt def lowercase ( A_ = 1_000_000 )-> int: '''simple docstring''' a : Tuple = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a : str = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a : Tuple = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
226
1
import os import pytest from attr import dataclass __UpperCAmelCase = 'us-east-1' # defaults region @dataclass class lowerCamelCase : '''simple docstring''' _snake_case : str _snake_case : List[Any] = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' _snake_case : Any = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 1_6, '''per_device_eval_batch_size''': 1_6, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 5_0_0, '''save_steps''': 5_5_0_0, } _snake_case : Tuple = {**hyperparameters, '''max_steps''': 1_0_0_0} @property def __UpperCAmelCase ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __UpperCAmelCase ( self ) -> str: return f"{self.framework}-transfromers-test" @property def __UpperCAmelCase ( self ) -> str: return f"./tests/sagemaker/scripts/{self.framework}" @property def __UpperCAmelCase ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Any = SageMakerTestEnvironment(framework=request.cls.framework )
29
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} lowerCAmelCase__ = {} lowerCAmelCase__ = {} def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ): _A : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) _A : Dict = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) _A : Dict = format_type def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ): _A : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _A : Union[str, Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ): _A : List[str] = get_format_type_from_alias(UpperCamelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCamelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
11
0
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __snake_case ( SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __snake_case ( *SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Union[Dict, Any]] = None , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Tuple=2 ) -> Optional[Any]: '''simple docstring''' from .. import __version__ _UpperCAmelCase : Tuple = take_from _UpperCAmelCase : Optional[int] = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : int = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' f' version {__version__} is >= {version_name}' ) _UpperCAmelCase : Any = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) _UpperCAmelCase : Tuple = f'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) _UpperCAmelCase : str = f'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: _UpperCAmelCase : Tuple = f'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: _UpperCAmelCase : Optional[int] = warning + " " if standard_warn else "" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: _UpperCAmelCase : List[Any] = inspect.getouterframes(inspect.currentframe() )[1] _UpperCAmelCase : Optional[int] = call_frame.filename _UpperCAmelCase : Dict = call_frame.lineno _UpperCAmelCase : List[Any] = call_frame.function _UpperCAmelCase , _UpperCAmelCase : Optional[int] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
202
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __snake_case :Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Any = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Dict = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __snake_case :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
49
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = np.full((len(_UpperCAmelCase ), sequence_length, 2) , _UpperCAmelCase ) else: __a = np.full((len(_UpperCAmelCase ), sequence_length) , _UpperCAmelCase ) for i, tensor in enumerate(_UpperCAmelCase ): if padding_side == "right": if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = tensor[:sequence_length] else: __a = tensor[:sequence_length] else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = tensor[:sequence_length] else: __a = tensor[:sequence_length] return out_tensor.tolist() def __snake_case ( _UpperCAmelCase ): __a = ord(_UpperCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __a = unicodedata.category(_UpperCAmelCase ) if cat.startswith('''P''' ): return True return False @dataclass class _A ( __UpperCAmelCase ): UpperCamelCase__ : PreTrainedTokenizerBase UpperCamelCase__ : Union[bool, str, PaddingStrategy] = True UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : int = -100 UpperCamelCase__ : str = "pt" def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' import torch __a = '''label''' if '''label''' in features[0].keys() else '''labels''' __a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __a = self.tokenizer.pad( __SCREAMING_SNAKE_CASE , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __a = torch.tensor(batch['''entity_ids''']).shape[1] __a = self.tokenizer.padding_side if padding_side == "right": __a = [ list(__SCREAMING_SNAKE_CASE) + [self.label_pad_token_id] * (sequence_length - len(__SCREAMING_SNAKE_CASE)) for label in labels ] else: __a = [ [self.label_pad_token_id] * (sequence_length - len(__SCREAMING_SNAKE_CASE)) + list(__SCREAMING_SNAKE_CASE) for label in labels ] __a = [feature['''ner_tags'''] for feature in features] __a = padding_tensor(__SCREAMING_SNAKE_CASE , -1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = [feature['''original_entity_spans'''] for feature in features] __a = padding_tensor(__SCREAMING_SNAKE_CASE , (-1, -1) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {k: torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.intaa) for k, v in batch.items()} return batch
49
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : Dict = logging.get_logger(__name__) UpperCamelCase_ : int = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = """informer""" SCREAMING_SNAKE_CASE_ : str = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = "student_t" ,_SCREAMING_SNAKE_CASE = "nll" ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = "mean" ,_SCREAMING_SNAKE_CASE = 0 ,_SCREAMING_SNAKE_CASE = 0 ,_SCREAMING_SNAKE_CASE = 0 ,_SCREAMING_SNAKE_CASE = 0 ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 64 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 2 ,_SCREAMING_SNAKE_CASE = 2 ,_SCREAMING_SNAKE_CASE = 2 ,_SCREAMING_SNAKE_CASE = 2 ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = "gelu" ,_SCREAMING_SNAKE_CASE = 0.0_5 ,_SCREAMING_SNAKE_CASE = 0.1 ,_SCREAMING_SNAKE_CASE = 0.1 ,_SCREAMING_SNAKE_CASE = 0.1 ,_SCREAMING_SNAKE_CASE = 0.1 ,_SCREAMING_SNAKE_CASE = 100 ,_SCREAMING_SNAKE_CASE = 0.0_2 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE = "prob" ,_SCREAMING_SNAKE_CASE = 5 ,_SCREAMING_SNAKE_CASE = True ,**_SCREAMING_SNAKE_CASE ,) -> Dict: # time series specific configuration _snake_case = prediction_length _snake_case = context_length or prediction_length _snake_case = distribution_output _snake_case = loss _snake_case = input_size _snake_case = num_time_features _snake_case = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] _snake_case = scaling _snake_case = num_dynamic_real_features _snake_case = num_static_real_features _snake_case = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _snake_case = cardinality else: _snake_case = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _snake_case = embedding_dimension else: _snake_case = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] _snake_case = num_parallel_samples # Transformer architecture configuration _snake_case = input_size * len(self.lags_sequence ) + self._number_of_features _snake_case = d_model _snake_case = encoder_attention_heads _snake_case = decoder_attention_heads _snake_case = encoder_ffn_dim _snake_case = decoder_ffn_dim _snake_case = encoder_layers _snake_case = decoder_layers _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = encoder_layerdrop _snake_case = decoder_layerdrop _snake_case = activation_function _snake_case = init_std _snake_case = use_cache # Informer _snake_case = attention_type _snake_case = sampling_factor _snake_case = distil super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
356
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ : Any = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' def __a ( _UpperCamelCase: str , _UpperCamelCase: Union[str, Any]=100 , _UpperCamelCase: List[str]=" " ) -> List[str]: """simple docstring""" _snake_case = text.split(_UpperCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase )] def __a ( _UpperCamelCase: dict ) -> dict: """simple docstring""" _snake_case , _snake_case = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(_UpperCamelCase ): titles.append(title if title is not None else "" ) texts.append(_UpperCamelCase ) return {"title": titles, "text": texts} def __a ( _UpperCamelCase: dict , _UpperCamelCase: DPRContextEncoder , _UpperCamelCase: DPRContextEncoderTokenizerFast ) -> dict: """simple docstring""" _snake_case = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_UpperCamelCase , padding="longest" , return_tensors="pt" )["input_ids"] _snake_case = ctx_encoder(input_ids.to(device=_UpperCamelCase ) , return_dict=_UpperCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __a ( _UpperCamelCase: "RagExampleArguments" , _UpperCamelCase: "ProcessingArguments" , _UpperCamelCase: "IndexHnswArguments" , ) -> Dict: """simple docstring""" logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _snake_case = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _snake_case = dataset.map(_UpperCamelCase , batched=_UpperCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _snake_case = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_UpperCamelCase ) _snake_case = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _snake_case = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _snake_case = dataset.map( partial(_UpperCamelCase , ctx_encoder=_UpperCamelCase , ctx_tokenizer=_UpperCamelCase ) , batched=_UpperCamelCase , batch_size=processing_args.batch_size , features=_UpperCamelCase , ) # And finally save your dataset _snake_case = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(_UpperCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _snake_case = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=_UpperCamelCase ) # And save the index _snake_case = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(_UpperCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _a : SCREAMING_SNAKE_CASE_ : str = field( default=str(Path(__lowerCAmelCase ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) SCREAMING_SNAKE_CASE_ : str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) SCREAMING_SNAKE_CASE_ : str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=str(Path(__lowerCAmelCase ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class _a : SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=__lowerCAmelCase , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) SCREAMING_SNAKE_CASE_ : int = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class _a : SCREAMING_SNAKE_CASE_ : int = field( default=7_68 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) SCREAMING_SNAKE_CASE_ : int = field( default=1_28 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ : List[str] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : List[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ : str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
142
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class a : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Tuple=13 , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : str=True , lowerCamelCase : Tuple=True , lowerCamelCase : int=False , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[Any]=99 , lowerCamelCase : Optional[Any]=32 , lowerCamelCase : Optional[int]=5 , lowerCamelCase : Tuple=4 , lowerCamelCase : int=37 , lowerCamelCase : Tuple="gelu" , lowerCamelCase : str=0.1 , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : List[str]=512 , lowerCamelCase : Dict=16 , lowerCamelCase : Optional[Any]=2 , lowerCamelCase : Any=0.02 , lowerCamelCase : Any=3 , lowerCamelCase : List[Any]=4 , lowerCamelCase : List[str]=None , ) -> List[str]: __snake_case : int = parent __snake_case : int = batch_size __snake_case : Union[str, Any] = seq_length __snake_case : Dict = is_training __snake_case : Optional[int] = use_input_mask __snake_case : List[Any] = use_token_type_ids __snake_case : Optional[int] = use_labels __snake_case : Dict = vocab_size __snake_case : List[str] = hidden_size __snake_case : int = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Optional[Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[Any] = type_vocab_size __snake_case : Union[str, Any] = type_sequence_label_size __snake_case : List[str] = initializer_range __snake_case : Any = num_labels __snake_case : Optional[int] = num_choices __snake_case : Any = scope def __snake_case ( self : int ) -> Any: __snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_input_mask: __snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Any = None if self.use_token_type_ids: __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Tuple = None __snake_case : Optional[int] = None __snake_case : Dict = None if self.use_labels: __snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self : List[Any] ) -> Dict: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) def __snake_case ( self : Any , lowerCamelCase : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : List[Any] ) -> Union[str, Any]: __snake_case : Optional[int] = LlamaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[int] = model(lowerCamelCase , attention_mask=lowerCamelCase ) __snake_case : int = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : Tuple , lowerCamelCase : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , ) -> Optional[Any]: __snake_case : List[Any] = True __snake_case : Any = LlamaModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[int] = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __snake_case : Optional[int] = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , ) __snake_case : List[Any] = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , ) -> List[str]: __snake_case : List[str] = LlamaForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : int , ) -> Dict: __snake_case : int = True __snake_case : Dict = True __snake_case : List[Any] = LlamaForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass __snake_case : Dict = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , use_cache=lowerCamelCase , ) __snake_case : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : Dict = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] __snake_case : int = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] # select random slice __snake_case : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __snake_case ( self : int ) -> Tuple: __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[str] = config_and_inputs __snake_case : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __UpperCAmelCase : Dict = (LlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def __snake_case ( self : List[Any] ) -> Optional[int]: __snake_case : List[str] = LlamaModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def __snake_case ( self : Optional[int] ) -> List[Any]: self.config_tester.run_common_tests() def __snake_case ( self : List[str] ) -> Optional[int]: __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __snake_case ( self : str ) -> List[Any]: __snake_case : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Union[str, Any] = type self.model_tester.create_and_check_model(*lowerCamelCase ) def __snake_case ( self : str ) -> int: __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[str] = 3 __snake_case : str = input_dict["input_ids"] __snake_case : str = input_ids.ne(1 ).to(lowerCamelCase ) __snake_case : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : Any = LlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Union[str, Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __snake_case ( self : Optional[int] ) -> List[str]: __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = 3 __snake_case : List[Any] = "single_label_classification" __snake_case : Union[str, Any] = input_dict["input_ids"] __snake_case : Dict = input_ids.ne(1 ).to(lowerCamelCase ) __snake_case : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : List[Any] = LlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __snake_case ( self : Union[str, Any] ) -> Union[str, Any]: __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = 3 __snake_case : Tuple = "multi_label_classification" __snake_case : List[str] = input_dict["input_ids"] __snake_case : Optional[Any] = input_ids.ne(1 ).to(lowerCamelCase ) __snake_case : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __snake_case : List[Any] = LlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[str] = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def __snake_case ( self : str ) -> Any: pass @parameterized.expand([("linear",), ("dynamic",)] ) def __snake_case ( self : Optional[int] , lowerCamelCase : int ) -> Any: __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : str = ids_tensor([1, 10] , config.vocab_size ) __snake_case : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : List[str] = LlamaModel(lowerCamelCase ) original_model.to(lowerCamelCase ) original_model.eval() __snake_case : Tuple = original_model(lowerCamelCase ).last_hidden_state __snake_case : Any = original_model(lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : Any = {"type": scaling_type, "factor": 10.0} __snake_case : Union[str, Any] = LlamaModel(lowerCamelCase ) scaled_model.to(lowerCamelCase ) scaled_model.eval() __snake_case : int = scaled_model(lowerCamelCase ).last_hidden_state __snake_case : Tuple = scaled_model(lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) @require_torch class a (unittest.TestCase ): """simple docstring""" @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __snake_case ( self : Any ) -> Optional[Any]: __snake_case : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] __snake_case : Optional[Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) __snake_case : Dict = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __snake_case : Tuple = torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : List[str] = torch.tensor([-12.82_81, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.82_81, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __snake_case ( self : Union[str, Any] ) -> str: __snake_case : Optional[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] __snake_case : Union[str, Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) __snake_case : Optional[int] = model(torch.tensor(lowerCamelCase ) ) # Expected mean on dim = -1 __snake_case : Optional[int] = torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : Optional[Any] = torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __snake_case ( self : Optional[Any] ) -> Dict: __snake_case : Optional[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] __snake_case : Tuple = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) __snake_case : List[Any] = model(torch.tensor(lowerCamelCase ) ) # Expected mean on dim = -1 __snake_case : Union[str, Any] = torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : Union[str, Any] = torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def __snake_case ( self : Optional[Any] ) -> Optional[Any]: __snake_case : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] __snake_case : List[Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) __snake_case : int = model(torch.tensor(lowerCamelCase ) ) __snake_case : Any = torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __snake_case : int = torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def __snake_case ( self : Any ) -> Union[str, Any]: __snake_case : Optional[int] = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" __snake_case : Union[str, Any] = "Simply put, the theory of relativity states that " __snake_case : Optional[int] = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) __snake_case : Tuple = tokenizer.encode(lowerCamelCase , return_tensors="pt" ) __snake_case : List[str] = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=lowerCamelCase ) # greedy generation outputs __snake_case : Optional[int] = model.generate(lowerCamelCase , max_new_tokens=64 , top_p=lowerCamelCase , temperature=1 , do_sample=lowerCamelCase ) __snake_case : Tuple = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase )
123
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : Tuple = logging.get_logger(__name__) _snake_case : Optional[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Any = "data2vec-vision" def __init__( self : Optional[int] , lowerCamelCase : int=768 , lowerCamelCase : Optional[Any]=12 , lowerCamelCase : Optional[int]=12 , lowerCamelCase : Union[str, Any]=3072 , lowerCamelCase : Tuple="gelu" , lowerCamelCase : List[Any]=0.0 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : int=1E-12 , lowerCamelCase : Optional[int]=224 , lowerCamelCase : List[str]=16 , lowerCamelCase : str=3 , lowerCamelCase : Any=False , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]=False , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : Dict=True , lowerCamelCase : Tuple=[3, 5, 7, 11] , lowerCamelCase : Union[str, Any]=[1, 2, 3, 6] , lowerCamelCase : List[str]=True , lowerCamelCase : int=0.4 , lowerCamelCase : Optional[int]=256 , lowerCamelCase : Tuple=1 , lowerCamelCase : Tuple=False , lowerCamelCase : Any=255 , **lowerCamelCase : str , ) -> Optional[int]: super().__init__(**lowerCamelCase ) __snake_case : Dict = hidden_size __snake_case : str = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Tuple = intermediate_size __snake_case : int = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : Tuple = image_size __snake_case : Tuple = patch_size __snake_case : Optional[Any] = num_channels __snake_case : Optional[Any] = use_mask_token __snake_case : Dict = use_absolute_position_embeddings __snake_case : Optional[Any] = use_relative_position_bias __snake_case : Any = use_shared_relative_position_bias __snake_case : Union[str, Any] = layer_scale_init_value __snake_case : List[Any] = drop_path_rate __snake_case : Any = use_mean_pooling # decode head attributes (semantic segmentation) __snake_case : Optional[int] = out_indices __snake_case : List[str] = pool_scales # auxiliary head attributes (semantic segmentation) __snake_case : int = use_auxiliary_head __snake_case : Optional[Any] = auxiliary_loss_weight __snake_case : Optional[int] = auxiliary_channels __snake_case : str = auxiliary_num_convs __snake_case : Any = auxiliary_concat_input __snake_case : Optional[Any] = semantic_loss_ignore_index class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = version.parse("1.11" ) @property def __snake_case ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __snake_case ( self : List[Any] ) -> float: return 1E-4
123
1
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Dict=None ) -> Tuple: '''simple docstring''' _a = None if token is not None: _a = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} _a = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' _a = requests.get(lowerCAmelCase__ , headers=lowerCAmelCase__ ).json() _a = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) _a = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(lowerCAmelCase__ ): _a = requests.get(url + f'&page={i + 2}' , headers=lowerCAmelCase__ ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _A (lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int]=None ) -> Any: '''simple docstring''' _a = None if token is not None: _a = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} _a = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' _a = requests.get(lowerCAmelCase__ , headers=lowerCAmelCase__ ).json() _a = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) _a = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(lowerCAmelCase__ ): _a = requests.get(url + f'&page={i + 2}' , headers=lowerCAmelCase__ ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _A (lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[int] ) -> Optional[Any]: '''simple docstring''' _a = None if token is not None: _a = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} _a = requests.get(lowerCAmelCase__ , headers=lowerCAmelCase__ , allow_redirects=lowerCAmelCase__ ) _a = result.headers['Location'] _a = requests.get(lowerCAmelCase__ , allow_redirects=lowerCAmelCase__ ) _a = os.path.join(lowerCAmelCase__ , f'{artifact_name}.zip' ) with open(lowerCAmelCase__ , 'wb' ) as fp: fp.write(response.content ) def _A (lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict=None ) -> Optional[Any]: '''simple docstring''' _a = [] _a = [] _a = None with zipfile.ZipFile(lowerCAmelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(lowerCAmelCase__ ) as f: for line in f: _a = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _a = line[: line.index(': ' )] _a = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed _a = line[len('FAILED ' ) :] failed_tests.append(lowerCAmelCase__ ) elif filename == "job_name.txt": _a = line if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( f'`errors` and `failed_tests` should have the same number of elements. Got {len(lowerCAmelCase__ )} for `errors` ' f'and {len(lowerCAmelCase__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' ' problem.' ) _a = None if job_name and job_links: _a = job_links.get(lowerCAmelCase__ , lowerCAmelCase__ ) # A list with elements of the form (line of error, error, failed test) _a = [x + [y] + [job_link] for x, y in zip(lowerCAmelCase__ , lowerCAmelCase__ )] return result def _A (lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[int]=None ) -> Any: '''simple docstring''' _a = [] _a = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for p in os.listdir(lowerCAmelCase__ ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(lowerCAmelCase__ , job_links=lowerCAmelCase__ ) ) return errors def _A (lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any]=None ) -> List[str]: '''simple docstring''' _a = Counter() counter.update([x[1] for x in logs] ) _a = counter.most_common() _a = {} for error, count in counts: if error_filter is None or error not in error_filter: _a = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} _a = dict(sorted(r.items() , key=lambda lowerCAmelCase__ : item[1]["count"] , reverse=lowerCAmelCase__ ) ) return r def _A (lowerCAmelCase__ :Optional[Any] ) -> int: '''simple docstring''' _a = test.split('::' )[0] if test.startswith('tests/models/' ): _a = test.split('/' )[2] else: _a = None return test def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :List[Any]=None ) -> str: '''simple docstring''' _a = [(x[0], x[1], get_model(x[2] )) for x in logs] _a = [x for x in logs if x[2] is not None] _a = {x[2] for x in logs} _a = {} for test in tests: _a = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _a = counter.most_common() _a = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _a = sum(error_counts.values() ) if n_errors > 0: _a = {'count': n_errors, 'errors': error_counts} _a = dict(sorted(r.items() , key=lambda lowerCAmelCase__ : item[1]["count"] , reverse=lowerCAmelCase__ ) ) return r def _A (lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' _a = '| no. | error | status |' _a = '|-:|:-|:-|' _a = [header, sep] for error in reduced_by_error: _a = reduced_by_error[error]['count'] _a = f'| {count} | {error[:1_00]} | |' lines.append(lowerCAmelCase__ ) return "\n".join(lowerCAmelCase__ ) def _A (lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' _a = '| model | no. of errors | major error | count |' _a = '|-:|-:|-:|-:|' _a = [header, sep] for model in reduced_by_model: _a = reduced_by_model[model]['count'] _a , _a = list(reduced_by_model[model]['errors'].items() )[0] _a = f'| {model} | {count} | {error[:60]} | {_count} |' lines.append(lowerCAmelCase__ ) return "\n".join(lowerCAmelCase__ ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") a_ : int = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) a_ : Tuple = get_job_links(args.workflow_run_id, token=args.token) a_ : Tuple = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: a_ : str = k.find(" / ") a_ : Union[str, Any] = k[index + len(" / ") :] a_ : int = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) a_ : Tuple = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) a_ : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error a_ : Any = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors a_ : List[str] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) a_ : Union[str, Any] = reduce_by_error(errors) a_ : Dict = reduce_by_model(errors) a_ : Union[str, Any] = make_github_table(reduced_by_error) a_ : Any = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
361
'''simple docstring''' def _A (lowerCAmelCase__ :list[int] , lowerCAmelCase__ :list[int] ) -> None: '''simple docstring''' _a = len(lowerCAmelCase__ ) print('The following activities are selected:' ) # The first activity is always selected _a = 0 print(lowerCAmelCase__ , end=',' ) # Consider rest of the activities for j in range(lowerCAmelCase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowerCAmelCase__ , end=',' ) _a = j if __name__ == "__main__": import doctest doctest.testmod() a_ : List[str] = [1, 3, 0, 5, 8, 5] a_ : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
104
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __A ={1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , a_ : List[Any] ): '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=a_ ) __UpperCAmelCase : Tuple = list(model.children() )[:-2] __UpperCAmelCase : Optional[int] = nn.Sequential(*a_ ) __UpperCAmelCase : int = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def snake_case__ ( self : Any , a_ : Any ): '''simple docstring''' __UpperCAmelCase : int = self.pool(self.model(a_ ) ) __UpperCAmelCase : Optional[Any] = torch.flatten(a_ , start_dim=2 ) __UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' def __init__( self : Any , a_ : str , a_ : Any , a_ : List[str] , a_ : Optional[Any] , a_ : int ): '''simple docstring''' __UpperCAmelCase : List[str] = [json.loads(a_ ) for l in open(a_ )] __UpperCAmelCase : Optional[int] = os.path.dirname(a_ ) __UpperCAmelCase : Optional[int] = tokenizer __UpperCAmelCase : Optional[int] = labels __UpperCAmelCase : int = len(a_ ) __UpperCAmelCase : Any = max_seq_length __UpperCAmelCase : int = transforms def __len__( self : Union[str, Any] ): '''simple docstring''' return len(self.data ) def __getitem__( self : Any , a_ : Any ): '''simple docstring''' __UpperCAmelCase : List[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=a_ ) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : List[Any] = sentence[: self.max_seq_length] __UpperCAmelCase : Optional[int] = torch.zeros(self.n_classes ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : Optional[int] = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' ) __UpperCAmelCase : Optional[int] = self.transforms(a_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[str] = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def a ( _UpperCAmelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [len(row['''sentence'''] ) for row in batch] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = len(_UpperCAmelCase ), max(_UpperCAmelCase ) __UpperCAmelCase : Dict = torch.zeros(_UpperCAmelCase , _UpperCAmelCase , dtype=torch.long ) __UpperCAmelCase : Union[str, Any] = torch.zeros(_UpperCAmelCase , _UpperCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ): __UpperCAmelCase : Optional[int] = input_row['''sentence'''] __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Any = torch.stack([row['''image'''] for row in batch] ) __UpperCAmelCase : int = torch.stack([row['''label'''] for row in batch] ) __UpperCAmelCase : List[str] = torch.stack([row['''image_start_token'''] for row in batch] ) __UpperCAmelCase : Union[str, Any] = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def a ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def a ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
226
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __A =getLogger(__name__) def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 8 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : Any="val" , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Any=False , _UpperCAmelCase : Union[str, Any]="summarization" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Dict = None , _UpperCAmelCase : Dict="" , **_UpperCAmelCase : List[str] , ): '''simple docstring''' __UpperCAmelCase : Any = str(_UpperCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = Path(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(_UpperCAmelCase ) __UpperCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).cuda() if fpaa: __UpperCAmelCase : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(_UpperCAmelCase , _UpperCAmelCase ) # update config with task specific params __UpperCAmelCase : List[str] = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __UpperCAmelCase : Any = num_return_sequences __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(_UpperCAmelCase ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: __UpperCAmelCase : Optional[Any] = tokenizer.model_max_length if prefix is None: __UpperCAmelCase : str = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' __UpperCAmelCase : Union[str, Any] = SeqaSeqDataset( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , max_target_length=10_24 , type_path=_UpperCAmelCase , n_obs=_UpperCAmelCase , prefix=_UpperCAmelCase , **_UpperCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __UpperCAmelCase : str = ds.make_sortish_sampler(_UpperCAmelCase , distributed=_UpperCAmelCase , add_extra_examples=_UpperCAmelCase , shuffle=_UpperCAmelCase ) __UpperCAmelCase : List[Any] = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn ) __UpperCAmelCase : List[Any] = [] for batch in tqdm(_UpperCAmelCase ): __UpperCAmelCase : str = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=_UpperCAmelCase , num_beams=_UpperCAmelCase , **_UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) __UpperCAmelCase : List[str] = batch['''ids'''] if num_return_sequences > 1: __UpperCAmelCase : Any = chunks(_UpperCAmelCase , _UpperCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_UpperCAmelCase ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(_UpperCAmelCase , _UpperCAmelCase ) return results, sampler.num_replicas def a ( ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=_UpperCAmelCase , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=_UpperCAmelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=_UpperCAmelCase , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=_UpperCAmelCase , default=_UpperCAmelCase ) parser.add_argument( '''--type_path''' , type=_UpperCAmelCase , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=_UpperCAmelCase , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_UpperCAmelCase , default=8 , required=_UpperCAmelCase , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=_UpperCAmelCase , default=1 , required=_UpperCAmelCase , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=_UpperCAmelCase , default=6_00 , required=_UpperCAmelCase , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument('''--tgt_lang''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument( '''--prefix''' , type=_UpperCAmelCase , required=_UpperCAmelCase , default=_UpperCAmelCase , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) __UpperCAmelCase : Any = time.time() __UpperCAmelCase , __UpperCAmelCase : Any = parser.parse_known_args() __UpperCAmelCase : List[Any] = parse_numeric_n_bool_cl_kwargs(_UpperCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) __UpperCAmelCase : Union[str, Any] = Path(args.save_dir + '''_tmp''' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) # this handles locking. __UpperCAmelCase : int = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __UpperCAmelCase : List[Any] = {} if args.src_lang is not None: __UpperCAmelCase : List[str] = args.src_lang if args.tgt_lang is not None: __UpperCAmelCase : List[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : int = eval_data_dir( args.data_dir , _UpperCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_UpperCAmelCase , **_UpperCAmelCase , ) if args.local_rank <= 0: __UpperCAmelCase : int = Path(args.save_dir ) save_dir.mkdir(exist_ok=_UpperCAmelCase ) __UpperCAmelCase : List[str] = gather_results_from_each_node(_UpperCAmelCase , _UpperCAmelCase , args.sync_timeout ) __UpperCAmelCase : List[Any] = combine_partial_results(_UpperCAmelCase ) if args.num_return_sequences > 1: __UpperCAmelCase : int = save_dir.joinpath('''pseudolabel_results.json''' ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(_UpperCAmelCase , _UpperCAmelCase ) return __UpperCAmelCase : str = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(_UpperCAmelCase ) as f: __UpperCAmelCase : int = [x.rstrip() for x in f.readlines()][: len(_UpperCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt __UpperCAmelCase : Optional[Any] = '''translation''' in args.task __UpperCAmelCase : Optional[int] = calculate_bleu if calc_bleu else calculate_rouge __UpperCAmelCase : Union[str, Any] = '''bleu''' if calc_bleu else '''rouge''' __UpperCAmelCase : Dict = score_fn(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = len(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = time.time() - start_time __UpperCAmelCase : List[str] = round(runtime / metrics['''n_obs'''] , 4 ) __UpperCAmelCase : List[str] = num_replicas # TODO(@stas00): add whatever metadata to metrics __UpperCAmelCase : List[Any] = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase ) print(_UpperCAmelCase ) write_txt_file(_UpperCAmelCase , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(_UpperCAmelCase , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(_UpperCAmelCase ) def a ( _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] for partial_result in partial_results: records.extend(_UpperCAmelCase ) __UpperCAmelCase : List[str] = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["id"] ) __UpperCAmelCase : Union[str, Any] = [x['''pred'''] for x in records] return preds def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = time.time() logger.info('''waiting for all nodes to finish''' ) __UpperCAmelCase : Any = None while (time.time() - start_wait) < timeout: __UpperCAmelCase : List[Any] = list(save_dir.glob('''rank_*.json''' ) ) if len(_UpperCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved __UpperCAmelCase : Union[str, Any] = lmap(_UpperCAmelCase , _UpperCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
226
1
from ..utils import DummyObject, requires_backends class lowercase ( metaclass=_a): """simple docstring""" a__ : List[Any] = ["""speech"""] def __init__( self : Dict , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["""speech"""] ) class lowercase ( metaclass=_a): """simple docstring""" a__ : List[Any] = ["""speech"""] def __init__( self : Tuple , *__UpperCAmelCase : int , **__UpperCAmelCase : int ) -> Dict: requires_backends(self , ["""speech"""] )
371
import warnings from functools import wraps from typing import Callable def __a ( lowerCAmelCase_ : Callable ) -> Callable: '''simple docstring''' @wraps(lowerCAmelCase_ ) def _inner_fn(*lowerCAmelCase_ : List[Any] ,**lowerCAmelCase_ : Tuple ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") ,lowerCAmelCase_ ,) return fn(*lowerCAmelCase_ ,**lowerCAmelCase_ ) return _inner_fn
277
0