code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from torch import nn def __snake_case ( UpperCAmelCase_ : Union[str, Any] ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
55
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )] UpperCAmelCase : Any = randint(-5_000 , 5_000 ) return (arr, r) _lowerCamelCase : Any = make_dataset() def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]: for triplet in permutations(UpperCAmelCase , 3 ): if sum(UpperCAmelCase ) == target: return tuple(sorted(UpperCAmelCase ) ) return (0, 0, 0) def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]: arr.sort() UpperCAmelCase : Tuple = len(UpperCAmelCase ) for i in range(n - 1 ): UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase : Tuple = ''' triplet_sum1(*dataset) ''' UpperCAmelCase : List[str] = ''' triplet_sum2(*dataset) ''' UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) return (min(UpperCAmelCase ), min(UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase : int = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
336
0
from math import ceil def UpperCamelCase_( _snake_case : int , _snake_case : Any ): """simple docstring""" __a =list(range(0 , _snake_case ) ) __a =[item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __a =[] for i in device_map_blocks: if device_map_blocks.count(_snake_case ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_snake_case ) # Missing blocks __a =[i for i in blocks if i not in device_map_blocks] __a =[i for i in device_map_blocks if i not in blocks] if len(_snake_case ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(_snake_case ) ) if len(_snake_case ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(_snake_case ) ) if len(_snake_case ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(_snake_case ) ) def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Optional[int] ): """simple docstring""" __a =list(range(_snake_case ) ) __a =int(ceil(n_layers / len(_snake_case ) ) ) __a =[layers[i : i + n_blocks] for i in range(0 , _snake_case , _snake_case )] return dict(zip(_snake_case , _snake_case ) )
308
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : Any = CTRLTokenizer a__ : Any = False a__ : Tuple = False def UpperCamelCase__ ( self) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase :int = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] __UpperCamelCase :Union[str, Any] = dict(zip(__lowercase , range(len(__lowercase)))) __UpperCamelCase :Dict = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] __UpperCamelCase :List[str] = {'''unk_token''': '''<unk>'''} __UpperCamelCase :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCamelCase :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(__lowercase) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(__lowercase)) def UpperCamelCase__ ( self , **__lowercase) -> Dict: kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self , __lowercase) -> Optional[int]: __UpperCamelCase :str = '''adapt react readapt apt''' __UpperCamelCase :Optional[Any] = '''adapt react readapt apt''' return input_text, output_text def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Any = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) __UpperCamelCase :Dict = '''adapt react readapt apt''' __UpperCamelCase :Optional[Any] = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() __UpperCamelCase :Any = tokenizer.tokenize(__lowercase) self.assertListEqual(__lowercase , __lowercase) __UpperCamelCase :Optional[Any] = tokens + [tokenizer.unk_token] __UpperCamelCase :List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase) , __lowercase)
43
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : str = TextToVideoSDPipeline a__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS a__ : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a__ : int = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def UpperCamelCase__ ( self) -> Optional[Any]: torch.manual_seed(0) __UpperCamelCase :str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) __UpperCamelCase :Optional[int] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0) __UpperCamelCase :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) __UpperCamelCase :Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __UpperCamelCase :Optional[Any] = CLIPTextModel(__lowercase) __UpperCamelCase :Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') __UpperCamelCase :Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def UpperCamelCase__ ( self , __lowercase , __lowercase=0) -> Optional[int]: if str(__lowercase).startswith('''mps'''): __UpperCamelCase :List[Any] = torch.manual_seed(__lowercase) else: __UpperCamelCase :Tuple = torch.Generator(device=__lowercase).manual_seed(__lowercase) __UpperCamelCase :Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :int = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase :Optional[int] = self.get_dummy_components() __UpperCamelCase :Dict = TextToVideoSDPipeline(**__lowercase) __UpperCamelCase :Any = sd_pipe.to(__lowercase) sd_pipe.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :Optional[Any] = self.get_dummy_inputs(__lowercase) __UpperCamelCase :int = '''np''' __UpperCamelCase :List[str] = sd_pipe(**__lowercase).frames __UpperCamelCase :Optional[Any] = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __UpperCamelCase :str = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase__ ( self) -> Tuple: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowercase , expected_max_diff=3E-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase__ ( self) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowercase , expected_max_diff=1E-2) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''') def UpperCamelCase__ ( self) -> Union[str, Any]: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''') def UpperCamelCase__ ( self) -> Dict: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''') def UpperCamelCase__ ( self) -> str: pass def UpperCamelCase__ ( self) -> List[str]: return super().test_progress_bar() @slow @skip_mps class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''') __UpperCamelCase :List[str] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''') __UpperCamelCase :Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __UpperCamelCase :str = pipe.to('''cuda''') __UpperCamelCase :Optional[Any] = '''Spiderman is surfing''' __UpperCamelCase :Union[str, Any] = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :List[Any] = pipe(__lowercase , generator=__lowercase , num_inference_steps=25 , output_type='''pt''').frames __UpperCamelCase :Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5E-2 def UpperCamelCase__ ( self) -> int: __UpperCamelCase :str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''') __UpperCamelCase :Union[str, Any] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''') __UpperCamelCase :str = pipe.to('''cuda''') __UpperCamelCase :Union[str, Any] = '''Spiderman is surfing''' __UpperCamelCase :int = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :List[Any] = pipe(__lowercase , generator=__lowercase , num_inference_steps=2 , output_type='''pt''').frames __UpperCamelCase :Optional[Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5E-2
43
1
'''simple docstring''' import sys import turtle def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(UpperCamelCase , get_mid(UpperCamelCase , UpperCamelCase ) , get_mid(UpperCamelCase , UpperCamelCase ) , depth - 1 ) triangle(UpperCamelCase , get_mid(UpperCamelCase , UpperCamelCase ) , get_mid(UpperCamelCase , UpperCamelCase ) , depth - 1 ) triangle(UpperCamelCase , get_mid(UpperCamelCase , UpperCamelCase ) , get_mid(UpperCamelCase , UpperCamelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) _A : int =turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') _A : Union[str, Any] =[(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
129
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> List[Any]: if "cls_token" in name: lowerCamelCase__ : Any = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowerCamelCase__ : Union[str, Any] = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowerCamelCase__ : Tuple = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase__ : str = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowerCamelCase__ : Optional[int] = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCamelCase__ : Any = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowerCamelCase__ : Dict = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowerCamelCase__ : Union[str, Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowerCamelCase__ : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCamelCase__ : List[str] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCamelCase__ : Any = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCamelCase__ : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCamelCase__ : str = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowerCamelCase__ : Tuple = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowerCamelCase__ : Optional[int] = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowerCamelCase__ : int = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowerCamelCase__ : Union[str, Any] = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowerCamelCase__ : Dict = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Tuple: for key in orig_state_dict.copy().keys(): lowerCamelCase__ : List[str] = orig_state_dict.pop(UpperCamelCase ) if "qkv" in key: lowerCamelCase__ : List[Any] = key.split(""".""" ) lowerCamelCase__ : Optional[int] = int(key_split[1] ) if "decoder_blocks" in key: lowerCamelCase__ : str = config.decoder_hidden_size lowerCamelCase__ : List[Any] = """decoder.decoder_layers.""" if "weight" in key: lowerCamelCase__ : int = val[:dim, :] lowerCamelCase__ : int = val[dim : dim * 2, :] lowerCamelCase__ : Tuple = val[-dim:, :] elif "bias" in key: lowerCamelCase__ : Tuple = val[:dim] lowerCamelCase__ : Optional[int] = val[dim : dim * 2] lowerCamelCase__ : List[Any] = val[-dim:] else: lowerCamelCase__ : List[Any] = config.hidden_size lowerCamelCase__ : Optional[int] = """vit.encoder.layer.""" if "weight" in key: lowerCamelCase__ : str = val[:dim, :] lowerCamelCase__ : List[Any] = val[dim : dim * 2, :] lowerCamelCase__ : Optional[int] = val[-dim:, :] elif "bias" in key: lowerCamelCase__ : int = val[:dim] lowerCamelCase__ : List[Any] = val[dim : dim * 2] lowerCamelCase__ : Optional[int] = val[-dim:] else: lowerCamelCase__ : int = val return orig_state_dict def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: lowerCamelCase__ : Any = ViTMAEConfig() if "large" in checkpoint_url: lowerCamelCase__ : Any = 1024 lowerCamelCase__ : Optional[Any] = 4096 lowerCamelCase__ : List[str] = 24 lowerCamelCase__ : Union[str, Any] = 16 elif "huge" in checkpoint_url: lowerCamelCase__ : List[str] = 14 lowerCamelCase__ : Dict = 1280 lowerCamelCase__ : Tuple = 5120 lowerCamelCase__ : List[str] = 32 lowerCamelCase__ : Union[str, Any] = 16 lowerCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCamelCase ) lowerCamelCase__ : str = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase__ : List[str] = convert_state_dict(UpperCamelCase , UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowerCamelCase__ : List[Any] = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) lowerCamelCase__ : str = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase__ : Any = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowerCamelCase__ : Optional[Any] = model(**UpperCamelCase ) lowerCamelCase__ : Optional[Any] = outputs.logits if "large" in checkpoint_url: lowerCamelCase__ : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowerCamelCase__ : Optional[Any] = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowerCamelCase__ : int = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , UpperCamelCase , atol=1E-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _A : Tuple =parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
129
1
def _a ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ): __lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __lowerCAmelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __lowerCAmelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __lowerCAmelCase = subset[i - 1][j] if arr[i - 1] <= j: __lowerCAmelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
92
def _a ( SCREAMING_SNAKE_CASE_ : int = 1_00_00_00 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
92
1
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) lowercase : Union[str, Any] = 'bert-base-cased' lowercase : int = 'fp16' lowercase : List[Any] = 'bf16' lowercase : Optional[int] = [FPaa, BFaa] @require_fsdp @require_cuda class A ( __snake_case ): def __lowerCAmelCase ( self ) -> str: """simple docstring""" super().setUp() A : List[Any] = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(SCREAMING_SNAKE_CASE ): A : List[Any] = self.dist_env.copy() A : Any = F'{i + 1}' A : List[Any] = strategy with mockenv_context(**SCREAMING_SNAKE_CASE ): A : int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(SCREAMING_SNAKE_CASE ): A : Optional[Any] = self.dist_env.copy() A : List[Any] = prefetch_policy with mockenv_context(**SCREAMING_SNAKE_CASE ): A : Union[str, Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(SCREAMING_SNAKE_CASE ): A : Optional[Any] = self.dist_env.copy() A : Tuple = state_dict_type with mockenv_context(**SCREAMING_SNAKE_CASE ): A : Dict = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[int] = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE ) for policy in FSDP_AUTO_WRAP_POLICY: A : Tuple = self.dist_env.copy() A : List[Any] = policy if policy == "TRANSFORMER_BASED_WRAP": A : Dict = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": A : Any = '''2000''' with mockenv_context(**SCREAMING_SNAKE_CASE ): A : str = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(SCREAMING_SNAKE_CASE ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) A : Any = self.dist_env.copy() A : List[Any] = '''TRANSFORMER_BASED_WRAP''' A : Optional[int] = '''T5Layer''' with mockenv_context(**SCREAMING_SNAKE_CASE ): A : List[Any] = FullyShardedDataParallelPlugin() with self.assertRaises(SCREAMING_SNAKE_CASE ) as cm: fsdp_plugin.set_auto_wrap_policy(SCREAMING_SNAKE_CASE ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) A : int = self.dist_env.copy() A : Any = '''SIZE_BASED_WRAP''' A : Optional[int] = '''0''' with mockenv_context(**SCREAMING_SNAKE_CASE ): A : str = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(SCREAMING_SNAKE_CASE ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: A : Optional[int] = self.dist_env.copy() A : Any = mp_dtype with mockenv_context(**SCREAMING_SNAKE_CASE ): A : List[Any] = Accelerator() if mp_dtype == "fp16": A : int = torch.floataa elif mp_dtype == "bf16": A : int = torch.bfloataa A : str = MixedPrecision(param_dtype=SCREAMING_SNAKE_CASE , reduce_dtype=SCREAMING_SNAKE_CASE , buffer_dtype=SCREAMING_SNAKE_CASE ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , SCREAMING_SNAKE_CASE ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , SCREAMING_SNAKE_CASE ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: A : List[str] = self.dist_env.copy() A : Dict = str(SCREAMING_SNAKE_CASE ).lower() with mockenv_context(**SCREAMING_SNAKE_CASE ): A : List[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=SCREAMING_SNAKE_CASE ) ) @require_fsdp @require_multi_gpu @slow class A ( __snake_case ): def __lowerCAmelCase ( self ) -> int: """simple docstring""" super().setUp() A : Tuple = 0.82 A : Optional[int] = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] A : str = { '''multi_gpu_fp16''': 3200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } A : Union[str, Any] = 160 A : Any = 160 A : Union[str, Any] = inspect.getfile(accelerate.test_utils ) A : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : List[Any] = os.path.join(self.test_scripts_folder , '''test_performance.py''' ) A : Any = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: A : str = cmd.copy() for i, strategy in enumerate(SCREAMING_SNAKE_CASE ): if strategy.lower() in config: cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--performance_lower_bound={self.performance_lower_bound}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Any = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) A : Dict = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(SCREAMING_SNAKE_CASE ): A : List[str] = cmd.copy() cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) if strategy != "FULL_SHARD": continue A : int = len(SCREAMING_SNAKE_CASE ) for state_dict_type in FSDP_STATE_DICT_TYPE: A : Optional[int] = cmd_config[:state_dict_config_index] cmd_config.append(F'--fsdp_state_dict_type={state_dict_type}' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() ) A : List[str] = cmd_config[:-1] A : Dict = os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ F'--resume_from_checkpoint={resume_from_checkpoint}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Tuple = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) A : Any = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): A : Tuple = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(SCREAMING_SNAKE_CASE ): if strategy.lower() in spec: cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--peak_memory_upper_bound={peak_mem_upper_bound}', F'--n_train={self.n_train}', F'--n_val={self.n_val}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() )
311
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowercase : Optional[int] = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') lowercase : Optional[Any] = parser.parse_args() if args.check_lib: lowercase : List[Any] = importlib.import_module('transformers') lowercase : str = Path(transformers_module.__file__).parent else: lowercase : List[Any] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
311
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __A = { "gpt-neox-20b": 2048, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Dict , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Union[str, Any]="<|endoftext|>" , UpperCAmelCase_ : Dict="<|endoftext|>" , UpperCAmelCase_ : Any="<|endoftext|>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Dict , ) ->Any: '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[str] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase_) != add_prefix_space: lowerCamelCase__: Union[str, Any] =getattr(UpperCAmelCase_ , pre_tok_state.pop("type")) lowerCamelCase__: Any =add_prefix_space lowerCamelCase__: Optional[int] =pre_tok_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =add_prefix_space def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: List[Any] =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : "Conversation") ->List[int]: '''simple docstring''' lowerCamelCase__: Optional[int] =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) + [self.eos_token_id]) if len(UpperCAmelCase_) > self.model_max_length: lowerCamelCase__: List[str] =input_ids[-self.model_max_length :] return input_ids
10
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class _A: """simple docstring""" @staticmethod def UpperCAmelCase_ ( *_A , **_A ): pass def _SCREAMING_SNAKE_CASE ( a ) -> str: __A : str = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _SCREAMING_SNAKE_CASE ( a ) -> Dict: __A : Dict = np.array(a ) __A : List[Any] = npimg.shape return {"hash": hashimage(a ), "shape": shape} @is_pipeline_test @require_vision @require_torch class _A( unittest.TestCase ): """simple docstring""" UpperCamelCase : str = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCamelCase : int = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCAmelCase_ ( self , _A , _A , _A ): __A : Dict = MaskGenerationPipeline(model=_A , image_processor=_A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase_ ( self , _A , _A ): pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def UpperCAmelCase_ ( self ): pass @slow @require_torch def UpperCAmelCase_ ( self ): __A : Union[str, Any] = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) __A : List[str] = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256 ) # Shortening by hashing __A : List[Any] = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(_A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_9_6_7}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_9_3}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_9_0_9}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_8_7_9}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_8_3_4}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_7_1_6}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_6_1_2}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_5_9_9}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_5_5_2}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_5_3_2}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_5_1_6}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_4_9_9}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_4_8_3}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_4_6_4}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_4_0_8}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_3_3_5}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_3_2_6}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_2_6_2}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_9_9_9}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_9_8_6}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_9_8_4}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_8_7_3}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def UpperCAmelCase_ ( self ): __A : Optional[Any] = 'facebook/sam-vit-huge' __A : List[str] = pipeline('mask-generation' , model=_A ) __A : Tuple = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __A : List[str] = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(_A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1_0}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, ] , )
280
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case_ = logging.getLogger(__name__) def _lowerCAmelCase ( lowercase_ , lowercase_ ): return (preds == labels).mean() @dataclass class A_ : """simple docstring""" __UpperCamelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase = field( default=_lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase = field( default=_lowerCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase = field( default=_lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class A_ : """simple docstring""" __UpperCamelCase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __UpperCamelCase = field(metadata={"""help""": """Should contain the data files for the task."""} ) __UpperCamelCase = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase = field( default=_lowerCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _lowerCAmelCase ( ): UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowerCAmelCase__ ) # Set seed set_seed(training_args.seed ) try: UpperCAmelCase = processors[data_args.task_name]() UpperCAmelCase = processor.get_labels() UpperCAmelCase = len(lowerCAmelCase__ ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowercase_ ) -> Dict: UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCAmelCase__ , p.label_ids )} # Data collator UpperCAmelCase = DataCollatorWithPadding(lowerCAmelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(lowerCAmelCase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , lowerCAmelCase__ , lowerCAmelCase__ ) writer.write('%s = %s\n' % (key, value) ) results.update(lowerCAmelCase__ ) return results def _lowerCAmelCase ( lowercase_ ): main() if __name__ == "__main__": main()
366
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _lowerCAmelCase ( lowercase_ ): random.seed(lowercase_ ) np.random.seed(lowercase_ ) torch.manual_seed(lowercase_ ) torch.cuda.manual_seed_all(lowercase_ ) # ^^ safe to call this function even if cuda is not available class A_ : """simple docstring""" def __init__( self :Any , lowercase_ :Iterable[torch.nn.Parameter] , lowercase_ :float = 0.9999 , lowercase_ :float = 0.0 , lowercase_ :int = 0 , lowercase_ :bool = False , lowercase_ :Union[float, int] = 1.0 , lowercase_ :Union[float, int] = 2 / 3 , lowercase_ :Optional[Any] = None , lowercase_ :Dict[str, Any] = None , **lowercase_ :Dict , ) -> Optional[int]: if isinstance(lowercase_ , torch.nn.Module ): UpperCAmelCase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , lowercase_ , standard_warn=lowercase_ , ) UpperCAmelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCAmelCase = True if kwargs.get('max_value' , lowercase_ ) is not None: UpperCAmelCase = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = kwargs['max_value'] if kwargs.get('min_value' , lowercase_ ) is not None: UpperCAmelCase = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = kwargs['min_value'] UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = [p.clone().detach() for p in parameters] if kwargs.get('device' , lowercase_ ) is not None: UpperCAmelCase = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) self.to(device=kwargs['device'] ) UpperCAmelCase = None UpperCAmelCase = decay UpperCAmelCase = min_decay UpperCAmelCase = update_after_step UpperCAmelCase = use_ema_warmup UpperCAmelCase = inv_gamma UpperCAmelCase = power UpperCAmelCase = 0 UpperCAmelCase = None # set in `step()` UpperCAmelCase = model_cls UpperCAmelCase = model_config @classmethod def UpperCAmelCase__ ( cls :int , lowercase_ :Union[str, Any] , lowercase_ :Any ) -> "EMAModel": UpperCAmelCase , UpperCAmelCase = model_cls.load_config(lowercase_ , return_unused_kwargs=lowercase_ ) UpperCAmelCase = model_cls.from_pretrained(lowercase_ ) UpperCAmelCase = cls(model.parameters() , model_cls=lowercase_ , model_config=model.config ) ema_model.load_state_dict(lowercase_ ) return ema_model def UpperCAmelCase__ ( self :List[Any] , lowercase_ :List[str] ) -> int: if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) UpperCAmelCase = self.model_cls.from_config(self.model_config ) UpperCAmelCase = self.state_dict() state_dict.pop('shadow_params' , lowercase_ ) model.register_to_config(**lowercase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :int ) -> float: UpperCAmelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCAmelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCAmelCase = (1 + step) / (10 + step) UpperCAmelCase = min(lowercase_ , self.decay ) # make sure decay is not smaller than min_decay UpperCAmelCase = max(lowercase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Iterable[torch.nn.Parameter] ) -> Optional[int]: if isinstance(lowercase_ , torch.nn.Module ): UpperCAmelCase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , lowercase_ , standard_warn=lowercase_ , ) UpperCAmelCase = parameters.parameters() UpperCAmelCase = list(lowercase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCAmelCase = self.get_decay(self.optimization_step ) UpperCAmelCase = decay UpperCAmelCase = 1 - decay UpperCAmelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowercase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCAmelCase = deepspeed.zero.GatheredParameters(lowercase_ , modifier_rank=lowercase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowercase_ ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: UpperCAmelCase = list(lowercase_ ) for s_param, param in zip(self.shadow_params , lowercase_ ): param.data.copy_(s_param.to(param.device ).data ) def UpperCAmelCase__ ( self :Dict , lowercase_ :Tuple=None , lowercase_ :Union[str, Any]=None ) -> None: UpperCAmelCase = [ p.to(device=lowercase_ , dtype=lowercase_ ) if p.is_floating_point() else p.to(device=lowercase_ ) for p in self.shadow_params ] def UpperCAmelCase__ ( self :Union[str, Any] ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: UpperCAmelCase = [param.detach().cpu().clone() for param in parameters] def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , lowercase_ ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCAmelCase = None def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :dict ) -> None: UpperCAmelCase = copy.deepcopy(lowercase_ ) UpperCAmelCase = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) UpperCAmelCase = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , lowercase_ ): raise ValueError('Invalid min_decay' ) UpperCAmelCase = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , lowercase_ ): raise ValueError('Invalid optimization_step' ) UpperCAmelCase = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , lowercase_ ): raise ValueError('Invalid update_after_step' ) UpperCAmelCase = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowercase_ ): raise ValueError('Invalid use_ema_warmup' ) UpperCAmelCase = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) UpperCAmelCase = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) UpperCAmelCase = state_dict.get('shadow_params' , lowercase_ ) if shadow_params is not None: UpperCAmelCase = shadow_params if not isinstance(self.shadow_params , lowercase_ ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(lowercase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
181
0
from math import factorial def snake_case( __magic_name__ = 1_00 ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for x in str(factorial(__magic_name__ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=2 ,__UpperCAmelCase=8 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=99 ,__UpperCAmelCase=16 ,__UpperCAmelCase=5 ,__UpperCAmelCase=2 ,__UpperCAmelCase=36 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=5_12 ,__UpperCAmelCase=16 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,) -> Dict: A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def snake_case__ ( self ) -> Dict: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A__ = ids_tensor([self.batch_size] ,self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self ) -> List[Any]: return MraConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,) def snake_case__ ( self ) -> Union[str, Any]: A__ = self.get_config() A__ = 3_00 return config def snake_case__ ( self ) -> Tuple: ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.prepare_config_and_inputs() A__ = True A__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: A__ = MraModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A__ = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) A__ = model(lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) A__ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> int: A__ = True A__ = MraModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A__ = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,encoder_hidden_states=lowerCamelCase__ ,encoder_attention_mask=lowerCamelCase__ ,) A__ = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,encoder_hidden_states=lowerCamelCase__ ,) A__ = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: A__ = MraForMaskedLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A__ = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: A__ = MraForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A__ = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,start_positions=lowerCamelCase__ ,end_positions=lowerCamelCase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: A__ = self.num_labels A__ = MraForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A__ = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: A__ = self.num_labels A__ = MraForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A__ = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: A__ = self.num_choices A__ = MraForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A__ = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A__ = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A__ = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A__ = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def snake_case__ ( self ) -> Tuple: A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__( A__ , unittest.TestCase ): lowerCAmelCase__ : Union[str, Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : Union[str, Any] = () def snake_case__ ( self ) -> Tuple: A__ = MraModelTester(self ) A__ = ConfigTester(self ,config_class=lowerCamelCase__ ,hidden_size=37 ) def snake_case__ ( self ) -> List[str]: self.config_tester.run_common_tests() def snake_case__ ( self ) -> Dict: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ) -> Tuple: A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ) -> Optional[Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def snake_case__ ( self ) -> int: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase__ ) def snake_case__ ( self ) -> Any: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) def snake_case__ ( self ) -> Union[str, Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def snake_case__ ( self ) -> Dict: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) @slow def snake_case__ ( self ) -> int: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = MraModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip(reason='MRA does not output attentions' ) def snake_case__ ( self ) -> Optional[int]: return @require_torch class UpperCamelCase__( unittest.TestCase ): @slow def snake_case__ ( self ) -> Tuple: A__ = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) A__ = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): A__ = model(lowerCamelCase__ )[0] A__ = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape ,lowerCamelCase__ ) A__ = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,lowerCamelCase__ ,atol=1e-4 ) ) @slow def snake_case__ ( self ) -> Any: A__ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) A__ = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): A__ = model(lowerCamelCase__ )[0] A__ = 5_02_65 A__ = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape ,lowerCamelCase__ ) A__ = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 11.88_19], [9.3_8_6_9, -3.2_6_9_3, 11.09_56], [11.85_24, -3.4_9_3_8, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,lowerCamelCase__ ,atol=1e-4 ) ) @slow def snake_case__ ( self ) -> str: A__ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) A__ = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): A__ = model(lowerCamelCase__ )[0] A__ = 5_02_65 A__ = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape ,lowerCamelCase__ ) A__ = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,lowerCamelCase__ ,atol=1e-4 ) )
357
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(R"digital_image_processing/image_data/lena_small.jpg") __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase ( ): """simple docstring""" A__ = cn.convert_to_negative(UpperCamelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase ( ): """simple docstring""" with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCamelCase__ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def UpperCAmelCase ( ): """simple docstring""" A__ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase ( ): """simple docstring""" A__ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() A__ = canny.canny(UpperCamelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase ( ): """simple docstring""" assert gg.gaussian_filter(UpperCamelCase__ , 5 , sigma=0.9 ).all() def UpperCAmelCase ( ): """simple docstring""" A__ = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) A__ = conv.img_convolve(UpperCamelCase__ , UpperCamelCase__ ).astype(UpperCamelCase__ ) assert res.any() def UpperCAmelCase ( ): """simple docstring""" assert med.median_filter(UpperCamelCase__ , 3 ).any() def UpperCAmelCase ( ): """simple docstring""" A__ , A__ = sob.sobel_filter(UpperCamelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase ( ): """simple docstring""" A__ = sp.make_sepia(UpperCamelCase__ , 20 ) assert sepia.all() def UpperCAmelCase ( UpperCamelCase__ = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" A__ = bs.Burkes(imread(UpperCamelCase__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase ( UpperCamelCase__ = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" A__ = rs.NearestNeighbour(imread(UpperCamelCase__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def UpperCAmelCase ( ): """simple docstring""" A__ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. A__ = imread(UpperCamelCase__ , 0 ) # Test for get_neighbors_pixel function() return not None A__ = 0 A__ = 0 A__ = image[x_coordinate][y_coordinate] A__ = lbp.get_neighbors_pixel( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A__ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): A__ = lbp.local_binary_value(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) assert lbp_image.any()
154
0
def lowerCAmelCase__ ( lowerCamelCase_ : list): '''simple docstring''' lowerCAmelCase__ : int = False while is_sorted is False: # Until all the indices are traversed keep looping lowerCAmelCase__ : Dict = True for i in range(0 ,len(lowerCamelCase_) - 1 ,2): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCAmelCase__ : Optional[int] = False for i in range(1 ,len(lowerCamelCase_) - 1 ,2): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCAmelCase__ : List[Any] = False return input_list if __name__ == "__main__": print('Enter list to be sorted') __snake_case : str =[int(x) for x in input().split()] # inputing elements of the list in one line __snake_case : List[Any] =odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
129
from jiwer import compute_measures import datasets __snake_case : Dict ='\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __snake_case : Optional[Any] ='\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' __snake_case : Any ='\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): '''simple docstring''' def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/jitsi/jiwer/'''] ,reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] ,) def lowerCAmelCase__ (self ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=False ) -> Any: """simple docstring""" if concatenate_texts: return compute_measures(__lowerCamelCase ,__lowerCamelCase )["wer"] else: lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Tuple = 0 for prediction, reference in zip(__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase__ : Dict = compute_measures(__lowerCamelCase ,__lowerCamelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
129
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : int = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCamelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
358
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowerCamelCase_ : int = logging.get_logger(__name__) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "upernet" def __init__( self , __A=None , __A=512 , __A=0.02 , __A=[1, 2, 3, 6] , __A=True , __A=0.4 , __A=384 , __A=256 , __A=1 , __A=False , __A=255 , **__A , ) -> Tuple: super().__init__(**__A ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) a =CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(__A , __A ): a =backbone_config.get('''model_type''' ) a =CONFIG_MAPPING[backbone_model_type] a =config_class.from_dict(__A ) a =backbone_config a =hidden_size a =initializer_range a =pool_scales a =use_auxiliary_head a =auxiliary_loss_weight a =auxiliary_in_channels a =auxiliary_channels a =auxiliary_num_convs a =auxiliary_concat_input a =loss_ignore_index def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =copy.deepcopy(self.__dict__ ) a =self.backbone_config.to_dict() a =self.__class__.model_type return output
215
0
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = "M-CLIP" def __init__( self , snake_case=1_0_2_4 , snake_case=7_6_8 , **snake_case ): '''simple docstring''' UpperCAmelCase : Any = transformerDimSize UpperCAmelCase : Optional[Any] = imageDimSize super().__init__(**snake_case ) class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = MCLIPConfig def __init__( self , snake_case , *snake_case , **snake_case ): '''simple docstring''' super().__init__(snake_case , *snake_case , **snake_case ) UpperCAmelCase : List[str] = XLMRobertaModel(snake_case ) UpperCAmelCase : Optional[int] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A_ ( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : str = self.transformer(input_ids=snake_case , attention_mask=snake_case )[0] UpperCAmelCase : Tuple = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(snake_case ), embs
311
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def A_ ( *snake_case , **snake_case ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCAmelCase : Union[str, Any] = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def A_ ( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : List[Any] = object_detector(examples[0] , threshold=0.0 ) UpperCAmelCase : Dict = len(snake_case ) self.assertGreater(snake_case , 0 ) self.assertEqual( snake_case , [ { "score": ANY(snake_case ), "label": ANY(snake_case ), "box": {"xmin": ANY(snake_case ), "ymin": ANY(snake_case ), "xmax": ANY(snake_case ), "ymax": ANY(snake_case )}, } for i in range(snake_case ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def A_ ( self ): '''simple docstring''' pass @require_torch def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCAmelCase : Optional[Any] = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] , ) UpperCAmelCase : Tuple = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] ] , ) @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = pipeline("zero-shot-object-detection" ) UpperCAmelCase : Optional[int] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ] , ) UpperCAmelCase : Union[str, Any] = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def A_ ( self ): '''simple docstring''' pass @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = 0.2 UpperCAmelCase : Union[str, Any] = pipeline("zero-shot-object-detection" ) UpperCAmelCase : str = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, ] , ) @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = 2 UpperCAmelCase : Optional[Any] = pipeline("zero-shot-object-detection" ) UpperCAmelCase : List[str] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, ] , )
311
1
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" A__ : List[str] =checkpoints.load_tax_checkpoint(__snake_case ) A__ : Tuple =flatten_dict(__snake_case ) return flax_params def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] ={} A__ : int ={ """token_embedder""": """embeddings""", """encoder_norm""": """layernorm""", """kernel""": """weight""", """.out""": """.output""", """scale""": """weight""", """embedders_0.pos_embedding""": """row_embedder.weight""", """embedders_1.pos_embedding""": """column_embedder.weight""", } A__ : Any ={ """query""": """attention.query""", """key""": """attention.key""", """value""": """attention.value""", """output.dense""": """output""", """encoder_decoder_attention.o""": """encoder_decoder_attention.attention.o""", """pre_self_attention_layer_norm""": """self_attention.layer_norm""", """pre_cross_attention_layer_norm""": """encoder_decoder_attention.layer_norm""", """mlp.""": """mlp.DenseReluDense.""", """pre_mlp_layer_norm""": """mlp.layer_norm""", """self_attention.o""": """self_attention.attention.o""", """decoder.embeddings.embedding""": """decoder.embed_tokens.weight""", """decoder.relpos_bias.rel_embedding""": """decoder.layer.0.self_attention.attention.relative_attention_bias.weight""", """decoder.decoder_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.logits_dense.weight""": """decoder.lm_head.weight""", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key A__ : Tuple =""".""".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): A__ : str =new_key.replace(__snake_case, __snake_case ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): A__ : List[str] =new_key.replace(__snake_case, __snake_case ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number A__ : str =re.sub(r"""layers_(\d+)""", r"""layer.\1""", __snake_case ) A__ : List[Any] =new_key.replace("""encoder""", """encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number A__ : Dict =re.sub(r"""layers_(\d+)""", r"""layer.\1""", __snake_case ) A__ : List[str] =flax_dict[key] A__ : List[Any] ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): A__ : str =torch.from_numpy(converted_dict[key].T ) else: A__ : int =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __lowerCamelCase ( __snake_case : str, __snake_case : Optional[int], __snake_case : Any=False, __snake_case : Tuple=False ) -> Optional[int]: """simple docstring""" A__ : List[Any] =get_flax_param(__snake_case ) if not use_large: A__ : Optional[int] =PixaStructVisionConfig() A__ : List[str] =PixaStructTextConfig() else: A__ : List[Any] =PixaStructVisionConfig( hidden_size=1_536, d_ff=3_968, num_attention_heads=24, num_hidden_layers=18 ) A__ : Optional[Any] =PixaStructTextConfig(hidden_size=1_536, d_ff=3_968, num_heads=24, num_layers=18 ) A__ : List[str] =PixaStructConfig( vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=__snake_case ) A__ : Dict =PixaStructForConditionalGeneration(__snake_case ) A__ : Union[str, Any] =rename_and_convert_flax_params(__snake_case ) model.load_state_dict(__snake_case ) A__ : Union[str, Any] =AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) A__ : int =PixaStructImageProcessor() A__ : Union[str, Any] =PixaStructProcessor(image_processor=__snake_case, tokenizer=__snake_case ) if use_large: A__ : Tuple =4_096 A__ : Union[str, Any] =True # mkdir if needed os.makedirs(__snake_case, exist_ok=__snake_case ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) print("""Model saved in {}""".format(__snake_case ) ) if __name__ == "__main__": __snake_case : int = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') __snake_case : List[str] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
136
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInstructPixaPixPipeline __snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS __snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Dict ) -> str: '''simple docstring''' torch.manual_seed(0 ) A__ : int =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A__ : str =PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) A__ : Dict =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A__ : List[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) A__ : Tuple =CLIPTextModel(lowerCAmelCase_ ) A__ : int =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : Union[str, Any] ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=0 ) -> str: '''simple docstring''' A__ : Optional[Any] =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) A__ : str =image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : List[str] =Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ) if str(lowerCAmelCase_ ).startswith("""mps""" ): A__ : Any =torch.manual_seed(lowerCAmelCase_ ) else: A__ : int =torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) A__ : Optional[Any] ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Any =self.get_dummy_components() A__ : List[str] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : Dict =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : List[Any] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : List[Any] =sd_pipe(**lowerCAmelCase_ ).images A__ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Tuple =np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : List[str] =self.get_dummy_components() A__ : Union[str, Any] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : Union[str, Any] =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Optional[Any] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Optional[int] ="""french fries""" A__ : Tuple =sd_pipe(**lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) A__ : Union[str, Any] =output.images A__ : List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Tuple =np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' A__ : str ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : str =self.get_dummy_components() A__ : List[Any] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : Union[str, Any] =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Tuple =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Dict =[inputs["""prompt"""]] * 2 A__ : Optional[int] =np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 A__ : List[str] =torch.from_numpy(lowerCAmelCase_ ).unsqueeze(0 ).to(lowerCAmelCase_ ) A__ : Union[str, Any] =image / 2 + 0.5 A__ : Optional[int] =image.permute(0 , 3 , 1 , 2 ) A__ : Dict =image.repeat(2 , 1 , 1 , 1 ) A__ : int =sd_pipe(**lowerCAmelCase_ ).images A__ : List[Any] =image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A__ : List[Any] =np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' A__ : Optional[Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : List[str] =self.get_dummy_components() A__ : List[str] =EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) A__ : str =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : int =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Union[str, Any] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Optional[Any] =sd_pipe(**lowerCAmelCase_ ).images A__ : Tuple =image[0, -3:, -3:, -1] A__ : List[str] =[round(lowerCAmelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(lowerCAmelCase_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A__ : Any =np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' A__ : Union[str, Any] =self.get_dummy_components() A__ : Optional[Any] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : Any =VaeImageProcessor(do_resize=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ ) A__ : Dict =pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : str =pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type="""pt""" ) )[0] A__ : List[Any] =components["""vae"""] A__ : Dict =self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A__ : List[Any] =vae.encode(inputs[image_param] ).latent_dist.mode() A__ : Optional[Any] =pipe(**lowerCAmelCase_ )[0] A__ : Dict =np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase_ , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int , lowerCAmelCase_ : int=0 ) -> List[str]: '''simple docstring''' A__ : List[Any] =torch.manual_seed(lowerCAmelCase_ ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) A__ : List[Any] ={ """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Optional[Any] =self.get_inputs() A__ : Optional[Any] =pipe(**lowerCAmelCase_ ).images A__ : Tuple =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ : Dict =np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : List[str] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ ) A__ : str =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Union[str, Any] =self.get_inputs() A__ : Tuple =pipe(**lowerCAmelCase_ ).images A__ : List[Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ : List[Any] =np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ ) A__ : str =DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Optional[Any] =self.get_inputs() A__ : List[str] =pipe(**lowerCAmelCase_ ).images A__ : List[Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ : Any =np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =0 def callback_fn(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : torch.FloatTensor ) -> None: A__ : Any =True nonlocal number_of_steps number_of_steps += 1 if step == 1: A__ : List[str] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ : Optional[Any] =latents[0, -3:, -3:, -1] A__ : Tuple =np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A__ : List[Any] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ : Dict =latents[0, -3:, -3:, -1] A__ : List[Any] =np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A__ : List[str] =False A__ : Optional[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) A__ : int =pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Optional[Any] =self.get_inputs() pipe(**lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ : Dict =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) A__ : Union[str, Any] =pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ : List[str] =self.get_inputs() A__ : Dict =pipe(**lowerCAmelCase_ ) A__ : List[str] =torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' A__ : Tuple =self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A__ : int =inputs["""image"""].resize((5_04, 5_04) ) A__ : Optional[int] ="""timbrooks/instruct-pix2pix""" A__ : List[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Dict =pipe(**lowerCAmelCase_ ) A__ : Dict =output.images[0] A__ : int =image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) A__ : Dict =np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
136
1
"""simple docstring""" def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): UpperCAmelCase = n - k # Calculate C(n,k) for i in range(lowercase_ ): result *= n - i result //= i + 1 return result def _lowerCAmelCase ( lowercase_ ): return binomial_coefficient(2 * node_count , lowercase_ ) // (node_count + 1) def _lowerCAmelCase ( lowercase_ ): if n < 0: raise ValueError('factorial() not defined for negative values' ) UpperCAmelCase = 1 for i in range(1 , n + 1 ): result *= i return result def _lowerCAmelCase ( lowercase_ ): return catalan_number(lowercase_ ) * factorial(lowercase_ ) if __name__ == "__main__": snake_case_ = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
78
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: UpperCAmelCase__ : Tuple = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def a__ ( lowerCAmelCase__ = 1_00 ) -> int: UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase__ : Tuple = pre_numerator UpperCAmelCase__ : Tuple = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase__ : str = cur_numerator UpperCAmelCase__ : List[str] = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
181
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase_ : Any = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): snake_case__ : Optional[datasets.Features] = None def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Tuple , ) -> Optional[int]: """simple docstring""" import pyspark def generate_fn(): a_ : List[str] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: a_ : List[str] = df_with_partition_id.select('*' ).where(F"""part_id = {partition_id}""" ).drop('part_id' ) a_ : Any = partition_df.collect() a_ : int = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class SCREAMING_SNAKE_CASE__ ( _BaseExamplesIterable ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> List[Any]: a_ : Optional[int] = df a_ : Tuple = partition_order or range(self.df.rdd.getNumPartitions() ) a_ : Any = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : str ) -> int: yield from self.generate_examples_fn() def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : np.random.Generator ) -> "SparkExamplesIterable": a_ : Any = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> "SparkExamplesIterable": a_ : int = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return len(self.partition_order ) class SCREAMING_SNAKE_CASE__ ( datasets.DatasetBuilder ): snake_case__ : Optional[int] = SparkConfig def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , **SCREAMING_SNAKE_CASE__ : int , ) -> str: import pyspark a_ : Optional[Any] = pyspark.sql.SparkSession.builder.getOrCreate() a_ : Optional[int] = df a_ : Dict = working_dir super().__init__( cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: def create_cache_and_write_probe(SCREAMING_SNAKE_CASE__ : Tuple ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(SCREAMING_SNAKE_CASE__ , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: a_ : str = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : datasets.download.download_manager.DownloadManager ) -> str: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]: import pyspark def get_arrow_batch_size(SCREAMING_SNAKE_CASE__ : int ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) a_ : List[str] = self.df.count() a_ : int = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. a_ : Tuple = ( self.df.limit(SCREAMING_SNAKE_CASE__ ) .repartition(1 ) .mapInArrow(SCREAMING_SNAKE_CASE__ , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) a_ : Optional[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. a_ : str = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) ) a_ : Optional[int] = self.df.repartition(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark a_ : str = ParquetWriter if file_format == """parquet""" else ArrowWriter a_ : Tuple = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath a_ : List[Any] = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. a_ : Union[str, Any] = self.config.features a_ : Dict = self._writer_batch_size a_ : str = self._fs.storage_options def write_arrow(SCREAMING_SNAKE_CASE__ : Tuple ): # Within the same SparkContext, no two task attempts will share the same attempt ID. a_ : Optional[Any] = pyspark.TaskContext().taskAttemptId() a_ : Union[str, Any] = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) a_ : Any = 0 a_ : List[str] = writer_class( features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) a_ : Union[str, Any] = pa.Table.from_batches([first_batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: a_ : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 a_ : int = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) a_ : Optional[Any] = pa.Table.from_batches([batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) if writer._num_bytes > 0: a_ : List[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ): a_ : Union[str, Any] = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = ( self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , SCREAMING_SNAKE_CASE__ : str = "arrow" , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Optional[Any]: self._validate_cache_dir() a_ : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ ) a_ : str = not is_remote_filesystem(self._fs ) a_ : Optional[Any] = os.path.join if is_local else posixpath.join a_ : int = """-TTTTT-SSSSS-of-NNNNN""" a_ : int = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" a_ : str = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ ) a_ : Any = 0 a_ : List[Any] = 0 a_ : Optional[int] = 0 a_ : Union[str, Any] = [] a_ : str = [] for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ( a_ ) : Optional[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = total_num_examples a_ : int = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: a_ : Dict = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. a_ : Any = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ): rename( SCREAMING_SNAKE_CASE__ , fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace('TTTTT-SSSSS' , F"""{global_shard_id:05d}""" ).replace('NNNNN' , F"""{total_shards:05d}""" ) , ) a_ : int = [] a_ : Optional[Any] = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): a_ : Tuple = task_id_and_num_shards[i] for shard_id in range(SCREAMING_SNAKE_CASE__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda SCREAMING_SNAKE_CASE__ : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect() else: # don't use any pattern a_ : Optional[int] = 0 a_ : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '' ) , ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
363
def SCREAMING_SNAKE_CASE_ ( __A : list ) -> list: """simple docstring""" a_ : int = len(__A ) for _ in range(__A ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: a_ , a_ : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase_ : int = list(range(10, 0, -1)) print(F'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
120
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor A__ : Dict =logging.get_logger(__name__) class UpperCAmelCase ( snake_case_ ): def __init__( self : Optional[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ) -> None: warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
70
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Optional[int] = ["image_processor", "tokenizer"] _UpperCamelCase:Tuple = "ChineseCLIPImageProcessor" _UpperCamelCase:List[str] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )-> Tuple: lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =kwargs.pop("""feature_extractor""" ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )-> Optional[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowerCamelCase_ =self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if images is not None: lowerCamelCase_ =self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and images is not None: lowerCamelCase_ =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> List[str]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> Any: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.tokenizer.model_input_names lowerCamelCase_ =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self )-> int: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class
154
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class _lowerCamelCase ( a_ ): _lowerCamelCase :Tuple = "blip_2_vision_model" def __init__( self : Union[str, Any] , UpperCamelCase : Any=14_08 , UpperCamelCase : List[str]=61_44 , UpperCamelCase : Dict=39 , UpperCamelCase : str=16 , UpperCamelCase : int=2_24 , UpperCamelCase : List[Any]=14 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : Any=0.0_0001 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : Any=1E-1_0 , UpperCamelCase : Dict=True , **UpperCamelCase : Tuple , ) -> str: """simple docstring""" super().__init__(**UpperCamelCase ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : List[Any] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : int = patch_size lowerCAmelCase__ : str = image_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = layer_norm_eps lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : int = qkv_bias @classmethod def _lowerCAmelCase ( cls : Optional[int] , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : Optional[int] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowerCAmelCase__ : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class _lowerCamelCase ( a_ ): _lowerCamelCase :Optional[int] = "blip_2_qformer" def __init__( self : List[Any] , UpperCamelCase : Tuple=3_05_22 , UpperCamelCase : List[str]=7_68 , UpperCamelCase : Tuple=12 , UpperCamelCase : int=12 , UpperCamelCase : List[Any]=30_72 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : Tuple=5_12 , UpperCamelCase : Tuple=0.02 , UpperCamelCase : int=1E-1_2 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : Any="absolute" , UpperCamelCase : List[Any]=2 , UpperCamelCase : List[Any]=14_08 , **UpperCamelCase : Optional[Any] , ) -> str: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : Union[str, Any] = num_hidden_layers lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : List[Any] = intermediate_size lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = max_position_embeddings lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Optional[int] = position_embedding_type lowerCAmelCase__ : Union[str, Any] = cross_attention_frequency lowerCAmelCase__ : Optional[int] = encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : Dict , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : Any ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : int = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowerCAmelCase__ : Tuple = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class _lowerCamelCase ( a_ ): _lowerCamelCase :Optional[Any] = "blip-2" _lowerCamelCase :str = True def __init__( self : Dict , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Tuple=32 , **UpperCamelCase : List[str] ) -> Dict: """simple docstring""" super().__init__(**UpperCamelCase ) if vision_config is None: lowerCAmelCase__ : Optional[Any] = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: lowerCAmelCase__ : Optional[int] = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: lowerCAmelCase__ : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowerCAmelCase__ : Dict = BlipaVisionConfig(**UpperCamelCase ) lowerCAmelCase__ : List[str] = BlipaQFormerConfig(**UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowerCAmelCase__ : Optional[int] = CONFIG_MAPPING[text_model_type](**UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = self.text_config.tie_word_embeddings lowerCAmelCase__ : int = self.text_config.is_encoder_decoder lowerCAmelCase__ : Optional[Any] = num_query_tokens lowerCAmelCase__ : Tuple = self.vision_config.hidden_size lowerCAmelCase__ : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCAmelCase__ : Dict = 1.0 lowerCAmelCase__ : int = 0.02 @classmethod def _lowerCAmelCase ( cls : Tuple , UpperCamelCase : BlipaVisionConfig , UpperCamelCase : BlipaQFormerConfig , UpperCamelCase : PretrainedConfig , **UpperCamelCase : List[str] , ) -> str: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase , ) def _lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[str] = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : Any = self.vision_config.to_dict() lowerCAmelCase__ : Any = self.qformer_config.to_dict() lowerCAmelCase__ : Optional[int] = self.text_config.to_dict() lowerCAmelCase__ : Optional[Any] = self.__class__.model_type return output
212
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Dict ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase__ : Union[str, Any] = Vector() def _lowerCAmelCase ( self : Union[str, Any] ) -> None: """simple docstring""" lowerCAmelCase__ : str = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCamelCase ) , """(0,0,0,0,0,1)""" ) def _lowerCAmelCase ( self : Any ) -> None: """simple docstring""" lowerCAmelCase__ : List[Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCamelCase ) , 4 ) def _lowerCAmelCase ( self : List[str] ) -> None: """simple docstring""" lowerCAmelCase__ : str = Vector([1, 2] ) lowerCAmelCase__ : Optional[int] = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase__ : Union[str, Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase__ : List[Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def _lowerCAmelCase ( self : Any ) -> None: """simple docstring""" lowerCAmelCase__ : int = Vector([1, 2, 3] ) lowerCAmelCase__ : Optional[Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Vector([1, 2, 3] ) lowerCAmelCase__ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Any = Vector([1, 2, 3] ) lowerCAmelCase__ : Any = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase__ : Any = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def _lowerCAmelCase ( self : Tuple ) -> None: """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def _lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Vector([1, 2, 3] ) lowerCAmelCase__ : Optional[Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCamelCase , UpperCamelCase ) ) , """(3,4,7)""" ) def _lowerCAmelCase ( self : Optional[int] ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase__ : Any = x.copy() self.assertEqual(str(UpperCamelCase ) , str(UpperCamelCase ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCamelCase ) , """(0,1,0)""" ) def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" lowerCAmelCase__ : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCamelCase ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase__ : Dict = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCamelCase , UpperCamelCase ) ) def _lowerCAmelCase ( self : List[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase__ : int = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCamelCase , UpperCamelCase ) ) def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" lowerCAmelCase__ : Optional[Any] = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase__ : Tuple = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def _lowerCAmelCase ( self : str ) -> None: """simple docstring""" lowerCAmelCase__ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCamelCase ) ) def _lowerCAmelCase ( self : Tuple ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def _lowerCAmelCase ( self : Any ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase__ : List[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def _lowerCAmelCase ( self : List[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase__ : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> None: """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
212
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowercase : Union[str, Any] = 3 def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' print('''Generating primitive root of p''' ) while True: A : Optional[Any] = random.randrange(3 , snake_case__ ) if pow(snake_case__ , 2 , snake_case__ ) == 1: continue if pow(snake_case__ , snake_case__ , snake_case__ ) == 1: continue return g def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' print('''Generating prime p...''' ) A : int = rabin_miller.generate_large_prime(snake_case__ ) # select large prime number. A : List[str] = primitive_root(snake_case__ ) # one primitive root on modulo p. A : Union[str, Any] = random.randrange(3 , snake_case__ ) # private_key -> have to be greater than 2 for safety. A : str = cryptomath.find_mod_inverse(pow(snake_case__ , snake_case__ , snake_case__ ) , snake_case__ ) A : Dict = (key_size, e_a, e_a, p) A : Optional[int] = (key_size, d) return public_key, private_key def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('''\nWARNING:''' ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() A, A : int = generate_key(snake_case__ ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , '''w''' ) as fo: fo.write(F'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , '''w''' ) as fo: fo.write(F'{private_key[0]},{private_key[1]}' ) def lowerCAmelCase_ ( ): '''simple docstring''' print('''Making key files...''' ) make_key_files('''elgamal''' , 2048 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
3
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False )-> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(lowerCAmelCase_ ), magnitude * sin(lowerCAmelCase_ )] return [magnitude * cos(radians(lowerCAmelCase_ ) ), magnitude * sin(radians(lowerCAmelCase_ ) )] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10**-1 )-> bool: '''simple docstring''' _UpperCAmelCase : NDArray[floataa] = cross(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : float = sum(lowerCAmelCase_ ) return abs(lowerCAmelCase_ ) < eps if __name__ == "__main__": # Test to check if it works A_ : str = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) A_ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg A_ : List[str] = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) A_ : Tuple = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg A_ : Dict = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) A_ : Union[str, Any] = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
215
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } _SCREAMING_SNAKE_CASE = { "google/electra-small-generator": 5_1_2, "google/electra-base-generator": 5_1_2, "google/electra-large-generator": 5_1_2, "google/electra-small-discriminator": 5_1_2, "google/electra-base-discriminator": 5_1_2, "google/electra-large-discriminator": 5_1_2, } _SCREAMING_SNAKE_CASE = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ElectraTokenizer def __init__( self : int , lowerCamelCase_ : int=None , lowerCamelCase_ : str=None , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Optional[int]="[UNK]" , lowerCamelCase_ : List[Any]="[SEP]" , lowerCamelCase_ : str="[PAD]" , lowerCamelCase_ : Union[str, Any]="[CLS]" , lowerCamelCase_ : List[Any]="[MASK]" , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Dict , ): """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _A ) != do_lower_case or normalizer_state.get("""strip_accents""" , _A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _A ) != tokenize_chinese_chars ): UpperCamelCase = getattr(_A , normalizer_state.pop("""type""" ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**_A ) UpperCamelCase = do_lower_case def lowerCamelCase_ ( self : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str=None ): """simple docstring""" UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" UpperCamelCase = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
357
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument _SCREAMING_SNAKE_CASE = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def lowercase( UpperCamelCase_ ) -> str: '''simple docstring''' # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCamelCase = list(s_dict.keys() ) for key in keys: UpperCamelCase = R""".*/layers_(\d+)""" UpperCamelCase = key if re.match(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = re.sub(R"""layers_(\d+)""" , R"""block/\1/layer""" , UpperCamelCase_ ) UpperCamelCase = R"""(encoder|decoder)\/""" if re.match(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = re.match(UpperCamelCase_ , UpperCamelCase_ ).groups() if groups[0] == "encoder": UpperCamelCase = re.sub(R"""/mlp/""" , R"""/1/mlp/""" , UpperCamelCase_ ) UpperCamelCase = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/1/layer_norm/""" , UpperCamelCase_ ) elif groups[0] == "decoder": UpperCamelCase = re.sub(R"""/mlp/""" , R"""/2/mlp/""" , UpperCamelCase_ ) UpperCamelCase = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/2/layer_norm/""" , UpperCamelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCamelCase = new_key.replace(UpperCamelCase_ , UpperCamelCase_ ) print(f"""{key} -> {new_key}""" ) UpperCamelCase = s_dict.pop(UpperCamelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCamelCase = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCamelCase = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCamelCase = s_dict[key].shape[0] UpperCamelCase = s_dict[key] for idx in range(UpperCamelCase_ ): UpperCamelCase = expert_weihts[idx] print(f"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(UpperCamelCase_ ) return s_dict _SCREAMING_SNAKE_CASE = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' # Convert a google style config to the hugging face fromat import regex as re with open(UpperCamelCase_ , """r""" ) as f: UpperCamelCase = f.read() UpperCamelCase = re.findall(R"""(.*) = ([0-9.]*)""" , UpperCamelCase_ ) UpperCamelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCamelCase = float(UpperCamelCase_ ) if """.""" in value else int(UpperCamelCase_ ) UpperCamelCase = re.findall(R"""(.*activations) = \(\'(.*)\',\)""" , UpperCamelCase_ )[0] UpperCamelCase = str(activation[1] ) UpperCamelCase = num_experts UpperCamelCase = SwitchTransformersConfig(**UpperCamelCase_ ) return config def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_="./" , UpperCamelCase_=8 ) -> Optional[int]: '''simple docstring''' # Initialise PyTorch model print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCamelCase = checkpoints.load_tax_checkpoint(UpperCamelCase_ ) if gin_file is not None: UpperCamelCase = convert_gin_to_config(UpperCamelCase_ , UpperCamelCase_ ) else: UpperCamelCase = SwitchTransformersConfig.from_pretrained(UpperCamelCase_ ) UpperCamelCase = SwitchTransformersForConditionalGeneration(UpperCamelCase_ ) UpperCamelCase = flax_params["""target"""] UpperCamelCase = flatten_dict(UpperCamelCase_ , sep="""/""" ) UpperCamelCase = rename_keys(UpperCamelCase_ ) UpperCamelCase = unflatten_dict(UpperCamelCase_ , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCamelCase_ , UpperCamelCase_ ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
165
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np UpperCAmelCase : Union[str, Any] = re.compile(r"\b(a|an|the)\b", re.UNICODE) UpperCAmelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE () -> List[Any]: '''simple docstring''' lowercase_ = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=__lowerCAmelCase , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=__lowerCAmelCase , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase_ = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]: '''simple docstring''' def remove_articles(__lowerCAmelCase ): return ARTICLES_REGEX.sub(""" """ , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase ): lowercase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' if not s: return [] return normalize_answer(__lowerCAmelCase ).split() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = collections.Counter(__lowerCAmelCase ) & collections.Counter(__lowerCAmelCase ) lowercase_ = sum(common.values() ) if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowercase_ = 1.0 * num_same / len(__lowerCAmelCase ) lowercase_ = 1.0 * num_same / len(__lowerCAmelCase ) lowercase_ = (2 * precision * recall) / (precision + recall) return fa def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = {} lowercase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase_ = qa["""id"""] lowercase_ = [t for t in qa["""answers"""]["""text"""] if normalize_answer(__lowerCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowercase_ = [""""""] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue lowercase_ = preds[qid] # Take max over all gold answers lowercase_ = max(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) lowercase_ = max(compute_fa(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = {} for qid, s in scores.items(): lowercase_ = na_probs[qid] > na_prob_thresh if pred_na: lowercase_ = float(not qid_to_has_ans[qid] ) else: lowercase_ = s return new_scores def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> List[str]: '''simple docstring''' if not qid_list: lowercase_ = len(__lowerCAmelCase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores.values() ) / total), ("""f1""", 100.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: lowercase_ = len(__lowerCAmelCase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' for k in new_eval: lowercase_ = new_eval[k] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' plt.step(__lowerCAmelCase , __lowerCAmelCase , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(__lowerCAmelCase , __lowerCAmelCase , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__lowerCAmelCase ) plt.savefig(__lowerCAmelCase ) plt.clf() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> List[Any]: '''simple docstring''' lowercase_ = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) lowercase_ = 0.0 lowercase_ = 1.0 lowercase_ = 0.0 lowercase_ = [1.0] lowercase_ = [0.0] lowercase_ = 0.0 for i, qid in enumerate(__lowerCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowercase_ = true_pos / float(i + 1 ) lowercase_ = true_pos / float(__lowerCAmelCase ) if i == len(__lowerCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__lowerCAmelCase ) recalls.append(__lowerCAmelCase ) if out_image: plot_pr_curve(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return {"ap": 100.0 * avg_prec} def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' if out_image_dir and not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) lowercase_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowercase_ = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) lowercase_ = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) lowercase_ = {k: float(__lowerCAmelCase ) for k, v in qid_to_has_ans.items()} lowercase_ = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """pr_exact""" ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """pr_f1""" ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """pr_oracle""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not qid_list: return lowercase_ = [na_probs[k] for k in qid_list] lowercase_ = np.ones_like(__lowerCAmelCase ) / float(len(__lowerCAmelCase ) ) plt.hist(__lowerCAmelCase , weights=__lowerCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__lowerCAmelCase , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowercase_ = num_no_ans lowercase_ = cur_score lowercase_ = 0.0 lowercase_ = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) for i, qid in enumerate(__lowerCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: lowercase_ = scores[qid] else: if preds[qid]: lowercase_ = -1 else: lowercase_ = 0 cur_score += diff if cur_score > best_score: lowercase_ = cur_score lowercase_ = na_probs[qid] return 100.0 * best_score / len(__lowerCAmelCase ), best_thresh def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ , lowercase_ = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ , lowercase_ = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ = best_exact lowercase_ = exact_thresh lowercase_ = best_fa lowercase_ = fa_thresh def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' with open(OPTS.data_file ) as f: lowercase_ = json.load(__lowerCAmelCase ) lowercase_ = dataset_json["""data"""] with open(OPTS.pred_file ) as f: lowercase_ = json.load(__lowerCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowercase_ = json.load(__lowerCAmelCase ) else: lowercase_ = {k: 0.0 for k in preds} lowercase_ = make_qid_to_has_ans(__lowerCAmelCase ) # maps qid to True/False lowercase_ = [k for k, v in qid_to_has_ans.items() if v] lowercase_ = [k for k, v in qid_to_has_ans.items() if not v] lowercase_ , lowercase_ = get_raw_scores(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) lowercase_ = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) lowercase_ = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase ) if has_ans_qids: lowercase_ = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """HasAns""" ) if no_ans_qids: lowercase_ = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) else: print(json.dumps(__lowerCAmelCase , indent=2 ) ) if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
136
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder UpperCAmelCase : Union[str, Any] = "__DUMMY_TRANSFORMERS_USER__" UpperCAmelCase : Dict = "Dummy User" UpperCAmelCase : Optional[int] = "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" UpperCAmelCase : Tuple = "https://hub-ci.huggingface.co" UpperCAmelCase : Optional[Any] = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" UpperCAmelCase : Tuple = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" UpperCAmelCase : int = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict: '''simple docstring''' monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __lowerCAmelCase ) @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __lowerCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __lowerCAmelCase ) @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __lowerCAmelCase ) @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' HfFolder.save_token(__lowerCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE () -> Dict: '''simple docstring''' return HfApi(endpoint=__lowerCAmelCase ) @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = HfFolder.get_token() HfFolder.save_token(__lowerCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__lowerCAmelCase ) @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' def _cleanup_repo(__lowerCAmelCase ): hf_api.delete_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' @contextmanager def _temporary_repo(__lowerCAmelCase ): try: yield repo_id finally: cleanup_repo(__lowerCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = F'''repo_txt_data-{int(time.time() * 10E3 )}''' lowercase_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" , private=__lowerCAmelCase ) hf_api.upload_file( token=__lowerCAmelCase , path_or_fileobj=str(__lowerCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__lowerCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = F'''repo_zipped_txt_data-{int(time.time() * 10E3 )}''' lowercase_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" , private=__lowerCAmelCase ) hf_api.upload_file( token=__lowerCAmelCase , path_or_fileobj=str(__lowerCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__lowerCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = F'''repo_zipped_img_data-{int(time.time() * 10E3 )}''' lowercase_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" , private=__lowerCAmelCase ) hf_api.upload_file( token=__lowerCAmelCase , path_or_fileobj=str(__lowerCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__lowerCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
136
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) A : Dict = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
import logging from transformers.configuration_utils import PretrainedConfig A : Union[str, Any] = logging.getLogger(__name__) class __A( a ): snake_case_ = '''masked_bert''' def __init__( self , _snake_case=30_522 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="topK" , _snake_case="constant" , _snake_case=0.0 , **_snake_case , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_snake_case , **_snake_case ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = pruning_method __a = mask_init __a = mask_scale
33
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : Union[str, Any]=24 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : List[Any]=6 , UpperCAmelCase_ : Tuple=37 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : int=1_000 , ) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Any =is_training lowerCamelCase__: Any =use_input_mask lowerCamelCase__: Optional[Any] =use_token_type_ids lowerCamelCase__: Optional[int] =use_labels lowerCamelCase__: str =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: str =num_hidden_layers lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Any =intermediate_size lowerCamelCase__: Any =hidden_act lowerCamelCase__: Optional[int] =hidden_dropout_prob lowerCamelCase__: List[Any] =attention_probs_dropout_prob lowerCamelCase__: Optional[Any] =max_position_embeddings lowerCamelCase__: int =type_vocab_size lowerCamelCase__: int =type_sequence_label_size lowerCamelCase__: int =initializer_range lowerCamelCase__: Optional[int] =num_labels lowerCamelCase__: Optional[int] =scope lowerCamelCase__: Dict =range_bbox def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase__: Any =bbox[i, j, 3] lowerCamelCase__: Any =bbox[i, j, 1] lowerCamelCase__: List[str] =t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase__: Dict =bbox[i, j, 2] lowerCamelCase__: Any =bbox[i, j, 0] lowerCamelCase__: Any =t lowerCamelCase__: List[Any] =None if self.use_input_mask: lowerCamelCase__: Tuple =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) lowerCamelCase__: List[str] =None if self.use_token_type_ids: lowerCamelCase__: List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowerCamelCase__: Dict =None lowerCamelCase__: List[Any] =None if self.use_labels: lowerCamelCase__: Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCamelCase__: str =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCamelCase__: List[Any] =self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , ) ->Dict: '''simple docstring''' lowerCamelCase__: Any =LiltModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: List[Any] =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) lowerCamelCase__: int =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_ , bbox=UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , ) ->Any: '''simple docstring''' lowerCamelCase__: str =self.num_labels lowerCamelCase__: Optional[int] =LiltForTokenClassification(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Tuple =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , ) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =LiltForQuestionAnswering(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Tuple =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Any =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ): Optional[int] =config_and_inputs lowerCamelCase__: str ={ "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int) ->Optional[Any]: '''simple docstring''' return True def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =LiltModelTester(self) lowerCamelCase__: int =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37) def SCREAMING_SNAKE_CASE_ (self : str) ->List[str]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]: '''simple docstring''' lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__: int =type self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: int =LiltModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @require_torch @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: str =LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =torch.tensor([[1, 2]] , device=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_) # forward pass with torch.no_grad(): lowerCamelCase__: Optional[Any] =model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =torch.Size([1, 2, 768]) lowerCamelCase__: List[str] =torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=UpperCAmelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3))
10
'''simple docstring''' from sklearn.metrics import recall_score import datasets __A : Dict = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __A : List[Any] = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __A : str = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION) class __snake_case ( datasets.Metric): """simple docstring""" def __lowercase ( self : str ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def __lowercase ( self : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Optional[int]=1 , lowerCamelCase : Union[str, Any]="binary" , lowerCamelCase : Any=None , lowerCamelCase : str="warn" , ) -> List[Any]: lowerCAmelCase_ : Optional[int] = recall_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase , zero_division=lowerCamelCase , ) return {"recall": float(lowerCamelCase ) if score.size == 1 else score}
120
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A( unittest.TestCase ): '''simple docstring''' @property def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.dummy_uncond_unet lowerCamelCase_ = ScoreSdeVeScheduler() lowerCamelCase_ = ScoreSdeVePipeline(unet=A_ , scheduler=A_ ) sde_ve.to(A_ ) sde_ve.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=A_ ).images lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=A_ , return_dict=A_ )[ 0 ] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = 'google/ncsnpp-church-256' lowerCamelCase_ = UNetaDModel.from_pretrained(A_ ) lowerCamelCase_ = ScoreSdeVeScheduler.from_pretrained(A_ ) lowerCamelCase_ = ScoreSdeVePipeline(unet=A_ , scheduler=A_ ) sde_ve.to(A_ ) sde_ve.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=A_ ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCamelCase_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
208
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCamelCase : Optional[int] = float("nan") class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : int ) -> Dict: """simple docstring""" lowerCamelCase_ = sys.stdout lowerCamelCase_ = open(A_ , 'a' ) def __getattr__( self : List[Any] , A_ : Optional[int] ) -> str: """simple docstring""" return getattr(self.stdout , A_ ) def a__ ( self : int , A_ : int ) -> List[str]: """simple docstring""" self.stdout.write(A_ ) # strip tqdm codes self.file.write(re.sub(r'^.*\r' , '' , A_ , 0 , re.M ) ) def _SCREAMING_SNAKE_CASE ( lowercase : str=80 , lowercase : Tuple=False ): '''simple docstring''' lowerCamelCase_ = [] # deal with critical env vars lowerCamelCase_ = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: lowerCamelCase_ = os.environ.get(lowercase , lowercase ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) lowerCamelCase_ = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(lowercase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowerCamelCase_ = [] lowerCamelCase_ = '' while len(lowercase ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(lowercase ) == 0 or len(lowercase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(lowercase ) lowerCamelCase_ = '' return "\\\n".join(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own lowerCamelCase_ = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir lowerCamelCase_ = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : int , lowercase : Dict , lowercase : List[str] , lowercase : List[str] , lowercase : List[str] , lowercase : Dict ): '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) lowerCamelCase_ = subprocess.run(lowercase , capture_output=lowercase , text=lowercase ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams lowerCamelCase_ = variation.replace(' ' , '-' ) with open(Path(lowercase ) / f"""log.{prefix}.stdout.txt""" , 'w' ) as f: f.write(result.stdout ) with open(Path(lowercase ) / f"""log.{prefix}.stderr.txt""" , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""" , 'r' , encoding='utf-8' ) as f: lowerCamelCase_ = json.load(lowercase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Dict , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[str] , lowercase : Dict , lowercase : Any , lowercase : int , ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = f"""{id}: {variation:<{longest_variation_len}}""" lowerCamelCase_ = f"""{preamble}: """ lowerCamelCase_ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(lowercase ) , desc=lowercase , leave=lowercase ): lowerCamelCase_ = process_run_single( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = single_run_metrics[target_metric_key] if not math.isnan(lowercase ): metrics.append(lowercase ) results.append(lowercase ) outcome += "✓" else: outcome += "✘" lowerCamelCase_ = f"""\33[2K\r{outcome}""" if len(lowercase ) > 0: lowerCamelCase_ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} lowerCamelCase_ = round(mean_metrics[target_metric_key] , 2 ) lowerCamelCase_ = f"""{outcome} {mean_target}""" if len(lowercase ) > 1: results_str += f""" {tuple(round(lowercase , 2 ) for x in results )}""" print(lowercase ) lowerCamelCase_ = variation return mean_metrics else: print(lowercase ) return {variation_key: variation, target_metric_key: nan} def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = torch.cuda.get_device_properties(torch.device('cuda' ) ) return f""" Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = pd.DataFrame(lowercase ) lowerCamelCase_ = 'variation' lowerCamelCase_ = 'diff_%' lowerCamelCase_ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan lowerCamelCase_ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(lowercase ): # as a fallback, use the minimal value as the sentinel lowerCamelCase_ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(lowercase ): lowerCamelCase_ = df.apply( lambda lowercase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns lowerCamelCase_ = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowerCamelCase_ = df.reindex(lowercase , axis='columns' ) # reorder cols # capitalize lowerCamelCase_ = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible lowerCamelCase_ = df.rename(lambda lowercase : c.replace('_' , '<br>' ) , axis='columns' ) lowerCamelCase_ = df.rename(lambda lowercase : c.replace('_' , '\n' ) , axis='columns' ) lowerCamelCase_ = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=lowercase , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=lowercase , floatfmt='.2f' )] print('\n\n'.join(lowercase ) ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=lowercase , type=lowercase , required=lowercase , help='Base cmd' , ) parser.add_argument( '--variations' , default=lowercase , type=lowercase , nargs='+' , required=lowercase , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=lowercase , type=lowercase , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=lowercase , type=lowercase , required=lowercase , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=lowercase , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=lowercase , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=lowercase , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=lowercase , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.output_dir Path(lowercase ).mkdir(exist_ok=lowercase ) lowerCamelCase_ = get_base_command(lowercase , lowercase ) # split each dimension into its --foo variations lowerCamelCase_ = [list(map(str.strip , re.split(r'\|' , lowercase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowerCamelCase_ = list(map(str.strip , map(' '.join , itertools.product(*lowercase ) ) ) ) lowerCamelCase_ = max(len(lowercase ) for x in variations ) # split wanted keys lowerCamelCase_ = args.report_metric_keys.split() # capture prints into a log file for convenience lowerCamelCase_ = f"""benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) lowerCamelCase_ = Tee(lowercase ) print(f"""\n*** Running {len(lowercase )} benchmarks:""" ) print(f"""Base command: {" ".join(lowercase )}""" ) lowerCamelCase_ = 'variation' lowerCamelCase_ = [] for id, variation in enumerate(tqdm(lowercase , desc='Total completion: ' , leave=lowercase ) ): lowerCamelCase_ = base_cmd + variation.split() results.append( process_run( id + 1 , lowercase , lowercase , lowercase , lowercase , args.target_metric_key , lowercase , args.repeat_times , lowercase , args.verbose , ) ) process_results(lowercase , args.target_metric_key , lowercase , args.base_variation , lowercase ) if __name__ == "__main__": main()
208
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
212
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class A__ ( __magic_name__ ): lowercase = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowercase = Features({'audio': Audio()} ) lowercase = Features({'labels': ClassLabel} ) lowercase = "audio" lowercase = "labels" def _lowerCamelCase ( self : Dict , a : Tuple ): '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , a ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) lowerCAmelCase__ : Tuple = copy.deepcopy(self ) lowerCAmelCase__ : List[Any] = self.label_schema.copy() lowerCAmelCase__ : List[Any] = features[self.label_column] lowerCAmelCase__ : Optional[int] = label_schema return task_template @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
212
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case :Tuple = logging.get_logger(__name__) __snake_case :Union[str, Any] = {'''vocab_file''': '''spiece.model'''} __snake_case :Dict = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } __snake_case :Dict = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __snake_case :Dict = '''▁''' class _A ( __UpperCAmelCase ): UpperCamelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Tuple="[CLS]" , __SCREAMING_SNAKE_CASE : List[Any]="[SEP]" , __SCREAMING_SNAKE_CASE : str="<unk>" , __SCREAMING_SNAKE_CASE : List[Any]="[SEP]" , __SCREAMING_SNAKE_CASE : Optional[Any]="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="[CLS]" , __SCREAMING_SNAKE_CASE : Any="[MASK]" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' __a = ( AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE , normalized=__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else mask_token ) __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__SCREAMING_SNAKE_CASE) @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return len(self.sp_model) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Tuple): '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self : List[Any] , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' if self.remove_space: __a = ''' '''.join(inputs.strip().split()) else: __a = inputs __a = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: __a = unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE) __a = ''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE)]) if self.do_lower_case: __a = outputs.lower() return outputs def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = self.preprocess_text(__SCREAMING_SNAKE_CASE) __a = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE) __a = [] for piece in pieces: if len(__SCREAMING_SNAKE_CASE) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): __a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __a = cur_pieces[1:] else: __a = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(__SCREAMING_SNAKE_CASE) else: new_pieces.append(__SCREAMING_SNAKE_CASE) return new_pieces def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = [] __a = '''''' __a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE) + token __a = True __a = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE) __a = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE) return out_string.strip() def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE) if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __a = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.vocab_file): with open(__SCREAMING_SNAKE_CASE , '''wb''') as fi: __a = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE) return (out_vocab_file,)
131
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): def get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCAmelCase ) __a = f'{_stra[0:_stra.index(_UpperCAmelCase )]} {_stra[_stra.index(_UpperCAmelCase ) + 1:]}' return "".join(_UpperCAmelCase ) # matching characters __a = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) __a = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) __a = len(_UpperCAmelCase ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(_UpperCAmelCase , _UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(_UpperCAmelCase ) + match_count / len(_UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
131
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class a__ ( unittest.TestCase ): def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=4 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_choices def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_attention_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a__ ( snake_case__ , unittest.TestCase ): _a : List[str] = True _a : List[str] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = FlaxBertModelTester(self ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = FlaxBertModel.from_pretrained("bert-base-cased" ) __lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_A )
92
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase__ : Optional[str] = field( default='./' ,metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-train' ,metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' ,metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase__ : Optional[int] = field(default=2 ,metadata={'help': 'Batch size for training.'} ) lowerCamelCase__ : Optional[int] = field(default=2 ,metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase__ : Optional[float] = field(default=0.1 ,metadata={'help': 'Value of weight decay.'} ) lowerCamelCase__ : Optional[int] = field( default=1_0_0_0_0 ,metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase__ : Optional[float] = field(default=2E-4 ,metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase__ : Optional[str] = field(default='cosine' ,metadata={'help': 'Learning rate.'} ) lowerCamelCase__ : Optional[int] = field( default=7_5_0 ,metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase__ : Optional[int] = field( default=1_6 ,metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase__ : Optional[bool] = field( default=A__ ,metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase__ : Optional[int] = field(default=5_0_0_0_0 ,metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase__ : Optional[int] = field( default=-1 ,metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=1_0_2_4 ,metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase__ : Optional[int] = field(default=1 ,metadata={'help': 'Training seed.'} ) lowerCamelCase__ : Optional[int] = field( default=1_0_2_4 ,metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} ,) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase__ : Optional[bool] = field(default=A__ ,metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' ,metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase__ : Optional[int] = field(default=2 ,metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase__ : Optional[int] = field( default=-1 ,metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=1_0_2_4 ,metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=1 ,metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=A__ ,metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} ,) lowerCamelCase__ : Optional[bool] = field( default=A__ ,metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase__ : Optional[float] = field(default=0.2 ,metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase__ : Optional[int] = field(default=2_5_6 ,metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase__ : Optional[int] = field(default=0 ,metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase__ : Optional[float] = field(default=0.9_5 ,metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase__ : Optional[int] = field(default=1_0 ,metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase__ : Optional[int] = field( default=2_0_0 ,metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase__ : Optional[int] = field(default=1 ,metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase__ : Optional[str] = field( default='eval_results.json' ,metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase__ : Optional[str] = field( default='0' ,metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase__ : Optional[int] = field( default=-1 ,metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } ,) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } ,) lowerCamelCase__ : Optional[str] = field( default='transformersbook/codeparrot' ,metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot-clean' ,metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase__ : Optional[int] = field( default=1_0_0_0_0_0 ,metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase__ : Optional[str] = field(default='content' ,metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase__ : Optional[float] = field( default=1_0_0_0 ,metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=1_0_0 ,metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=0.2_5 ,metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=1.5 ,metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=0.7 ,metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Name or path to the tokenizer.'} ,) lowerCamelCase__ : Optional[bool] = field( default=A__ ,metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase__ : Optional[float] = field( default=0.8_5 ,metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='gpt2' ,metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase__ : Optional[str] = field( default='transformersbook/codeparrot-train' ,metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase__ : Optional[str] = field(default='content' ,metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase__ : Optional[int] = field(default=2_0_0_0_0_0 ,metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase__ : Optional[int] = field( default=3_2_7_6_8 ,metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase__ : Optional[str] = field(default='codeparrot' ,metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase__ : Optional[bool] = field(default=A__ ,metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-train' ,metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase__ : Optional[str] = field( default='tokenized-codeparrot-train' ,metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase__ : Optional[int] = field(default=A__ ,metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='gpt2-large' ,metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase__ : Optional[str] = field(default='codeparrot' ,metadata={'help': 'Name of the created model.'} ) lowerCamelCase__ : Optional[bool] = field(default=A__ ,metadata={'help': 'Push saved tokenizer to the hub.'} )
165
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def snake_case_ ( *snake_case , snake_case = None , snake_case=True , snake_case=2 ) -> List[Any]: from .. import __version__ lowercase__: Optional[int] = take_from lowercase__: List[Any] = () if not isinstance(args[0] , snake_case ): lowercase__: List[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(snake_case ).base_version ) >= version.parse(snake_case ): raise ValueError( f'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' f' version {__version__} is >= {version_name}' ) lowercase__: Any = None if isinstance(snake_case , snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(snake_case ),) lowercase__: str = f'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(snake_case , snake_case ): values += (getattr(snake_case , snake_case ),) lowercase__: List[Any] = f'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: lowercase__: List[Any] = f'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: lowercase__: Union[str, Any] = warning + ' ' if standard_warn else '' warnings.warn(warning + message , snake_case , stacklevel=snake_case ) if isinstance(snake_case , snake_case ) and len(snake_case ) > 0: lowercase__: List[Any] = inspect.getouterframes(inspect.currentframe() )[1] lowercase__: Optional[Any] = call_frame.filename lowercase__: Optional[int] = call_frame.lineno lowercase__: Any = call_frame.function lowercase__ , lowercase__: int = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(snake_case ) == 0: return elif len(snake_case ) == 1: return values[0] return values
288
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=128 , lowerCAmelCase__=32 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> List[Any]: '''simple docstring''' lowercase__: Union[str, Any] = parent lowercase__: str = batch_size lowercase__: Dict = seq_length lowercase__: str = is_training lowercase__: List[str] = use_input_mask lowercase__: str = use_token_type_ids lowercase__: Tuple = use_labels lowercase__: int = vocab_size lowercase__: Dict = hidden_size lowercase__: Tuple = num_hidden_layers lowercase__: Tuple = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[str] = hidden_dropout_prob lowercase__: str = attention_probs_dropout_prob lowercase__: Dict = max_position_embeddings lowercase__: Optional[Any] = type_vocab_size lowercase__: List[str] = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Optional[int] = num_labels lowercase__: Union[str, Any] = num_choices lowercase__: int = scope def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[str] = None if self.use_input_mask: lowercase__: Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: Optional[int] = None if self.use_token_type_ids: lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Tuple = None lowercase__: Optional[Any] = None if self.use_labels: lowercase__: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): Tuple = self.prepare_config_and_inputs() lowercase__: Optional[int] = True lowercase__: Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: List[Any] = NezhaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) lowercase__: Union[str, Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) lowercase__: str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' lowercase__: Dict = True lowercase__: Optional[Any] = NezhaModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) lowercase__: str = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) lowercase__: List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Tuple = NezhaForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Any = NezhaForNextSentencePrediction(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: int = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Union[str, Any] = NezhaForPreTraining(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[str] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , next_sentence_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = NezhaForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' lowercase__: Optional[Any] = self.num_labels lowercase__: List[Any] = NezhaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Union[str, Any] = self.num_labels lowercase__: Dict = NezhaForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: List[str] = self.num_choices lowercase__: str = NezhaForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: int = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: str = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): str = config_and_inputs lowercase__: Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): __lowercase : List[Any] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __lowercase : Any = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) __lowercase : Dict = True def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[Any]: '''simple docstring''' lowercase__: Any = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): lowercase__: int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: List[Any] = NezhaModelTester(self ) lowercase__: Optional[int] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' # This regression test was failing with PyTorch < 1.3 ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase__: str = None self.model_tester.create_and_check_model_as_decoder( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: List[str] = NezhaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ , lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowercase__: Optional[int] = True lowercase__: Optional[int] = model_class(config=lowerCAmelCase__ ) lowercase__: Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: List[Any] = torch.jit.trace( lowerCAmelCase__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , 'bert.pt' ) ) lowercase__: List[str] = torch.jit.load(os.path.join(lowerCAmelCase__ , 'bert.pt' ) , map_location=lowerCAmelCase__ ) loaded(inputs_dict['input_ids'].to(lowerCAmelCase__ ) , inputs_dict['attention_mask'].to(lowerCAmelCase__ ) ) @require_torch class __a ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Optional[Any] = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) lowercase__: Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase__: Dict = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__: Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] lowercase__: Optional[Any] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , lowerCAmelCase__ ) lowercase__: Optional[Any] = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: int = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) lowercase__: Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase__: Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__: Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] lowercase__: int = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape , lowerCAmelCase__ ) lowercase__: Union[str, Any] = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) )
288
1
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowercase ( ): lowercase_ : Union[str, Any] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 2_0, '''a ''' * 3_0, '''b ''' * 7], } lowercase_ : List[Any] = Dataset.from_dict(__snake_case ) return dataset class _UpperCAmelCase ( _A ): def A ( self : Any ) -> Optional[Any]: lowercase_ : Optional[Any] = get_dataset() lowercase_ : int = make_duplicate_clusters(A , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def A ( self : Optional[int] ) -> int: lowercase_ : List[Any] = get_dataset() lowercase_ , lowercase_ : Optional[Any] = deduplicate_dataset(A ) self.assertEqual(len(A ) , 2 ) print(A ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , A )
33
"""simple docstring""" def lowercase ( __snake_case : int ): if not isinstance(__snake_case , __snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
33
1
_snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): # Return True if there is node that has not iterated. lowercase__ = [False] * len(__magic_name__ ) lowercase__ = [s] lowercase__ = True while queue: lowercase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase__ = True lowercase__ = u return visited[t] def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = [-1] * (len(__magic_name__ )) lowercase__ = 0 lowercase__ = [] lowercase__ = [i[:] for i in graph] # Record original cut, copy. while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = float("Inf" ) lowercase__ = sink while s != source: # Find the minimum value in select path lowercase__ = min(__magic_name__ , graph[parent[s]][s] ) lowercase__ = parent[s] max_flow += path_flow lowercase__ = sink while v != source: lowercase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase__ = parent[v] for i in range(len(__magic_name__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
363
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _A ( __magic_name__ ): # picklable for multiprocessing return x.sum() def _A ( __magic_name__ ): # picklable for multiprocessing return i + 1 @dataclass class lowerCAmelCase : __lowerCamelCase = 42 __lowerCamelCase = 42 class lowerCAmelCase ( lowercase_ ): def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = {} lowercase__ = [] lowercase__ = 1 lowercase__ = [1, 2] lowercase__ = {"a": 1, "b": 2} lowercase__ = {"a": [1, 2], "b": [3, 4]} lowercase__ = {"a": {"1": 1}, "b": 2} lowercase__ = {"a": 1, "b": 2, "c": 3, "d": 4} lowercase__ = {} lowercase__ = [] lowercase__ = 2 lowercase__ = [2, 3] lowercase__ = {"a": 2, "b": 3} lowercase__ = {"a": [2, 3], "b": [4, 5]} lowercase__ = {"a": {"1": 2}, "b": 3} lowercase__ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) lowercase__ = 2 self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) lowercase__ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} lowercase__ = {"a": 2, "b": 0, "c": 2} lowercase__ = { "a": np.eye(2 ).astype(_lowercase ), "b": np.zeros(3 ).astype(_lowercase ), "c": np.ones(2 ).astype(_lowercase ), } self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase ) , _lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowercase ): # can't pickle a local lambda map_nested(lambda _lowercase : x + 1 , _lowercase , num_proc=_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = {"a": 1, "b": 2} lowercase__ = {"a": 3, "b": 4} lowercase__ = {"a": 5, "b": 6} lowercase__ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowercase , _lowercase , _lowercase ) ) , _lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' class lowerCAmelCase : __lowerCamelCase = 'bar' lowercase__ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(_lowercase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: lowercase__ = {f'''{i}''': i for i in range(__magic_name__ )} lowercase__ = map_nested(lambda __magic_name__ : x + 10 , __magic_name__ , num_proc=__magic_name__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowerCAmelCase ( lowercase_ ): @require_tf def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers lowercase__ = layers.Dense(2 ) def gen_random_output(): lowercase__ = tf.random.uniform((1, 3) ) return model(_lowercase ).numpy() with temp_seed(42 , set_tensorflow=_lowercase ): lowercase__ = gen_random_output() with temp_seed(42 , set_tensorflow=_lowercase ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' import torch def gen_random_output(): lowercase__ = torch.nn.Linear(3 , 2 ) lowercase__ = torch.rand(1 , 3 ) return model(_lowercase ).detach().numpy() with temp_seed(42 , set_pytorch=_lowercase ): lowercase__ = gen_random_output() with temp_seed(42 , set_pytorch=_lowercase ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def UpperCAmelCase ( self :str ): '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): lowercase__ = gen_random_output() with temp_seed(42 ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def _A ( __magic_name__ ): lowercase__ = NestedDataStructure(__magic_name__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def _A ( __magic_name__ , __magic_name__ ): lowercase__ = NestedDataStructure(__magic_name__ ).flatten() assert output == expected_output def _A ( ): lowercase__ = A(x=1 , y="foobar" ) lowercase__ = {"x": 1, "y": "foobar"} assert asdict(__magic_name__ ) == expected_output lowercase__ = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} lowercase__ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__magic_name__ ) == expected_output with pytest.raises(__magic_name__ ): asdict([1, A(x=10 , y="foo" )] ) def _A ( __magic_name__ ): return text.split() def _A ( __magic_name__ ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _A ( ): with Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__magic_name__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__magic_name__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowercase__ = [] for yield_time, content in iflatmap_unordered( __magic_name__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__magic_name__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__magic_name__ ) == 4
201
0
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def _lowercase ( self : List[str] ) -> Optional[int]: __lowerCamelCase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , 'tf_padding' ) ) self.parent.assertTrue(hasattr(_a , 'depth_multiplier' ) ) class lowerCamelCase_ : """simple docstring""" def __init__( self : Any , _a : List[str] , _a : Optional[int]=13 , _a : List[Any]=3 , _a : Dict=32 , _a : str=0.25 , _a : str=8 , _a : Any=8 , _a : Tuple=6 , _a : Any=32 , _a : Any=True , _a : List[Any]=True , _a : Union[str, Any]=True , _a : int="relu6" , _a : Optional[Any]=1280 , _a : Union[str, Any]=0.1 , _a : Optional[int]=0.02 , _a : int=True , _a : Dict=True , _a : List[str]=10 , _a : Union[str, Any]=None , ) -> Any: __lowerCamelCase : str = parent __lowerCamelCase : Any = batch_size __lowerCamelCase : Optional[int] = num_channels __lowerCamelCase : str = image_size __lowerCamelCase : Union[str, Any] = depth_multiplier __lowerCamelCase : Optional[int] = depth_divisible_by __lowerCamelCase : Any = min_depth __lowerCamelCase : Optional[Any] = expand_ratio __lowerCamelCase : List[Any] = tf_padding __lowerCamelCase : Optional[int] = output_stride __lowerCamelCase : Union[str, Any] = first_layer_is_expansion __lowerCamelCase : Union[str, Any] = finegrained_output __lowerCamelCase : int = hidden_act __lowerCamelCase : Optional[int] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowerCamelCase : Union[str, Any] = classifier_dropout_prob __lowerCamelCase : Optional[Any] = use_labels __lowerCamelCase : Dict = is_training __lowerCamelCase : List[str] = num_labels __lowerCamelCase : str = initializer_range __lowerCamelCase : str = scope def _lowercase ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Optional[int] = None __lowerCamelCase : int = None if self.use_labels: __lowerCamelCase : Any = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase ( self : Tuple ) -> int: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowercase ( self : Dict , _a : Optional[int] , _a : Tuple , _a : Dict , _a : List[str] ) -> Any: __lowerCamelCase : Tuple = MobileNetVaModel(config=_a ) model.to(_a ) model.eval() __lowerCamelCase : Dict = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def _lowercase ( self : Optional[Any] , _a : Tuple , _a : Optional[int] , _a : Optional[int] , _a : Tuple ) -> Dict: __lowerCamelCase : Dict = self.num_labels __lowerCamelCase : List[str] = MobileNetVaForImageClassification(_a ) model.to(_a ) model.eval() __lowerCamelCase : int = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : str , _a : Optional[int] , _a : Dict , _a : List[Any] , _a : List[str] ) -> Union[str, Any]: __lowerCamelCase : Tuple = self.num_labels __lowerCamelCase : Union[str, Any] = MobileNetVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() __lowerCamelCase : Any = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowerCamelCase : List[str] = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase ( self : Optional[int] ) -> Optional[int]: __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) a_ =( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) a_ =False a_ =False a_ =False a_ =False def _lowercase ( self : Dict ) -> Dict: __lowerCamelCase : str = MobileNetVaModelTester(self ) __lowerCamelCase : Optional[int] = MobileNetVaConfigTester(self , config_class=_a , has_text_modality=_a ) def _lowercase ( self : Tuple ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def _lowercase ( self : Any ) -> int: pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def _lowercase ( self : List[str] ) -> Any: pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def _lowercase ( self : str ) -> Dict: pass def _lowercase ( self : Dict ) -> Tuple: __lowerCamelCase ,__lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : int = model_class(_a ) __lowerCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] __lowerCamelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , _a ) def _lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowercase ( self : Any ) -> Optional[int]: def check_hidden_states_output(_a : Optional[Any] , _a : List[Any] , _a : Union[str, Any] ): __lowerCamelCase : List[Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __lowerCamelCase : int = model(**self._prepare_for_class(_a , _a ) ) __lowerCamelCase : int = outputs.hidden_states __lowerCamelCase : Optional[Any] = 16 self.assertEqual(len(_a ) , _a ) __lowerCamelCase ,__lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : int = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Any = True check_hidden_states_output(_a , _a , _a ) def _lowercase ( self : List[str] ) -> Tuple: __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def _lowercase ( self : Any ) -> List[Any]: __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def _lowercase ( self : Optional[int] ) -> Union[str, Any]: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : int = MobileNetVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def a_ ( ) -> Optional[Any]: __lowerCamelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Dict ) -> Optional[int]: return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def _lowercase ( self : Any ) -> str: __lowerCamelCase : int = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_a ) __lowerCamelCase : Optional[Any] = self.default_image_processor __lowerCamelCase : Any = prepare_img() __lowerCamelCase : List[str] = image_processor(images=_a , return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): __lowerCamelCase : Dict = model(**_a ) # verify the logits __lowerCamelCase : List[str] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _a ) __lowerCamelCase : Union[str, Any] = torch.tensor([0.2445, -1.1993, 0.1905] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @slow def _lowercase ( self : Dict ) -> str: __lowerCamelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) __lowerCamelCase : Any = model.to(_a ) __lowerCamelCase : str = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) __lowerCamelCase : Optional[Any] = prepare_img() __lowerCamelCase : Union[str, Any] = image_processor(images=_a , return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): __lowerCamelCase : Union[str, Any] = model(**_a ) __lowerCamelCase : List[Any] = outputs.logits # verify the logits __lowerCamelCase : Union[str, Any] = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _a ) __lowerCamelCase : Optional[Any] = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1e-4 ) )
208
'''simple docstring''' from collections.abc import Sequence def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> float: return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> float: __lowerCamelCase : Any = 0.0 for coeff in reversed(_lowerCAmelCase ): __lowerCamelCase : Tuple = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
208
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = MvpTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Union[str, Any]: super().__init__( lowerCAmelCase__, lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, trim_offsets=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = getattr(lowerCAmelCase__, pre_tok_state.pop('type')) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**lowerCAmelCase__) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = 'post_processor' snake_case_ = getattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['sep']) if "cls" in state: snake_case_ = tuple(state['cls']) snake_case_ = False if state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('trim_offsets', lowerCAmelCase__) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(lowerCAmelCase__, state.pop('type')) snake_case_ = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) @property def a_ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else value snake_case_ = value def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> str: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
312
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {'''vocab_file''': '''spiece.model'''} lowerCamelCase = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class _a ( _lowercase): def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=False , _SCREAMING_SNAKE_CASE : Optional[int]=True , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : Union[str, Any]="<s>" , _SCREAMING_SNAKE_CASE : int="</s>" , _SCREAMING_SNAKE_CASE : Tuple="<unk>" , _SCREAMING_SNAKE_CASE : Optional[int]="<sep>" , _SCREAMING_SNAKE_CASE : Dict="<pad>" , _SCREAMING_SNAKE_CASE : str="<cls>" , _SCREAMING_SNAKE_CASE : Any="<mask>" , _SCREAMING_SNAKE_CASE : str=["<eop>", "<eod>"] , _SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE : Optional[Any] , )-> None: lowerCAmelCase__ : Tuple = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token lowerCAmelCase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Any = 3 lowerCAmelCase__ : Optional[Any] = do_lower_case lowerCAmelCase__ : Any = remove_space lowerCAmelCase__ : Tuple = keep_accents lowerCAmelCase__ : str = vocab_file lowerCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) lowerCAmelCase__ : Dict = jieba lowerCAmelCase__ : List[str] = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCAmelCase__( self : Optional[Any] )-> str: return len(self.sp_model ) def UpperCAmelCase__( self : Dict )-> Tuple: lowerCAmelCase__ : Any = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict )-> List[str]: lowerCAmelCase__ : Union[str, Any] = self.__dict__.copy() lowerCAmelCase__ : List[str] = None return state def __setstate__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )-> Optional[int]: lowerCAmelCase__ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase__ : List[Any] = {} lowerCAmelCase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple )-> Dict: if self.remove_space: lowerCAmelCase__ : int = ''' '''.join(inputs.strip().split() ) else: lowerCAmelCase__ : Union[str, Any] = inputs lowerCAmelCase__ : List[Any] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: lowerCAmelCase__ : Optional[Any] = unicodedata.normalize('''NFKD''' , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = ''''''.join([c for c in outputs if not unicodedata.combining(_SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: lowerCAmelCase__ : Any = outputs.lower() return outputs def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : str )-> List[str]: lowerCAmelCase__ : Any = self.preprocess_text(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = [] for piece in pieces: if len(_SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowerCAmelCase__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_SCREAMING_SNAKE_CASE , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase__ : Tuple = cur_pieces[1:] else: lowerCAmelCase__ : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_SCREAMING_SNAKE_CASE ) else: new_pieces.append(_SCREAMING_SNAKE_CASE ) return new_pieces def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : List[str] )-> Optional[int]: return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )-> Tuple: return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )-> Dict: lowerCAmelCase__ : Dict = ''''''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : str = [self.sep_token_id] lowerCAmelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None , _SCREAMING_SNAKE_CASE : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : List[str] = [self.sep_token_id] lowerCAmelCase__ : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None )-> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ : Union[str, Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowerCAmelCase__ : Any = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def UpperCAmelCase__( self : str , *_SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Any )-> Optional[Any]: lowerCAmelCase__ : Any = super()._decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
131
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=13 , _SCREAMING_SNAKE_CASE : Tuple=32 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : List[Any]=3 , _SCREAMING_SNAKE_CASE : str=16 , _SCREAMING_SNAKE_CASE : Union[str, Any]=[1, 2, 1] , _SCREAMING_SNAKE_CASE : List[Any]=[2, 2, 4] , _SCREAMING_SNAKE_CASE : str=2 , _SCREAMING_SNAKE_CASE : Optional[int]=2.0 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Dict=0.0 , _SCREAMING_SNAKE_CASE : str=0.0 , _SCREAMING_SNAKE_CASE : List[str]=0.1 , _SCREAMING_SNAKE_CASE : Tuple="gelu" , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : List[Any]=0.02 , _SCREAMING_SNAKE_CASE : Any=1E-5 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Any=10 , _SCREAMING_SNAKE_CASE : Union[str, Any]=8 , )-> Dict: lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Optional[Any] = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Dict = embed_dim lowerCAmelCase__ : Optional[Any] = depths lowerCAmelCase__ : Tuple = num_heads lowerCAmelCase__ : Dict = window_size lowerCAmelCase__ : List[str] = mlp_ratio lowerCAmelCase__ : str = qkv_bias lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = drop_path_rate lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Tuple = use_absolute_embeddings lowerCAmelCase__ : int = patch_norm lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Dict = is_training lowerCAmelCase__ : Any = scope lowerCAmelCase__ : int = use_labels lowerCAmelCase__ : Tuple = type_sequence_label_size lowerCAmelCase__ : Any = encoder_stride def UpperCAmelCase__( self : str )-> Optional[int]: lowerCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__( self : Optional[int] )-> str: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> int: lowerCAmelCase__ : Union[str, Any] = SwinvaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : List[str] = model(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> List[Any]: lowerCAmelCase__ : Optional[int] = SwinvaForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Dict = SwinvaForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] )-> Union[str, Any]: lowerCAmelCase__ : Tuple = self.type_sequence_label_size lowerCAmelCase__ : Optional[Any] = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Any = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__( self : Tuple )-> str: lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = config_and_inputs lowerCAmelCase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( _lowercase , _lowercase , unittest.TestCase): _a : str = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _a : Tuple = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _a : List[str] = False _a : int = False _a : Optional[int] = False _a : Optional[Any] = False def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : Tuple = SwinvaModelTester(self ) lowerCAmelCase__ : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) def UpperCAmelCase__( self : str )-> int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__( self : Optional[int] )-> Optional[Any]: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase__( self : Optional[Any] )-> Dict: pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase__( self : Tuple )-> Optional[int]: pass def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__( self : Any )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Dict = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Tuple = [*signature.parameters.keys()] lowerCAmelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = True for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[str] = outputs.attentions lowerCAmelCase__ : Union[str, Any] = len(self.model_tester.depths ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = config.window_size**2 lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCAmelCase__ : int = len(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine lowerCAmelCase__ : str = True lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): lowerCAmelCase__ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase__ : str = 2 self.assertEqual(out_len + added_hidden_states , len(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[Any] = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] )-> Tuple: lowerCAmelCase__ : Any = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Any = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.hidden_states lowerCAmelCase__ : Optional[int] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length lowerCAmelCase__ : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase__ : Dict = outputs.reshaped_hidden_states self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = reshaped_hidden_states[0].shape lowerCAmelCase__ : Tuple = ( reshaped_hidden_states[0].view(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__( self : Tuple )-> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Tuple = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) def UpperCAmelCase__( self : Dict )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : Optional[Any] )-> int: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[Any] = SwinvaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Dict )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Dict = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _a ( unittest.TestCase): @cached_property def UpperCAmelCase__( self : Tuple )-> Optional[Any]: return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ : Any = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits lowerCAmelCase__ : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
131
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , ) -> str: if attention_mask is None: SCREAMING_SNAKE_CASE: int = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE: Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: SCREAMING_SNAKE_CASE: int = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE: Dict = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE: str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class snake_case : def __init__( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=1_3 , UpperCamelCase__ : Any=7 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Dict=False , UpperCamelCase__ : List[Any]=9_9 , UpperCamelCase__ : Union[str, Any]=1_6 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : List[str]="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : str=3_2 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : List[Any]=0.02 , )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE: str = parent SCREAMING_SNAKE_CASE: str = batch_size SCREAMING_SNAKE_CASE: Dict = seq_length SCREAMING_SNAKE_CASE: List[Any] = is_training SCREAMING_SNAKE_CASE: Tuple = use_labels SCREAMING_SNAKE_CASE: Optional[Any] = vocab_size SCREAMING_SNAKE_CASE: Optional[Any] = hidden_size SCREAMING_SNAKE_CASE: str = num_hidden_layers SCREAMING_SNAKE_CASE: List[str] = num_attention_heads SCREAMING_SNAKE_CASE: List[Any] = intermediate_size SCREAMING_SNAKE_CASE: Tuple = hidden_act SCREAMING_SNAKE_CASE: Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE: Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE: Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE: Any = eos_token_id SCREAMING_SNAKE_CASE: List[Any] = pad_token_id SCREAMING_SNAKE_CASE: str = bos_token_id SCREAMING_SNAKE_CASE: int = initializer_range def lowercase_ ( self : str)-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE: Tuple = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) SCREAMING_SNAKE_CASE: int = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) SCREAMING_SNAKE_CASE: Optional[Any] = shift_tokens_right(__lowerCAmelCase , 1 , 2) SCREAMING_SNAKE_CASE: Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE: Union[str, Any] = prepare_blenderbot_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) return config, inputs_dict def lowercase_ ( self : str)-> str: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE: str = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int)-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE: List[Any] = 2_0 SCREAMING_SNAKE_CASE: Optional[int] = model_class_name(__lowerCAmelCase) SCREAMING_SNAKE_CASE: Any = model.encode(inputs_dict["input_ids"]) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE: Optional[int] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) SCREAMING_SNAKE_CASE: Optional[int] = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase) SCREAMING_SNAKE_CASE: Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") SCREAMING_SNAKE_CASE: List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE: Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE: Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") SCREAMING_SNAKE_CASE: Any = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE: List[Any] = model.decode(__lowerCAmelCase , __lowerCAmelCase) SCREAMING_SNAKE_CASE: Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}") def lowercase_ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple)-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE: Optional[int] = 2_0 SCREAMING_SNAKE_CASE: Any = model_class_name(__lowerCAmelCase) SCREAMING_SNAKE_CASE: Optional[Any] = model.encode(inputs_dict["input_ids"]) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE: Union[str, Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) SCREAMING_SNAKE_CASE: Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) SCREAMING_SNAKE_CASE: Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase) SCREAMING_SNAKE_CASE: Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE: str = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE: int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") SCREAMING_SNAKE_CASE: Tuple = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE: int = model.decode(__lowerCAmelCase , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase) SCREAMING_SNAKE_CASE: Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}") @require_flax class snake_case ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = 99 def lowercase_ ( self : List[Any])-> int: '''simple docstring''' SCREAMING_SNAKE_CASE: int = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) SCREAMING_SNAKE_CASE: Optional[Any] = input_ids.shape[0] SCREAMING_SNAKE_CASE: List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase_ ( self : Union[str, Any])-> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE: Union[str, Any] = self._get_config_and_data() SCREAMING_SNAKE_CASE: int = FlaxBlenderbotSmallForConditionalGeneration(__lowerCAmelCase) SCREAMING_SNAKE_CASE: Optional[Any] = lm_model(input_ids=__lowerCAmelCase) SCREAMING_SNAKE_CASE: Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCAmelCase) def lowercase_ ( self : str)-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE: Any = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) SCREAMING_SNAKE_CASE: Any = FlaxBlenderbotSmallForConditionalGeneration(__lowerCAmelCase) SCREAMING_SNAKE_CASE: Union[str, Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa) SCREAMING_SNAKE_CASE: str = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa) SCREAMING_SNAKE_CASE: List[Any] = lm_model(input_ids=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase) SCREAMING_SNAKE_CASE: str = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCAmelCase) def lowercase_ ( self : Optional[int])-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE: str = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa) SCREAMING_SNAKE_CASE: List[Any] = shift_tokens_right(__lowerCAmelCase , 1 , 2) SCREAMING_SNAKE_CASE: Dict = np.equal(__lowerCAmelCase , 1).astype(np.floataa).sum() SCREAMING_SNAKE_CASE: List[str] = np.equal(__lowerCAmelCase , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(__lowerCAmelCase , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class snake_case ( _a, unittest.TestCase, _a ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Dict = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE_ : List[str] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowercase_ ( self : Tuple)-> int: '''simple docstring''' SCREAMING_SNAKE_CASE: Any = FlaxBlenderbotSmallModelTester(self) def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE: Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) def lowercase_ ( self : Optional[Any])-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE: Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) def lowercase_ ( self : List[str])-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): SCREAMING_SNAKE_CASE: str = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase) SCREAMING_SNAKE_CASE: Union[str, Any] = model_class(__lowerCAmelCase) @jax.jit def encode_jitted(UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=None , **UpperCamelCase__ : List[str]): return model.encode(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase) with self.subTest("JIT Enabled"): SCREAMING_SNAKE_CASE: Optional[Any] = encode_jitted(**__lowerCAmelCase).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): SCREAMING_SNAKE_CASE: int = encode_jitted(**__lowerCAmelCase).to_tuple() self.assertEqual(len(__lowerCAmelCase) , len(__lowerCAmelCase)) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase): self.assertEqual(jitted_output.shape , output.shape) def lowercase_ ( self : Optional[int])-> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): SCREAMING_SNAKE_CASE: Optional[int] = model_class(__lowerCAmelCase) SCREAMING_SNAKE_CASE: Any = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) SCREAMING_SNAKE_CASE: int = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any): return model.decode( decoder_input_ids=__lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , encoder_outputs=__lowerCAmelCase , ) with self.subTest("JIT Enabled"): SCREAMING_SNAKE_CASE: List[str] = decode_jitted(**__lowerCAmelCase).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): SCREAMING_SNAKE_CASE: str = decode_jitted(**__lowerCAmelCase).to_tuple() self.assertEqual(len(__lowerCAmelCase) , len(__lowerCAmelCase)) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase): self.assertEqual(jitted_output.shape , output.shape) @slow def lowercase_ ( self : Tuple)-> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE: Optional[Any] = model_class_name.from_pretrained("facebook/blenderbot_small-90M") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE: Optional[int] = np.ones((1, 1)) * model.config.eos_token_id SCREAMING_SNAKE_CASE: Optional[Any] = model(__lowerCAmelCase) self.assertIsNotNone(__lowerCAmelCase)
371
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: __lowerCAmelCase: Dict = original_name.split("." )[0] __lowerCAmelCase: Any = key.split("." ) __lowerCAmelCase: Union[str, Any] = int(key_list[key_list.index(__SCREAMING_SNAKE_CASE ) - 2] ) __lowerCAmelCase: List[Any] = int(key_list[key_list.index(__SCREAMING_SNAKE_CASE ) - 1] ) __lowerCAmelCase: List[str] = orig_block_num - offset __lowerCAmelCase: Tuple = key.replace(F"{orig_block_num}.{layer_num}.{original_name}" , F"block.{new_block_num}.{layer_num}.{new_name}" ) return key def a__ ( __SCREAMING_SNAKE_CASE ) -> int: __lowerCAmelCase: List[Any] = OrderedDict() __lowerCAmelCase , __lowerCAmelCase: Optional[int] = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): __lowerCAmelCase: Dict = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 __lowerCAmelCase: int = key[: key.find("proj" )] __lowerCAmelCase: Dict = key.replace(__SCREAMING_SNAKE_CASE , F"patch_embeddings.{total_embed_found}." ) __lowerCAmelCase: Optional[int] = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: __lowerCAmelCase: int = "poolformer.encoder." + key if "mlp.fc1" in key: __lowerCAmelCase: Optional[Any] = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: __lowerCAmelCase: Dict = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "mlp.fc2" , "output.conv2" ) if "norm1" in key: __lowerCAmelCase: Dict = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "norm1" , "before_norm" ) if "norm2" in key: __lowerCAmelCase: Dict = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "norm2" , "after_norm" ) if "layer_scale_1" in key: __lowerCAmelCase: Optional[int] = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: __lowerCAmelCase: Any = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "layer_scale_2" , "layer_scale_2" ) if "head" in key: __lowerCAmelCase: int = key.replace("head" , "classifier" ) __lowerCAmelCase: Tuple = value return new_state_dict def a__ ( ) -> Tuple: __lowerCAmelCase: Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase: int = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: __lowerCAmelCase: Any = PoolFormerConfig() # set attributes based on model_name __lowerCAmelCase: Any = "huggingface/label-files" __lowerCAmelCase: int = model_name[-3:] __lowerCAmelCase: List[Any] = 1_0_0_0 __lowerCAmelCase: Tuple = "imagenet-1k-id2label.json" __lowerCAmelCase: str = (1, 1_0_0_0) # set config attributes __lowerCAmelCase: Dict = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase: List[str] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowerCAmelCase: Any = idalabel __lowerCAmelCase: Any = {v: k for k, v in idalabel.items()} if size == "s12": __lowerCAmelCase: Dict = [2, 2, 6, 2] __lowerCAmelCase: str = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase: Optional[Any] = 4.0 __lowerCAmelCase: Union[str, Any] = 0.9 elif size == "s24": __lowerCAmelCase: Tuple = [4, 4, 1_2, 4] __lowerCAmelCase: List[str] = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase: Tuple = 4.0 __lowerCAmelCase: Optional[int] = 0.9 elif size == "s36": __lowerCAmelCase: int = [6, 6, 1_8, 6] __lowerCAmelCase: int = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase: List[str] = 4.0 __lowerCAmelCase: Dict = 1E-6 __lowerCAmelCase: List[Any] = 0.9 elif size == "m36": __lowerCAmelCase: Dict = [6, 6, 1_8, 6] __lowerCAmelCase: Dict = [9_6, 1_9_2, 3_8_4, 7_6_8] __lowerCAmelCase: str = 4.0 __lowerCAmelCase: Union[str, Any] = 1E-6 __lowerCAmelCase: Union[str, Any] = 0.95 elif size == "m48": __lowerCAmelCase: str = [8, 8, 2_4, 8] __lowerCAmelCase: Optional[int] = [9_6, 1_9_2, 3_8_4, 7_6_8] __lowerCAmelCase: str = 4.0 __lowerCAmelCase: int = 1E-6 __lowerCAmelCase: str = 0.95 else: raise ValueError(F"Size {size} not supported" ) # load image processor __lowerCAmelCase: Union[str, Any] = PoolFormerImageProcessor(crop_pct=__SCREAMING_SNAKE_CASE ) # Prepare image __lowerCAmelCase: int = prepare_img() __lowerCAmelCase: Tuple = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict __lowerCAmelCase: Optional[int] = torch.load(__SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) # rename keys __lowerCAmelCase: Any = rename_keys(__SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict __lowerCAmelCase: str = PoolFormerForImageClassification(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() # Define image processor __lowerCAmelCase: Any = PoolFormerImageProcessor(crop_pct=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass __lowerCAmelCase: int = model(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = outputs.logits # define expected logit slices for different models if size == "s12": __lowerCAmelCase: List[str] = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __lowerCAmelCase: Optional[int] = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __lowerCAmelCase: List[str] = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __lowerCAmelCase: Union[str, Any] = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __lowerCAmelCase: List[str] = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
108
0
"""simple docstring""" from __future__ import annotations import math def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : bool , __lowerCamelCase : list[int] , __lowerCamelCase : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) ) def _UpperCAmelCase ( ) -> None: _snake_case = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] _snake_case = math.log(len(__lowerCamelCase ) , 2 ) print(f'''Optimal value : {minimax(0 , 0 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
288
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase__ = parser.parse_args() if args.model_type == "bert": UpperCAmelCase__ = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase__ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCAmelCase__ = model.state_dict() UpperCAmelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase__ = state_dict[F"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[F"{prefix}.embeddings.LayerNorm.{w}"] UpperCAmelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 UpperCAmelCase__ = state_dict['cls.predictions.decoder.weight'] UpperCAmelCase__ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[F"cls.predictions.transform.dense.{w}"] UpperCAmelCase__ = state_dict[F"cls.predictions.transform.LayerNorm.{w}"] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
288
1
from __future__ import annotations def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = list(range(len(_UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_: Any = [v / w for v, w in zip(_UpperCAmelCase , _UpperCAmelCase )] index.sort(key=lambda _UpperCAmelCase : ratio[i] , reverse=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: float = 0 SCREAMING_SNAKE_CASE_: list[float] = [0] * len(_UpperCAmelCase ) for i in index: if weight[i] <= capacity: SCREAMING_SNAKE_CASE_: int = 1 max_value += value[i] capacity -= weight[i] else: SCREAMING_SNAKE_CASE_: Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
356
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __lowercase ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : float , lowerCAmelCase__ : Callable , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : str = None , ): super().__init__() SCREAMING_SNAKE_CASE_: str = initial_learning_rate SCREAMING_SNAKE_CASE_: Dict = warmup_steps SCREAMING_SNAKE_CASE_: Any = power SCREAMING_SNAKE_CASE_: int = decay_schedule_fn SCREAMING_SNAKE_CASE_: Union[str, Any] = name def __call__( self : Optional[Any] , lowerCAmelCase__ : Any): with tf.name_scope(self.name or "WarmUp") as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE_: Any = tf.cast(lowerCAmelCase__ , tf.floataa) SCREAMING_SNAKE_CASE_: Optional[Any] = tf.cast(self.warmup_steps , tf.floataa) SCREAMING_SNAKE_CASE_: Optional[int] = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE_: Union[str, Any] = self.initial_learning_rate * tf.math.pow(lowerCAmelCase__ , self.power) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 0.9 , _UpperCAmelCase = 0.9_9_9 , _UpperCAmelCase = 1e-8 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 1.0 , _UpperCAmelCase = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_UpperCAmelCase , ) if num_warmup_steps: SCREAMING_SNAKE_CASE_: Tuple = WarmUp( initial_learning_rate=_UpperCAmelCase , decay_schedule_fn=_UpperCAmelCase , warmup_steps=_UpperCAmelCase , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE_: List[str] = AdamWeightDecay( learning_rate=_UpperCAmelCase , weight_decay_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=_UpperCAmelCase , ) else: SCREAMING_SNAKE_CASE_: int = tf.keras.optimizers.Adam( learning_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , lowerCAmelCase__ : float = 0.9 , lowerCAmelCase__ : float = 0.999 , lowerCAmelCase__ : float = 1E-7 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : str = "AdamWeightDecay" , **lowerCAmelCase__ : int , ): super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = weight_decay_rate SCREAMING_SNAKE_CASE_: List[Any] = include_in_weight_decay SCREAMING_SNAKE_CASE_: List[Any] = exclude_from_weight_decay @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: List[str] = {"WarmUp": WarmUp} return super(lowerCAmelCase__ , cls).from_config(lowerCAmelCase__ , custom_objects=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int]): super(lowerCAmelCase__ , self)._prepare_local(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: str = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=None , **lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = list(zip(*lowerCAmelCase__)) return super(lowerCAmelCase__ , self).apply_gradients(zip(lowerCAmelCase__ , lowerCAmelCase__) , name=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple): if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE_: Dict = apply_state or {} SCREAMING_SNAKE_CASE_: List[str] = apply_state.get((var_device, var_dtype)) if coefficients is None: SCREAMING_SNAKE_CASE_: Optional[int] = self._fallback_apply_state(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple=None): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) with tf.control_dependencies([decay]): return super(lowerCAmelCase__ , self)._resource_apply_dense(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict=None): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) with tf.control_dependencies([decay]): return super(lowerCAmelCase__ , self)._resource_apply_sparse(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__) is not None: return False return True class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = [] SCREAMING_SNAKE_CASE_: Any = None @property def _SCREAMING_SNAKE_CASE ( self : int): if self._accum_steps is None: SCREAMING_SNAKE_CASE_: Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _SCREAMING_SNAKE_CASE ( self : Tuple): if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients") return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : str , lowerCAmelCase__ : Tuple): if not self._gradients: SCREAMING_SNAKE_CASE_: Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase__) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ]) if len(lowerCAmelCase__) != len(self._gradients): raise ValueError(F"Expected {len(self._gradients)} gradients, but got {len(lowerCAmelCase__)}") for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase__): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase__) self._accum_steps.assign_add(1) def _SCREAMING_SNAKE_CASE ( self : int): if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase__))
127
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( __lowerCamelCase ): def __init__( self : Dict , *A : Optional[int] , **A : List[str]) -> None: """simple docstring""" warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , A , ) super().__init__(*A , **A)
339
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> bool: return str(__UpperCAmelCase ) == str(__UpperCAmelCase )[::-1] def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> int: return int(__UpperCAmelCase ) + int(str(__UpperCAmelCase )[::-1] ) def lowerCAmelCase_ ( __UpperCAmelCase: int = 1_0000 ) -> int: UpperCamelCase__ : Optional[Any] = [] for num in range(1 , __UpperCAmelCase ): UpperCamelCase__ : str = 0 UpperCamelCase__ : Any = num while iterations < 50: UpperCamelCase__ : List[Any] = sum_reverse(__UpperCAmelCase ) iterations += 1 if is_palindrome(__UpperCAmelCase ): break else: lychrel_nums.append(__UpperCAmelCase ) return len(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
201
0
'''simple docstring''' _SCREAMING_SNAKE_CASE = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
368
'''simple docstring''' _SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"] def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: snake_case = start # add current to visited visited.append(__lowerCAmelCase ) snake_case = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(__lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): for vertice in vertices: if vertice not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _SCREAMING_SNAKE_CASE = topological_sort("a", [], []) print(sort)
3
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) UpperCAmelCase : str = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['BeitFeatureExtractor'] UpperCAmelCase : Tuple = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
280
import cva import numpy as np class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : float , UpperCAmelCase : int ): if k in (0.04, 0.06): A_ = k A_ = window_size else: raise ValueError("invalid k value" ) def __str__( self : Optional[Any] ): return str(self.k ) def __A ( self : int , UpperCAmelCase : str ): A_ = cva.imread(UpperCAmelCase , 0 ) A_ , A_ = img.shape A_ = [] A_ = img.copy() A_ = cva.cvtColor(UpperCAmelCase , cva.COLOR_GRAY2RGB ) A_ , A_ = np.gradient(UpperCAmelCase ) A_ = dx**2 A_ = dy**2 A_ = dx * dy A_ = 0.04 A_ = self.window_size // 2 for y in range(UpperCAmelCase , h - offset ): for x in range(UpperCAmelCase , w - offset ): A_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = (wxx * wyy) - (wxy**2) A_ = wxx + wyy A_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __a :List[str] = HarrisCorner(0.04, 3) __a , __a :str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
312
0
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. snake_case__ = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. snake_case__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. snake_case__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : str ) -> tuple[str, float]: A_ : Union[str, Any] = len([g for position, g in enumerate(lowerCamelCase__ ) if g == main_target[position]] ) return (item, float(lowerCamelCase__ )) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : str ) -> tuple[str, str]: A_ : List[Any] = random.randint(0 , len(lowerCamelCase__ ) - 1 ) A_ : List[str] = parent_a[:random_slice] + parent_a[random_slice:] A_ : Any = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : list[str] ) -> str: A_ : Union[str, Any] = list(lowerCamelCase__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: A_ : Union[str, Any] = random.choice(lowerCamelCase__ ) return "".join(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : tuple[str, float] , lowerCamelCase__ : list[tuple[str, float]] , lowerCamelCase__ : list[str] , ) -> list[str]: A_ : List[str] = [] # Generate more children proportionally to the fitness score. A_ : Optional[Any] = int(parent_a[1] * 1_0_0 ) + 1 A_ : str = 1_0 if child_n >= 1_0 else child_n for _ in range(lowerCamelCase__ ): A_ : int = population_score[random.randint(0 , lowerCamelCase__ )][0] A_ ,A_ : Optional[int] = crossover(parent_a[0] , lowerCamelCase__ ) # Append new string to the population list. pop.append(mutate(lowerCamelCase__ , lowerCamelCase__ ) ) pop.append(mutate(lowerCamelCase__ , lowerCamelCase__ ) ) return pop def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : list[str] , lowerCamelCase__ : bool = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: A_ : Optional[Any] = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCamelCase__ ) # Verify that the target contains no genes besides the ones inside genes variable. A_ : Optional[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: A_ : int = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCamelCase__ ) # Generate random starting population. A_ : List[str] = [] for _ in range(lowerCamelCase__ ): population.append(''''''.join([random.choice(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) )] ) ) # Just some logs to know what the algorithms is doing. A_ ,A_ : List[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCamelCase__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. A_ : Optional[int] = [evaluate(lowerCamelCase__ , lowerCamelCase__ ) for item in population] # Check if there is a matching evolution. A_ : Optional[Any] = sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[1] , reverse=lowerCamelCase__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. A_ : Optional[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCamelCase__ ) # Normalize population score to be between 0 and 1. A_ : Any = [ (item, score / len(lowerCamelCase__ )) for item, score in population_score ] # This is selection for i in range(lowerCamelCase__ ): population.extend(select(population_score[int(lowerCamelCase__ )] , lowerCamelCase__ , lowerCamelCase__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCamelCase__ ) > N_POPULATION: break if __name__ == "__main__": snake_case__ = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) snake_case__ = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) snake_case__ , snake_case__ , snake_case__ = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
4
'''simple docstring''' from collections.abc import Sequence def snake_case__ ( lowerCamelCase__ : Sequence[float] , lowerCamelCase__ : bool = False ) -> float: if not arr: return 0 A_ : Union[str, Any] = 0 if allow_empty_subarrays else float('''-inf''' ) A_ : str = 0.0 for num in arr: A_ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num ) A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
4
1
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class _SCREAMING_SNAKE_CASE ( A__ ): def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :str = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowerCAmelCase ( self ) -> str: with self.assertRaises(__A ): lowerCAmelCase_ :Any = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __lowerCAmelCase ( self ) -> str: with self.assertRaises(__A ): lowerCAmelCase_ :Any = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Tuple = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowerCAmelCase ( self ) -> Dict: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCAmelCase_ :Optional[int] = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Any = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :int = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Optional[int] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCAmelCase_ :List[Any] = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :str = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Union[str, Any] = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __lowerCAmelCase ( self ) -> Optional[Any]: import PIL.Image lowerCAmelCase_ :Dict = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=__A ) as mock_cast_to_python_objects: lowerCAmelCase_ :Dict = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) ) lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , __A ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def _snake_case ( lowercase__ : Optional[Any] , lowercase__ : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ :str = pa.BufferReader(lowercase__ ) if isinstance(lowercase__ , pa.Buffer ) else pa.memory_map(lowercase__ ) lowerCAmelCase_ :Any = pa.ipc.open_stream(lowercase__ ) lowerCAmelCase_ :pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _snake_case ( lowercase__ : int , lowercase__ : str ) -> Any: '''simple docstring''' lowerCAmelCase_ :Tuple = pa.BufferOutputStream() lowerCAmelCase_ :Any = pa.schema(lowercase__ ) if fields else None with ArrowWriter(stream=lowercase__ , schema=lowercase__ , writer_batch_size=lowercase__ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) lowerCAmelCase_ , lowerCAmelCase_ :Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase_ :str = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(lowercase__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _snake_case ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ :Dict = pa.BufferOutputStream() lowerCAmelCase_ :Dict = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=lowercase__ , features=lowercase__ ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) lowerCAmelCase_ , lowerCAmelCase_ :str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowerCAmelCase_ :List[str] = pa.BufferReader(output.getvalue() ) lowerCAmelCase_ :Tuple = pa.ipc.open_stream(lowercase__ ) lowerCAmelCase_ :pa.Table = f.read_all() lowerCAmelCase_ :List[str] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowercase__ ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) def _snake_case ( lowercase__ : Any ) -> str: '''simple docstring''' lowerCAmelCase_ :str = pa.BufferOutputStream() with ArrowWriter( stream=lowercase__ , writer_batch_size=lowercase__ , hash_salt="""split_name""" , check_duplicates=lowercase__ , ) as writer: with pytest.raises(lowercase__ ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) lowerCAmelCase_ , lowerCAmelCase_ :Dict = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def _snake_case ( lowercase__ : Dict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :List[str] = pa.BufferOutputStream() with ArrowWriter( stream=lowercase__ , writer_batch_size=lowercase__ , hash_salt="""split_name""" , check_duplicates=lowercase__ , ) as writer: with pytest.raises(lowercase__ ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1_0 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=1_0 ) lowerCAmelCase_ , lowerCAmelCase_ :int = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def _snake_case ( lowercase__ : Tuple ) -> Tuple: '''simple docstring''' lowerCAmelCase_ :Union[str, Any] = pa.BufferOutputStream() with ArrowWriter( stream=lowercase__ , writer_batch_size=lowercase__ , hash_salt="""split_name""" , check_duplicates=lowercase__ , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _snake_case ( lowercase__ : List[str] , lowercase__ : List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :Dict = pa.BufferOutputStream() lowerCAmelCase_ :str = pa.schema(lowercase__ ) if fields else None with ArrowWriter(stream=lowercase__ , schema=lowercase__ , writer_batch_size=lowercase__ ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) lowerCAmelCase_ , lowerCAmelCase_ :int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase_ :Optional[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(lowercase__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _snake_case ( lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :List[Any] = pa.BufferOutputStream() lowerCAmelCase_ :Optional[Any] = pa.schema(lowercase__ ) if fields else None with ArrowWriter(stream=lowercase__ , schema=lowercase__ , writer_batch_size=lowercase__ ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) lowerCAmelCase_ , lowerCAmelCase_ :int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase_ :Dict = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(lowercase__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _snake_case ( lowercase__ : Optional[int] , lowercase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ :int = pa.BufferOutputStream() lowerCAmelCase_ :Dict = pa.schema(lowercase__ ) if fields else None with ArrowWriter(stream=lowercase__ , schema=lowercase__ , writer_batch_size=lowercase__ ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase_ :str = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(lowercase__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _snake_case ( ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ :List[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} lowerCAmelCase_ :Any = os.path.join(lowercase__ , """test.arrow""" ) with ArrowWriter(path=lowercase__ , schema=pa.schema(lowercase__ ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) lowerCAmelCase_ , lowerCAmelCase_ :Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowercase__ , metadata=writer._schema.metadata ) _check_output(lowercase__ , 1 ) def _snake_case ( lowercase__ : Optional[int] ) -> int: '''simple docstring''' if pa.types.is_list(lowercase__ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _snake_case ( lowercase__ : Optional[int] , lowercase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if isinstance(lst[0] , lowercase__ ): change_first_primitive_element_in_list(lst[0] , lowercase__ ) else: lowerCAmelCase_ :Dict = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _snake_case ( lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Dict ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = pa.array(TypedSequence(lowercase__ , optimized_int_type=lowercase__ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _snake_case ( lowercase__ : int , lowercase__ : List[str] , lowercase__ : int ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ :Tuple = pa.array(OptimizedTypedSequence(lowercase__ , col=lowercase__ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowerCAmelCase_ :int = copy.deepcopy(lowercase__ ) lowerCAmelCase_ :Tuple = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowercase__ , lowercase__ ) lowerCAmelCase_ :Optional[Any] = pa.array(OptimizedTypedSequence(lowercase__ , col=lowercase__ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def _snake_case ( lowercase__ : int , lowercase__ : Tuple ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ :Union[str, Any] = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=lowercase__ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _snake_case ( lowercase__ : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ :Tuple = """mock://dataset-train.arrow""" with ArrowWriter(path=lowercase__ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(lowercase__ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) lowerCAmelCase_ , lowerCAmelCase_ :str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowercase__ ) def _snake_case ( ) -> Dict: '''simple docstring''' lowerCAmelCase_ :Optional[int] = pa.BufferOutputStream() with ParquetWriter(stream=lowercase__ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) lowerCAmelCase_ , lowerCAmelCase_ :int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowerCAmelCase_ :Any = pa.BufferReader(output.getvalue() ) lowerCAmelCase_ :pa.Table = pq.read_table(lowercase__ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def _snake_case ( lowercase__ : str , lowercase__ : List[Any] ) -> List[Any]: '''simple docstring''' import PIL.Image lowerCAmelCase_ :int = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(lowercase__ , format="""png""" ) lowerCAmelCase_ :List[str] = pa.BufferOutputStream() with ParquetWriter( stream=lowercase__ , features=Features({"""image""": Image()} ) , embed_local_files=lowercase__ ) as writer: writer.write({"""image""": image_path} ) writer.finalize() lowerCAmelCase_ :str = pa.BufferReader(output.getvalue() ) lowerCAmelCase_ :pa.Table = pq.read_table(lowercase__ ) lowerCAmelCase_ :List[str] = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , lowercase__ ) with open(lowercase__ , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _snake_case ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :Any = pa.schema([pa.field("""col_1""" , pa.string() , nullable=lowercase__ )] ) lowerCAmelCase_ :Dict = pa.BufferOutputStream() with ArrowWriter(stream=lowercase__ ) as writer: writer._build_writer(inferred_schema=lowercase__ ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
84
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] ="data2vec-vision" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=[3, 5, 7, 11] , snake_case__=[1, 2, 3, 6] , snake_case__=True , snake_case__=0.4 , snake_case__=256 , snake_case__=1 , snake_case__=False , snake_case__=255 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : int = initializer_range lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : Union[str, Any] = use_mask_token lowerCAmelCase : str = use_absolute_position_embeddings lowerCAmelCase : Any = use_relative_position_bias lowerCAmelCase : List[str] = use_shared_relative_position_bias lowerCAmelCase : str = layer_scale_init_value lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase : Optional[int] = out_indices lowerCAmelCase : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase : str = use_auxiliary_head lowerCAmelCase : int = auxiliary_loss_weight lowerCAmelCase : Tuple = auxiliary_channels lowerCAmelCase : List[str] = auxiliary_num_convs lowerCAmelCase : Tuple = auxiliary_concat_input lowerCAmelCase : List[str] = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
108
0
'''simple docstring''' import re import string import numpy as np import datasets _lowercase = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _lowercase = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _lowercase = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase=False , _lowercase=False , _lowercase=False , ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase = np.array([re.sub(_lowercase , """""" , _lowercase ) for x in predictions] ) _lowerCAmelCase = np.array([re.sub(_lowercase , """""" , _lowercase ) for x in references] ) else: _lowerCAmelCase = np.asarray(_lowercase ) _lowerCAmelCase = np.asarray(_lowercase ) if ignore_case: _lowerCAmelCase = np.char.lower(_lowercase ) _lowerCAmelCase = np.char.lower(_lowercase ) if ignore_punctuation: _lowerCAmelCase = string.punctuation.maketrans("""""" , """""" , string.punctuation ) _lowerCAmelCase = np.char.translate(_lowercase , table=_lowercase ) _lowerCAmelCase = np.char.translate(_lowercase , table=_lowercase ) if ignore_numbers: _lowerCAmelCase = string.digits.maketrans("""""" , """""" , string.digits ) _lowerCAmelCase = np.char.translate(_lowercase , table=_lowercase ) _lowerCAmelCase = np.char.translate(_lowercase , table=_lowercase ) _lowerCAmelCase = predictions == references return {"exact_match": np.mean(_lowercase ) * 100}
229
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__( self , _lowercase , _lowercase = None , _lowercase = None ): """simple docstring""" super().__init__() _lowerCAmelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _lowerCAmelCase = torch.zeros(_lowercase , _lowercase ) else: _lowerCAmelCase = None _lowerCAmelCase = torch.nn.Parameter(_lowercase ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : VQModel _lowercase : CLIPTextModel _lowercase : CLIPTokenizer _lowercase : TransformeraDModel _lowercase : LearnedClassifierFreeSamplingEmbeddings _lowercase : VQDiffusionScheduler def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ): """simple docstring""" super().__init__() self.register_modules( vqvae=_lowercase , transformer=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = len(_lowercase ) if isinstance(_lowercase , _lowercase ) else 1 # get prompt text embeddings _lowerCAmelCase = self.tokenizer( _lowercase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _lowerCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] _lowerCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _lowerCAmelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase = prompt_embeds.repeat_interleave(_lowercase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _lowerCAmelCase = self.learned_classifier_free_sampling_embeddings.embeddings _lowerCAmelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(_lowercase , 1 , 1 ) else: _lowerCAmelCase = [""""""] * batch_size _lowerCAmelCase = text_input_ids.shape[-1] _lowerCAmelCase = self.tokenizer( _lowercase , padding="""max_length""" , max_length=_lowercase , truncation=_lowercase , return_tensors="""pt""" , ) _lowerCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _lowerCAmelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase = negative_prompt_embeds.shape[1] _lowerCAmelCase = negative_prompt_embeds.repeat(1 , _lowercase , 1 ) _lowerCAmelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _lowercase , _lowercase = 100 , _lowercase = 5.0 , _lowercase = 1.0 , _lowercase = 1 , _lowercase = None , _lowercase = None , _lowercase = "pil" , _lowercase = True , _lowercase = None , _lowercase = 1 , ): """simple docstring""" if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = 1 elif isinstance(_lowercase , _lowercase ): _lowerCAmelCase = len(_lowercase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(_lowercase )}' ) _lowerCAmelCase = batch_size * num_images_per_prompt _lowerCAmelCase = guidance_scale > 1.0 _lowerCAmelCase = self._encode_prompt(_lowercase , _lowercase , _lowercase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(_lowercase )}.' ) # get the initial completely masked latents unless the user supplied it _lowerCAmelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: _lowerCAmelCase = self.transformer.num_vector_embeds - 1 _lowerCAmelCase = torch.full(_lowercase , _lowercase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) _lowerCAmelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) _lowerCAmelCase = self.scheduler.timesteps.to(self.device ) _lowerCAmelCase = latents for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the sample if we are doing classifier free guidance _lowerCAmelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _lowerCAmelCase = self.transformer(_lowercase , encoder_hidden_states=_lowercase , timestep=_lowercase ).sample if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase = model_output.chunk(2 ) _lowerCAmelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_lowercase , dim=1 , keepdim=_lowercase ) _lowerCAmelCase = self.truncate(_lowercase , _lowercase ) # remove `log(0)`'s (`-inf`s) _lowerCAmelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(_lowercase , timestep=_lowercase , sample=_lowercase , generator=_lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase , _lowercase ) _lowerCAmelCase = self.vqvae.config.vq_embed_dim _lowerCAmelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _lowerCAmelCase = self.vqvae.quantize.get_codebook_entry(_lowercase , shape=_lowercase ) _lowerCAmelCase = self.vqvae.decode(_lowercase , force_not_quantize=_lowercase ).sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = torch.sort(_lowercase , 1 , descending=_lowercase ) _lowerCAmelCase = torch.exp(_lowercase ) _lowerCAmelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _lowerCAmelCase = torch.full_like(keep_mask[:, 0:1, :] , _lowercase ) _lowerCAmelCase = torch.cat((all_true, keep_mask) , dim=1 ) _lowerCAmelCase = keep_mask[:, :-1, :] _lowerCAmelCase = keep_mask.gather(1 , indices.argsort(1 ) ) _lowerCAmelCase = log_p_x_0.clone() _lowerCAmelCase = -torch.inf # -inf = log(0) return rv
229
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __snake_case ( snake_case__ ): _a : Optional[Any]= "xlm-roberta-xl" def __init__( self ,snake_case=250880 ,snake_case=2560 ,snake_case=36 ,snake_case=32 ,snake_case=10240 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=514 ,snake_case=1 ,snake_case=0.02 ,snake_case=1e-05 ,snake_case=1 ,snake_case=0 ,snake_case=2 ,snake_case="absolute" ,snake_case=True ,snake_case=None ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=__snake_case ,bos_token_id=__snake_case ,eos_token_id=__snake_case ,**__snake_case ) lowercase : Tuple = vocab_size lowercase : Tuple = hidden_size lowercase : List[Any] = num_hidden_layers lowercase : Tuple = num_attention_heads lowercase : Any = hidden_act lowercase : Optional[Any] = intermediate_size lowercase : Union[str, Any] = hidden_dropout_prob lowercase : Tuple = attention_probs_dropout_prob lowercase : Dict = max_position_embeddings lowercase : Any = type_vocab_size lowercase : Dict = initializer_range lowercase : Union[str, Any] = layer_norm_eps lowercase : str = position_embedding_type lowercase : str = use_cache lowercase : Any = classifier_dropout class __snake_case ( snake_case__ ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.task == "multiple-choice": lowercase : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
20
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _SCREAMING_SNAKE_CASE : List[str] = "hf-internal-testing/tiny-random-bert" _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") _SCREAMING_SNAKE_CASE : Optional[int] = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): snake_case = cached_file(__snake_case , __snake_case ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__snake_case ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__snake_case , __snake_case ) ) ) with open(os.path.join(__snake_case , '''refs''' , '''main''' ) ) as f: snake_case = f.read() self.assertEqual(__snake_case , os.path.join(__snake_case , '''snapshots''' , __snake_case , __snake_case ) ) self.assertTrue(os.path.isfile(__snake_case ) ) # File is cached at the same place the second time. snake_case = cached_file(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) # Using a specific revision to test the full commit hash. snake_case = cached_file(__snake_case , __snake_case , revision='''9b8c223''' ) self.assertEqual(__snake_case , os.path.join(__snake_case , '''snapshots''' , __snake_case , __snake_case ) ) def a_ ( self ): with self.assertRaisesRegex(__snake_case , '''is not a valid model identifier''' ): snake_case = cached_file('''tiny-random-bert''' , __snake_case ) with self.assertRaisesRegex(__snake_case , '''is not a valid git identifier''' ): snake_case = cached_file(__snake_case , __snake_case , revision='''aaaa''' ) with self.assertRaisesRegex(__snake_case , '''does not appear to have a file named''' ): snake_case = cached_file(__snake_case , '''conf''' ) def a_ ( self ): with self.assertRaisesRegex(__snake_case , '''does not appear to have a file named''' ): snake_case = cached_file(__snake_case , '''conf''' ) with open(os.path.join(__snake_case , '''refs''' , '''main''' ) ) as f: snake_case = f.read() self.assertTrue(os.path.isfile(os.path.join(__snake_case , '''.no_exist''' , __snake_case , '''conf''' ) ) ) snake_case = cached_file(__snake_case , '''conf''' , _raise_exceptions_for_missing_entries=__snake_case ) self.assertIsNone(__snake_case ) snake_case = cached_file(__snake_case , '''conf''' , local_files_only=__snake_case , _raise_exceptions_for_missing_entries=__snake_case ) self.assertIsNone(__snake_case ) snake_case = mock.Mock() snake_case = 5_0_0 snake_case = {} snake_case = HTTPError snake_case = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__snake_case ) as mock_head: snake_case = cached_file(__snake_case , '''conf''' , _raise_exceptions_for_connection_errors=__snake_case ) self.assertIsNone(__snake_case ) # This check we did call the fake head request mock_head.assert_called() def a_ ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __snake_case ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __snake_case ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __snake_case ) ) def a_ ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__snake_case , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , __snake_case ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__snake_case , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , __snake_case , revision='''ahaha''' ) snake_case = get_file_from_repo('''bert-base-cased''' , __snake_case ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case = json.loads(open(__snake_case , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_6_8 ) def a_ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case = Path(__snake_case ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(__snake_case , '''a.txt''' ) , str(__snake_case ) ) self.assertIsNone(get_file_from_repo(__snake_case , '''b.txt''' ) )
127
0
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def a (*a__ : Tuple , **a__ : Any ): """simple docstring""" pass def lowerCamelCase__ ( snake_case_ : int ) -> Union[str, Any]: __snake_case = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def lowerCamelCase__ ( snake_case_ : List[Any] ) -> Optional[Any]: __snake_case = np.array(A__ ) __snake_case = npimg.shape return {"hash": hashimage(A__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : Optional[Any] = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A_ : List[Any] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def a (self : int , a__ : Any , a__ : Optional[Any] , a__ : Optional[Any] ): """simple docstring""" __snake_case = MaskGenerationPipeline(model=lowercase__ , image_processor=lowercase__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def a (self : Tuple , a__ : List[Any] , a__ : List[str] ): """simple docstring""" pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def a (self : str ): """simple docstring""" pass @slow @require_torch def a (self : List[Any] ): """simple docstring""" __snake_case = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) __snake_case = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing __snake_case = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(lowercase__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowercase__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_2_1}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_0_5_3}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_9_6_7}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.9_9_3}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_9_0_9}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_8_7_9}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_8_3_4}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_7_1_6}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_6_1_2}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_5_9_9}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_5_5_2}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_5_3_2}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_5_1_6}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_4_9_9}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_4_8_3}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_4_6_4}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_4_0_8}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_3_3_5}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_3_2_6}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_2_6_2}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_9_9_9}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_9_8_6}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_9_8_4}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_8_7_3}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def a (self : Tuple ): """simple docstring""" __snake_case = '''facebook/sam-vit-huge''' __snake_case = pipeline('''mask-generation''' , model=lowercase__ ) __snake_case = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __snake_case = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(lowercase__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowercase__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_2_1_0}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_0_5_3}, ] , )
358
class SCREAMING_SNAKE_CASE__ : def __init__(self : str , a__ : list ): """simple docstring""" __snake_case = set_counts __snake_case = max(a__ ) __snake_case = len(a__ ) __snake_case = [1] * num_sets __snake_case = list(range(a__ ) ) def a (self : str , a__ : int , a__ : int ): """simple docstring""" __snake_case = self.get_parent(a__ ) __snake_case = self.get_parent(a__ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __snake_case = 0 __snake_case = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __snake_case = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __snake_case = 0 __snake_case = src_parent __snake_case = self.set_counts[src_parent] __snake_case = max(self.max_set , a__ ) return True def a (self : Union[str, Any] , a__ : int ): """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set __snake_case = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
238
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = '''ylacombe/bark-small''' lowercase : Optional[Any] = tempfile.mkdtemp() lowercase : Optional[int] = '''en_speaker_1''' lowercase : Dict = '''This is a test string''' lowercase : Dict = '''speaker_embeddings_path.json''' lowercase : List[str] = '''speaker_embeddings''' def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.get_tokenizer() lowercase : str = BarkProcessor(tokenizer=snake_case ) processor.save_pretrained(self.tmpdirname ) lowercase : Tuple = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) lowercase : Dict = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowercase : Optional[Any] = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) lowercase : List[str] = 35 lowercase : Optional[Any] = 2 lowercase : str = 8 lowercase : str = { '''semantic_prompt''': np.ones(snake_case ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase : Dict = processor(text=self.input_string ,voice_preset=snake_case ) lowercase : Dict = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(snake_case ,np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase : Optional[int] = os.path.join(self.tmpdirname ,"""file.npz""" ) np.savez(snake_case ,**snake_case ) lowercase : Dict = processor(text=self.input_string ,voice_preset=snake_case ) lowercase : Optional[int] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(snake_case ,np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase : Optional[Any] = processor(text=self.input_string ,voice_preset=self.voice_preset ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.get_tokenizer() lowercase : Dict = BarkProcessor(tokenizer=snake_case ) lowercase : List[str] = processor(text=self.input_string ) lowercase : Union[str, Any] = tokenizer( self.input_string ,padding="""max_length""" ,max_length=256 ,add_special_tokens=snake_case ,return_attention_mask=snake_case ,return_token_type_ids=snake_case ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
20
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowercase : Optional[int] = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } lowercase : Optional[Any] = { '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[Any] = list(state_dict.keys() ) for name in state_dict_keys: A : str = state_dict.pop(snake_case__ ) # emb -> embedding if name.startswith('''emb.''' ): A : Optional[Any] = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): A : Union[str, Any] = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention A : int = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , snake_case__ ) # ffn -> feed_forward A : List[Any] = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , snake_case__ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): A : List[str] = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): A : Union[str, Any] = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): A : Union[str, Any] = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": A : List[Any] = '''rwkv.''' + name A : Dict = weight return state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=None ): '''simple docstring''' if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) A : int = 5_0277 A : Optional[int] = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: A : str = PreTrainedTokenizerFast(tokenizer_file=snake_case__ ) A : Any = len(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) # 2. Build the config A : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: A : List[str] = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F'`size` should be one of {possible_sizes}, got {size}.' ) A : Any = RwkvConfig( vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(snake_case__ ) # 3. Download model file then convert state_dict A : Union[str, Any] = hf_hub_download(snake_case__ , snake_case__ ) A : Tuple = torch.load(snake_case__ , map_location='''cpu''' ) A : List[Any] = convert_state_dict(snake_case__ ) # 4. Split in shards and save A, A : List[str] = shard_checkpoint(snake_case__ ) for shard_file, shard in shards.items(): torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) if index is not None: A : Dict = os.path.join(snake_case__ , snake_case__ ) # Save the index as well with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: A : List[Any] = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '''\n''' f.write(snake_case__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) A : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: A : Union[str, Any] = torch.load(os.path.join(snake_case__ , snake_case__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) A : int = AutoModelForCausalLM.from_pretrained(snake_case__ ) model.push_to_hub(snake_case__ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(snake_case__ ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) lowercase : Union[str, Any] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
3
0
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json UpperCamelCase_ = "sshleifer/mar_enro_6_3_student" class _snake_case ( _a ): '''simple docstring''' def A__ ( self: Any ) -> str: super().setUp() UpperCAmelCase_ : int = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" ,extract_compressed_file=lowerCamelCase_ ,) UpperCAmelCase_ : Any = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def A__ ( self: Dict ) -> Union[str, Any]: MarianMTModel.from_pretrained(lowerCamelCase_ ) @slow @require_torch_gpu def A__ ( self: Optional[Any] ) -> str: UpperCAmelCase_ : str = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script UpperCAmelCase_ : Optional[int] = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split("""finetune.py""" )[1].strip() UpperCAmelCase_ : List[Any] = bash_script.replace("""\\\n""" ,"""""" ).strip().replace("""\"$@\"""" ,"""""" ) for k, v in env_vars_to_replace.items(): UpperCAmelCase_ : str = bash_script.replace(lowerCamelCase_ ,str(lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[Any] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase_ : Tuple = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase_ : int = ['finetune.py'] + bash_script.split() + args with patch.object(lowerCamelCase_ ,"""argv""" ,lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() UpperCAmelCase_ : str = pl.Trainer.add_argparse_args(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = SummarizationModule.add_model_specific_args(lowerCamelCase_ ,os.getcwd() ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Union[str, Any] = main(lowerCamelCase_ ) # Check metrics UpperCAmelCase_ : Tuple = load_json(model.metrics_save_path ) UpperCAmelCase_ : Dict = metrics['val'][0] UpperCAmelCase_ : int = metrics['val'][-1] self.assertEqual(len(metrics["""val"""] ) ,(args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] ,lowerCamelCase_ ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] ,0.0_1 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] ,1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] ,2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] ,17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) ,1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase_ : List[Any] = os.listdir(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = [x for x in contents if x.endswith(""".ckpt""" )][0] UpperCAmelCase_ : List[str] = os.path.join(args.output_dir ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = torch.load(lowerCamelCase_ ,map_location="""cpu""" ) UpperCAmelCase_ : str = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase_ : int = {os.path.basename(lowerCamelCase_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class _snake_case ( _a ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def A__ ( self: List[str] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' UpperCAmelCase_ : Optional[Any] = { '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script UpperCAmelCase_ : Optional[int] = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split("""distillation.py""" )[1].strip() ) UpperCAmelCase_ : Any = bash_script.replace("""\\\n""" ,"""""" ).strip().replace("""\"$@\"""" ,"""""" ) UpperCAmelCase_ : List[str] = bash_script.replace("""--fp16 """ ,""" """ ) for k, v in env_vars_to_replace.items(): UpperCAmelCase_ : Optional[int] = bash_script.replace(lowerCamelCase_ ,str(lowerCamelCase_ ) ) UpperCAmelCase_ : Any = self.get_auto_remove_tmp_dir() UpperCAmelCase_ : str = bash_script.replace("""--fp16""" ,"""""" ) UpperCAmelCase_ : Dict = 6 UpperCAmelCase_ : Tuple = ( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(lowerCamelCase_ ,"""argv""" ,lowerCamelCase_ ): UpperCAmelCase_ : Dict = argparse.ArgumentParser() UpperCAmelCase_ : int = pl.Trainer.add_argparse_args(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = SummarizationDistiller.add_model_specific_args(lowerCamelCase_ ,os.getcwd() ) UpperCAmelCase_ : Optional[int] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase_ : Tuple = distill_main(lowerCamelCase_ ) # Check metrics UpperCAmelCase_ : Tuple = load_json(model.metrics_save_path ) UpperCAmelCase_ : Any = metrics['val'][0] UpperCAmelCase_ : int = metrics['val'][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.0_1 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] ,lowerCamelCase_ ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase_ : List[str] = os.listdir(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = [x for x in contents if x.endswith(""".ckpt""" )][0] UpperCAmelCase_ : List[str] = os.path.join(args.output_dir ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = torch.load(lowerCamelCase_ ,map_location="""cpu""" ) UpperCAmelCase_ : Dict = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase_ : List[Any] = {os.path.basename(lowerCamelCase_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
367
def lowerCamelCase_ ( _a : int , _a : list[int] , _a : int ): '''simple docstring''' def count_of_possible_combinations(_a : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_a ) def lowerCamelCase_ ( _a : int , _a : list[int] , _a : int ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _a : int , _a : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] UpperCAmelCase_ : Any = sum( count_of_possible_combinations_with_dp_array(target - item , _a ) for item in array ) UpperCAmelCase_ : Dict = answer return answer UpperCAmelCase_ : Tuple = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_a , _a ) def lowerCamelCase_ ( _a : int , _a : list[int] , _a : int ): '''simple docstring''' UpperCAmelCase_ : List[str] = [0] * (target + 1) UpperCAmelCase_ : Tuple = 1 for i in range(1 , target + 1 ): for j in range(_a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = 3 UpperCamelCase_ = 5 UpperCamelCase_ = [1, 2, 5] print(combination_sum_iv(n, array, target))
59
0
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __snake_case =200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __snake_case =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __snake_case =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def a_ ( lowerCamelCase : str , lowerCamelCase : str ): lowerCAmelCase = len([g for position, g in enumerate(lowerCamelCase ) if g == main_target[position]] ) return (item, float(lowerCamelCase )) def a_ ( lowerCamelCase : str , lowerCamelCase : str ): lowerCAmelCase = random.randint(0 , len(lowerCamelCase ) - 1 ) lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def a_ ( lowerCamelCase : str , lowerCamelCase : list[str] ): lowerCAmelCase = list(lowerCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase = random.choice(lowerCamelCase ) return "".join(lowerCamelCase ) def a_ ( lowerCamelCase : tuple[str, float] , lowerCamelCase : list[tuple[str, float]] , lowerCamelCase : list[str] , ): lowerCAmelCase = [] # Generate more children proportionally to the fitness score. lowerCAmelCase = int(parent_a[1] * 100 ) + 1 lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(lowerCamelCase ): lowerCAmelCase = population_score[random.randint(0 , lowerCamelCase )][0] lowerCAmelCase , lowerCAmelCase = crossover(parent_a[0] , lowerCamelCase ) # Append new string to the population list. pop.append(mutate(lowerCamelCase , lowerCamelCase ) ) pop.append(mutate(lowerCamelCase , lowerCamelCase ) ) return pop def a_ ( lowerCamelCase : str , lowerCamelCase : list[str] , lowerCamelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase = f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowerCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase = f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowerCamelCase ) # Generate random starting population. lowerCAmelCase = [] for _ in range(lowerCamelCase ): population.append(''.join([random.choice(lowerCamelCase ) for i in range(len(lowerCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase , lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase = [evaluate(lowerCamelCase , lowerCamelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase = sorted(lowerCamelCase , key=lambda lowerCamelCase : x[1] , reverse=lowerCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCamelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase = [ (item, score / len(lowerCamelCase )) for item, score in population_score ] # This is selection for i in range(lowerCamelCase ): population.extend(select(population_score[int(lowerCamelCase )] , lowerCamelCase , lowerCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCamelCase ) > N_POPULATION: break if __name__ == "__main__": __snake_case =( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) __snake_case =list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) __snake_case , __snake_case , __snake_case =basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
4
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None: lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )] def __str__( self : List[str] ) -> str: lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) ) lowerCAmelCase = F'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase__ : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array ) return s def __repr__( self : List[str] ) -> str: return str(self ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None: assert self.validate_indicies(UpperCAmelCase__ ) lowerCAmelCase = value def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix: return self + (-another) def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})''' raise TypeError(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix: lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ): # a^(-1) lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' ) def a_ ( ): import doctest doctest.testmod() testa()
4
1
from itertools import permutations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __UpperCamelCase =[7, 11, 13, 17] for i, test in enumerate(SCREAMING_SNAKE_CASE__ ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 10 ): return sum( int(''.join(map(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) for num in permutations(range(SCREAMING_SNAKE_CASE__ ) ) if is_substring_divisible(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": print(f"""{solution() = }""")
358
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): if b == 0: return (1, 0) ((__UpperCamelCase) , (__UpperCamelCase)) =extended_euclid(SCREAMING_SNAKE_CASE__ , a % b ) __UpperCamelCase =a // b return (y, x - k * y) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): ((__UpperCamelCase) , (__UpperCamelCase)) =extended_euclid(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =na * na __UpperCamelCase =ra * x * na + ra * y * na return (n % m + m) % m def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): ((__UpperCamelCase) , (__UpperCamelCase)) =extended_euclid(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if b < 0: __UpperCamelCase =(b % n + n) % n return b def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase , __UpperCamelCase =invert_modulo(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), invert_modulo(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =na * na __UpperCamelCase =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
117
0
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase_ ( snake_case_ : list , snake_case_ : list ) -> list: '''simple docstring''' if len(snake_case_ ) != 2 or len(a[0] ) != 2 or len(snake_case_ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase_ ( snake_case_ : list , snake_case_ : list ) -> Any: '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case_ ) ) ] def UpperCamelCase_ ( snake_case_ : list , snake_case_ : list ) -> List[str]: '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case_ ) ) ] def UpperCamelCase_ ( snake_case_ : list ) -> tuple[list, list, list, list]: '''simple docstring''' if len(snake_case_ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(snake_case_ , snake_case_ )] for i in range(snake_case_ )] __lowerCAmelCase = [ [a[i][j] for j in range(snake_case_ , snake_case_ )] for i in range(snake_case_ , snake_case_ ) ] __lowerCAmelCase = [[a[i][j] for j in range(snake_case_ )] for i in range(snake_case_ )] __lowerCAmelCase = [[a[i][j] for j in range(snake_case_ )] for i in range(snake_case_ , snake_case_ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase_ ( snake_case_ : list ) -> tuple[int, int]: '''simple docstring''' return len(snake_case_ ), len(matrix[0] ) def UpperCamelCase_ ( snake_case_ : list ) -> None: '''simple docstring''' print("""\n""".join(str(snake_case_ ) for line in matrix ) ) def UpperCamelCase_ ( snake_case_ : list , snake_case_ : list ) -> list: '''simple docstring''' if matrix_dimensions(snake_case_ ) == (2, 2): return default_matrix_multiplication(snake_case_ , snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(snake_case_ ) __lowerCAmelCase = actual_strassen(snake_case_ , matrix_subtraction(snake_case_ , snake_case_ ) ) __lowerCAmelCase = actual_strassen(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) __lowerCAmelCase = actual_strassen(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) __lowerCAmelCase = actual_strassen(snake_case_ , matrix_subtraction(snake_case_ , snake_case_ ) ) __lowerCAmelCase = actual_strassen(matrix_addition(snake_case_ , snake_case_ ) , matrix_addition(snake_case_ , snake_case_ ) ) __lowerCAmelCase = actual_strassen(matrix_subtraction(snake_case_ , snake_case_ ) , matrix_addition(snake_case_ , snake_case_ ) ) __lowerCAmelCase = actual_strassen(matrix_subtraction(snake_case_ , snake_case_ ) , matrix_addition(snake_case_ , snake_case_ ) ) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) , snake_case_ ) __lowerCAmelCase = matrix_addition(snake_case_ , snake_case_ ) __lowerCAmelCase = matrix_addition(snake_case_ , snake_case_ ) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) , snake_case_ ) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(snake_case_ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(snake_case_ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase_ ( snake_case_ : list , snake_case_ : list ) -> list: '''simple docstring''' if matrix_dimensions(snake_case_ )[1] != matrix_dimensions(snake_case_ )[0]: __lowerCAmelCase = ( """Unable to multiply these matrices, please check the dimensions.\n""" f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(snake_case_ ) __lowerCAmelCase = matrix_dimensions(snake_case_ ) __lowerCAmelCase = matrix_dimensions(snake_case_ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*snake_case_ , *snake_case_ ) __lowerCAmelCase = int(math.pow(2 , math.ceil(math.loga(snake_case_ ) ) ) ) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , snake_case_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __lowerCAmelCase = actual_strassen(snake_case_ , snake_case_ ) # Removing the additional zeros for i in range(0 , snake_case_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case_ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _A : Union[str, Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _A : List[str] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
229
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _A : List[Any] = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) _A : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase_ ( ) -> Dict: '''simple docstring''' __lowerCAmelCase = """https://pypi.org/pypi/diffusers/json""" __lowerCAmelCase = json.loads(request.urlopen(snake_case_ ).read() )["""releases"""].keys() return sorted(snake_case_ , key=lambda snake_case_ : version.Version(snake_case_ ) ) def UpperCamelCase_ ( ) -> int: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) __lowerCAmelCase = Path(snake_case_ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCamelCase_ ( snake_case_ : Union[str, os.PathLike] ) -> Dict: '''simple docstring''' init_hf_modules() __lowerCAmelCase = Path(snake_case_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) __lowerCAmelCase = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCamelCase_ ( snake_case_ : int ) -> str: '''simple docstring''' with open(snake_case_ , """r""" , encoding="""utf-8""" ) as f: __lowerCAmelCase = f.read() # Imports of the form `import .xxx` __lowerCAmelCase = re.findall("""^\s*import\s+\.(\S+)\s*$""" , snake_case_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , snake_case_ , flags=re.MULTILINE ) # Unique-ify return list(set(snake_case_ ) ) def UpperCamelCase_ ( snake_case_ : int ) -> Dict: '''simple docstring''' __lowerCAmelCase = False __lowerCAmelCase = [module_file] __lowerCAmelCase = [] # Let's recurse through all relative imports while not no_change: __lowerCAmelCase = [] for f in files_to_check: new_imports.extend(get_relative_imports(snake_case_ ) ) __lowerCAmelCase = Path(snake_case_ ).parent __lowerCAmelCase = [str(module_path / m ) for m in new_imports] __lowerCAmelCase = [f for f in new_import_files if f not in all_relative_imports] __lowerCAmelCase = [f"""{f}.py""" for f in new_import_files] __lowerCAmelCase = len(snake_case_ ) == 0 all_relative_imports.extend(snake_case_ ) return all_relative_imports def UpperCamelCase_ ( snake_case_ : List[Any] ) -> Optional[Any]: '''simple docstring''' with open(snake_case_ , """r""" , encoding="""utf-8""" ) as f: __lowerCAmelCase = f.read() # Imports of the form `import xxx` __lowerCAmelCase = re.findall("""^\s*import\s+(\S+)\s*$""" , snake_case_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , snake_case_ , flags=re.MULTILINE ) # Only keep the top-level module __lowerCAmelCase = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all __lowerCAmelCase = list(set(snake_case_ ) ) __lowerCAmelCase = [] for imp in imports: try: importlib.import_module(snake_case_ ) except ImportError: missing_packages.append(snake_case_ ) if len(snake_case_ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ f"""{", ".join(snake_case_ )}. Run `pip install {" ".join(snake_case_ )}`""" ) return get_relative_imports(snake_case_ ) def UpperCamelCase_ ( snake_case_ : Dict , snake_case_ : Optional[int] ) -> List[str]: '''simple docstring''' __lowerCAmelCase = module_path.replace(os.path.sep , """.""" ) __lowerCAmelCase = importlib.import_module(snake_case_ ) if class_name is None: return find_pipeline_class(snake_case_ ) return getattr(snake_case_ , snake_case_ ) def UpperCamelCase_ ( snake_case_ : str ) -> Optional[Any]: '''simple docstring''' from ..pipelines import DiffusionPipeline __lowerCAmelCase = dict(inspect.getmembers(snake_case_ , inspect.isclass ) ) __lowerCAmelCase = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , snake_case_ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) __lowerCAmelCase = cls return pipeline_class def UpperCamelCase_ ( snake_case_ : Union[str, os.PathLike] , snake_case_ : str , snake_case_ : Optional[Union[str, os.PathLike]] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[Dict[str, str]] = None , snake_case_ : Optional[Union[bool, str]] = None , snake_case_ : Optional[str] = None , snake_case_ : bool = False , ) -> Any: '''simple docstring''' __lowerCAmelCase = str(snake_case_ ) __lowerCAmelCase = os.path.join(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): __lowerCAmelCase = module_file_or_url __lowerCAmelCase = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: __lowerCAmelCase = get_diffusers_versions() # cut ".dev0" __lowerCAmelCase = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: __lowerCAmelCase = latest_version if latest_version[1:] in available_versions else """main""" logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: __lowerCAmelCase = f"""v{revision}""" elif revision == "main": __lowerCAmelCase = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {", ".join(available_versions + ["main"] )}.""" ) # community pipeline on GitHub __lowerCAmelCase = COMMUNITY_PIPELINES_URL.format(revision=snake_case_ , pipeline=snake_case_ ) try: __lowerCAmelCase = cached_download( snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , local_files_only=snake_case_ , use_auth_token=snake_case_ , ) __lowerCAmelCase = """git""" __lowerCAmelCase = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached __lowerCAmelCase = hf_hub_download( snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , local_files_only=snake_case_ , use_auth_token=snake_case_ , ) __lowerCAmelCase = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment __lowerCAmelCase = check_imports(snake_case_ ) # Now we move the module inside our cached dynamic modules. __lowerCAmelCase = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(snake_case_ ) __lowerCAmelCase = Path(snake_case_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(snake_case_ , submodule_path / module_file ) for module_needed in modules_needed: __lowerCAmelCase = f"""{module_needed}.py""" shutil.copy(os.path.join(snake_case_ , snake_case_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(snake_case_ , snake_case_ ): __lowerCAmelCase = use_auth_token elif use_auth_token is True: __lowerCAmelCase = HfFolder.get_token() else: __lowerCAmelCase = None __lowerCAmelCase = model_info(snake_case_ , revision=snake_case_ , token=snake_case_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __lowerCAmelCase = submodule_path / commit_hash __lowerCAmelCase = full_submodule + os.path.sep + commit_hash create_dynamic_module(snake_case_ ) if not (submodule_path / module_file).exists(): shutil.copy(snake_case_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( snake_case_ , f"""{module_needed}.py""" , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , ) return os.path.join(snake_case_ , snake_case_ ) def UpperCamelCase_ ( snake_case_ : Union[str, os.PathLike] , snake_case_ : str , snake_case_ : Optional[str] = None , snake_case_ : Optional[Union[str, os.PathLike]] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[Dict[str, str]] = None , snake_case_ : Optional[Union[bool, str]] = None , snake_case_ : Optional[str] = None , snake_case_ : bool = False , **snake_case_ : Dict , ) -> Tuple: '''simple docstring''' __lowerCAmelCase = get_cached_module_file( snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , ) return get_class_in_module(snake_case_ , final_module.replace(""".py""" , """""" ) )
229
1
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin A__ : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') A__ : Dict = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} A__ : Any = '''>>zh<<''' A__ : List[Any] = '''Helsinki-NLP/''' if is_torch_available(): A__ : Union[str, Any] = '''pt''' elif is_tf_available(): A__ : Union[str, Any] = '''tf''' else: A__ : str = '''jax''' @require_sentencepiece class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = MarianTokenizer A__ = False A__ = True def A_ ( self : Any ) -> Tuple: '''simple docstring''' super().setUp() __snake_case : List[str] = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case : Any = dict(zip(__a , range(len(__a ) ) ) ) __snake_case : List[str] = Path(self.tmpdirname ) save_json(__a , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(__a , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(__a , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(__a , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case : Union[str, Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Any , **__a : int ) -> MarianTokenizer: '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **__a ) def A_ ( self : List[Any] , __a : Dict ) -> Any: '''simple docstring''' return ( "This is a test", "This is a test", ) def A_ ( self : Dict ) -> List[Any]: '''simple docstring''' __snake_case : Optional[int] = '</s>' __snake_case : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def A_ ( self : List[str] ) -> int: '''simple docstring''' __snake_case : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(__a ) , 9 ) def A_ ( self : List[Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def A_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' __snake_case : str = MarianTokenizer.from_pretrained(f'''{ORG_NAME}opus-mt-en-de''' ) __snake_case : Tuple = en_de_tokenizer(['I am a small frog'] , return_tensors=__a ) self.assertIsInstance(__a , __a ) __snake_case : Tuple = [38, 121, 14, 697, 38848, 0] self.assertListEqual(__a , batch.input_ids[0] ) __snake_case : List[Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(__a ) __snake_case : Optional[Any] = [x.name for x in Path(__a ).glob('*' )] self.assertIn('source.spm' , __a ) MarianTokenizer.from_pretrained(__a ) def A_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Any = self.get_tokenizer() __snake_case : Dict = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=__a , truncation=__a , return_tensors=__a ) self.assertIsInstance(__a , __a ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def A_ ( self : Any ) -> Dict: '''simple docstring''' __snake_case : int = self.get_tokenizer() __snake_case : List[str] = tok(['I am a tiny frog', 'I am a small frog'] , padding=__a , return_tensors=__a ) self.assertIsInstance(__a , __a ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def A_ ( self : str ) -> Optional[int]: '''simple docstring''' __snake_case : str = {'input_ids': [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def A_ ( self : Tuple ) -> int: '''simple docstring''' __snake_case : Union[str, Any] = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case : List[Any] = 'Tämä on testi' __snake_case : List[str] = 'This is a test' __snake_case : Union[str, Any] = [76, 7, 2047, 2] __snake_case : Tuple = [69, 12, 11, 940, 2] __snake_case : Optional[Any] = tokenizer(__a ).input_ids self.assertListEqual(__a , __a ) __snake_case : str = tokenizer(text_target=__a ).input_ids self.assertListEqual(__a , __a ) __snake_case : Dict = tokenizer.decode(__a , skip_special_tokens=__a ) self.assertEqual(__a , __a )
359
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def a_ ( _UpperCAmelCase : List[Any] ) -> Tuple: __snake_case : str = [] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def a_ ( _UpperCAmelCase : int ,_UpperCAmelCase : Optional[int] ) -> List[str]: __snake_case : Tuple = [] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def a_ ( _UpperCAmelCase : Union[str, Any] ) -> Dict: __snake_case : Union[str, Any] = [] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def a_ ( ) -> Optional[Any]: __snake_case : Any = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def a_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[Any] ) -> Tuple: __snake_case : List[str] = 'imagenet-1k-id2label.json' __snake_case : Dict = 10_00 __snake_case : Union[str, Any] = 'huggingface/label-files' __snake_case : str = num_labels __snake_case : str = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase ,_UpperCAmelCase ,repo_type='dataset' ) ) ,'r' ) ) __snake_case : Tuple = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __snake_case : Optional[Any] = idalabel __snake_case : str = {v: k for k, v in idalabel.items()} __snake_case : Dict = CvtConfig(num_labels=_UpperCAmelCase ,idalabel=_UpperCAmelCase ,labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' ,1 )[-1][4:6] == "13": __snake_case : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' ,1 )[-1][4:6] == "21": __snake_case : str = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __snake_case : Dict = [2, 2, 20] __snake_case : Any = [3, 12, 16] __snake_case : Tuple = [1_92, 7_68, 10_24] __snake_case : str = CvtForImageClassification(_UpperCAmelCase ) __snake_case : List[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) __snake_case : int = image_size __snake_case : int = torch.load(_UpperCAmelCase ,map_location=torch.device('cpu' ) ) __snake_case : List[Any] = OrderedDict() __snake_case : Union[str, Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __snake_case : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase ) __snake_case : Tuple = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): __snake_case : Optional[int] = list_of_state_dict + attention(_UpperCAmelCase ,_UpperCAmelCase ) __snake_case : str = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): __snake_case : List[str] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": A__ : Dict = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=3_8_4, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A__ : Tuple = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
0
0
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase = model.config lowerCAmelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) lowerCAmelCase = MBartConfig( is_decoder=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , add_cross_attention=SCREAMING_SNAKE_CASE , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=SCREAMING_SNAKE_CASE , add_final_layer_norm=SCREAMING_SNAKE_CASE , ) return encoder_config, decoder_config def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if "encoder.model" in name: lowerCAmelCase = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowerCAmelCase = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowerCAmelCase = """encoder.""" + name if "attn.proj" in name: lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowerCAmelCase = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowerCAmelCase = """encoder.layernorm.bias""" return name def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: lowerCAmelCase = key.split(""".""" ) lowerCAmelCase = int(key_split[3] ) lowerCAmelCase = int(key_split[5] ) lowerCAmelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowerCAmelCase = val return orig_state_dict def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : Tuple=False ): '''simple docstring''' lowerCAmelCase = DonutModel.from_pretrained(SCREAMING_SNAKE_CASE ).eval() # load HuggingFace model lowerCAmelCase , lowerCAmelCase = get_configs(SCREAMING_SNAKE_CASE ) lowerCAmelCase = DonutSwinModel(SCREAMING_SNAKE_CASE ) lowerCAmelCase = MBartForCausalLM(SCREAMING_SNAKE_CASE ) lowerCAmelCase = VisionEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = original_model.state_dict() lowerCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify results on scanned document lowerCAmelCase = load_dataset("""hf-internal-testing/example-documents""" ) lowerCAmelCase = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowerCAmelCase = XLMRobertaTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE , from_slow=SCREAMING_SNAKE_CASE ) lowerCAmelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowerCAmelCase = DonutProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = processor(SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowerCAmelCase = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowerCAmelCase = """When is the coffee break?""" lowerCAmelCase = task_prompt.replace("""{user_input}""" , SCREAMING_SNAKE_CASE ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowerCAmelCase = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowerCAmelCase = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowerCAmelCase = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowerCAmelCase = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowerCAmelCase = """hello world""" else: raise ValueError("""Model name not supported""" ) lowerCAmelCase = original_model.decoder.tokenizer(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_tensors="""pt""" )[ """input_ids""" ] lowerCAmelCase = original_model.encoder.model.patch_embed(SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase = model.encoder.embeddings(SCREAMING_SNAKE_CASE ) assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) # verify encoder hidden states lowerCAmelCase = original_model.encoder(SCREAMING_SNAKE_CASE ) lowerCAmelCase = model.encoder(SCREAMING_SNAKE_CASE ).last_hidden_state assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-2 ) # verify decoder hidden states lowerCAmelCase = original_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).logits lowerCAmelCase = model(SCREAMING_SNAKE_CASE , decoder_input_ids=SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
46
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = ['image_processor', 'tokenizer'] _a = 'BlipImageProcessor' _a = 'AutoTokenizer' def __init__( self : Tuple, lowerCamelCase : List[str], lowerCamelCase : Dict )-> str: lowerCamelCase__ : Any =False super().__init__(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : List[str] =self.image_processor def __call__( self : Union[str, Any], lowerCamelCase : ImageInput = None, lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCamelCase : bool = True, lowerCamelCase : Union[bool, str, PaddingStrategy] = False, lowerCamelCase : Union[bool, str, TruncationStrategy] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : int = 0, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = True, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], )-> BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowerCamelCase__ : str =self.tokenizer lowerCamelCase__ : str =self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) return text_encoding # add pixel_values lowerCamelCase__ : Optional[int] =self.image_processor(lowerCamelCase, return_tensors=lowerCamelCase ) if text is not None: lowerCamelCase__ : Union[str, Any] =self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) else: lowerCamelCase__ : Optional[Any] =None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def snake_case ( self : str, *lowerCamelCase : Any, **lowerCamelCase : List[str] )-> Union[str, Any]: return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase ) def snake_case ( self : Dict, *lowerCamelCase : str, **lowerCamelCase : str )-> Union[str, Any]: return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case ( self : List[str] )-> List[str]: lowerCamelCase__ : Union[str, Any] =self.tokenizer.model_input_names lowerCamelCase__ : List[str] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
238
0
# flake8: noqa # Lint as: python3 __magic_name__: Optional[int] = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
363
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class snake_case__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) __magic_name__ : Dict = AutoTokenizer.from_pretrained("""google/mt5-small""" ) __magic_name__ : Tuple = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids __magic_name__ : List[Any] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids __magic_name__ : Any = shift_tokens_right(lowerCAmelCase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __magic_name__ : List[Any] = model(lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ).logits __magic_name__ : Tuple = optax.softmax_cross_entropy(lowerCAmelCase__ , onehot(lowerCAmelCase__ , logits.shape[-1] ) ).mean() __magic_name__ : List[Any] = -(labels.shape[-1] * loss.item()) __magic_name__ : List[Any] = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
138
0
from collections.abc import Sequence def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(snake_case ) ) def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = 0.0 for coeff in reversed(snake_case ): _lowerCAmelCase = result * x + coeff return result if __name__ == "__main__": A__ = (0.0, 0.0, 5.0, 9.3, 7.0) A__ = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
82
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : int ): snake_case : list[list[str]] = [[] for _ in range(__lowerCamelCase )] snake_case : int = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1 or len(__lowerCamelCase ) <= key: return input_string for position, character in enumerate(__lowerCamelCase ): snake_case : Any = position % (lowest * 2) # puts it in bounds snake_case : Optional[int] = min(__lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__lowerCamelCase ) snake_case : List[str] = ["".join(__lowerCamelCase ) for row in temp_grid] snake_case : Tuple = "".join(__lowerCamelCase ) return output_string def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : int ): snake_case : Dict = [] snake_case : Union[str, Any] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1: return input_string snake_case : list[list[str]] = [[] for _ in range(__lowerCamelCase )] # generates template for position in range(len(__lowerCamelCase ) ): snake_case : List[str] = position % (lowest * 2) # puts it in bounds snake_case : Optional[int] = min(__lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) snake_case : Tuple = 0 for row in temp_grid: # fills in the characters snake_case : Union[str, Any] = input_string[counter : counter + len(__lowerCamelCase )] grid.append(list(__lowerCamelCase ) ) counter += len(__lowerCamelCase ) snake_case : str = "" # reads as zigzag for position in range(len(__lowerCamelCase ) ): snake_case : Optional[int] = position % (lowest * 2) # puts it in bounds snake_case : Tuple = min(__lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Tuple = {} for key_guess in range(1 , len(__lowerCamelCase ) ): # tries every key snake_case : Any = decrypt(__lowerCamelCase , __lowerCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
59
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) lowerCamelCase_ : int = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class a__ ( __snake_case ): A__ : Any = 'align_text_model' def __init__( self , UpperCAmelCase=3_0_5_2_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0 , UpperCAmelCase="absolute" , UpperCAmelCase=True , **UpperCAmelCase , ) -> Dict: super().__init__(**UpperCAmelCase ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = pad_token_id @classmethod def __SCREAMING_SNAKE_CASE ( cls , UpperCAmelCase , **UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase ) __a , __a = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": __a = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class a__ ( __snake_case ): A__ : Tuple = 'align_vision_model' def __init__( self , UpperCAmelCase = 3 , UpperCAmelCase = 6_0_0 , UpperCAmelCase = 2.0 , UpperCAmelCase = 3.1 , UpperCAmelCase = 8 , UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , UpperCAmelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , UpperCAmelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , UpperCAmelCase = [] , UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , UpperCAmelCase = 0.25 , UpperCAmelCase = "swish" , UpperCAmelCase = 2_5_6_0 , UpperCAmelCase = "mean" , UpperCAmelCase = 0.02 , UpperCAmelCase = 0.001 , UpperCAmelCase = 0.99 , UpperCAmelCase = 0.2 , **UpperCAmelCase , ) -> Optional[int]: super().__init__(**UpperCAmelCase ) __a = num_channels __a = image_size __a = width_coefficient __a = depth_coefficient __a = depth_divisor __a = kernel_sizes __a = in_channels __a = out_channels __a = depthwise_padding __a = strides __a = num_block_repeats __a = expand_ratios __a = squeeze_expansion_ratio __a = hidden_act __a = hidden_dim __a = pooling_type __a = initializer_range __a = batch_norm_eps __a = batch_norm_momentum __a = drop_connect_rate __a = sum(UpperCAmelCase ) * 4 @classmethod def __SCREAMING_SNAKE_CASE ( cls , UpperCAmelCase , **UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase ) __a , __a = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": __a = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class a__ ( __snake_case ): A__ : List[Any] = 'align' A__ : Optional[Any] = True def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=6_4_0 , UpperCAmelCase=1.0 , UpperCAmelCase=0.02 , **UpperCAmelCase , ) -> str: super().__init__(**UpperCAmelCase ) if text_config is None: __a = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: __a = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) __a = AlignTextConfig(**UpperCAmelCase ) __a = AlignVisionConfig(**UpperCAmelCase ) __a = projection_dim __a = temperature_init_value __a = initializer_range @classmethod def __SCREAMING_SNAKE_CASE ( cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = copy.deepcopy(self.__dict__ ) __a = self.text_config.to_dict() __a = self.vision_config.to_dict() __a = self.__class__.model_type return output
362
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
197
0
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowercase : List[Any] = logging.get_logger(__name__) lowercase : Optional[Any] = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowercase : str = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowercase : Optional[Any] = { 'jukebox': 5_1_2, } class A__ ( _lowerCamelCase ): """simple docstring""" __A : str = VOCAB_FILES_NAMES __A : List[str] = PRETRAINED_VOCAB_FILES_MAP __A : Tuple = PRETRAINED_LYRIC_TOKENS_SIZES __A : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase , lowercase , lowercase , lowercase=["v3", "v2", "v2"] , lowercase=512 , lowercase=5 , lowercase="<|endoftext|>" , **lowercase , ) -> List[Any]: '''simple docstring''' a__ : Any = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else unk_token super().__init__( unk_token=_UpperCamelCase , n_genres=_UpperCamelCase , version=_UpperCamelCase , max_n_lyric_tokens=_UpperCamelCase , **_UpperCamelCase , ) a__ : Optional[Any] = version a__ : List[str] = max_n_lyric_tokens a__ : Optional[int] = n_genres with open(_UpperCamelCase , encoding='utf-8') as vocab_handle: a__ : Optional[int] = json.load(_UpperCamelCase) with open(_UpperCamelCase , encoding='utf-8') as vocab_handle: a__ : List[str] = json.load(_UpperCamelCase) with open(_UpperCamelCase , encoding='utf-8') as vocab_handle: a__ : Optional[int] = json.load(_UpperCamelCase) a__ : Any = r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder) == 79: a__ : List[str] = oov.replace(r'\-\'' , r'\-+\'') a__ : List[Any] = regex.compile(_UpperCamelCase) a__ : Any = {v: k for k, v in self.artists_encoder.items()} a__ : List[str] = {v: k for k, v in self.genres_encoder.items()} a__ : Optional[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return len(self.artists_encoder) + len(self.genres_encoder) + len(self.lyrics_encoder) def __lowercase ( self) -> List[str]: '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder) def __lowercase ( self , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' a__ : str = [self.artists_encoder.get(_UpperCamelCase , 0) for artist in list_artists] for genres in range(len(_UpperCamelCase)): a__ : str = [self.genres_encoder.get(_UpperCamelCase , 0) for genre in list_genres[genres]] a__ : str = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres])) a__ : Any = [[self.lyrics_encoder.get(_UpperCamelCase , 0) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def __lowercase ( self , lowercase) -> List[str]: '''simple docstring''' return list(_UpperCamelCase) def __lowercase ( self , lowercase , lowercase , lowercase , **lowercase) -> Optional[int]: '''simple docstring''' a__ , a__ , a__ : List[str] = self.prepare_for_tokenization(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) a__ : Union[str, Any] = self._tokenize(_UpperCamelCase) return artist, genre, lyrics def __lowercase ( self , lowercase , lowercase , lowercase , lowercase = False) -> Tuple[str, str, str, Dict[str, Any]]: '''simple docstring''' for idx in range(len(self.version)): if self.version[idx] == "v3": a__ : Optional[Any] = artists[idx].lower() a__ : List[str] = [genres[idx].lower()] else: a__ : str = self._normalize(artists[idx]) + '.v2' a__ : List[str] = [ self._normalize(_UpperCamelCase) + '.v2' for genre in genres[idx].split('_') ] # split is for the full dictionary with combined genres if self.version[0] == "v2": a__ : Dict = regex.compile(r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+') a__ : str = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' a__ : Dict = {vocab[index]: index + 1 for index in range(len(_UpperCamelCase))} a__ : List[Any] = 0 a__ : int = len(_UpperCamelCase) + 1 a__ : Union[str, Any] = self.vocab a__ : Dict = {v: k for k, v in self.vocab.items()} a__ : str = '' else: a__ : Union[str, Any] = regex.compile(r'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+') a__ : Dict = self._run_strip_accents(_UpperCamelCase) a__ : Union[str, Any] = lyrics.replace('\\' , '\n') a__ : Optional[Any] = self.out_of_vocab.sub('' , _UpperCamelCase), [], [] return artists, genres, lyrics def __lowercase ( self , lowercase) -> int: '''simple docstring''' a__ : List[str] = unicodedata.normalize('NFD' , _UpperCamelCase) a__ : int = [] for char in text: a__ : Dict = unicodedata.category(_UpperCamelCase) if cat == "Mn": continue output.append(_UpperCamelCase) return "".join(_UpperCamelCase) def __lowercase ( self , lowercase) -> str: '''simple docstring''' a__ : int = ( [chr(_UpperCamelCase) for i in range(ord('a') , ord('z') + 1)] + [chr(_UpperCamelCase) for i in range(ord('A') , ord('Z') + 1)] + [chr(_UpperCamelCase) for i in range(ord('0') , ord('9') + 1)] + ['.'] ) a__ : List[Any] = frozenset(_UpperCamelCase) a__ : List[str] = re.compile(r'_+') a__ : Union[str, Any] = ''.join([c if c in accepted else '_' for c in text.lower()]) a__ : Optional[int] = pattern.sub('_' , _UpperCamelCase).strip('_') return text def __lowercase ( self , lowercase) -> str: '''simple docstring''' return " ".join(_UpperCamelCase) def __lowercase ( self , lowercase , lowercase = None , lowercase = False) -> Dict: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase): a__ : List[str] = TensorType(_UpperCamelCase) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.') import tensorflow as tf a__ : Optional[Any] = tf.constant a__ : str = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.') import torch a__ : int = torch.tensor a__ : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.') import jax.numpy as jnp # noqa: F811 a__ : Union[str, Any] = jnp.array a__ : Tuple = _is_jax else: a__ : Tuple = np.asarray a__ : List[Any] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: a__ : int = [inputs] if not is_tensor(_UpperCamelCase): a__ : Any = as_tensor(_UpperCamelCase) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.') return inputs def __call__( self , lowercase , lowercase , lowercase="" , lowercase="pt") -> BatchEncoding: '''simple docstring''' a__ : Tuple = [0, 0, 0] a__ : List[Any] = [artist] * len(self.version) a__ : Optional[Any] = [genres] * len(self.version) a__ , a__ , a__ : int = self.tokenize(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) a__ , a__ , a__ : Any = self._convert_token_to_id(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) a__ : List[str] = [-INFINITY] * len(full_tokens[-1]) a__ : Optional[Any] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCamelCase) for i in range(len(self.version)) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks}) def __lowercase ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCamelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return a__ : List[Any] = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file']) with open(_UpperCamelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCamelCase)) a__ : List[str] = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file']) with open(_UpperCamelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCamelCase)) a__ : List[Any] = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file']) with open(_UpperCamelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCamelCase)) return (artists_file, genres_file, lyrics_file) def __lowercase ( self , lowercase , lowercase , lowercase) -> Dict: '''simple docstring''' a__ : Union[str, Any] = self.artists_decoder.get(_UpperCamelCase) a__ : Union[str, Any] = [self.genres_decoder.get(_UpperCamelCase) for genre in genres_index] a__ : str = [self.lyrics_decoder.get(_UpperCamelCase) for character in lyric_index] return artist, genres, lyrics
99
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() snake_case__ : Dict = logging.get_logger(__name__) snake_case__ : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } snake_case__ : Optional[int] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def _a ( lowerCamelCase: List[Any] , lowerCamelCase: Any , lowerCamelCase: Union[str, Any] , lowerCamelCase: Any , lowerCamelCase: int ) -> List[str]: '''simple docstring''' for attribute in key.split('''.''' ): __A = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: __A = getattr(lowerCamelCase , lowerCamelCase ).shape else: __A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __A = value elif weight_type == "weight_g": __A = value elif weight_type == "weight_v": __A = value elif weight_type == "bias": __A = value else: __A = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _a ( lowerCamelCase: List[str] , lowerCamelCase: Optional[int] ) -> Tuple: '''simple docstring''' __A = [] __A = fairseq_model.state_dict() __A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __A = False if "conv_layers" in name: load_conv_layer( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) __A = True else: for key, mapped_key in MAPPING.items(): __A = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __A = True if "*" in mapped_key: __A = name.split(lowerCamelCase )[0].split('''.''' )[-2] __A = mapped_key.replace('''*''' , lowerCamelCase ) if "weight_g" in name: __A = '''weight_g''' elif "weight_v" in name: __A = '''weight_v''' elif "bias" in name: __A = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A = '''weight''' else: __A = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _a ( lowerCamelCase: int , lowerCamelCase: Any , lowerCamelCase: int , lowerCamelCase: int , lowerCamelCase: List[str] ) -> Union[str, Any]: '''simple docstring''' __A = full_name.split('''conv_layers.''' )[-1] __A = name.split('''.''' ) __A = int(items[0] ) __A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase ) @torch.no_grad() def _a ( lowerCamelCase: Tuple , lowerCamelCase: int , lowerCamelCase: Optional[Any]=None , lowerCamelCase: Optional[Any]=None , lowerCamelCase: Optional[int]=True ) -> List[Any]: '''simple docstring''' if config_path is not None: __A = UniSpeechSatConfig.from_pretrained(lowerCamelCase ) else: __A = UniSpeechSatConfig() __A = '''''' if is_finetuned: __A = UniSpeechSatForCTC(lowerCamelCase ) else: __A = UniSpeechSatForPreTraining(lowerCamelCase ) __A , __A , __A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __A = model[0].eval() recursively_load_weights(lowerCamelCase , lowerCamelCase ) hf_wavavec.save_pretrained(lowerCamelCase ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ : Any = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
117
0
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _A : str =logging.get_logger(__name__) class _lowercase : a = None @experimental def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) return _map_with_joblib(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: lowerCamelCase__ : Any = num_proc if num_proc <= len(UpperCamelCase ) else len(UpperCamelCase ) lowerCamelCase__ : int = [] # We organize the splits ourselve (contiguous splits) for index in range(UpperCamelCase ): lowerCamelCase__ : List[str] = len(UpperCamelCase ) // num_proc lowerCamelCase__ : Optional[Any] = len(UpperCamelCase ) % num_proc lowerCamelCase__ : List[Any] = div * index + min(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(UpperCamelCase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f'''Error dividing inputs iterable among processes. ''' f'''Total number of objects {len(UpperCamelCase )}, ''' f'''length: {sum(len(i[1] ) for i in split_kwds )}''' ) logger.info( f'''Spawning {num_proc} processes for {len(UpperCamelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' ) lowerCamelCase__ : Dict = None, None if not disable_tqdm: lowerCamelCase__ : Tuple = (RLock(),), tqdm.set_lock with Pool(UpperCamelCase , initargs=UpperCamelCase , initializer=UpperCamelCase ) as pool: lowerCamelCase__ : int = pool.map(UpperCamelCase , UpperCamelCase ) logger.info(f'''Finished {num_proc} processes''' ) lowerCamelCase__ : Optional[Any] = [obj for proc_res in mapped for obj in proc_res] logger.info(f'''Unpacked {len(UpperCamelCase )} objects''' ) return mapped def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=UpperCamelCase ): return joblib.Parallel()( joblib.delayed(UpperCamelCase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> List[str]: lowerCamelCase__ : List[Any] = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowerCamelCase__ : int = None
359
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan _A : List[str] =637_8137.0 _A : Dict =635_6752.31_4245 _A : int =6_378_137 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> float: lowerCamelCase__ : str = (AXIS_A - AXIS_B) / AXIS_A lowerCamelCase__ : Dict = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) ) lowerCamelCase__ : Dict = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) ) lowerCamelCase__ : Optional[Any] = radians(UpperCamelCase ) lowerCamelCase__ : List[Any] = radians(UpperCamelCase ) # Equation lowerCamelCase__ : Tuple = sin((phi_a - phi_a) / 2 ) lowerCamelCase__ : List[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowerCamelCase__ : Tuple = sqrt(sin_sq_phi + (cos(UpperCamelCase ) * cos(UpperCamelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
129
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[str] = '''markuplm''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int=3_0_5_2_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : List[str]=1_2 , SCREAMING_SNAKE_CASE__ : Dict=1_2 , SCREAMING_SNAKE_CASE__ : Tuple=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : str=5_1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : Dict=1E-12 , SCREAMING_SNAKE_CASE__ : int=0 , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=2_5_6 , SCREAMING_SNAKE_CASE__ : Dict=1_0_2_4 , SCREAMING_SNAKE_CASE__ : Optional[int]=2_1_6 , SCREAMING_SNAKE_CASE__ : str=1_0_0_1 , SCREAMING_SNAKE_CASE__ : int=3_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_0 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> str: super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) a_ : Any = vocab_size a_ : Tuple = hidden_size a_ : str = num_hidden_layers a_ : List[Any] = num_attention_heads a_ : int = hidden_act a_ : Dict = intermediate_size a_ : List[Any] = hidden_dropout_prob a_ : Optional[int] = attention_probs_dropout_prob a_ : int = max_position_embeddings a_ : Optional[int] = type_vocab_size a_ : int = initializer_range a_ : Union[str, Any] = layer_norm_eps a_ : List[str] = position_embedding_type a_ : Union[str, Any] = use_cache a_ : int = classifier_dropout # additional properties a_ : Union[str, Any] = max_depth a_ : Any = max_xpath_tag_unit_embeddings a_ : Any = max_xpath_subs_unit_embeddings a_ : str = tag_pad_id a_ : Optional[Any] = subs_pad_id a_ : List[Any] = xpath_unit_hidden_size
32
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _a ( a :List[Any] ) -> Optional[int]: a = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def _a ( a :List[Any] , a :Optional[int] ) -> Dict: a = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def _a ( a :Any ) -> List[Any]: a = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def _a ( ) -> Optional[int]: a = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def _a ( a :Tuple , a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]: a = '''imagenet-1k-id2label.json''' a = 1_000 a = '''huggingface/label-files''' a = num_labels a = json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} a = a = CvtConfig(num_labels=a , idalabel=a , labelaid=a ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": a = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": a = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: a = [2, 2, 20] a = [3, 12, 16] a = [192, 768, 1_024] a = CvtForImageClassification(a ) a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) a = image_size a = torch.load(a , map_location=torch.device('''cpu''' ) ) a = OrderedDict() a = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: a = list_of_state_dict + cls_token(a ) a = list_of_state_dict + embeddings(a ) for cnt in range(config.depth[idx] ): a = list_of_state_dict + attention(a , a ) a = list_of_state_dict + final() for gg in list_of_state_dict: print(a ) for i in range(len(a ) ): a = original_weights[list_of_state_dict[i][1]] model.load_state_dict(a ) model.save_pretrained(a ) image_processor.save_pretrained(a ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase__ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
0
0
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
366
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
0
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int ): if len(_UpperCAmelCase ) <= 1: return lst A__ = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: A__ = lst[i], lst[i - 1] i -= 1 if i == 0: A__ = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : List[str] = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_ : Dict = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
335
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __A : int = imread(R'''digital_image_processing/image_data/lena_small.jpg''') __A : Tuple = cvtColor(img, COLOR_BGR2GRAY) def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' lowerCAmelCase : List[Any] = cn.convert_to_negative(_UpperCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(_UpperCAmelCase, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase : List[Any] = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Any = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase : Dict = canny.canny(_UpperCAmelCase ) # assert canny array for at least one True assert canny_array.any() def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' assert gg.gaussian_filter(_UpperCAmelCase, 5, sigma=0.9 ).all() def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: '''simple docstring''' lowerCAmelCase : Any = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) lowerCAmelCase : List[Any] = conv.img_convolve(_UpperCAmelCase, _UpperCAmelCase ).astype(_UpperCAmelCase ) assert res.any() def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' assert med.median_filter(_UpperCAmelCase, 3 ).any() def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Any = sob.sobel_filter(_UpperCAmelCase ) assert grad.any() and theta.any() def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase : List[Any] = sp.make_sepia(_UpperCAmelCase, 20 ) assert sepia.all() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Optional[Any] = bs.Burkes(imread(_UpperCAmelCase, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = "digital_image_processing/image_data/lena_small.jpg", ) -> str: '''simple docstring''' lowerCAmelCase : int = rs.NearestNeighbour(imread(_UpperCAmelCase, 1 ), 400, 200 ) nn.process() assert nn.output.any() def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Dict = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase : Dict = imread(_UpperCAmelCase, 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase : Any = 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = image[x_coordinate][y_coordinate] lowerCAmelCase : List[Any] = lbp.get_neighbors_pixel( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase : str = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): lowerCAmelCase : Tuple = lbp.local_binary_value(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) assert lbp_image.any()
138
0
def __lowercase ( _UpperCamelCase ) ->list: """simple docstring""" lowercase : Tuple = int(_UpperCamelCase ) if n_element < 1: lowercase : Any = ValueError('''a should be a positive number''' ) raise my_error lowercase : Optional[int] = [1] lowercase , lowercase , lowercase : Tuple = (0, 0, 0) lowercase : List[str] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2, hamming_list[j] * 3, hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __a = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') __a = hamming(int(n)) print('''-----------------------------------------------------''') print(F'''The list with nth numbers is: {hamming_numbers}''') print('''-----------------------------------------------------''')
173
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a = 16 __a = 32 def __lowercase ( _UpperCamelCase, _UpperCamelCase = 16 ) ->List[Any]: """simple docstring""" lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase : List[Any] = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase : List[Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=_UpperCamelCase, max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase : Union[str, Any] = datasets.map( _UpperCamelCase, batched=_UpperCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase : Union[str, Any] = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase : Tuple = 16 elif accelerator.mixed_precision != "no": lowercase : str = 8 else: lowercase : List[str] = None return tokenizer.pad( _UpperCamelCase, padding='''longest''', max_length=_UpperCamelCase, pad_to_multiple_of=_UpperCamelCase, return_tensors='''pt''', ) # Instantiate dataloaders. lowercase : int = DataLoader( tokenized_datasets['''train'''], shuffle=_UpperCamelCase, collate_fn=_UpperCamelCase, batch_size=_UpperCamelCase ) lowercase : str = DataLoader( tokenized_datasets['''validation'''], shuffle=_UpperCamelCase, collate_fn=_UpperCamelCase, batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a = mocked_dataloaders # noqa: F811 def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->str: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', _UpperCamelCase ) == "1": lowercase : Tuple = 2 # New Code # lowercase : Optional[int] = int(args.gradient_accumulation_steps ) lowercase : Optional[int] = int(args.local_sgd_steps ) # Initialize accelerator lowercase : Tuple = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=_UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase : Dict = config['''lr'''] lowercase : List[str] = int(config['''num_epochs'''] ) lowercase : str = int(config['''seed'''] ) lowercase : str = int(config['''batch_size'''] ) lowercase : Any = evaluate.load('''glue''', '''mrpc''' ) set_seed(_UpperCamelCase ) lowercase , lowercase : Dict = get_dataloaders(_UpperCamelCase, _UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase : int = model.to(accelerator.device ) # Instantiate optimizer lowercase : Any = AdamW(params=model.parameters(), lr=_UpperCamelCase ) # Instantiate scheduler lowercase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase, num_warmup_steps=100, num_training_steps=(len(_UpperCamelCase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] = accelerator.prepare( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() with LocalSGD( accelerator=_UpperCamelCase, model=_UpperCamelCase, local_sgd_steps=_UpperCamelCase, enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_UpperCamelCase ): lowercase : int = model(**_UpperCamelCase ) lowercase : Optional[int] = output.loss accelerator.backward(_UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase : Optional[int] = model(**_UpperCamelCase ) lowercase : Optional[Any] = outputs.logits.argmax(dim=-1 ) lowercase , lowercase : Dict = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase, references=_UpperCamelCase, ) lowercase : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", _UpperCamelCase ) def __lowercase ( ) ->int: """simple docstring""" lowercase : int = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=_UpperCamelCase, default=_UpperCamelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''', type=_UpperCamelCase, default=1, help='''The number of minibatches to be ran before gradients are accumulated.''', ) parser.add_argument( '''--local_sgd_steps''', type=_UpperCamelCase, default=8, help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) lowercase : List[Any] = parser.parse_args() lowercase : List[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase, _UpperCamelCase ) if __name__ == "__main__": main()
173
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] __a = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] __a = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): __a = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
"""simple docstring""" from ..utils import DummyObject, requires_backends class _A ( metaclass=lowerCAmelCase ): snake_case__ : Optional[int] = ['torch', 'torchsde'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""torch""", """torchsde"""] )
197
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowerCamelCase_ : Dict = False class __A ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) a =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) a =torch.manual_seed(0 ) a =pipe( image=__A , generator=__A , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images a =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) a =np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
215
"""simple docstring""" from ...processing_utils import ProcessorMixin class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "WhisperFeatureExtractor" __lowerCAmelCase = "WhisperTokenizer" def __init__( self , __A , __A ) -> Dict: super().__init__(__A , __A ) a =self.feature_extractor a =False def SCREAMING_SNAKE_CASE ( self , __A=None , __A=None , __A=True ) -> int: return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self , *__A , **__A ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) a =kwargs.pop('''audio''' , __A ) a =kwargs.pop('''sampling_rate''' , __A ) a =kwargs.pop('''text''' , __A ) if len(__A ) > 0: a =args[0] a =args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: a =self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if text is not None: a =self.tokenizer(__A , **__A ) if text is None: return inputs elif audio is None: return encodings else: a =encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> Optional[Any]: return self.tokenizer.batch_decode(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> Union[str, Any]: return self.tokenizer.decode(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A="np" ) -> Optional[Any]: return self.tokenizer.get_prompt_ids(__A , return_tensors=__A )
215
1
'''simple docstring''' def a_ ( lowerCamelCase : int = 1000 ): lowerCAmelCase = 1, 1 lowerCAmelCase = [] for i in range(1 , n + 1 ): lowerCAmelCase = prev_numerator + 2 * prev_denominator lowerCAmelCase = prev_numerator + prev_denominator if len(str(lowerCamelCase_ ) ) > len(str(lowerCamelCase_ ) ): result.append(lowerCamelCase_ ) lowerCAmelCase = numerator lowerCAmelCase = denominator return len(lowerCamelCase_ ) if __name__ == "__main__": print(F'''{solution() = }''')
4
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any]): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__ ( ): '''simple docstring''' with parallel_backend('''spark'''): assert ParallelBackendConfig.backend_name == "spark" lowerCAmelCase__ : Any = [1, 2, 3] with pytest.raises(lowerCamelCase_): with parallel_backend('''unsupported backend'''): map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=2) with pytest.raises(lowerCamelCase_): with parallel_backend('''unsupported backend'''): map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=-1) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' ,[2, -1]) def lowerCAmelCase__ ( lowerCamelCase_ : List[Any]): '''simple docstring''' lowerCAmelCase__ : List[str] = [1, 2] lowerCAmelCase__ : Tuple = {'''a''': 1, '''b''': 2} lowerCAmelCase__ : Union[str, Any] = {'''a''': [1, 2], '''b''': [3, 4]} lowerCAmelCase__ : Any = {'''a''': {'''1''': 1}, '''b''': 2} lowerCAmelCase__ : Union[str, Any] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowerCAmelCase__ : int = [2, 3] lowerCAmelCase__ : List[str] = {'''a''': 2, '''b''': 3} lowerCAmelCase__ : str = {'''a''': [2, 3], '''b''': [4, 5]} lowerCAmelCase__ : List[str] = {'''a''': {'''1''': 2}, '''b''': 3} lowerCAmelCase__ : Optional[int] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark'''): assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa
129
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'shi-labs/dinat-mini-in1k-224': 'https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json', # See all Dinat models at https://huggingface.co/models?filter=dinat } class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" a : Optional[int] ="dinat" a : int ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1e-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ): """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = patch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : Optional[int] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = num_heads lowerCAmelCase : List[Any] = kernel_size lowerCAmelCase : List[Any] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Dict = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : str = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE ) - 1) ) lowerCAmelCase : Optional[int] = layer_scale_init_value lowerCAmelCase : Optional[int] = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(_SCREAMING_SNAKE_CASE ) + 1 )] lowerCAmelCase : Any = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
364
"""simple docstring""" import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) lowerCAmelCase : Tuple = parser.parse_args() return args.f def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = {} lowerCAmelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE , "all_results.json" ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , "r" ) as f: lowerCAmelCase : str = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f"""can't find {path}""" ) return results def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCAmelCase : Any = tempfile.mkdtemp() lowerCAmelCase : List[Any] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase : Optional[int] = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def lowercase__ ( cls ): """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase : int = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) lowerCAmelCase : Dict = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowerCAmelCase : List[str] = get_results(snake_case__ ) self.assertLess(result["perplexity"] , 100 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : Any = get_results(snake_case__ ) self.assertLess(result["perplexity"] , 42 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : int = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : str = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase : List[str] = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : Optional[Any] = get_results(snake_case__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 28 ) self.assertGreaterEqual(result["eval_exact"] , 28 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : List[Any] = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : Tuple = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : str = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_rouge1"] , 10 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_bleu"] , 30 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "translation_no_trainer" ) ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Any = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) lowerCAmelCase : Dict = get_results(snake_case__ ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "image_classification_no_trainer" ) ) )
133
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( b'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03''' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = b'''H\003''' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 15_81 lowerCAmelCase_ = 15_17 lowerCAmelCase_ = 15_70 lowerCAmelCase_ = 15_84 lowerCAmelCase_ = 17_93 lowerCAmelCase_ = 17_95 lowerCAmelCase_ = 19_16 lowerCAmelCase_ = 18_64 lowerCAmelCase_ = 19_05 lowerCAmelCase_ = 19_19 lowerCAmelCase_ = 24_29 lowerCAmelCase_ = 22_08 lowerCAmelCase_ = 24_18 lowerCAmelCase_ = 23_23 lowerCAmelCase_ = 24_07 # @@protoc_insertion_point(module_scope)
8
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def a__ ( lowercase : Union[str, Any] ) -> Tuple: """simple docstring""" if isinstance(lowercase, collections.abc.Iterable ): return x return (x, x) @require_flax class __lowerCAmelCase : """simple docstring""" def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]: '''simple docstring''' pass def snake_case__ ( self : Tuple ) -> int: '''simple docstring''' pass def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' pass def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str: '''simple docstring''' _UpperCamelCase = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _UpperCamelCase = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _UpperCamelCase = after_output[0] _UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1e-3 ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) _UpperCamelCase = model( input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) _UpperCamelCase = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase = to_atuple(vision_model.config.image_size ) _UpperCamelCase = to_atuple(vision_model.config.patch_size ) _UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCamelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCamelCase = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' pt_model.to(lowerCAmelCase__ ) pt_model.eval() # prepare inputs _UpperCamelCase = inputs_dict _UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple() _UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ ) _UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ ) pt_model_loaded.to(lowerCAmelCase__ ) pt_model_loaded.eval() with torch.no_grad(): _UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 ) def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any: '''simple docstring''' _UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ ) _UpperCamelCase = fx_state self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str: '''simple docstring''' _UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase__ ) @is_pt_flax_cross_test def snake_case__ ( self : int ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase = config_inputs_dict.pop('''vision_config''' ) _UpperCamelCase = config_inputs_dict.pop('''text_config''' ) _UpperCamelCase = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @slow def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs() _UpperCamelCase = model_a(**lowerCAmelCase__ ) _UpperCamelCase = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = model_a(**lowerCAmelCase__ ) _UpperCamelCase = after_outputs[0] _UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1e-5 ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Tuple ) -> List[str]: '''simple docstring''' _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) _UpperCamelCase = 13 _UpperCamelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCamelCase = random_attention_mask([batch_size, 4] ) _UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = FlaxViTModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def snake_case__ ( self : str ) -> Tuple: '''simple docstring''' _UpperCamelCase = FlaxViTModelTester(self ) _UpperCamelCase = FlaxBertModelTester(self ) _UpperCamelCase = vit_model_tester.prepare_config_and_inputs() _UpperCamelCase = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase = vision_config_and_inputs _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) _UpperCamelCase = 13 _UpperCamelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCamelCase = random_attention_mask([batch_size, 4] ) _UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def snake_case__ ( self : List[str] ) -> Dict: '''simple docstring''' _UpperCamelCase = FlaxCLIPVisionModelTester(self ) _UpperCamelCase = FlaxBertModelTester(self ) _UpperCamelCase = clip_model_tester.prepare_config_and_inputs() _UpperCamelCase = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase = vision_config_and_inputs _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) _UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCamelCase = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' ) _UpperCamelCase = model(**lowerCAmelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _UpperCamelCase = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
324
0
def __lowerCamelCase ( __magic_name__ : int ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
367
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCAmelCase = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __UpperCAmelCase = { '''facebook/m2m100_418M''': 10_24, } # fmt: off __UpperCAmelCase = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class lowerCamelCase__ ( _a ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase = [] _lowerCAmelCase = [] def __init__( self : Dict , _a : Tuple , _a : List[Any] , _a : Tuple=None , _a : Dict=None , _a : Any="<s>" , _a : Union[str, Any]="</s>" , _a : str="</s>" , _a : int="<pad>" , _a : str="<unk>" , _a : Tuple="m2m100" , _a : Optional[Dict[str, Any]] = None , _a : str=8 , **_a : str , ): a__: str ={} if sp_model_kwargs is None else sp_model_kwargs a__: Optional[int] =language_codes a__: Dict =FAIRSEQ_LANGUAGE_CODES[language_codes] a__: Tuple ={lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} a__: Any =kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_a ) for lang_code in fairseq_language_code if self.get_lang_token(_a ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_a , tgt_lang=_a , bos_token=_a , eos_token=_a , sep_token=_a , unk_token=_a , pad_token=_a , language_codes=_a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_a , **_a , ) a__: Optional[Any] =vocab_file a__: Tuple =load_json(_a ) a__: Any ={v: k for k, v in self.encoder.items()} a__: List[str] =spm_file a__: str =load_spm(_a , self.sp_model_kwargs ) a__: Any =len(self.encoder ) a__: Dict ={ self.get_lang_token(_a ): self.encoder_size + i for i, lang_code in enumerate(_a ) } a__: List[Any] ={lang_code: self.encoder_size + i for i, lang_code in enumerate(_a )} a__: Dict ={v: k for k, v in self.lang_token_to_id.items()} a__: List[str] =src_lang if src_lang is not None else "en" a__: Any =tgt_lang a__: Tuple =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) a__: str =num_madeup_words @property def _lowerCamelCase ( self : int ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def _lowerCamelCase ( self : List[str] ): return self._src_lang @src_lang.setter def _lowerCamelCase ( self : Tuple , _a : str ): a__: Optional[int] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase ( self : int , _a : str ): return self.sp_model.encode(_a , out_type=_a ) def _lowerCamelCase ( self : Tuple , _a : int ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_a , self.encoder[self.unk_token] ) def _lowerCamelCase ( self : int , _a : int ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_a , self.unk_token ) def _lowerCamelCase ( self : Dict , _a : List[str] ): a__: str =[] a__: Union[str, Any] ="" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_a ) + token a__: Dict =[] else: current_sub_tokens.append(_a ) out_string += self.sp_model.decode(_a ) return out_string.strip() def _lowerCamelCase ( self : str , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) a__: Union[str, Any] =[1] * len(self.prefix_tokens ) a__: Optional[Any] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def _lowerCamelCase ( self : Optional[int] , _a : List[int] , _a : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self : Dict ): a__: List[Any] ={self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): a__: Dict =self.__dict__.copy() a__: Union[str, Any] =None return state def __setstate__( self : Tuple , _a : Dict ): a__: str =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__: Optional[Any] ={} a__: Optional[Any] =load_spm(self.spm_file , self.sp_model_kwargs ) def _lowerCamelCase ( self : Any , _a : str , _a : Optional[str] = None ): a__: Union[str, Any] =Path(_a ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) a__: Union[str, Any] =save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) a__: Optional[int] =save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , _a ) if os.path.abspath(self.spm_file ) != os.path.abspath(_a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _a ) elif not os.path.isfile(self.spm_file ): with open(_a , "wb" ) as fi: a__: str =self.sp_model.serialized_model_proto() fi.write(_a ) return (str(_a ), str(_a )) def _lowerCamelCase ( self : List[str] , _a : List[str] , _a : str = "en" , _a : Optional[List[str]] = None , _a : str = "ro" , **_a : Optional[Any] , ): a__: Tuple =src_lang a__: int =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_a , _a , **_a ) def _lowerCamelCase ( self : List[str] , _a : Dict , _a : Optional[str] , _a : Optional[str] , **_a : Optional[Any] ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) a__: Dict =src_lang a__: Optional[int] =self(_a , add_special_tokens=_a , **_a ) a__: Union[str, Any] =self.get_lang_id(_a ) a__: Tuple =tgt_lang_id return inputs def _lowerCamelCase ( self : List[Any] ): self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase ( self : List[Any] ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase ( self : Union[str, Any] , _a : str ): a__: Tuple =self.get_lang_token(_a ) a__: Optional[int] =self.lang_token_to_id[lang_token] a__: Any =[self.cur_lang_id] a__: Optional[Any] =[self.eos_token_id] def _lowerCamelCase ( self : str , _a : str ): a__: List[str] =self.get_lang_token(_a ) a__: Optional[Any] =self.lang_token_to_id[lang_token] a__: Optional[int] =[self.cur_lang_id] a__: Dict =[self.eos_token_id] def _lowerCamelCase ( self : Any , _a : str ): return self.lang_code_to_token[lang] def _lowerCamelCase ( self : int , _a : str ): a__: int =self.get_lang_token(_a ) return self.lang_token_to_id[lang_token] def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : Dict[str, Any] ): a__: Tuple =sentencepiece.SentencePieceProcessor(**__magic_name__ ) spm.Load(str(__magic_name__ ) ) return spm def __lowerCamelCase ( __magic_name__ : str ): with open(__magic_name__ , "r" ) as f: return json.load(__magic_name__ ) def __lowerCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : str ): with open(__magic_name__ , "w" ) as f: json.dump(__magic_name__ , __magic_name__ , indent=2 )
42
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : int = MgpstrTokenizer UpperCamelCase : Optional[int] = False UpperCamelCase : Any = {} UpperCamelCase : str = False def lowerCamelCase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # fmt: off SCREAMING_SNAKE_CASE_: str =["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on SCREAMING_SNAKE_CASE_: Optional[Any] =dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE_: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase ) + """\n""" ) def lowerCamelCase__ ( self : Tuple , **lowerCAmelCase : Any ) -> int: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] ="""tester""" SCREAMING_SNAKE_CASE_: Optional[Any] ="""tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_: Tuple ="""[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) SCREAMING_SNAKE_CASE_: List[str] =tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ) , 1 ) SCREAMING_SNAKE_CASE_: Any =tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCamelCase__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =self.get_input_output_texts(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =tokenizer.tokenize(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =tokenizer.convert_tokens_to_ids(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertNotEqual(len(lowerCAmelCase ) , 0 ) SCREAMING_SNAKE_CASE_: List[str] =tokenizer.decode(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' pass
173
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __magic_name__ ( lowercase ): return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[str] =ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowercase ) EnvironmentCommand.register_subcommand(lowercase ) TestCommand.register_subcommand(lowercase ) RunBeamCommand.register_subcommand(lowercase ) DummyDataCommand.register_subcommand(lowercase ) # Parse args SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =parser.parse_known_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) SCREAMING_SNAKE_CASE_: Dict =parse_unknown_args(lowercase ) # Run SCREAMING_SNAKE_CASE_: Tuple =args.func(lowercase , **lowercase ) service.run() if __name__ == "__main__": main()
173
1
import os def UpperCamelCase ( __lowerCamelCase : int ): snake_case : List[str] = len(grid[0] ) snake_case : List[str] = len(__lowerCamelCase ) snake_case : Dict = 0 snake_case : Any = 0 snake_case : Optional[int] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__lowerCamelCase ): for j in range(n_rows - 3 ): snake_case : Any = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] snake_case : Any = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: snake_case : str = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: snake_case : str = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) snake_case : Dict = max( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if max_product > largest: snake_case : Optional[Any] = max_product return largest def UpperCamelCase ( ): snake_case : Any = [] with open(os.path.dirname(__lowerCamelCase ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) snake_case : List[Any] = [[int(__lowerCamelCase ) for i in grid[j]] for j in range(len(__lowerCamelCase ) )] return largest_product(__lowerCamelCase ) if __name__ == "__main__": print(solution())
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = MvpTokenizer UpperCAmelCase = MvpTokenizerFast UpperCAmelCase = True UpperCAmelCase = filter_roberta_detectors def _snake_case ( self ) -> Dict: super().setUp() _UpperCAmelCase : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _UpperCAmelCase : Tuple = dict(zip(a_ ,range(len(a_ ) ) ) ) _UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _UpperCAmelCase : int = {"""unk_token""": """<unk>"""} _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a_ ) ) def _snake_case ( self ,**a_ ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**a_ ) def _snake_case ( self ,**a_ ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**a_ ) def _snake_case ( self ,a_ ) -> List[Any]: return "lower newer", "lower newer" @cached_property def _snake_case ( self ) -> Tuple: return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def _snake_case ( self ) -> str: return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _UpperCAmelCase : Optional[Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : List[Any] = tokenizer(a_ ,max_length=len(a_ ) ,padding=a_ ,return_tensors="""pt""" ) self.assertIsInstance(a_ ,a_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _UpperCAmelCase : Any = batch.input_ids.tolist()[0] self.assertListEqual(a_ ,a_ ) # Test that special tokens are reset @require_torch def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Union[str, Any] = tokenizer(a_ ,padding=a_ ,return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" ,a_ ) self.assertIn("""attention_mask""" ,a_ ) self.assertNotIn("""labels""" ,a_ ) self.assertNotIn("""decoder_attention_mask""" ,a_ ) @require_torch def _snake_case ( self ) -> Tuple: _UpperCAmelCase : int = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : List[Any] = tokenizer(text_target=a_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def _snake_case ( self ) -> List[Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Optional[Any] = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] ,padding=a_ ,truncation=a_ ,return_tensors="""pt""" ) self.assertIsInstance(a_ ,a_ ) self.assertEqual(batch.input_ids.shape ,(2, 1_024) ) @require_torch def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = ["""A long paragraph for summarization."""] _UpperCAmelCase : str = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : List[str] = tokenizer(a_ ,text_target=a_ ,return_tensors="""pt""" ) _UpperCAmelCase : str = inputs["""input_ids"""] _UpperCAmelCase : Optional[int] = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _snake_case ( self ) -> Any: pass def _snake_case ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(a_ ,**a_ ) _UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(a_ ,**a_ ) _UpperCAmelCase : Dict = """A, <mask> AllenNLP sentence.""" _UpperCAmelCase : str = tokenizer_r.encode_plus(a_ ,add_special_tokens=a_ ,return_token_type_ids=a_ ) _UpperCAmelCase : List[str] = tokenizer_p.encode_plus(a_ ,add_special_tokens=a_ ,return_token_type_ids=a_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _UpperCAmelCase : int = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( a_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( a_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
215
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A_ : Any = logging.get_logger(__name__) A_ : Optional[int] = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """longformer""" def __init__( self ,a_ = 512 ,a_ = 2 ,a_ = 1 ,a_ = 0 ,a_ = 2 ,a_ = 30_522 ,a_ = 768 ,a_ = 12 ,a_ = 12 ,a_ = 3_072 ,a_ = "gelu" ,a_ = 0.1 ,a_ = 0.1 ,a_ = 512 ,a_ = 2 ,a_ = 0.02 ,a_ = 1E-1_2 ,a_ = False ,**a_ ,) -> List[Any]: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = attention_window _UpperCAmelCase : Any = sep_token_id _UpperCAmelCase : Dict = bos_token_id _UpperCAmelCase : Tuple = eos_token_id _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Optional[int] = type_vocab_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Union[str, Any] = onnx_export class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = "default" ,a_ = None ) -> int: super().__init__(a_ ,a_ ,a_ ) _UpperCAmelCase : Tuple = True @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: _UpperCAmelCase : str = super().outputs if self.task == "default": _UpperCAmelCase : int = {0: """batch"""} return outputs @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset ,14 ) def _snake_case ( self ,a_ ,a_ = -1 ,a_ = -1 ,a_ = False ,a_ = None ,) -> Mapping[str, Any]: _UpperCAmelCase : List[str] = super().generate_dummy_inputs( preprocessor=a_ ,batch_size=a_ ,seq_length=a_ ,is_pair=a_ ,framework=a_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _UpperCAmelCase : int = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global _UpperCAmelCase : List[str] = 1 return inputs
215
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None ) -> str: '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path UpperCamelCase = quote(UpperCamelCase_ ) return hfh.hf_hub_url(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" , revision=UpperCamelCase_ )
165
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowercase( UpperCamelCase_ = True , *UpperCamelCase_ , **UpperCamelCase_ ) -> int: '''simple docstring''' if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) UpperCamelCase = False if main_process_only: UpperCamelCase = PartialState().local_process_index == 0 return _tqdm(*UpperCamelCase_ , **UpperCamelCase_ , disable=UpperCamelCase_ )
165
1
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class snake_case ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = inspect.getfile(accelerate.test_utils ) _lowerCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) _lowerCamelCase = ["accelerate", "launch"] _lowerCamelCase = Path.home() / ".cache/huggingface/accelerate" _lowerCamelCase = "default_config.yaml" _lowerCamelCase = config_folder / config_file _lowerCamelCase = config_folder / "_default_config.yaml" _lowerCamelCase = Path("tests/test_configs" ) @classmethod def snake_case ( cls ): """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def snake_case ( cls ): """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def snake_case ( self ): """simple docstring""" for config in sorted(self.test_config_path.glob("**/*.yaml" ) ): with self.subTest(config_file=UpperCamelCase ): execute_subprocess_async( self.base_cmd + ["--config_file", str(UpperCamelCase ), self.test_file_path] , env=os.environ.copy() ) def snake_case ( self ): """simple docstring""" execute_subprocess_async(["accelerate", "test"] , env=os.environ.copy() ) class snake_case ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = "test-tpu" _lowerCamelCase = "us-central1-a" _lowerCamelCase = "ls" _lowerCamelCase = ["accelerate", "tpu-config"] _lowerCamelCase = "cd /usr/share" _lowerCamelCase = "tests/test_samples/test_command_file.sh" _lowerCamelCase = "Running gcloud compute tpus tpu-vm ssh" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"] , return_stdout=UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase , ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase , ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"] , return_stdout=UpperCamelCase ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase , ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"] , return_stdout=UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase , ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", "echo \"Hello World\"", "--debug", ] , return_stdout=UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , UpperCamelCase , ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"] , return_stdout=UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase , ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase , ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"] , return_stdout=UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase , ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ] , return_stdout=UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase , )
55
lowercase_ : Optional[int] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowercase_ : list[bool | None] = [None] * 10_00_00_00 lowercase_ : Optional[int] = True lowercase_ : str = False def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _UpperCAmelCase = chain(next_number(snake_case_ ) ) _UpperCAmelCase = number_chain while number < 1000_0000: _UpperCAmelCase = number_chain number *= 10 return number_chain def __SCREAMING_SNAKE_CASE ( snake_case_ = 1000_0000 ): '''simple docstring''' for i in range(1 , snake_case_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
133
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' for attribute in key.split("." ): lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor lowercase_ = hf_model.adapter for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowercase_ = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(__lowerCamelCase )[0].split("." )[-2] lowercase_ = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: lowercase_ = "weight_g" elif "weight_v" in name: lowercase_ = "weight_v" elif "bias" in name: lowercase_ = "bias" elif "weight" in name: lowercase_ = "weight" else: lowercase_ = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: int , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = full_name.split("conv_layers." )[-1] lowercase_ = name.split("." ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] ): '''simple docstring''' lowercase_ = full_name.split("adaptor." )[-1] lowercase_ = name.split("." ) if items[1].isdigit(): lowercase_ = int(items[1] ) else: lowercase_ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' lowercase_ = value logger.info(F'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' lowercase_ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' lowercase_ = value logger.info(F'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' lowercase_ = value logger.info(F'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' lowercase_ = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' lowercase_ = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) lowercase_ = emb.weight.data return lin_layer @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: List[str] , ): '''simple docstring''' lowercase_ = WavaVecaConfig.from_pretrained( __lowerCamelCase , add_adapter=__lowerCamelCase , adapter_stride=__lowerCamelCase , adapter_kernel_size=__lowerCamelCase , use_auth_token=__lowerCamelCase , output_hidden_size=__lowerCamelCase , ) lowercase_ = MBartConfig.from_pretrained(__lowerCamelCase ) # load model lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) lowercase_ = model[0].eval() # load feature extractor lowercase_ = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase , use_auth_token=__lowerCamelCase ) # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(__lowerCamelCase ) recursively_load_weights_wavaveca(model.encoder , __lowerCamelCase ) # load decoder weights lowercase_ = MBartForCausalLM(__lowerCamelCase ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__lowerCamelCase ) logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowercase_ = SpeechEncoderDecoderModel(encoder=__lowerCamelCase , decoder=__lowerCamelCase ) lowercase_ = False lowercase_ = MBartaaTokenizer(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = "mbart50" lowercase_ = "wav2vec2" lowercase_ = tokenizer.eos_token_id lowercase_ = 25_0004 lowercase_ = tokenizer.eos_token_id lowercase_ = SpeechEncoderDecoderConfig.from_dict(__lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) feature_extractor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1_0_2_4, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=2_5_0_0_0_4, type=int, help="""`decoder_start_token_id` of model config""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
369
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
0
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _A ( _lowerCamelCase ): _UpperCamelCase : Union[str, Any] = ['''image_processor''', '''tokenizer'''] _UpperCamelCase : List[Any] = '''BlipImageProcessor''' _UpperCamelCase : Union[str, Any] = '''AutoTokenizer''' def __init__( self : Dict , _A : int , _A : Optional[int] , _A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) # add QFormer tokenizer lowercase : List[str] = qformer_tokenizer def __call__( self : List[str] , _A : Union[str, Any] = None , _A : Optional[int] = None , _A : Union[str, Any] = True , _A : List[Any] = False , _A : Tuple = None , _A : int = None , _A : Optional[Any] = 0 , _A : Optional[Any] = None , _A : Optional[int] = None , _A : Any = False , _A : int = False , _A : Optional[Any] = False , _A : int = False , _A : List[Any] = False , _A : Any = True , _A : Tuple = None , **_A : Any , ) -> List[Any]: """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) lowercase : List[Any] = BatchFeature() if text is not None: lowercase : Dict = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) encoding.update(lowerCAmelCase_ ) lowercase : int = self.qformer_tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase : Any = qformer_text_encoding.pop('''input_ids''' ) lowercase : int = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: lowercase : List[str] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) encoding.update(lowerCAmelCase_ ) return encoding def __a ( self : Dict , *_A : List[Any] , **_A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __a ( self : Tuple , *_A : List[str] , **_A : int ) -> int: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : List[str] = self.tokenizer.model_input_names lowercase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __a ( self : Any , _A : List[str] , **_A : Tuple ) -> Any: """simple docstring""" if os.path.isfile(lowerCAmelCase_ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) lowercase : Any = os.path.join(lowerCAmelCase_ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(lowerCAmelCase_ ) return super().save_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) @classmethod def __a ( cls : Any , _A : Dict , **_A : Tuple ) -> Optional[Any]: """simple docstring""" lowercase : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase_ , subfolder='''qformer_tokenizer''' ) lowercase : List[Any] = cls._get_arguments_from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) args.append(lowerCAmelCase_ ) return cls(*lowerCAmelCase_ )
308
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class __UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1 , lowerCAmelCase_=False , **lowerCAmelCase_ ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _snake_case = vocab_size _snake_case = d_embed _snake_case = d_proj _snake_case = cutoffs + [vocab_size] _snake_case = [0] + self.cutoffs _snake_case = div_val _snake_case = self.cutoffs[0] _snake_case = len(self.cutoffs ) - 1 _snake_case = self.shortlist_size + self.n_clusters _snake_case = keep_order _snake_case = [] _snake_case = [] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if self.n_clusters > 0: _snake_case = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=lowerCAmelCase_ , name='cluster_weight' ) _snake_case = self.add_weight( shape=(self.n_clusters,) , initializer='zeros' , trainable=lowerCAmelCase_ , name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: _snake_case = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_projs_._{i}' , ) self.out_projs.append(lowerCAmelCase_ ) else: self.out_projs.append(lowerCAmelCase_ ) _snake_case = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._weight' , ) _snake_case = self.add_weight( shape=(self.vocab_size,) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): _snake_case , _snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case = self.d_embed // (self.div_val**i) _snake_case = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_projs_._{i}' ) self.out_projs.append(lowerCAmelCase_ ) _snake_case = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._weight' , ) _snake_case = self.add_weight( shape=(r_idx - l_idx,) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(lowerCAmelCase_ ) @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = x if proj is not None: _snake_case = tf.einsum('ibd,ed->ibe' , lowerCAmelCase_ , lowerCAmelCase_ ) return tf.einsum('ibd,nd->ibn' , lowerCAmelCase_ , lowerCAmelCase_ ) + b @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = shape_list(lowerCAmelCase_ ) _snake_case = tf.range(lp_size[0] , dtype=target.dtype ) _snake_case = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=False ): """simple docstring""" _snake_case = 0 if self.n_clusters == 0: _snake_case = self._logit(lowerCAmelCase_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: _snake_case = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ , axis=-1 ) else: _snake_case = shape_list(lowerCAmelCase_ ) _snake_case = [] _snake_case = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): _snake_case , _snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _snake_case = (target >= l_idx) & (target < r_idx) _snake_case = tf.where(lowerCAmelCase_ ) _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) - l_idx if self.div_val == 1: _snake_case = self.out_layers[0][0][l_idx:r_idx] _snake_case = self.out_layers[0][1][l_idx:r_idx] else: _snake_case = self.out_layers[i][0] _snake_case = self.out_layers[i][1] if i == 0: _snake_case = tf.concat([cur_W, self.cluster_weight] , 0 ) _snake_case = tf.concat([cur_b, self.cluster_bias] , 0 ) _snake_case = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[0] ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) else: _snake_case = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[i] ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ ) _snake_case = self.cutoffs[0] + i - 1 # No probability for the head cluster _snake_case = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCAmelCase_ ) if target is not None: _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCAmelCase_ , -cur_logprob , shape_list(lowerCAmelCase_ ) ) _snake_case = tf.concat(lowerCAmelCase_ , axis=-1 ) if target is not None: if return_mean: _snake_case = tf.reduce_mean(lowerCAmelCase_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCAmelCase_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCAmelCase_ , name=self.name , aggregation='mean' if return_mean else '' ) return out
42
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Dict =1_0 _UpperCAmelCase : Dict =datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) _UpperCAmelCase : List[str] =datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(__lowerCamelCase ) ), } , features=__lowerCamelCase , ) return dataset @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase : str =str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__lowerCamelCase ) return filename # FILE_CONTENT + files lowercase = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =tmp_path_factory.mktemp('data' ) / 'file.txt' _UpperCAmelCase : Union[str, Any] =FILE_CONTENT with open(__lowerCamelCase , 'w' ) as f: f.write(__lowerCamelCase ) return filename @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' import bza _UpperCAmelCase : int =tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' _UpperCAmelCase : Union[str, Any] =bytes(__lowerCamelCase , 'utf-8' ) with bza.open(__lowerCamelCase , 'wb' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Dict ): '''simple docstring''' import gzip _UpperCAmelCase : str =str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) _UpperCAmelCase : int =bytes(__lowerCamelCase , 'utf-8' ) with gzip.open(__lowerCamelCase , 'wb' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : List[str] ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Union[str, Any] =tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' _UpperCAmelCase : Any =bytes(__lowerCamelCase , 'utf-8' ) with lza.frame.open(__lowerCamelCase , 'wb' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : int =tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__lowerCamelCase , 'w' ) as archive: archive.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' import tarfile _UpperCAmelCase : Tuple =tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__lowerCamelCase , 'w' ) as f: f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] ): '''simple docstring''' import lzma _UpperCAmelCase : List[str] =tmp_path_factory.mktemp('data' ) / 'file.txt.xz' _UpperCAmelCase : List[Any] =bytes(__lowerCamelCase , 'utf-8' ) with lzma.open(__lowerCamelCase , 'wb' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ): '''simple docstring''' import zipfile _UpperCAmelCase : Tuple =tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__lowerCamelCase , 'w' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Dict =tmp_path_factory.mktemp('data' ) / 'file.txt.zst' _UpperCAmelCase : str =bytes(__lowerCamelCase , 'utf-8' ) with zstd.open(__lowerCamelCase , 'wb' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Dict ): '''simple docstring''' _UpperCAmelCase : str =tmp_path_factory.mktemp('data' ) / 'file.xml' _UpperCAmelCase : List[str] =textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__lowerCamelCase , 'w' ) as f: f.write(__lowerCamelCase ) return filename lowercase = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowercase = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowercase = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowercase = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowercase = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def lowerCamelCase__ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : List[str] ): '''simple docstring''' _UpperCAmelCase : List[str] =datasets.Dataset.from_dict(__lowerCamelCase ) _UpperCAmelCase : Optional[Any] =str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' _UpperCAmelCase : Tuple =str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__lowerCamelCase ) ) as con: _UpperCAmelCase : int =con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__lowerCamelCase , 'w' , newline='' ) as f: _UpperCAmelCase : int =csv.DictWriter(__lowerCamelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): '''simple docstring''' _UpperCAmelCase : Tuple =str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__lowerCamelCase , 'w' , newline='' ) as f: _UpperCAmelCase : Optional[int] =csv.DictWriter(__lowerCamelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' import bza _UpperCAmelCase : List[Any] =tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__lowerCamelCase , 'rb' ) as f: _UpperCAmelCase : Dict =f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__lowerCamelCase , 'wb' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__lowerCamelCase , 'w' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : int =tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__lowerCamelCase , 'w' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__lowerCamelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): '''simple docstring''' _UpperCAmelCase : List[str] =tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__lowerCamelCase , 'w' ) as f: f.write(__lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(__lowerCamelCase ) ) ) f.write(__lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) _UpperCAmelCase : Any =pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__lowerCamelCase , 'wb' ) as f: _UpperCAmelCase : Dict =pq.ParquetWriter(__lowerCamelCase , schema=__lowerCamelCase ) _UpperCAmelCase : Dict =pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__lowerCamelCase ) )] for k in DATA[0]} , schema=__lowerCamelCase ) writer.write_table(__lowerCamelCase ) writer.close() return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): '''simple docstring''' _UpperCAmelCase : int =str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _UpperCAmelCase : Optional[Any] ={'data': DATA} with open(__lowerCamelCase , 'w' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Tuple ): '''simple docstring''' _UpperCAmelCase : str =str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _UpperCAmelCase : Dict ={'data': DATA_DICT_OF_LISTS} with open(__lowerCamelCase , 'w' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Tuple ): '''simple docstring''' _UpperCAmelCase : Tuple =str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__lowerCamelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__lowerCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Tuple ): '''simple docstring''' _UpperCAmelCase : Any =str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__lowerCamelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__lowerCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Tuple ): '''simple docstring''' _UpperCAmelCase : Tuple =str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__lowerCamelCase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__lowerCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__lowerCamelCase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__lowerCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Any ): '''simple docstring''' import gzip _UpperCAmelCase : Optional[Any] =str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__lowerCamelCase , 'rb' ) as orig_file: with gzip.open(__lowerCamelCase , 'wb' ) as zipped_file: zipped_file.writelines(__lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): '''simple docstring''' import gzip _UpperCAmelCase : List[Any] =str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__lowerCamelCase , 'rb' ) as orig_file: with gzip.open(__lowerCamelCase , 'wb' ) as zipped_file: zipped_file.writelines(__lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple ): '''simple docstring''' _UpperCAmelCase : Any =tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__lowerCamelCase , 'w' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): '''simple docstring''' _UpperCAmelCase : str =tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__lowerCamelCase , 'w' ) as f: f.write(__lowerCamelCase , arcname=os.path.join('nested' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__lowerCamelCase , 'w' ) as f: f.write(__lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(__lowerCamelCase ) ) ) f.write(__lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : str ): '''simple docstring''' _UpperCAmelCase : int =tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__lowerCamelCase , 'w' ) as f: f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : str ): '''simple docstring''' _UpperCAmelCase : Tuple =tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__lowerCamelCase , 'w' ) as f: f.add(__lowerCamelCase , arcname=os.path.join('nested' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : List[str] ): '''simple docstring''' _UpperCAmelCase : int =['0', '1', '2', '3'] _UpperCAmelCase : Any =str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__lowerCamelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Any ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =['0', '1', '2', '3'] _UpperCAmelCase : int =str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__lowerCamelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): '''simple docstring''' _UpperCAmelCase : str =['0', '1', '2', '3'] _UpperCAmelCase : List[str] =tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__lowerCamelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__lowerCamelCase , 'w' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): '''simple docstring''' _UpperCAmelCase : Tuple =tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__lowerCamelCase , 'w' ) as f: f.write(__lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(__lowerCamelCase ) ) ) f.write(__lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Any ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__lowerCamelCase , 'w' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename('unsupported.ext' ) ) f.write(__lowerCamelCase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): '''simple docstring''' _UpperCAmelCase : Dict ='\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) _UpperCAmelCase : Union[str, Any] =str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def lowerCamelCase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : List[Any] ): '''simple docstring''' _UpperCAmelCase : Tuple =tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__lowerCamelCase , 'w' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase : List[str] =tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
360
'''simple docstring''' lowercase =[0, 2, 4, 6, 8] lowercase =[1, 3, 5, 7, 9] def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[int] , __lowerCamelCase : int ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _UpperCAmelCase : Union[str, Any] =0 for digit in range(1_0 ): _UpperCAmelCase : str =digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , __lowerCamelCase , __lowerCamelCase ) return result _UpperCAmelCase : Optional[Any] =0 for digita in range(1_0 ): _UpperCAmelCase : Any =digita if (remainder + digita) % 2 == 0: _UpperCAmelCase : Optional[int] =ODD_DIGITS else: _UpperCAmelCase : Union[str, Any] =EVEN_DIGITS for digita in other_parity_digits: _UpperCAmelCase : int =digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , __lowerCamelCase , __lowerCamelCase , ) return result def lowerCamelCase__ ( __lowerCamelCase : int = 9 ): '''simple docstring''' _UpperCAmelCase : Optional[int] =0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__lowerCamelCase , 0 , [0] * length , __lowerCamelCase ) return result if __name__ == "__main__": print(F"""{solution() = }""")
242
0
import os def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" lowerCamelCase__: Union[str, Any] =len(grid[0] ) lowerCamelCase__: List[Any] =len(__a ) lowerCamelCase__: str =0 lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[int] =0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__a ): for j in range(n_rows - 3 ): lowerCamelCase__: Any =grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCamelCase__: List[Any] =grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCamelCase__: List[Any] =( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCamelCase__: List[Any] =( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCamelCase__: List[Any] =max( __a , __a , __a , __a ) if max_product > largest: lowerCamelCase__: Union[str, Any] =max_product return largest def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" lowerCamelCase__: List[str] =[] with open(os.path.dirname(__a ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) lowerCamelCase__: str =[[int(__a ) for i in grid[j]] for j in range(len(__a ) )] return largest_product(__a ) if __name__ == "__main__": print(solution())
10
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) __SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(lowerCAmelCase__) + """\n""") with open(self.merges_file , """w""" , encoding="""utf-8""") as fp: fp.write("""\n""".join(lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = { """do_resize""": True, """size""": 2_0, """do_center_crop""": True, """crop_size""": 1_8, """do_normalize""": True, """image_mean""": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], """image_std""": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , lowerCAmelCase__) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self , **lowerCAmelCase__): return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__) def snake_case_ ( self , **lowerCAmelCase__): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__) def snake_case_ ( self , **lowerCAmelCase__): return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__) def snake_case_ ( self): shutil.rmtree(self.tmpdirname) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1)) for x in image_inputs] return image_inputs def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__) processor_slow.save_pretrained(self.tmpdirname) __SCREAMING_SNAKE_CASE = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__) processor_fast.save_pretrained(self.tmpdirname) __SCREAMING_SNAKE_CASE = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0) __SCREAMING_SNAKE_CASE = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase__ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(lowerCAmelCase__ , return_tensors="""np""") __SCREAMING_SNAKE_CASE = processor(images=lowerCAmelCase__ , return_tensors="""np""") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = processor(text=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__) self.assertListEqual(list(inputs.keys()) , ["""input_ids""", """attention_mask""", """pixel_values"""]) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__): processor() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(images=lowerCAmelCase__ , visual_prompt=lowerCAmelCase__) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """conditional_pixel_values"""]) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__): processor() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__)
357
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __magic_name__ = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __magic_name__ = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __magic_name__ = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __magic_name__ = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } __magic_name__ = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } __magic_name__ = { "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def _lowerCAmelCase ( UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.in_layers.0.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.in_layers.0.bias"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.in_layers.2.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.in_layers.2.bias"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.emb_layers.1.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.emb_layers.1.bias"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.out_layers.0.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.out_layers.0.bias"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.out_layers.3.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.out_layers.3.bias"] if has_skip: __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.skip_connection.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.skip_connection.bias"] return new_checkpoint def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.norm.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.norm.bias"] __SCREAMING_SNAKE_CASE = weight_q.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = bias_q.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = weight_k.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = bias_k.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = weight_v.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = bias_v.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = ( checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = torch.load(UpperCamelCase_ , map_location="""cpu""" ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.bias"""] __SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: __SCREAMING_SNAKE_CASE = checkpoint["""label_emb.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.bias"""] __SCREAMING_SNAKE_CASE = unet_config["""down_block_types"""] __SCREAMING_SNAKE_CASE = unet_config["""layers_per_block"""] __SCREAMING_SNAKE_CASE = unet_config["""attention_head_dim"""] __SCREAMING_SNAKE_CASE = unet_config["""block_out_channels"""] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = channels_list[0] for i, layer_type in enumerate(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = channels_list[i] __SCREAMING_SNAKE_CASE = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = f"down_blocks.{i}.resnets.{j}" __SCREAMING_SNAKE_CASE = f"input_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , has_skip=UpperCamelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = f"down_blocks.{i}.resnets.{j}" __SCREAMING_SNAKE_CASE = f"input_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , has_skip=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = f"down_blocks.{i}.attentions.{j}" __SCREAMING_SNAKE_CASE = f"input_blocks.{current_layer}.1" __SCREAMING_SNAKE_CASE = convert_attention( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) current_layer += 1 if i != len(UpperCamelCase_ ) - 1: __SCREAMING_SNAKE_CASE = f"down_blocks.{i}.downsamplers.0" __SCREAMING_SNAKE_CASE = f"input_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) current_layer += 1 __SCREAMING_SNAKE_CASE = current_channels # hardcoded the mid-block for now __SCREAMING_SNAKE_CASE = """mid_block.resnets.0""" __SCREAMING_SNAKE_CASE = """middle_block.0""" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = """mid_block.attentions.0""" __SCREAMING_SNAKE_CASE = """middle_block.1""" __SCREAMING_SNAKE_CASE = convert_attention(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = """mid_block.resnets.1""" __SCREAMING_SNAKE_CASE = """middle_block.2""" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = unet_config["""up_block_types"""] for i, layer_type in enumerate(UpperCamelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.resnets.{j}" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , has_skip=UpperCamelCase_ ) current_layer += 1 if i != len(UpperCamelCase_ ) - 1: __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.upsamplers.0" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer-1}.1" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.resnets.{j}" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , has_skip=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.attentions.{j}" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer}.1" __SCREAMING_SNAKE_CASE = convert_attention( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) current_layer += 1 if i != len(UpperCamelCase_ ) - 1: __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.upsamplers.0" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer-1}.2" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = checkpoint["""out.0.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""out.0.bias"""] __SCREAMING_SNAKE_CASE = checkpoint["""out.2.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __magic_name__ = parser.parse_args() __magic_name__ = strabool(args.class_cond) __magic_name__ = os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: __magic_name__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __magic_name__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __magic_name__ = TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: __magic_name__ = None __magic_name__ = con_pt_to_diffuser(args.unet_path, unet_config) __magic_name__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __magic_name__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __magic_name__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __magic_name__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") __magic_name__ = CMStochasticIterativeScheduler(**scheduler_config) __magic_name__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
255
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType A_ : Dict = logging.get_logger(__name__) A_ : Any = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class lowerCamelCase (A__ ): lowerCamelCase__ : Tuple = 'deberta-v2' def __init__( self : Any , __UpperCAmelCase : Optional[Any]=1_2_8_1_0_0 , __UpperCAmelCase : Optional[Any]=1_5_3_6 , __UpperCAmelCase : List[Any]=2_4 , __UpperCAmelCase : str=2_4 , __UpperCAmelCase : Optional[int]=6_1_4_4 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[Any]=5_1_2 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : Any=1e-7 , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Any=-1 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : Union[str, Any]="gelu" , **__UpperCAmelCase : Any , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = relative_attention SCREAMING_SNAKE_CASE__ = max_relative_positions SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = position_biased_input # Backwards compatibility if type(__UpperCAmelCase ) == str: SCREAMING_SNAKE_CASE__ = [x.strip() for x in pos_att_type.lower().split("""|""" )] SCREAMING_SNAKE_CASE__ = pos_att_type SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kwargs.get("""pooler_hidden_size""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = pooler_dropout SCREAMING_SNAKE_CASE__ = pooler_hidden_act class lowerCamelCase (A__ ): @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 1_2 def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional["TensorType"] = None , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs(preprocessor=__UpperCAmelCase , framework=__UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
165
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : int ) -> int: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=True ) -> Any: SCREAMING_SNAKE_CASE__ = () for resnet, attn in zip(self.resnets , self.attentions ): SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any]=True ) -> List[Any]: SCREAMING_SNAKE_CASE__ = () for resnet in self.resnets: SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any=True ) -> Union[str, Any]: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str]=True ) -> Dict: for resnet in self.resnets: # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: # there is always at least one resnet SCREAMING_SNAKE_CASE__ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] SCREAMING_SNAKE_CASE__ = [] for _ in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions def __call__( self : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : List[str]=True ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.resnets[0](__UpperCAmelCase , __UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) return hidden_states
165
1
"""simple docstring""" import argparse import os import re __UpperCamelCase : List[str] = '''src/diffusers''' # Pattern that looks at the indentation in a line. __UpperCamelCase : int = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. __UpperCamelCase : str = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __UpperCamelCase : Tuple = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. __UpperCamelCase : int = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __UpperCamelCase : Tuple = re.compile(R'''\[([^\]]+)\]''') def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): lowerCAmelCase = _re_indent.search(_UpperCAmelCase ) return "" if search is None else search.groups()[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]="" , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None ): lowerCAmelCase = 0 lowerCAmelCase = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_UpperCAmelCase ): index += 1 lowerCAmelCase = ['\n'.join(lines[:index] )] else: lowerCAmelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase = [lines[index]] index += 1 while index < len(_UpperCAmelCase ) and (end_prompt is None or not lines[index].startswith(_UpperCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_UpperCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_UpperCAmelCase ) ) if index < len(_UpperCAmelCase ) - 1: lowerCAmelCase = [lines[index + 1]] index += 1 else: lowerCAmelCase = [] else: blocks.append('\n'.join(_UpperCAmelCase ) ) lowerCAmelCase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_UpperCAmelCase ) > 0: blocks.append('\n'.join(_UpperCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_UpperCAmelCase ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): def _inner(_UpperCAmelCase : Dict ): return key(_UpperCAmelCase ).lower().replace('_' , '' ) return _inner def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]=None ): # If no key is provided, we use a noop. def noop(_UpperCAmelCase : List[str] ): return x if key is None: lowerCAmelCase = noop # Constants are all uppercase, they go first. lowerCAmelCase = [obj for obj in objects if key(_UpperCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase = [obj for obj in objects if key(_UpperCAmelCase )[0].isupper() and not key(_UpperCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase = [obj for obj in objects if not key(_UpperCAmelCase )[0].isupper()] lowerCAmelCase = ignore_underscore(_UpperCAmelCase ) return sorted(_UpperCAmelCase , key=_UpperCAmelCase ) + sorted(_UpperCAmelCase , key=_UpperCAmelCase ) + sorted(_UpperCAmelCase , key=_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): # This inner function sort imports between [ ]. def _replace(_UpperCAmelCase : List[str] ): lowerCAmelCase = match.groups()[0] if "," not in imports: return F'[{imports}]' lowerCAmelCase = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase = keys[:-1] return "[" + ", ".join([F'"{k}"' for k in sort_objects(_UpperCAmelCase )] ) + "]" lowerCAmelCase = import_statement.split('\n' ) if len(_UpperCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase = [(i, _re_strip_line.search(_UpperCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase = sort_objects(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] ) lowerCAmelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_UpperCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase = keys[:-1] lowerCAmelCase = get_indent(lines[1] ) + ', '.join([F'"{k}"' for k in sort_objects(_UpperCAmelCase )] ) return "\n".join(_UpperCAmelCase ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase = _re_bracket_content.sub(_replace , _UpperCAmelCase ) return import_statement def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=True ): with open(_UpperCAmelCase , 'r' ) as f: lowerCAmelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase = split_code_in_indented_blocks( _UpperCAmelCase , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_UpperCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase = main_blocks[block_idx] lowerCAmelCase = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase = 0 while line_idx < len(_UpperCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase = len(_UpperCAmelCase ) else: line_idx += 1 if line_idx >= len(_UpperCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase = split_code_in_indented_blocks(_UpperCAmelCase , indent_level=_UpperCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase = [(pattern.search(_UpperCAmelCase ).groups()[0] if pattern.search(_UpperCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase = [(i, key) for i, key in enumerate(_UpperCAmelCase ) if key is not None] lowerCAmelCase = [x[0] for x in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase = 0 lowerCAmelCase = [] for i in range(len(_UpperCAmelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_UpperCAmelCase ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_UpperCAmelCase ): if check_only: return True else: print(F'Overwriting {file}.' ) with open(_UpperCAmelCase , 'w' ) as f: f.write('\n'.join(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict=True ): lowerCAmelCase = [] for root, _, files in os.walk(_UpperCAmelCase ): if "__init__.py" in files: lowerCAmelCase = sort_imports(os.path.join(_UpperCAmelCase , '__init__.py' ) , check_only=_UpperCAmelCase ) if result: lowerCAmelCase = [os.path.join(_UpperCAmelCase , '__init__.py' )] if len(_UpperCAmelCase ) > 0: raise ValueError(F'Would overwrite {len(_UpperCAmelCase )} files, run `make style`.' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __UpperCamelCase : Dict = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Any = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Optional[Any]: if isinstance(_A , _A ) and isinstance(_A , _A ): __lowerCamelCase : List[Any] = len(set_a.intersection(_A ) ) if alternative_union: __lowerCamelCase : Union[str, Any] = len(_A ) + len(_A ) else: __lowerCamelCase : Any = len(set_a.union(_A ) ) return intersection / union if isinstance(_A , (list, tuple) ) and isinstance(_A , (list, tuple) ): __lowerCamelCase : int = [element for element in set_a if element in set_b] if alternative_union: __lowerCamelCase : Dict = len(_A ) + len(_A ) return len(_A ) / union else: __lowerCamelCase : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(_A ) / len(_A ) return len(_A ) / len(_A ) return None if __name__ == "__main__": a ={'a', 'b', 'c', 'd', 'e'} a ={'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
73
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class a__: def __init__( self : str , __snake_case : Union[str, Any] , __snake_case : List[str]=13 , __snake_case : Tuple=7 , __snake_case : Optional[Any]=False , __snake_case : Dict=True , __snake_case : List[Any]=False , __snake_case : Optional[int]=False , __snake_case : Optional[Any]=19 , __snake_case : Any=32 , __snake_case : Union[str, Any]=5 , __snake_case : Union[str, Any]=4 , __snake_case : int=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=0.1 , __snake_case : int=5_12 , __snake_case : int=16 , __snake_case : Tuple=2 , __snake_case : str=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : List[Any]=None , ): a : Tuple = parent a : List[str] = batch_size a : Optional[Any] = seq_length a : Tuple = is_training a : Optional[Any] = use_input_mask a : List[Any] = use_token_type_ids a : List[Any] = use_labels a : int = vocab_size a : Union[str, Any] = hidden_size a : Any = num_hidden_layers a : List[str] = num_attention_heads a : int = intermediate_size a : str = hidden_act a : Tuple = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : List[str] = max_position_embeddings a : Any = type_vocab_size a : List[str] = type_sequence_label_size a : Union[str, Any] = initializer_range a : Optional[int] = num_labels a : Optional[Any] = num_choices a : Optional[int] = scope def lowercase_ ( self : List[Any] ): a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Dict = None if self.use_input_mask: a : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a : Optional[Any] = None a : Optional[int] = None a : Dict = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : List[str] = ids_tensor([self.batch_size] , self.num_choices ) a : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : List[Any] ): a : Any = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__snake_case , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def lowercase_ ( self : Optional[Any] , __snake_case : int , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Any ): a : Tuple = EsmForProteinFolding(config=__snake_case ).float() model.to(__snake_case ) model.eval() a : Dict = model(__snake_case , attention_mask=__snake_case ) a : Union[str, Any] = model(__snake_case ) a : List[Any] = model(__snake_case ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowercase_ ( self : Optional[Any] ): a : Tuple = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Optional[Any] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = False lowercase__ = (EsmForProteinFolding,) if is_torch_available() else () lowercase__ = () lowercase__ = {} if is_torch_available() else {} lowercase__ = False def lowercase_ ( self : int ): a : Tuple = EsmFoldModelTester(self ) a : Any = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowercase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowercase_ ( self : Union[str, Any] ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) @unittest.skip('Does not support attention outputs' ) def lowercase_ ( self : str ): pass @unittest.skip def lowercase_ ( self : Optional[int] ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase_ ( self : Optional[int] ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase_ ( self : Any ): pass @unittest.skip('ESMFold does not support passing input embeds!' ) def lowercase_ ( self : Any ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : Union[str, Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : int ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def lowercase_ ( self : int ): pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def lowercase_ ( self : int ): pass @unittest.skip('ESMFold only has one output format.' ) def lowercase_ ( self : Dict ): pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def lowercase_ ( self : Tuple ): pass @unittest.skip('ESMFold does not support input chunking.' ) def lowercase_ ( self : List[str] ): pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self : Union[str, Any] ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self : Any ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self : List[str] ): pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def lowercase_ ( self : Dict ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self : Union[str, Any] ): pass @require_torch class a__( lowerCamelCase__ ): @slow def lowercase_ ( self : Optional[int] ): a : Optional[Any] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() a : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) a : Any = model(__snake_case )['positions'] a : Dict = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __snake_case , atol=1e-4 ) )
297
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : Tuple ={'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Tuple =[ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCAmelCase__ : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ : str ={'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] =[ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] =[ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase__ : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
1
def _a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): __lowerCAmelCase = set() # Replace all the whitespace in our sentence __lowerCAmelCase = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == 26 def _a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): __lowerCAmelCase = [False] * 26 for char in input_str: if char.islower(): __lowerCAmelCase = True elif char.isupper(): __lowerCAmelCase = True return all(SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _a ( ): from timeit import timeit __lowerCAmelCase = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit("is_pangram_faster()" , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit("is_pangram_fastest()" , setup=SCREAMING_SNAKE_CASE_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
92
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _A = logging.get_logger(__name__) def lowercase_ ( __UpperCAmelCase ) -> List[List[ImageInput]]: if isinstance(__UpperCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__UpperCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__UpperCAmelCase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class _lowerCamelCase ( a_ ): _lowerCamelCase :Optional[int] = ["pixel_values"] def __init__( self : Dict , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 2_55 , UpperCamelCase : bool = True , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , **UpperCamelCase : Dict , ) -> None: """simple docstring""" super().__init__(**UpperCamelCase ) lowerCAmelCase__ : int = size if size is not None else {"""shortest_edge""": 2_56} lowerCAmelCase__ : Union[str, Any] = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} lowerCAmelCase__ : List[str] = get_size_dict(UpperCamelCase , param_name="""crop_size""" ) lowerCAmelCase__ : Union[str, Any] = do_resize lowerCAmelCase__ : str = size lowerCAmelCase__ : str = do_center_crop lowerCAmelCase__ : Tuple = crop_size lowerCAmelCase__ : Union[str, Any] = resample lowerCAmelCase__ : Any = do_rescale lowerCAmelCase__ : Union[str, Any] = rescale_factor lowerCAmelCase__ : Dict = offset lowerCAmelCase__ : Optional[int] = do_normalize lowerCAmelCase__ : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self : List[str] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Optional[Any] , ) -> np.ndarray: """simple docstring""" lowerCAmelCase__ : List[Any] = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" in size: lowerCAmelCase__ : int = get_resize_output_image_size(UpperCamelCase , size["""shortest_edge"""] , default_to_square=UpperCamelCase ) elif "height" in size and "width" in size: lowerCAmelCase__ : Union[str, Any] = (size["""height"""], size["""width"""]) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Tuple , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Optional[int] , ) -> np.ndarray: """simple docstring""" lowerCAmelCase__ : int = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Dict , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Union[str, Any] , ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = image.astype(np.floataa ) if offset: lowerCAmelCase__ : Tuple = image - (scale / 2) return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Dict , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Optional[int] , ) -> np.ndarray: """simple docstring""" return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. lowerCAmelCase__ : Optional[Any] = to_numpy_array(UpperCamelCase ) if do_resize: lowerCAmelCase__ : List[str] = self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) if do_center_crop: lowerCAmelCase__ : List[str] = self.center_crop(UpperCamelCase , size=UpperCamelCase ) if do_rescale: lowerCAmelCase__ : Optional[int] = self.rescale(image=UpperCamelCase , scale=UpperCamelCase , offset=UpperCamelCase ) if do_normalize: lowerCAmelCase__ : Tuple = self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) lowerCAmelCase__ : List[str] = to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) return image def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase : Dict , ) -> PIL.Image.Image: """simple docstring""" lowerCAmelCase__ : List[str] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : Union[str, Any] = resample if resample is not None else self.resample lowerCAmelCase__ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : Dict = offset if offset is not None else self.offset lowerCAmelCase__ : str = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : List[Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : Union[str, Any] = image_std if image_std is not None else self.image_std lowerCAmelCase__ : List[Any] = size if size is not None else self.size lowerCAmelCase__ : Tuple = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : Optional[Any] = get_size_dict(UpperCamelCase , param_name="""crop_size""" ) if not valid_images(UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) lowerCAmelCase__ : int = make_batched(UpperCamelCase ) lowerCAmelCase__ : str = [ [ self._preprocess_image( image=UpperCamelCase , do_resize=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , do_center_crop=UpperCamelCase , crop_size=UpperCamelCase , do_rescale=UpperCamelCase , rescale_factor=UpperCamelCase , offset=UpperCamelCase , do_normalize=UpperCamelCase , image_mean=UpperCamelCase , image_std=UpperCamelCase , data_format=UpperCamelCase , ) for img in video ] for video in videos ] lowerCAmelCase__ : Dict = {"""pixel_values""": videos} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
242
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __magic_name__: Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Dict = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
366
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: __magic_name__: Any = None __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: Any = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __magic_name__: str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } __magic_name__: Optional[Any] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } __magic_name__: Optional[Any] = "▁" # Segments (not really needed) __magic_name__: List[Any] = 0 __magic_name__: Dict = 1 __magic_name__: List[str] = 2 __magic_name__: List[Any] = 3 __magic_name__: Optional[int] = 4 class snake_case__ ( _lowerCAmelCase ): lowercase__ : Dict = VOCAB_FILES_NAMES lowercase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[str] = '''left''' lowercase__ : List[str] = XLNetTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<sep>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<cls>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=["<eop>", "<eod>"] , **lowerCAmelCase__ , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( vocab_file=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : List[str] = 3 __magic_name__ : str = do_lower_case __magic_name__ : Union[str, Any] = remove_space __magic_name__ : str = keep_accents __magic_name__ : Tuple = vocab_file __magic_name__ : List[Any] = False if not self.vocab_file else True def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Any = [self.sep_token_id] __magic_name__ : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : List[str] = [self.sep_token_id] __magic_name__ : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
138
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A = XGLMTokenizer A = XGLMTokenizerFast A = True A = True def a_ (self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase : List[Any] = XGLMTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def a_ (self ) -> List[Any]: __UpperCamelCase : Optional[int] = '<pad>' __UpperCamelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def a_ (self ) -> List[str]: __UpperCamelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(_UpperCAmelCase ) , 1_0_0_8 ) def a_ (self ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 ) def a_ (self ) -> Dict: __UpperCamelCase : Dict = XGLMTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __UpperCamelCase : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __UpperCamelCase : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __UpperCamelCase : Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def a_ (self ) -> Dict: return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def a_ (self ) -> Union[str, Any]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_UpperCAmelCase , f.name ) __UpperCamelCase : str = XGLMTokenizer(f.name , keep_accents=_UpperCAmelCase ) __UpperCamelCase : List[str] = pickle.dumps(_UpperCAmelCase ) pickle.loads(_UpperCAmelCase ) def a_ (self ) -> Optional[int]: if not self.test_rust_tokenizer: return __UpperCamelCase : str = self.get_tokenizer() __UpperCamelCase : List[str] = self.get_rust_tokenizer() __UpperCamelCase : int = 'I was born in 92000, and this is falsé.' __UpperCamelCase : List[Any] = tokenizer.tokenize(_UpperCAmelCase ) __UpperCamelCase : Any = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : Union[str, Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __UpperCamelCase : Optional[int] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : str = self.get_rust_tokenizer() __UpperCamelCase : int = tokenizer.encode(_UpperCAmelCase ) __UpperCamelCase : Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def a_ (self ) -> int: __UpperCamelCase : List[str] = 'Hello World!' __UpperCamelCase : List[str] = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def a_ (self ) -> Dict: __UpperCamelCase : Dict = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off __UpperCamelCase : Union[str, Any] = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def a_ (self ) -> List[str]: # fmt: off __UpperCamelCase : List[Any] = { 'input_ids': [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="facebook/xglm-564M" , padding=_UpperCAmelCase , )
298
"""simple docstring""" import math def lowercase__ ( _UpperCAmelCase = 1_00 ) -> int: '''simple docstring''' lowercase : List[str] = sum(i * i for i in range(1 , n + 1 ) ) lowercase : Dict = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
255
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase: List[Any] = object() # For specifying empty leaf dict `{}` lowerCAmelCase: int = object() def lowerCamelCase__ ( _A , _A ): a : List[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) + 1 ): a : Dict = [x.match(UpperCAmelCase__ ) for x, y in zip(UpperCAmelCase__ , ks[i:] )] if matches and all(UpperCAmelCase__ ): return True return False def lowerCamelCase__ ( _A ): def replace(_A , _A ): for rule, replacement in rules: if _match(UpperCAmelCase__ , UpperCAmelCase__ ): return replacement return val return replace def lowerCamelCase__ ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , UpperCAmelCase__ )), (("transformer", "wte", "embedding"), P('mp' , UpperCAmelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCAmelCase__ , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , UpperCAmelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCAmelCase__ , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , UpperCAmelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowerCamelCase__ ( _A ): a : int = _get_partition_rules() a : Optional[int] = _replacement_rules(UpperCAmelCase__ ) a : Optional[int] = {k: _unmatched for k in flatten_dict(UpperCAmelCase__ )} a : str = {k: replace(UpperCAmelCase__ , UpperCAmelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCAmelCase__ ) )
362
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = BertJapaneseTokenizer lowercase__ = False lowercase__ = True def lowercase_ ( self : int ): super().setUp() a : List[Any] = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] a : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self : Any , __snake_case : str ): a : Union[str, Any] = 'こんにちは、世界。 \nこんばんは、世界。' a : List[Any] = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def lowercase_ ( self : Optional[Any] , __snake_case : Optional[Any] ): a , a : List[str] = self.get_input_output_texts(__snake_case ) a : Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) a : str = tokenizer.decode(__snake_case , clean_up_tokenization_spaces=__snake_case ) return text, ids def lowercase_ ( self : Optional[Any] ): pass # TODO add if relevant def lowercase_ ( self : List[Any] ): pass # TODO add if relevant def lowercase_ ( self : Dict ): pass # TODO add if relevant def lowercase_ ( self : List[Any] ): a : Optional[int] = self.tokenizer_class(self.vocab_file ) a : Optional[int] = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowercase_ ( self : Union[str, Any] ): a : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(__snake_case ) a : List[str] = 'こんにちは、世界。\nこんばんは、世界。' a : Tuple = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a : Optional[int] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(__snake_case , 'wb' ) as handle: pickle.dump(__snake_case , __snake_case ) with open(__snake_case , 'rb' ) as handle: a : Optional[Any] = pickle.load(__snake_case ) a : Tuple = tokenizer_new.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowercase_ ( self : Dict ): a : List[str] = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : List[Any] ): try: a : int = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : Any ): try: a : Union[str, Any] = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : str ): a : Tuple = MecabTokenizer(do_lower_case=__snake_case , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : Union[str, Any] ): try: a : Any = MecabTokenizer( do_lower_case=__snake_case , normalize_text=__snake_case , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def lowercase_ ( self : List[Any] ): a : Dict = MecabTokenizer(normalize_text=__snake_case , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def lowercase_ ( self : str ): a : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(__snake_case ) a : List[Any] = 'こんにちは、世界。\nこんばんは、世界。' a : int = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a : Tuple = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(__snake_case , 'wb' ) as handle: pickle.dump(__snake_case , __snake_case ) with open(__snake_case , 'rb' ) as handle: a : Optional[int] = pickle.load(__snake_case ) a : List[Any] = tokenizer_new.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @require_sudachi def lowercase_ ( self : List[Any] ): a : Optional[Any] = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self : Any ): a : str = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def lowercase_ ( self : Optional[Any] ): a : Optional[int] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def lowercase_ ( self : Optional[Any] ): a : Dict = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def lowercase_ ( self : Dict ): a : Optional[int] = SudachiTokenizer(do_lower_case=__snake_case , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self : Tuple ): a : int = SudachiTokenizer(normalize_text=__snake_case , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self : Union[str, Any] ): a : List[str] = SudachiTokenizer(trim_whitespace=__snake_case , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def lowercase_ ( self : List[Any] ): a : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(__snake_case ) a : str = 'こんにちは、世界。\nこんばんは、世界。' a : Tuple = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a : Optional[Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(__snake_case , 'wb' ) as handle: pickle.dump(__snake_case , __snake_case ) with open(__snake_case , 'rb' ) as handle: a : List[str] = pickle.load(__snake_case ) a : Any = tokenizer_new.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @require_jumanpp def lowercase_ ( self : List[str] ): a : Any = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self : List[str] ): a : List[Any] = JumanppTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self : Any ): a : List[Any] = JumanppTokenizer(normalize_text=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self : Any ): a : str = JumanppTokenizer(trim_whitespace=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def lowercase_ ( self : Tuple ): a : int = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def lowercase_ ( self : Any ): a : int = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] a : Optional[int] = {} for i, token in enumerate(__snake_case ): a : Dict = i a : Optional[Any] = WordpieceTokenizer(vocab=__snake_case , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def lowercase_ ( self : Tuple ): a : List[Any] = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) a : List[Any] = tokenizer.subword_tokenizer a : List[str] = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(__snake_case , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) a : Union[str, Any] = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(__snake_case , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def lowercase_ ( self : Union[str, Any] ): a : Optional[Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) a : Dict = tokenizer.encode('ありがとう。' , add_special_tokens=__snake_case ) a : str = tokenizer.encode('どういたしまして。' , add_special_tokens=__snake_case ) a : Optional[int] = tokenizer.build_inputs_with_special_tokens(__snake_case ) a : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = BertJapaneseTokenizer lowercase__ = False def lowercase_ ( self : List[Any] ): super().setUp() a : List[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self : Optional[Any] , **__snake_case : List[Any] ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **__snake_case ) def lowercase_ ( self : Tuple , __snake_case : List[str] ): a : int = 'こんにちは、世界。 \nこんばんは、世界。' a : Optional[Any] = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def lowercase_ ( self : str ): pass # TODO add if relevant def lowercase_ ( self : List[str] ): pass # TODO add if relevant def lowercase_ ( self : Any ): pass # TODO add if relevant def lowercase_ ( self : Any ): a : Optional[int] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) a : Tuple = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( __snake_case , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowercase_ ( self : Any ): a : Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] a : Optional[Any] = {} for i, token in enumerate(__snake_case ): a : Tuple = i a : Optional[int] = CharacterTokenizer(vocab=__snake_case , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def lowercase_ ( self : Tuple ): a : List[Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) a : Optional[int] = tokenizer.encode('ありがとう。' , add_special_tokens=__snake_case ) a : List[str] = tokenizer.encode('どういたしまして。' , add_special_tokens=__snake_case ) a : Optional[int] = tokenizer.build_inputs_with_special_tokens(__snake_case ) a : Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a__( unittest.TestCase ): def lowercase_ ( self : List[str] ): a : List[Any] = 'cl-tohoku/bert-base-japanese' a : Dict = AutoTokenizer.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) class a__( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): a : List[str] = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(__snake_case ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) a : Dict = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(__snake_case ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
96
0
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) snake_case : List[Any] = logging.getLogger(__name__) snake_case : str = {'''facebook/bart-base''': BartForConditionalGeneration} snake_case : List[str] = {'''facebook/bart-base''': BartTokenizer} def __lowercase ( ): a__ = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_lowerCamelCase , default=_lowerCamelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_lowerCamelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_lowerCamelCase , default=_lowerCamelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_lowerCamelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCamelCase , ) parser.add_argument( '--config_name' , type=_lowerCamelCase , default=_lowerCamelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_lowerCamelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_lowerCamelCase , default=_lowerCamelCase , help='Where to store the final ONNX file.' ) a__ = parser.parse_args() return args def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int]="cpu" ): a__ = model_dict[model_name].from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) a__ = tokenizer_dict[model_name].from_pretrained(_lowerCamelCase ) if model_name in ["facebook/bart-base"]: a__ = 0 a__ = None a__ = 0 return huggingface_model, tokenizer def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): model.eval() a__ = None a__ = torch.jit.script(BARTBeamSearchGenerator(_lowerCamelCase ) ) with torch.no_grad(): a__ = """My friends are cool but they eat too many carbs.""" a__ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors='pt' ).to(model.device ) a__ = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_lowerCamelCase , max_length=_lowerCamelCase , early_stopping=_lowerCamelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _lowerCamelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _lowerCamelCase , opset_version=1_4 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_lowerCamelCase , ) logger.info('Model exported to {}'.format(_lowerCamelCase ) ) a__ = remove_dup_initializers(os.path.abspath(_lowerCamelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_lowerCamelCase ) ) a__ = onnxruntime.InferenceSession(_lowerCamelCase ) a__ = ort_sess.run( _lowerCamelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_lowerCamelCase ), 'max_length': np.array(_lowerCamelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __lowercase ( ): a__ = parse_args() a__ = 5 a__ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() a__ = torch.device(args.device ) a__ = load_model_tokenizer(args.model_name_or_path , _lowerCamelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_lowerCamelCase ) if args.max_length: a__ = args.max_length if args.num_beams: a__ = args.num_beams if args.output_file_path: a__ = args.output_file_path else: a__ = """BART.onnx""" logger.info('Exporting model to ONNX' ) export_and_validate_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
240
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """laion/clap-htsat-unfused""" _lowerCAmelCase : int = tempfile.mkdtemp() def __UpperCamelCase ( self , **snake_case_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self , **snake_case_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_feature_extractor() _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) _lowerCAmelCase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """This is a test string""" _lowerCAmelCase : Union[str, Any] = processor(text=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_feature_extractor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
309
0
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _a ( *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=2 ) -> Dict: from .. import __version__ snake_case_ = take_from snake_case_ = () if not isinstance(args[0] , _SCREAMING_SNAKE_CASE ): snake_case_ = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(_SCREAMING_SNAKE_CASE ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) snake_case_ = None if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_SCREAMING_SNAKE_CASE ),) snake_case_ = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): values += (getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ),) snake_case_ = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: snake_case_ = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: snake_case_ = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , _SCREAMING_SNAKE_CASE , stacklevel=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) > 0: snake_case_ = inspect.getouterframes(inspect.currentframe() )[1] snake_case_ = call_frame.filename snake_case_ = call_frame.lineno snake_case_ = call_frame.function snake_case_ , snake_case_ = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(_SCREAMING_SNAKE_CASE ) == 0: return elif len(_SCREAMING_SNAKE_CASE ) == 1: return values[0] return values
233
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: snake_case_ , snake_case_ = numbers[j], numbers[i] return numbers if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
233
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging A : Union[str, Any] = logging.get_logger(__name__) A : Optional[int] = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''bloom''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self : Optional[Any] , __magic_name__ : Tuple=250_880 , __magic_name__ : Union[str, Any]=64 , __magic_name__ : List[str]=2 , __magic_name__ : Union[str, Any]=8 , __magic_name__ : Optional[Any]=1e-5 , __magic_name__ : List[Any]=0.02 , __magic_name__ : Any=True , __magic_name__ : Dict=1 , __magic_name__ : Optional[int]=2 , __magic_name__ : Optional[Any]=False , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : Tuple=False , **__magic_name__ : str , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = vocab_size # Backward compatibility with n_embed kwarg SCREAMING_SNAKE_CASE_ = kwargs.pop("n_embed" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = hidden_size if n_embed is None else n_embed SCREAMING_SNAKE_CASE_ = n_layer SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = layer_norm_epsilon SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = pretraining_tp SCREAMING_SNAKE_CASE_ = apply_residual_connection_post_layernorm SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = slow_but_exact super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = version.parse('''1.12''' ) def __init__( self : Union[str, Any] , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> List[Any]: super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , "pad_token_id" , __magic_name__ ): # TODO: how to do that better? SCREAMING_SNAKE_CASE_ = 0 @property def __A ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE_ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__magic_name__ , direction="inputs" , inverted_values_shape=__magic_name__ ) SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "sequence"} return common_inputs @property def __A ( self : Optional[int] ) -> int: return self._config.n_layer @property def __A ( self : Optional[int] ) -> int: return self._config.n_head @property def __A ( self : Optional[int] ) -> float: return 1e-3 def __A ( self : List[Any] , __magic_name__ : "PreTrainedTokenizer" , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE_ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ = seqlen + 2 SCREAMING_SNAKE_CASE_ = self._config.hidden_size // self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) SCREAMING_SNAKE_CASE_ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) SCREAMING_SNAKE_CASE_ = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE_ = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE_ = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE_ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def __A ( self : Optional[Any] ) -> int: return 13
118
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A : Optional[int] = logging.getLogger(__name__) A : int = "Hello world! cécé herlolip" A : List[Any] = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = BertAbsConfig( temp_dir="." , finetune_bert=__UpperCamelCase , large=__UpperCamelCase , share_emb=__UpperCamelCase , use_bert_emb=__UpperCamelCase , encoder="bert" , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE_ = torch.load(__UpperCamelCase , lambda __UpperCamelCase , __UpperCamelCase : storage ) SCREAMING_SNAKE_CASE_ = AbsSummarizer(__UpperCamelCase , torch.device("cpu" ) , __UpperCamelCase ) original.eval() SCREAMING_SNAKE_CASE_ = BertAbsSummarizer(__UpperCamelCase , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) SCREAMING_SNAKE_CASE_ = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs SCREAMING_SNAKE_CASE_ = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(__UpperCamelCase )) ) SCREAMING_SNAKE_CASE_ = torch.tensor(__UpperCamelCase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(__UpperCamelCase )) ) SCREAMING_SNAKE_CASE_ = torch.tensor(__UpperCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass SCREAMING_SNAKE_CASE_ = encoder_input_ids SCREAMING_SNAKE_CASE_ = decoder_input_ids SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE_ = original(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )[0] SCREAMING_SNAKE_CASE_ = original.generator(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = new_model( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )[0] SCREAMING_SNAKE_CASE_ = new_model.generator(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) A : int = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
118
1
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Any , UpperCamelCase_: List[str] , UpperCamelCase_: int ) -> Union[str, Any]: """simple docstring""" return f'gaussian_noise_s={seed}_shape={"_".join([str(UpperCamelCase_ ) for s in shape] )}.npy' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: str , UpperCamelCase_: str=0 , UpperCamelCase_: Tuple=(4, 4, 64, 64) , UpperCamelCase_: Optional[int]=False ) -> Any: """simple docstring""" lowercase__ = jnp.bfloataa if fpaa else jnp.floataa lowercase__ = jnp.array(load_hf_numpy(self.get_file_format(UpperCamelCase_ , UpperCamelCase_ ) ) , dtype=UpperCamelCase_ ) return image def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[Any]=False , UpperCamelCase_: Dict="CompVis/stable-diffusion-v1-4" ) -> List[Any]: """simple docstring""" lowercase__ = jnp.bfloataa if fpaa else jnp.floataa lowercase__ = '''bf16''' if fpaa else None lowercase__ , lowercase__ = FlaxUNetaDConditionModel.from_pretrained( UpperCamelCase_ , subfolder='''unet''' , dtype=UpperCamelCase_ , revision=UpperCamelCase_ ) return model, params def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Dict=0 , UpperCamelCase_: Tuple=(4, 77, 768) , UpperCamelCase_: Tuple=False ) -> Dict: """simple docstring""" lowercase__ = jnp.bfloataa if fpaa else jnp.floataa lowercase__ = jnp.array(load_hf_numpy(self.get_file_format(UpperCamelCase_ , UpperCamelCase_ ) ) , dtype=UpperCamelCase_ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=UpperCamelCase_ ) lowercase__ = self.get_latents(UpperCamelCase_ , fpaa=UpperCamelCase_ ) lowercase__ = self.get_encoder_hidden_states(UpperCamelCase_ , fpaa=UpperCamelCase_ ) lowercase__ = model.apply( {'''params''': params} , UpperCamelCase_ , jnp.array(UpperCamelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=UpperCamelCase_ , ).sample assert sample.shape == latents.shape lowercase__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowercase__ = jnp.array(UpperCamelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any] ) -> str: """simple docstring""" lowercase__ , lowercase__ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=UpperCamelCase_ ) lowercase__ = self.get_latents(UpperCamelCase_ , shape=(4, 4, 96, 96) , fpaa=UpperCamelCase_ ) lowercase__ = self.get_encoder_hidden_states(UpperCamelCase_ , shape=(4, 77, 1_024) , fpaa=UpperCamelCase_ ) lowercase__ = model.apply( {'''params''': params} , UpperCamelCase_ , jnp.array(UpperCamelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=UpperCamelCase_ , ).sample assert sample.shape == latents.shape lowercase__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowercase__ = jnp.array(UpperCamelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-2 )
93
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Dict ) -> Any: """simple docstring""" lowercase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase__ = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(UpperCamelCase_ ) , torch_builtin(UpperCamelCase_ ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCamelCase_ ) , gelu_new(UpperCamelCase_ ) ) ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" lowercase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase__ = get_activation('''gelu''' ) lowercase__ = get_activation('''gelu_10''' ) lowercase__ = torch_builtin(UpperCamelCase_ ) lowercase__ = geluaa(UpperCamelCase_ ) lowercase__ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCamelCase_ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(UpperCamelCase_ ): get_activation('''bogus''' ) with self.assertRaises(UpperCamelCase_ ): get_activation(UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = get_activation('''gelu''' ) lowercase__ = 1 lowercase__ = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCamelCase_ ): lowercase__ = acta.a
93
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __lowerCAmelCase : str = get_tests_dir("fixtures") class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Any ): # A mock response for an HTTP head request to emulate server down __lowercase : Tuple = mock.Mock() __lowercase : Optional[int] = 500 __lowercase : Optional[Any] = {} __lowercase : int = HTTPError __lowercase : Optional[int] = {} # Download this model to make sure it's in the cache. __lowercase : Dict = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=UpperCAmelCase_ ) as mock_head: __lowercase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self : int ): # This test is for deprecated behavior and can be removed in v5 __lowercase : Any = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def snake_case_ ( cls : List[Any] ): __lowercase : List[Any] = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def snake_case_ ( cls : str ): try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def snake_case_ ( self : Any ): __lowercase : List[str] = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase_ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) __lowercase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCAmelCase_ , repo_id='''test-feature-extractor''' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) __lowercase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def snake_case_ ( self : int ): __lowercase : Any = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase_ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) __lowercase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCAmelCase_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) __lowercase : List[str] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def snake_case_ ( self : Tuple ): CustomFeatureExtractor.register_for_auto_class() __lowercase : Union[str, Any] = CustomFeatureExtractor.from_pretrained(UpperCAmelCase_ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) __lowercase : Optional[Any] = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
156
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Optional[Any] = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: lowerCAmelCase : Optional[int] = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : Optional[int] = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : str = [5, 11, 17, 23] lowerCAmelCase : Tuple = [256, 512, 1_024, 1_024] lowerCAmelCase : Optional[int] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCAmelCase : Optional[int] = 768 lowerCAmelCase : int = [1, 1, 1, 0.5] lowerCAmelCase : List[Any] = [256, 512, 768, 768] lowerCAmelCase : List[Any] = 150 lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : Union[str, Any] = (1, 384, 384) lowerCAmelCase : Tuple = False lowerCAmelCase : List[str] = 'project' if "ade" in checkpoint_url: lowerCAmelCase : Tuple = True lowerCAmelCase : str = 768 lowerCAmelCase : List[str] = [1, 1, 1, 0.5] lowerCAmelCase : Optional[Any] = 150 lowerCAmelCase : List[str] = 16 lowerCAmelCase : Dict = 'huggingface/label-files' lowerCAmelCase : Optional[Any] = 'ade20k-id2label.json' lowerCAmelCase : Tuple = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase, _UpperCAmelCase, repo_type='dataset' ) ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : int = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = [1, 150, 480, 480] return config, expected_shape def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : List[str] = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase : Optional[int] = name.replace('pretrained.model', 'dpt.encoder' ) if "pretrained.model" in name: lowerCAmelCase : Dict = name.replace('pretrained.model', 'dpt.embeddings' ) if "patch_embed" in name: lowerCAmelCase : int = name.replace('patch_embed', '' ) if "pos_embed" in name: lowerCAmelCase : Any = name.replace('pos_embed', 'position_embeddings' ) if "attn.proj" in name: lowerCAmelCase : str = name.replace('attn.proj', 'attention.output.dense' ) if "proj" in name and "project" not in name: lowerCAmelCase : Union[str, Any] = name.replace('proj', 'projection' ) if "blocks" in name: lowerCAmelCase : List[str] = name.replace('blocks', 'layer' ) if "mlp.fc1" in name: lowerCAmelCase : Optional[Any] = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase : Any = name.replace('mlp.fc2', 'output.dense' ) if "norm1" in name and "backbone" not in name: lowerCAmelCase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name and "backbone" not in name: lowerCAmelCase : str = name.replace('norm2', 'layernorm_after' ) if "scratch.output_conv" in name: lowerCAmelCase : int = name.replace('scratch.output_conv', 'head' ) if "scratch" in name: lowerCAmelCase : Optional[int] = name.replace('scratch', 'neck' ) if "layer1_rn" in name: lowerCAmelCase : int = name.replace('layer1_rn', 'convs.0' ) if "layer2_rn" in name: lowerCAmelCase : Optional[Any] = name.replace('layer2_rn', 'convs.1' ) if "layer3_rn" in name: lowerCAmelCase : List[str] = name.replace('layer3_rn', 'convs.2' ) if "layer4_rn" in name: lowerCAmelCase : int = name.replace('layer4_rn', 'convs.3' ) if "refinenet" in name: lowerCAmelCase : Optional[int] = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase : Any = name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowerCAmelCase : Dict = name.replace('out_conv', 'projection' ) if "resConfUnit1" in name: lowerCAmelCase : Optional[int] = name.replace('resConfUnit1', 'residual_layer1' ) if "resConfUnit2" in name: lowerCAmelCase : List[str] = name.replace('resConfUnit2', 'residual_layer2' ) if "conv1" in name: lowerCAmelCase : List[Any] = name.replace('conv1', 'convolution1' ) if "conv2" in name: lowerCAmelCase : Optional[int] = name.replace('conv2', 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase : Union[str, Any] = name.replace('pretrained.act_postprocess1.0.project.0', 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase : Optional[Any] = name.replace('pretrained.act_postprocess2.0.project.0', 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase : List[Any] = name.replace('pretrained.act_postprocess3.0.project.0', 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase : Optional[Any] = name.replace('pretrained.act_postprocess4.0.project.0', 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase : Tuple = name.replace('pretrained.act_postprocess1.3', 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase : str = name.replace('pretrained.act_postprocess1.4', 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase : int = name.replace('pretrained.act_postprocess2.3', 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase : Optional[Any] = name.replace('pretrained.act_postprocess2.4', 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess3.3', 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess4.3', 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess4.4', 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: lowerCAmelCase : int = name.replace('pretrained', 'dpt' ) if "bn" in name: lowerCAmelCase : List[str] = name.replace('bn', 'batch_norm' ) if "head" in name: lowerCAmelCase : Any = name.replace('head', 'head.head' ) if "encoder.norm" in name: lowerCAmelCase : Dict = name.replace('encoder.norm', 'layernorm' ) if "auxlayer" in name: lowerCAmelCase : Tuple = name.replace('auxlayer', 'auxiliary_head.head' ) if "backbone" in name: lowerCAmelCase : Tuple = name.replace('backbone', 'backbone.bit.encoder' ) if ".." in name: lowerCAmelCase : Optional[Any] = name.replace('..', '.' ) if "stem.conv" in name: lowerCAmelCase : List[str] = name.replace('stem.conv', 'bit.embedder.convolution' ) if "blocks" in name: lowerCAmelCase : Dict = name.replace('blocks', 'layers' ) if "convolution" in name and "backbone" in name: lowerCAmelCase : Dict = name.replace('convolution', 'conv' ) if "layer" in name and "backbone" in name: lowerCAmelCase : Dict = name.replace('layer', 'layers' ) if "backbone.bit.encoder.bit" in name: lowerCAmelCase : List[str] = name.replace('backbone.bit.encoder.bit', 'backbone.bit' ) if "embedder.conv" in name: lowerCAmelCase : Any = name.replace('embedder.conv', 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: lowerCAmelCase : Optional[int] = name.replace('backbone.bit.encoder.stem.norm', 'backbone.bit.embedder.norm' ) return name def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : List[Any] = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowerCAmelCase : int = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Union[str, Any] = in_proj_weight[: config.hidden_size, :] lowerCAmelCase : Dict = in_proj_bias[: config.hidden_size] lowerCAmelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : List[str] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Tuple = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase : List[str] = get_dpt_config(_UpperCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCAmelCase : str = torch.load(_UpperCAmelCase, map_location='cpu' ) # remove certain keys remove_ignore_keys_(_UpperCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase : str = state_dict.pop(_UpperCAmelCase ) lowerCAmelCase : int = val # read in qkv matrices read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase ) # load HuggingFace model lowerCAmelCase : int = DPTForSemanticSegmentation(_UpperCAmelCase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # Check outputs on an image lowerCAmelCase : str = 480 if 'ade' in checkpoint_url else 384 lowerCAmelCase : Dict = DPTImageProcessor(size=_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : Union[str, Any] = image_processor(_UpperCAmelCase, return_tensors='pt' ) # forward pass lowerCAmelCase : Optional[Any] = model(**_UpperCAmelCase ).logits if 'ade' in checkpoint_url else model(**_UpperCAmelCase ).predicted_depth if show_prediction: lowerCAmelCase : str = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode='bicubic', align_corners=_UpperCAmelCase, ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) __A : Dict = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
138
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowerCAmelCase__ : Dict = word.split() def justify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Dict = max_width - width lowerCAmelCase__ : Dict = len(A__ ) if len(A__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCAmelCase__ : Optional[int] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCAmelCase__ : List[str] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCAmelCase__ : Union[str, Any] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(A__ ): num_spaces_between_words_list[i] += 1 lowerCAmelCase__ : List[Any] = [] for i in range(A__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(A__ ) lowerCAmelCase__ : int = [] lowerCAmelCase__ : Any = [] lowerCAmelCase__ : List[str] = 0 for word in words: if width + len(A__ ) + len(A__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(A__ ) width += len(A__ ) else: # justify the line and add it to result answer.append(justify(A__ , A__ , A__ ) ) # reset new line and new width lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = [word], len(A__ ) lowerCAmelCase__ : Tuple = max_width - width - len(A__ ) answer.append(' '.join(A__ ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
357
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowercase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase : Optional[int] = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Union[PIL.Image.Image, np.ndarray] class A__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules( prior=lowercase , image_encoder=lowercase , image_processor=lowercase , scheduler=lowercase , renderer=lowercase , ) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' if latents is None: a__ : List[Any] = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}') a__ : List[str] = latents.to(lowercase) a__ : Dict = latents * scheduler.init_noise_sigma return latents def __lowercase ( self , lowercase=0) -> Optional[int]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`') a__ : Any = torch.device(F'cuda:{gpu_id}') a__ : Optional[Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase) @property def __lowercase ( self) -> Any: '''simple docstring''' if self.device != torch.device('meta') or not hasattr(self.image_encoder , '_hf_hook'): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase , '_hf_hook') and hasattr(module._hf_hook , 'execution_device') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , ) -> Any: '''simple docstring''' if isinstance(lowercase , lowercase) and isinstance(image[0] , torch.Tensor): a__ : Dict = torch.cat(lowercase , axis=0) if image[0].ndim == 4 else torch.stack(lowercase , axis=0) if not isinstance(lowercase , torch.Tensor): a__ : List[Any] = self.image_processor(lowercase , return_tensors='pt').pixel_values[0].unsqueeze(0) a__ : Optional[Any] = image.to(dtype=self.image_encoder.dtype , device=lowercase) a__ : int = self.image_encoder(lowercase)['last_hidden_state'] a__ : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 a__ : Optional[int] = image_embeds.repeat_interleave(lowercase , dim=0) if do_classifier_free_guidance: a__ : Tuple = torch.zeros_like(lowercase) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a__ : int = torch.cat([negative_image_embeds, image_embeds]) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase) def __call__( self , lowercase , lowercase = 1 , lowercase = 25 , lowercase = None , lowercase = None , lowercase = 4.0 , lowercase = 64 , lowercase = "pil" , lowercase = True , ) -> Tuple: '''simple docstring''' if isinstance(lowercase , PIL.Image.Image): a__ : List[str] = 1 elif isinstance(lowercase , torch.Tensor): a__ : List[str] = image.shape[0] elif isinstance(lowercase , lowercase) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image)): a__ : List[str] = len(lowercase) else: raise ValueError( F'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase)}') a__ : Tuple = self._execution_device a__ : List[Any] = batch_size * num_images_per_prompt a__ : Optional[Any] = guidance_scale > 1.0 a__ : Optional[int] = self._encode_image(lowercase , lowercase , lowercase , lowercase) # prior self.scheduler.set_timesteps(lowercase , device=lowercase) a__ : str = self.scheduler.timesteps a__ : Tuple = self.prior.config.num_embeddings a__ : Optional[int] = self.prior.config.embedding_dim a__ : Dict = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim a__ : Tuple = latents.reshape(latents.shape[0] , lowercase , lowercase) for i, t in enumerate(self.progress_bar(lowercase)): # expand the latents if we are doing classifier free guidance a__ : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents a__ : Optional[int] = self.scheduler.scale_model_input(lowercase , lowercase) a__ : Tuple = self.prior( lowercase , timestep=lowercase , proj_embedding=lowercase , ).predicted_image_embedding # remove the variance a__ , a__ : Any = noise_pred.split( scaled_model_input.shape[2] , dim=2) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: a__ , a__ : Any = noise_pred.chunk(2) a__ : str = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) a__ : List[str] = self.scheduler.step( lowercase , timestep=lowercase , sample=lowercase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase) a__ : List[Any] = [] for i, latent in enumerate(lowercase): print() a__ : Dict = self.renderer.decode( latent[None, :] , lowercase , size=lowercase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(lowercase) a__ : Union[str, Any] = torch.stack(lowercase) if output_type not in ["np", "pil"]: raise ValueError(F'Only the output types `pil` and `np` are supported not output_type={output_type}') a__ : List[Any] = images.cpu().numpy() if output_type == "pil": a__ : Any = [self.numpy_to_pil(lowercase) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook') and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase)
99
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( lowercase__ , lowercase__ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowercase__ , lowercase__ ) ) ) def _snake_case ( lowercase__ , lowercase__ ): if dataset.ndim != value_array.ndim: _lowerCamelCase : Tuple = ( 'Wrong input data\'s dimensions... ' f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(lowercase__ ) try: if dataset.shape[1] != value_array.shape[1]: _lowerCamelCase : Optional[int] = ( 'Wrong input data\'s shape... ' f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(lowercase__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: _lowerCamelCase : int = ( 'Input data have different datatype... ' f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(lowercase__ ) _lowerCamelCase : Optional[int] = [] for value in value_array: _lowerCamelCase : Tuple = euclidean(lowercase__ , dataset[0] ) _lowerCamelCase : Union[str, Any] = dataset[0].tolist() for dataset_value in dataset[1:]: _lowerCamelCase : Optional[Any] = euclidean(lowercase__ , lowercase__ ) if dist > temp_dist: _lowerCamelCase : List[Any] = temp_dist _lowerCamelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( lowercase__ , lowercase__ ): return np.dot(lowercase__ , lowercase__ ) / (norm(lowercase__ ) * norm(lowercase__ )) if __name__ == "__main__": import doctest doctest.testmod()
96
0
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def __snake_case ( _UpperCAmelCase ): __a = int(_UpperCAmelCase ) __a , __a , __a = t // 3600, (t // 60) % 60, t % 60 return f'{h}:{m:02d}:{s:02d}' if h != 0 else f'{m:02d}:{s:02d}' def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=300 ): # docstyle-ignore return f'\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n ' def __snake_case ( _UpperCAmelCase ): __a = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f' <th>{i}</th>\n' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __a = f'{elt:.6f}' if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else str(_UpperCAmelCase ) html_code += f' <td>{elt}</td>\n' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _A : UpperCamelCase__ : Tuple = 5 UpperCamelCase__ : List[Any] = 0.2 def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional["NotebookTrainingTracker"] = None , __SCREAMING_SNAKE_CASE : int = 300 , ): '''simple docstring''' __a = total __a = '''''' if prefix is None else prefix __a = leave __a = parent __a = width __a = None __a = None __a = None def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : str = None): '''simple docstring''' __a = value if comment is not None: __a = comment if self.last_value is None: __a = __a = time.time() __a = __a = value __a = __a = None __a = self.warmup __a = 1 self.update_bar(__SCREAMING_SNAKE_CASE) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total): if self.first_calls > 0: self.first_calls -= 1 __a = time.time() __a = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __a = self.elapsed_time / (value - self.start_value) else: __a = None if value >= self.total: __a = self.total __a = None if not self.leave: self.close() elif self.average_time_per_item is not None: __a = self.average_time_per_item * (self.total - value) self.update_bar(__SCREAMING_SNAKE_CASE) __a = value __a = current_time if self.average_time_per_item is None: __a = 1 else: __a = max(int(self.update_every / self.average_time_per_item) , 1) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None): '''simple docstring''' __a = ''' ''' * (len(str(self.total)) - len(str(__SCREAMING_SNAKE_CASE))) + str(__SCREAMING_SNAKE_CASE) if self.elapsed_time is None: __a = F'[{spaced_value}/{self.total} : < :' elif self.predicted_remaining is None: __a = F'[{spaced_value}/{self.total} {format_time(self.elapsed_time)}' else: __a = ( F'[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <' F' {format_time(self.predicted_remaining)}' ) self.label += F', {1/self.average_time_per_item:.2f} it/s' self.label += "]" if self.comment is None or len(self.comment) == 0 else F', {self.comment}]' self.display() def _lowerCamelCase ( self : str): '''simple docstring''' __a = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __a = disp.display(disp.HTML(self.html_code) , display_id=__SCREAMING_SNAKE_CASE) else: self.output.update(disp.HTML(self.html_code)) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''')) class _A ( __UpperCAmelCase ): def __init__( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE) __a = None if column_names is None else [column_names] __a = None def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __a = disp.display(disp.HTML(self.html_code) , display_id=__SCREAMING_SNAKE_CASE) else: self.output.update(disp.HTML(self.html_code)) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' if self.inner_table is None: __a = [list(values.keys()), list(values.values())] else: __a = self.inner_table[0] if len(self.inner_table) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__SCREAMING_SNAKE_CASE) __a = columns self.inner_table.append([values[c] for c in columns]) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Tuple=300): '''simple docstring''' __a = NotebookProgressBar(__SCREAMING_SNAKE_CASE , prefix=__SCREAMING_SNAKE_CASE , parent=self , width=__SCREAMING_SNAKE_CASE) return self.child_bar def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = None self.display() class _A ( __UpperCAmelCase ): def __init__( self : Tuple): '''simple docstring''' __a = None __a = None __a = False def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' __a = 0 __a = 0 __a = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''') __a = NotebookTrainingTracker(state.max_steps , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = int(state.epoch) if int(state.epoch) == state.epoch else F'{state.epoch:.2f}' self.training_tracker.update( state.global_step + 1 , comment=F'Epoch {epoch}/{state.num_train_epochs}' , force_update=self._force_next_update , ) __a = False def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : int): '''simple docstring''' if not has_length(__SCREAMING_SNAKE_CASE): return if self.prediction_bar is None: if self.training_tracker is not None: __a = self.training_tracker.add_child(len(__SCREAMING_SNAKE_CASE)) else: __a = NotebookProgressBar(len(__SCREAMING_SNAKE_CASE)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() __a = None def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __a = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy __a = state.global_step self.training_tracker.write_line(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]=None , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' if self.training_tracker is not None: __a = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history): if "loss" in log: __a = log['''loss'''] break if self.first_column == "Epoch": __a = int(state.epoch) else: __a = state.global_step __a = '''eval''' for k in metrics: if k.endswith('''_loss'''): __a = re.sub(r'''\_loss$''' , '''''' , __SCREAMING_SNAKE_CASE) __a = metrics.pop('''total_flos''' , __SCREAMING_SNAKE_CASE) __a = metrics.pop('''epoch''' , __SCREAMING_SNAKE_CASE) __a = metrics.pop(F'{metric_key_prefix}_runtime' , __SCREAMING_SNAKE_CASE) __a = metrics.pop(F'{metric_key_prefix}_samples_per_second' , __SCREAMING_SNAKE_CASE) __a = metrics.pop(F'{metric_key_prefix}_steps_per_second' , __SCREAMING_SNAKE_CASE) __a = metrics.pop(F'{metric_key_prefix}_jit_compilation_time' , __SCREAMING_SNAKE_CASE) for k, v in metrics.items(): if k == F'{metric_key_prefix}_loss': __a = v else: __a = k.split('''_''') __a = ''' '''.join([part.capitalize() for part in splits[1:]]) __a = v self.training_tracker.write_line(__SCREAMING_SNAKE_CASE) self.training_tracker.remove_child() __a = None # Evaluation takes a long time so we should force the next update. __a = True def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' self.training_tracker.update( state.global_step , comment=F'Epoch {int(state.epoch)}/{state.num_train_epochs}' , force_update=__SCREAMING_SNAKE_CASE) __a = None
131
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): def get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCAmelCase ) __a = f'{_stra[0:_stra.index(_UpperCAmelCase )]} {_stra[_stra.index(_UpperCAmelCase ) + 1:]}' return "".join(_UpperCAmelCase ) # matching characters __a = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) __a = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) __a = len(_UpperCAmelCase ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(_UpperCAmelCase , _UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(_UpperCAmelCase ) + match_count / len(_UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
131
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowerCamelCase : int = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , *__a : List[Any] , **__a : List[str] ) -> None: """simple docstring""" warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
233
lowerCamelCase : Tuple = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} lowerCamelCase : int = ['''a''', '''b''', '''c''', '''d''', '''e'''] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] ): __lowercase : Dict = start # add current to visited visited.append(lowerCAmelCase_ ) __lowercase : Dict = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowercase : List[Any] = topological_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # if all neighbors visited add current to sort sort.append(lowerCAmelCase_ ) # if all vertices haven't been visited select a new one to visit if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): for vertice in vertices: if vertice not in visited: __lowercase : Tuple = topological_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # return sort return sort if __name__ == "__main__": lowerCamelCase : Any = topological_sort('''a''', [], []) print(sort)
233
1
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = FileLock(str(tmpdir / """foo.lock""" ) ) _lowerCAmelCase = FileLock(str(tmpdir / """foo.lock""" ) ) _lowerCAmelCase = 0.01 with locka.acquire(): with pytest.raises(__lowerCamelCase ): _lowerCAmelCase = time.time() locka.acquire(__lowerCamelCase ) assert time.time() - _start > timeout def A (__lowerCamelCase :Union[str, Any] ): _lowerCAmelCase = """a""" * 1000 + """.lock""" _lowerCAmelCase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(__lowerCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 _lowerCAmelCase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__lowerCamelCase ): locka.acquire(0 )
229
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : jnp.ndarray @flax_register_to_config class UpperCAmelCase_ ( nn.Module , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : int = 3_2 _lowercase : int = 4 _lowercase : int = 4 _lowercase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _lowercase : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _lowercase : Union[bool, Tuple[bool]] = False _lowercase : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _lowercase : int = 2 _lowercase : Union[int, Tuple[int]] = 8 _lowercase : Optional[Union[int, Tuple[int]]] = None _lowercase : int = 1_2_8_0 _lowercase : float = 0.0 _lowercase : bool = False _lowercase : jnp.dtype = jnp.floataa _lowercase : bool = True _lowercase : int = 0 _lowercase : bool = False def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = (1, self.in_channels, self.sample_size, self.sample_size) _lowerCAmelCase = jnp.zeros(_lowercase , dtype=jnp.floataa ) _lowerCAmelCase = jnp.ones((1,) , dtype=jnp.intaa ) _lowerCAmelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _lowerCAmelCase , _lowerCAmelCase = jax.random.split(_lowercase ) _lowerCAmelCase = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(_lowercase , _lowercase , _lowercase , _lowercase )["params"] def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.block_out_channels _lowerCAmelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _lowerCAmelCase = self.num_attention_heads or self.attention_head_dim # input _lowerCAmelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _lowerCAmelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _lowerCAmelCase = FlaxTimestepEmbedding(_lowercase , dtype=self.dtype ) _lowerCAmelCase = self.only_cross_attention if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = (num_attention_heads,) * len(self.down_block_types ) # down _lowerCAmelCase = [] _lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _lowerCAmelCase = output_channel _lowerCAmelCase = block_out_channels[i] _lowerCAmelCase = i == len(_lowercase ) - 1 if down_block_type == "CrossAttnDownBlock2D": _lowerCAmelCase = FlaxCrossAttnDownBlockaD( in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _lowerCAmelCase = FlaxDownBlockaD( in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowercase ) _lowerCAmelCase = down_blocks # mid _lowerCAmelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _lowerCAmelCase = [] _lowerCAmelCase = list(reversed(_lowercase ) ) _lowerCAmelCase = list(reversed(_lowercase ) ) _lowerCAmelCase = list(reversed(_lowercase ) ) _lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _lowerCAmelCase = output_channel _lowerCAmelCase = reversed_block_out_channels[i] _lowerCAmelCase = reversed_block_out_channels[min(i + 1 , len(_lowercase ) - 1 )] _lowerCAmelCase = i == len(_lowercase ) - 1 if up_block_type == "CrossAttnUpBlock2D": _lowerCAmelCase = FlaxCrossAttnUpBlockaD( in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _lowerCAmelCase = FlaxUpBlockaD( in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowercase ) _lowerCAmelCase = output_channel _lowerCAmelCase = up_blocks # out _lowerCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _lowerCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase = True , _lowercase = False , ): """simple docstring""" if not isinstance(_lowercase , jnp.ndarray ): _lowerCAmelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowercase , jnp.ndarray ) and len(timesteps.shape ) == 0: _lowerCAmelCase = timesteps.astype(dtype=jnp.floataa ) _lowerCAmelCase = jnp.expand_dims(_lowercase , 0 ) _lowerCAmelCase = self.time_proj(_lowercase ) _lowerCAmelCase = self.time_embedding(_lowercase ) # 2. pre-process _lowerCAmelCase = jnp.transpose(_lowercase , (0, 2, 3, 1) ) _lowerCAmelCase = self.conv_in(_lowercase ) # 3. down _lowerCAmelCase = (sample,) for down_block in self.down_blocks: if isinstance(_lowercase , _lowercase ): _lowerCAmelCase , _lowerCAmelCase = down_block(_lowercase , _lowercase , _lowercase , deterministic=not train ) else: _lowerCAmelCase , _lowerCAmelCase = down_block(_lowercase , _lowercase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _lowerCAmelCase = () for down_block_res_sample, down_block_additional_residual in zip( _lowercase , _lowercase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _lowerCAmelCase = new_down_block_res_samples # 4. mid _lowerCAmelCase = self.mid_block(_lowercase , _lowercase , _lowercase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _lowerCAmelCase = down_block_res_samples[-(self.layers_per_block + 1) :] _lowerCAmelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = up_block( _lowercase , temb=_lowercase , encoder_hidden_states=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train , ) else: _lowerCAmelCase = up_block(_lowercase , temb=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train ) # 6. post-process _lowerCAmelCase = self.conv_norm_out(_lowercase ) _lowerCAmelCase = nn.silu(_lowercase ) _lowerCAmelCase = self.conv_out(_lowercase ) _lowerCAmelCase = jnp.transpose(_lowercase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowercase )
229
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase_ : int = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids lowercase_ : Union[str, Any] = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids lowercase_ : Union[str, Any] = model(input_ids.to(__SCREAMING_SNAKE_CASE ) , labels=labels.to(__SCREAMING_SNAKE_CASE ) ).loss lowercase_ : int = -(labels.shape[-1] * loss.item()) lowercase_ : Any = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
93
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = "▁" _lowercase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _lowercase : Optional[int] = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), } } _lowercase : str = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off _lowercase : List[Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Any = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token lowercase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) lowercase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) lowercase_ : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : Tuple = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : str = 1 lowercase_ : str = len(self.sp_model ) lowercase_ : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__SCREAMING_SNAKE_CASE ) } lowercase_ : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} lowercase_ : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase_ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase_ : Optional[Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase_ : Optional[Any] = src_lang if src_lang is not None else '''en_XX''' lowercase_ : str = self.lang_code_to_id[self._src_lang] lowercase_ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" lowercase_ : Optional[int] = self.__dict__.copy() lowercase_ : Dict = None lowercase_ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : Dict = {} lowercase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _snake_case ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = [1] * len(self.prefix_tokens ) lowercase_ : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : Optional[int] = [self.sep_token_id] lowercase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase_ : Optional[Any] = src_lang lowercase_ : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = tgt_lang_id return inputs def _snake_case ( self ): """simple docstring""" lowercase_ : str = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : Any = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Tuple = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowercase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : List[str] = src_lang lowercase_ : int = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = self.lang_code_to_id[src_lang] lowercase_ : Optional[Any] = [] lowercase_ : List[str] = [self.eos_token_id, self.cur_lang_code] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = self.lang_code_to_id[lang] lowercase_ : Dict = [] lowercase_ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
93
1
'''simple docstring''' import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def A (__lowerCamelCase :Union[str, Any] ): _lowerCAmelCase = emb.weight.shape _lowerCAmelCase = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) _lowerCAmelCase = emb.weight.data return lin_layer def A (__lowerCamelCase :Tuple ): _lowerCAmelCase = torch.load(_lowercase , map_location="""cpu""" ) _lowerCAmelCase = Namespace(**checkpoint["""cfg"""]["""model"""] ) _lowerCAmelCase = checkpoint["model"] remove_ignore_keys_(_lowercase ) _lowerCAmelCase = state_dict["decoder.embed_tokens.weight"].shape[0] _lowerCAmelCase = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} _lowerCAmelCase = XGLMConfig( vocab_size=_lowercase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _lowerCAmelCase = XGLMForCausalLM(_lowercase ) _lowerCAmelCase = model.load_state_dict(_lowercase , strict=_lowercase ) print(_lowercase ) _lowerCAmelCase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowercase = parser.parse_args() _lowercase = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
363
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''convbert''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=768 , _lowercase=2 , _lowercase=9 , _lowercase=1 , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = embedding_size _lowerCAmelCase = head_ratio _lowerCAmelCase = conv_kernel_size _lowerCAmelCase = num_groups _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
229
0
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ) or number < 0: raise ValueError("Input must be a non-negative integer" ) _UpperCAmelCase = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
22
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __lowerCAmelCase = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __lowerCAmelCase = {'facebook/blenderbot-3B': 128} class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["input_ids", "attention_mask"] lowerCAmelCase_ = BlenderbotTokenizer def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> int: super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) _snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase ) != add_prefix_space: _snake_case = getattr(UpperCAmelCase , pre_tok_state.pop("""type""" ) ) _snake_case = add_prefix_space _snake_case = pre_tok_class(**UpperCAmelCase ) _snake_case = add_prefix_space _snake_case = """post_processor""" _snake_case = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: _snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _snake_case = tuple(state["""sep"""] ) if "cls" in state: _snake_case = tuple(state["""cls"""] ) _snake_case = False if state.get("""add_prefix_space""" , UpperCAmelCase ) != add_prefix_space: _snake_case = add_prefix_space _snake_case = True if state.get("""trim_offsets""" , UpperCAmelCase ) != trim_offsets: _snake_case = trim_offsets _snake_case = True if changes_to_apply: _snake_case = getattr(UpperCAmelCase , state.pop("""type""" ) ) _snake_case = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase (self ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase (self , UpperCAmelCase ) -> Any: _snake_case = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value _snake_case = value def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: _snake_case = kwargs.get("""is_split_into_words""" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: _snake_case = kwargs.get("""is_split_into_words""" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> Dict: return token_ids_a + [self.eos_token_id] def lowercase (self , UpperCAmelCase ) -> List[int]: _snake_case = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase ) _snake_case = """ """.join(UpperCAmelCase ) _snake_case = self.encode(UpperCAmelCase ) if len(UpperCAmelCase ) > self.model_max_length: _snake_case = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
270
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = DiTPipeline lowerCAmelCase_ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } lowerCAmelCase_ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCAmelCase_ = False def lowercase (self ) -> Union[str, Any]: torch.manual_seed(0 ) _snake_case = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCAmelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=UpperCAmelCase , ) _snake_case = AutoencoderKL() _snake_case = DDIMScheduler() _snake_case = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def lowercase (self , UpperCAmelCase , UpperCAmelCase=0 ) -> List[str]: if str(UpperCAmelCase ).startswith("""mps""" ): _snake_case = torch.manual_seed(UpperCAmelCase ) else: _snake_case = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) _snake_case = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowercase (self ) -> Union[str, Any]: _snake_case = """cpu""" _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = self.get_dummy_inputs(UpperCAmelCase ) _snake_case = pipe(**UpperCAmelCase ).images _snake_case = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _snake_case = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) def lowercase (self ) -> List[str]: self._test_inference_batch_single_identical(relax_max_difference=UpperCAmelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase (self ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase (self ) -> Any: _snake_case = torch.manual_seed(0 ) _snake_case = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _snake_case = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _snake_case = pipe.get_label_ids(UpperCAmelCase ) _snake_case = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): _snake_case = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase (self ) -> Union[str, Any]: _snake_case = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _snake_case = ["""vase""", """umbrella"""] _snake_case = pipe.get_label_ids(UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): _snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
270
1
import argparse import os import re lowerCamelCase = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCamelCase = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCamelCase = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCamelCase = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCamelCase = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCamelCase = re.compile(R'''\[([^\]]+)\]''') def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : List[Any] = _re_indent.search(_a ) return "" if search is None else search.groups()[0] def lowerCamelCase_ ( _a , _a="" , _a=None , _a=None ): """simple docstring""" lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Tuple = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(_a ): index += 1 lowerCAmelCase__ : Any = ['''\n'''.join(lines[:index] )] else: lowerCAmelCase__ : Dict = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase__ : List[str] = [lines[index]] index += 1 while index < len(_a ) and (end_prompt is None or not lines[index].startswith(_a )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_a ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(_a ) ) if index < len(_a ) - 1: lowerCAmelCase__ : Union[str, Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase__ : Optional[Any] = [] else: blocks.append('''\n'''.join(_a ) ) lowerCAmelCase__ : Optional[int] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_a ) > 0: blocks.append('''\n'''.join(_a ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_a ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def lowerCamelCase_ ( _a ): """simple docstring""" def _inner(_a ): return key(_a ).lower().replace('''_''' , '''''' ) return _inner def lowerCamelCase_ ( _a , _a=None ): """simple docstring""" def noop(_a ): return x if key is None: lowerCAmelCase__ : int = noop # Constants are all uppercase, they go first. lowerCAmelCase__ : Union[str, Any] = [obj for obj in objects if key(_a ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase__ : Optional[Any] = [obj for obj in objects if key(_a )[0].isupper() and not key(_a ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase__ : Union[str, Any] = [obj for obj in objects if not key(_a )[0].isupper()] lowerCAmelCase__ : List[str] = ignore_underscore(_a ) return sorted(_a , key=_a ) + sorted(_a , key=_a ) + sorted(_a , key=_a ) def lowerCamelCase_ ( _a ): """simple docstring""" def _replace(_a ): lowerCAmelCase__ : Union[str, Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' lowerCAmelCase__ : Any = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase__ : Optional[Any] = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_a )] ) + "]" lowerCAmelCase__ : Optional[Any] = import_statement.split('''\n''' ) if len(_a ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase__ : Optional[int] = 2 if lines[1].strip() == '''[''' else 1 lowerCAmelCase__ : Tuple = [(i, _re_strip_line.search(_a ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase__ : List[str] = sort_objects(_a , key=lambda _a : x[1] ) lowerCAmelCase__ : Optional[int] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_a ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase__ : Optional[Any] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase__ : List[Any] = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase__ : Union[str, Any] = keys[:-1] lowerCAmelCase__ : Dict = get_indent(lines[1] ) + ''', '''.join([f'"{k}"' for k in sort_objects(_a )] ) return "\n".join(_a ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase__ : Dict = _re_bracket_content.sub(_replace , _a ) return import_statement def lowerCamelCase_ ( _a , _a=True ): """simple docstring""" with open(_a , encoding='''utf-8''' ) as f: lowerCAmelCase__ : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase__ : List[str] = split_code_in_indented_blocks( _a , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_a ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase__ : List[Any] = main_blocks[block_idx] lowerCAmelCase__ : Tuple = block.split('''\n''' ) # Get to the start of the imports. lowerCAmelCase__ : str = 0 while line_idx < len(_a ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase__ : Optional[Any] = len(_a ) else: line_idx += 1 if line_idx >= len(_a ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase__ : Union[str, Any] = '''\n'''.join(block_lines[line_idx:-1] ) lowerCAmelCase__ : List[Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase__ : int = split_code_in_indented_blocks(_a , indent_level=_a ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase__ : Union[str, Any] = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase__ : Tuple = [(pattern.search(_a ).groups()[0] if pattern.search(_a ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase__ : Tuple = [(i, key) for i, key in enumerate(_a ) if key is not None] lowerCAmelCase__ : int = [x[0] for x in sorted(_a , key=lambda _a : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Optional[Any] = [] for i in range(len(_a ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase__ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_a ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase__ : str = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_a ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(_a ) ) def lowerCamelCase_ ( _a=True ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [] for root, _, files in os.walk(_a ): if "__init__.py" in files: lowerCAmelCase__ : Dict = sort_imports(os.path.join(_a , '''__init__.py''' ) , check_only=_a ) if result: lowerCAmelCase__ : int = [os.path.join(_a , '''__init__.py''' )] if len(_a ) > 0: raise ValueError(f'Would overwrite {len(_a )} files, run `make style`.' ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCamelCase = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
131
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=13 , _SCREAMING_SNAKE_CASE : Tuple=32 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : List[Any]=3 , _SCREAMING_SNAKE_CASE : str=16 , _SCREAMING_SNAKE_CASE : Union[str, Any]=[1, 2, 1] , _SCREAMING_SNAKE_CASE : List[Any]=[2, 2, 4] , _SCREAMING_SNAKE_CASE : str=2 , _SCREAMING_SNAKE_CASE : Optional[int]=2.0 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Dict=0.0 , _SCREAMING_SNAKE_CASE : str=0.0 , _SCREAMING_SNAKE_CASE : List[str]=0.1 , _SCREAMING_SNAKE_CASE : Tuple="gelu" , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : List[Any]=0.02 , _SCREAMING_SNAKE_CASE : Any=1E-5 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Any=10 , _SCREAMING_SNAKE_CASE : Union[str, Any]=8 , )-> Dict: lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Optional[Any] = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Dict = embed_dim lowerCAmelCase__ : Optional[Any] = depths lowerCAmelCase__ : Tuple = num_heads lowerCAmelCase__ : Dict = window_size lowerCAmelCase__ : List[str] = mlp_ratio lowerCAmelCase__ : str = qkv_bias lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = drop_path_rate lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Tuple = use_absolute_embeddings lowerCAmelCase__ : int = patch_norm lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Dict = is_training lowerCAmelCase__ : Any = scope lowerCAmelCase__ : int = use_labels lowerCAmelCase__ : Tuple = type_sequence_label_size lowerCAmelCase__ : Any = encoder_stride def UpperCAmelCase__( self : str )-> Optional[int]: lowerCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__( self : Optional[int] )-> str: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> int: lowerCAmelCase__ : Union[str, Any] = SwinvaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : List[str] = model(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> List[Any]: lowerCAmelCase__ : Optional[int] = SwinvaForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Dict = SwinvaForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] )-> Union[str, Any]: lowerCAmelCase__ : Tuple = self.type_sequence_label_size lowerCAmelCase__ : Optional[Any] = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Any = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__( self : Tuple )-> str: lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = config_and_inputs lowerCAmelCase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( _lowercase , _lowercase , unittest.TestCase): _a : str = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _a : Tuple = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _a : List[str] = False _a : int = False _a : Optional[int] = False _a : Optional[Any] = False def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : Tuple = SwinvaModelTester(self ) lowerCAmelCase__ : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) def UpperCAmelCase__( self : str )-> int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__( self : Optional[int] )-> Optional[Any]: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase__( self : Optional[Any] )-> Dict: pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase__( self : Tuple )-> Optional[int]: pass def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__( self : Any )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Dict = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Tuple = [*signature.parameters.keys()] lowerCAmelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = True for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[str] = outputs.attentions lowerCAmelCase__ : Union[str, Any] = len(self.model_tester.depths ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = config.window_size**2 lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCAmelCase__ : int = len(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine lowerCAmelCase__ : str = True lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): lowerCAmelCase__ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase__ : str = 2 self.assertEqual(out_len + added_hidden_states , len(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[Any] = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] )-> Tuple: lowerCAmelCase__ : Any = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Any = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.hidden_states lowerCAmelCase__ : Optional[int] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length lowerCAmelCase__ : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase__ : Dict = outputs.reshaped_hidden_states self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = reshaped_hidden_states[0].shape lowerCAmelCase__ : Tuple = ( reshaped_hidden_states[0].view(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__( self : Tuple )-> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Tuple = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) def UpperCAmelCase__( self : Dict )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : Optional[Any] )-> int: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[Any] = SwinvaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Dict )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Dict = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _a ( unittest.TestCase): @cached_property def UpperCAmelCase__( self : Tuple )-> Optional[Any]: return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ : Any = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits lowerCAmelCase__ : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
131
1
import argparse UpperCamelCase = '''docs/source/_static/js/custom.js''' def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" with open(__lowerCAmelCase ,encoding="""utf-8""" ,newline="""\n""" ) as f: _SCREAMING_SNAKE_CASE = f.readlines() _SCREAMING_SNAKE_CASE = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 _SCREAMING_SNAKE_CASE = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(__lowerCAmelCase ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') UpperCamelCase = parser.parse_args() update_custom_js(args.version)
353
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase (unittest.TestCase ): @classmethod def UpperCamelCase ( cls: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def UpperCamelCase ( cls: Union[str, Any] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_ , repo_id="""test-model-flax""" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F'{key} not identical' ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( UpperCAmelCase_ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F'{key} not identical' ) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) _SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: _SCREAMING_SNAKE_CASE = False return models_are_equal @require_flax class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertTrue(check_models_equal(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , max_shard_size="""10KB""" ) with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertTrue(check_models_equal(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """bert""" _SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """bert""" _SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ )
125
0