code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' a_ : Optional[Any] = [0, 2, 4, 6, 8] a_ : str = [1, 3, 5, 7, 9] def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :int ) -> int: '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _a = 0 for digit in range(10 ): _a = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowerCAmelCase__ , lowerCAmelCase__ ) return result _a = 0 for digita in range(10 ): _a = digita if (remainder + digita) % 2 == 0: _a = ODD_DIGITS else: _a = EVEN_DIGITS for digita in other_parity_digits: _a = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowerCAmelCase__ , lowerCAmelCase__ , ) return result def _A (lowerCAmelCase__ :int = 9 ) -> int: '''simple docstring''' _a = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowerCAmelCase__ , 0 , [0] * length , lowerCAmelCase__ ) return result if __name__ == "__main__": print(f'''{solution() = }''')
168
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version a_ : str = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") a_ : Tuple = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization a_ : Any = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } a_ : Union[str, Any] = sorted(arg_to_scheduler.keys()) a_ : List[Any] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class a ( pl.LightningModule ): def __init__( self , __magic_name__ , __magic_name__=None , __magic_name__="base" , __magic_name__=None , __magic_name__=None , __magic_name__=None , **__magic_name__ , ) -> List[str]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__magic_name__ ) _a = 0 _a = Path(self.hparams.output_dir ) _a = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _a = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__magic_name__ , **__magic_name__ , ) else: _a = config _a = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __magic_name__ , __magic_name__ ): assert hasattr(self.config , __magic_name__ ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __magic_name__ , getattr(self.hparams , __magic_name__ ) ) if tokenizer is None: _a = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__magic_name__ , ) else: _a = tokenizer _a = MODEL_MODES[mode] if model is None: _a = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__magic_name__ , ) else: _a = model def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> List[Any]: _a = self.model_type.from_pretrained(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self ) -> List[str]: _a = arg_to_scheduler[self.hparams.lr_scheduler] _a = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _a = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __UpperCAmelCase ( self ) -> Any: _a = self.model _a = ['bias', 'LayerNorm.weight'] _a = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: _a = Adafactor( __magic_name__ , lr=self.hparams.learning_rate , scale_parameter=__magic_name__ , relative_step=__magic_name__ ) else: _a = AdamW( __magic_name__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _a = optimizer _a = self.get_lr_scheduler() return [optimizer], [scheduler] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> List[str]: return self.validation_step(__magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: return self.validation_end(__magic_name__ ) def __UpperCAmelCase ( self ) -> int: _a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: if stage == "test": _a = len(self.test_dataloader().dataset ) else: _a = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__magic_name__ ) _a = len(self.train_dataloader().dataset ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = False ) -> int: raise NotImplementedError('You must implement this for your task' ) def __UpperCAmelCase ( self ) -> Tuple: return self.train_loader def __UpperCAmelCase ( self ) -> Dict: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def __UpperCAmelCase ( self ) -> Tuple: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[Any]: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __magic_name__ , list(filter(__magic_name__ , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __UpperCAmelCase ( self , __magic_name__ ) -> None: _a = self.output_dir.joinpath('best_tfmr' ) _a = self.step_count self.model.save_pretrained(__magic_name__ ) self.tokenizer.save_pretrained(__magic_name__ ) @staticmethod def __UpperCAmelCase ( __magic_name__ , __magic_name__ ) -> Optional[int]: parser.add_argument( '--model_name_or_path' , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__magic_name__ , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__magic_name__ , type=__magic_name__ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__magic_name__ ).parent / 'test_run' / 'cache' ) , type=__magic_name__ , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__magic_name__ , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__magic_name__ , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__magic_name__ , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__magic_name__ , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5e-5 , type=__magic_name__ , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__magic_name__ , metavar=__magic_name__ , type=__magic_name__ , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__magic_name__ , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__magic_name__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__magic_name__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__magic_name__ , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__magic_name__ ) parser.add_argument('--train_batch_size' , default=32 , type=__magic_name__ ) parser.add_argument('--eval_batch_size' , default=32 , type=__magic_name__ ) parser.add_argument('--adafactor' , action='store_true' ) class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Any: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__magic_name__ ) class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = trainer.lr_schedulers[0]['scheduler'] _a = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: rank_zero_info('***** Validation results *****' ) _a = trainer.callback_metrics # Log results for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: rank_zero_info('***** Test results *****' ) _a = trainer.callback_metrics # Log and save results to file _a = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__magic_name__ , 'w' ) as writer: for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) def _A (lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] ) -> None: '''simple docstring''' parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase__ ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase__ , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase__ ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase__ , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase__ , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase__ ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase__ , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def _A (lowerCAmelCase__ :BaseTransformer , lowerCAmelCase__ :argparse.Namespace , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Optional[Any]=[] , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Union[str, Any]=None , **lowerCAmelCase__ :List[str] , ) -> str: '''simple docstring''' pl.seed_everything(args.seed ) # init model _a = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase__ ) # add custom checkpoints if checkpoint_callback is None: _a = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase__ ) if logging_callback is None: _a = LoggingCallback() _a = {} if args.fpaa: _a = 16 if args.gpus > 1: _a = 'auto' _a = 'ddp' _a = args.accumulate_grad_batches _a = None _a = 'auto' _a = pl.Trainer.from_argparse_args( lowerCAmelCase__ , weights_summary=lowerCAmelCase__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase__ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase__ , ) if args.do_train: trainer.fit(lowerCAmelCase__ ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
168
1
def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate UpperCamelCase__ : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly UpperCamelCase__ : int = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
51
def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate UpperCamelCase__ : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly UpperCamelCase__ : int = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
51
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = BlipImageProcessor() SCREAMING_SNAKE_CASE__ = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) SCREAMING_SNAKE_CASE__ = BlipaProcessor(__UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : List[str] , **__UpperCAmelCase : Optional[Any] ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def SCREAMING_SNAKE_CASE ( self : Dict , **__UpperCAmelCase : Optional[Any] ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__UpperCAmelCase , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """lower newer""" SCREAMING_SNAKE_CASE__ = processor(text=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """lower newer""" SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """lower newer""" SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
165
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging A_ : str = logging.get_logger(__name__) # TODO: upload to AWS A_ : Optional[int] = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class lowerCamelCase (A__ ): lowerCamelCase__ : Any = 'retribert' def __init__( self : Tuple , __UpperCAmelCase : Optional[Any]=3_0_5_2_2 , __UpperCAmelCase : Union[str, Any]=7_6_8 , __UpperCAmelCase : List[str]=8 , __UpperCAmelCase : Dict=1_2 , __UpperCAmelCase : List[Any]=3_0_7_2 , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : List[Any]=5_1_2 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : Any=1e-12 , __UpperCAmelCase : str=True , __UpperCAmelCase : List[Any]=1_2_8 , __UpperCAmelCase : Tuple=0 , **__UpperCAmelCase : Optional[int] , ) -> List[str]: super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = share_encoders SCREAMING_SNAKE_CASE__ = projection_dim
165
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ): __lowercase = len(lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) __lowercase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase = True for i in range(lowerCamelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase = True if a[i].islower(): __lowercase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _SCREAMING_SNAKE_CASE = { '''169M''': 1_2, '''430M''': 2_4, '''1B5''': 2_4, '''3B''': 3_2, '''7B''': 3_2, '''14B''': 4_0, } _SCREAMING_SNAKE_CASE = { '''169M''': 7_6_8, '''430M''': 1_0_2_4, '''1B5''': 2_0_4_8, '''3B''': 2_5_6_0, '''7B''': 4_0_9_6, '''14B''': 5_1_2_0, } def _lowerCAmelCase ( lowerCamelCase_ : Dict ): __lowercase = list(state_dict.keys() ) for name in state_dict_keys: __lowercase = state_dict.pop(lowerCamelCase_ ) # emb -> embedding if name.startswith('''emb.''' ): __lowercase = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): __lowercase = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention __lowercase = re.sub(r'''blocks\.(\d+)\.att''' , r'''blocks.\1.attention''' , lowerCamelCase_ ) # ffn -> feed_forward __lowercase = re.sub(r'''blocks\.(\d+)\.ffn''' , r'''blocks.\1.feed_forward''' , lowerCamelCase_ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): __lowercase = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): __lowercase = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): __lowercase = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": __lowercase = '''rwkv.''' + name __lowercase = weight return state_dict def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Any=False , lowerCamelCase_ : int=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) __lowercase = 5_0_2_7_7 __lowercase = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: __lowercase = PreTrainedTokenizerFast(tokenizer_file=lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) # 2. Build the config __lowercase = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __lowercase = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." ) __lowercase = RwkvConfig( vocab_size=lowerCamelCase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowerCamelCase_ ) # 3. Download model file then convert state_dict __lowercase = hf_hub_download(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = convert_state_dict(lowerCamelCase_ ) # 4. Split in shards and save __lowercase , __lowercase = shard_checkpoint(lowerCamelCase_ ) for shard_file, shard in shards.items(): torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) if index is not None: __lowercase = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) # Save the index as well with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: __lowercase = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + '''\n''' f.write(lowerCamelCase_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) __lowercase = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __lowercase = torch.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) __lowercase = AutoModelForCausalLM.from_pretrained(lowerCamelCase_ ) model.push_to_hub(lowerCamelCase_ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
217
0
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
37
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
0
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str ): A__ = len(_lowerCamelCase ) + 1 A__ = len(_lowerCamelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. A__ = [[0 for i in range(_lowerCamelCase )] for j in range(_lowerCamelCase )] # since string of zero length match pattern of zero length A__ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowerCamelCase ): A__ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowerCamelCase ): A__ = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowerCamelCase ): for j in range(1 , _lowerCamelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": A__ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: A__ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): A__ = dp[i - 1][j] else: A__ = 0 else: A__ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCAmelCase : List[Any] ="aab" __lowerCAmelCase : Optional[int] ="c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
123
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Tuple =logging.get_logger(__name__) def UpperCamelCase ( _lowerCamelCase : Tuple ): A__ = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: A__ = 10_24 A__ = 40_96 A__ = 24 A__ = 16 A__ = [5, 11, 17, 23] A__ = [2_56, 5_12, 10_24, 10_24] A__ = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: A__ = 7_68 A__ = [1, 1, 1, 0.5] A__ = [2_56, 5_12, 7_68, 7_68] A__ = 1_50 A__ = 16 A__ = (1, 3_84, 3_84) A__ = False A__ = "project" if "ade" in checkpoint_url: A__ = True A__ = 7_68 A__ = [1, 1, 1, 0.5] A__ = 1_50 A__ = 16 A__ = "huggingface/label-files" A__ = "ade20k-id2label.json" A__ = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) A__ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = [1, 1_50, 4_80, 4_80] return config, expected_shape def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): A__ = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : int ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: A__ = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: A__ = name.replace("patch_embed" , "" ) if "pos_embed" in name: A__ = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: A__ = name.replace("proj" , "projection" ) if "blocks" in name: A__ = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: A__ = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: A__ = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: A__ = name.replace("scratch" , "neck" ) if "layer1_rn" in name: A__ = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: A__ = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: A__ = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: A__ = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: A__ = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: A__ = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: A__ = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: A__ = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: A__ = name.replace("conv1" , "convolution1" ) if "conv2" in name: A__ = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: A__ = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: A__ = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: A__ = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: A__ = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: A__ = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: A__ = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: A__ = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: A__ = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: A__ = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: A__ = name.replace("pretrained" , "dpt" ) if "bn" in name: A__ = name.replace("bn" , "batch_norm" ) if "head" in name: A__ = name.replace("head" , "head.head" ) if "encoder.norm" in name: A__ = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: A__ = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: A__ = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: A__ = name.replace(".." , "." ) if "stem.conv" in name: A__ = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: A__ = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: A__ = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: A__ = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: A__ = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: A__ = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: A__ = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : int ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) A__ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[: config.hidden_size, :] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( ): A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : str ): A__, A__ = get_dpt_config(_lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") A__ = torch.load(_lowerCamelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(_lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): A__ = state_dict.pop(_lowerCamelCase ) A__ = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) # load HuggingFace model A__ = DPTForSemanticSegmentation(_lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # Check outputs on an image A__ = 4_80 if "ade" in checkpoint_url else 3_84 A__ = DPTImageProcessor(size=_lowerCamelCase ) A__ = prepare_img() A__ = image_processor(_lowerCamelCase , return_tensors="pt" ) # forward pass A__ = model(**_lowerCamelCase ).logits if "ade" in checkpoint_url else model(**_lowerCamelCase ).predicted_depth if show_prediction: A__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=_lowerCamelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) __lowerCAmelCase : List[Any] =parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
123
1
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase__ = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' lowerCAmelCase__ = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' lowerCAmelCase__ = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def snake_case_ (self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def snake_case_ (self , __a , __a , __a=None , __a=1 , __a="binary" , __a=None , __a="warn" , ) -> str: UpperCamelCase = recall_score( __a , __a , labels=__a , pos_label=__a , average=__a , sample_weight=__a , zero_division=__a , ) return {"recall": float(__a ) if score.size == 1 else score}
153
"""simple docstring""" from __future__ import annotations def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase , UpperCamelCase = set(_SCREAMING_SNAKE_CASE ), [start] while stack: UpperCamelCase = stack.pop() explored.add(_SCREAMING_SNAKE_CASE ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_SCREAMING_SNAKE_CASE ) return explored lowerCAmelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
153
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int ) -> int: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
def A (__A : int , __A : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def A () -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
51
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : Tuple = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __snake_case ( a ): UpperCAmelCase__ : str = '''codegen''' UpperCAmelCase__ : int = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _snake_case : Union[str, Any]=50400 , _snake_case : Optional[int]=2048 , _snake_case : Union[str, Any]=2048 , _snake_case : List[str]=4096 , _snake_case : Any=28 , _snake_case : List[str]=16 , _snake_case : int=64 , _snake_case : Tuple=None , _snake_case : Dict="gelu_new" , _snake_case : Union[str, Any]=0.0 , _snake_case : Optional[Any]=0.0 , _snake_case : List[Any]=0.0 , _snake_case : List[Any]=1e-5 , _snake_case : List[str]=0.0_2 , _snake_case : Optional[Any]=True , _snake_case : int=50256 , _snake_case : Tuple=50256 , _snake_case : int=False , **_snake_case : Any , ): """simple docstring""" UpperCAmelCase_ = vocab_size UpperCAmelCase_ = n_ctx UpperCAmelCase_ = n_positions UpperCAmelCase_ = n_embd UpperCAmelCase_ = n_layer UpperCAmelCase_ = n_head UpperCAmelCase_ = n_inner UpperCAmelCase_ = rotary_dim UpperCAmelCase_ = activation_function UpperCAmelCase_ = resid_pdrop UpperCAmelCase_ = embd_pdrop UpperCAmelCase_ = attn_pdrop UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_range UpperCAmelCase_ = use_cache UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id super().__init__( bos_token_id=_snake_case , eos_token_id=_snake_case , tie_word_embeddings=_snake_case , **_snake_case) class __snake_case ( a ): def __init__( self : Tuple , _snake_case : PretrainedConfig , _snake_case : str = "default" , _snake_case : List[PatchingSpec] = None , _snake_case : bool = False , ): """simple docstring""" super().__init__(_snake_case , task=_snake_case , patching_specs=_snake_case , use_past=_snake_case) if not getattr(self._config , '''pad_token_id''' , _snake_case): # TODO: how to do that better? UpperCAmelCase_ = 0 @property def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}}) if self.use_past: self.fill_with_past_key_values_(_snake_case , direction='''inputs''') UpperCAmelCase_ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def lowerCamelCase ( self : List[str]): """simple docstring""" return self._config.n_layer @property def lowerCamelCase ( self : int): """simple docstring""" return self._config.n_head def lowerCamelCase ( self : Optional[int] , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , ): """simple docstring""" UpperCAmelCase_ = super(_snake_case , self).generate_dummy_inputs( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case) # We need to order the input in the way they appears in the forward() UpperCAmelCase_ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch UpperCAmelCase_ , UpperCAmelCase_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase_ = seqlen + 2 UpperCAmelCase_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase_ = [ (torch.zeros(_snake_case), torch.zeros(_snake_case)) for _ in range(self.num_layers) ] UpperCAmelCase_ = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase_ = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase_ = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_snake_case , _snake_case , dtype=_snake_case)] , dim=1) return ordered_inputs @property def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return 13
51
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __a ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , lowercase_ : int , lowercase_ : Any=7 , lowercase_ : Optional[int]=3 , lowercase_ : Union[str, Any]=18 , lowercase_ : Tuple=30 , lowercase_ : List[Any]=400 , lowercase_ : str=True , lowercase_ : List[str]=32 , lowercase_ : Optional[int]=True , ): UpperCamelCase__ : List[Any] =parent UpperCamelCase__ : int =batch_size UpperCamelCase__ : List[Any] =num_channels UpperCamelCase__ : Tuple =image_size UpperCamelCase__ : str =min_resolution UpperCamelCase__ : Tuple =max_resolution UpperCamelCase__ : Optional[Any] =do_resize UpperCamelCase__ : List[Any] =size_divisor UpperCamelCase__ : List[str] =do_rescale def _lowerCAmelCase ( self : int ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __a ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = GLPNImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : int ): UpperCamelCase__ : Tuple =GLPNImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowercase_ , '''size_divisor''' ) ) self.assertTrue(hasattr(lowercase_ , '''resample''' ) ) self.assertTrue(hasattr(lowercase_ , '''do_rescale''' ) ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : str ): # Initialize image_processing UpperCamelCase__ : int =self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ : Any =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _lowerCAmelCase ( self : Tuple ): # Initialize image_processing UpperCamelCase__ : Tuple =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ : Optional[int] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _lowerCAmelCase ( self : int ): # Initialize image_processing UpperCamelCase__ : Dict =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ : Dict =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
351
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __a : """simple docstring""" def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any]=99 , lowercase_ : Optional[Any]=13 , lowercase_ : Tuple=7 , lowercase_ : Any=9 , lowercase_ : Dict=True , lowercase_ : str=True , lowercase_ : Optional[int]=False , lowercase_ : str=32 , lowercase_ : Tuple=5 , lowercase_ : Union[str, Any]=4 , lowercase_ : Tuple=37 , lowercase_ : int=8 , lowercase_ : str=0.1 , lowercase_ : Optional[Any]=0.0_0_2 , lowercase_ : Any=1 , lowercase_ : Tuple=0 , lowercase_ : Any=0 , lowercase_ : Optional[Any]=None , lowercase_ : str=None , ): UpperCamelCase__ : Optional[int] =parent UpperCamelCase__ : int =batch_size UpperCamelCase__ : Tuple =encoder_seq_length UpperCamelCase__ : List[Any] =decoder_seq_length # For common tests UpperCamelCase__ : str =self.decoder_seq_length UpperCamelCase__ : List[Any] =is_training UpperCamelCase__ : Optional[int] =use_attention_mask UpperCamelCase__ : Union[str, Any] =use_labels UpperCamelCase__ : List[str] =vocab_size UpperCamelCase__ : Union[str, Any] =hidden_size UpperCamelCase__ : Any =num_hidden_layers UpperCamelCase__ : Optional[int] =num_attention_heads UpperCamelCase__ : str =d_ff UpperCamelCase__ : Union[str, Any] =relative_attention_num_buckets UpperCamelCase__ : Dict =dropout_rate UpperCamelCase__ : Dict =initializer_factor UpperCamelCase__ : str =eos_token_id UpperCamelCase__ : List[str] =pad_token_id UpperCamelCase__ : List[str] =decoder_start_token_id UpperCamelCase__ : Optional[Any] =None UpperCamelCase__ : int =decoder_layers def _lowerCAmelCase ( self : List[str] ): return TaConfig.from_pretrained('''google/umt5-base''' ) def _lowerCAmelCase ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Optional[int]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Tuple=None , lowercase_ : Any=None , ): if attention_mask is None: UpperCamelCase__ : List[str] =input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase__ : Union[str, Any] =decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase__ : List[Any] =torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowercase_ ) if decoder_head_mask is None: UpperCamelCase__ : List[Any] =torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowercase_ ) if cross_attn_head_mask is None: UpperCamelCase__ : Any =torch.ones( config.num_decoder_layers , config.num_attention_heads , device=lowercase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : Dict =ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCamelCase__ : Any =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase__ : Tuple =input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ : Tuple =decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ : List[str] =self.get_config() UpperCamelCase__ : int =config.num_attention_heads UpperCamelCase__ : List[Any] =self.prepare_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, input_dict def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ , UpperCamelCase__ : Any =self.prepare_config_and_inputs() return config, inputs_dict def _lowerCAmelCase ( self : Optional[int] ): return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCAmelCase ( self : Any ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCAmelCase ( self : int , lowercase_ : str , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Dict , ): UpperCamelCase__ : int =UMTaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : str =model( input_ids=lowercase_ , decoder_input_ids=lowercase_ , attention_mask=lowercase_ , decoder_attention_mask=lowercase_ , ) UpperCamelCase__ : Union[str, Any] =model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) UpperCamelCase__ : List[str] =result.last_hidden_state UpperCamelCase__ : str =result.past_key_values UpperCamelCase__ : Any =result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(lowercase_ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _lowerCAmelCase ( self : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : List[Any] , ): UpperCamelCase__ : Any =UMTaModel(config=lowercase_ ).get_decoder().to(lowercase_ ).eval() # first forward pass UpperCamelCase__ : List[Any] =model(lowercase_ , use_cache=lowercase_ ) UpperCamelCase__ : Optional[Any] =model(lowercase_ ) UpperCamelCase__ : Dict =model(lowercase_ , use_cache=lowercase_ ) self.parent.assertTrue(len(lowercase_ ) == len(lowercase_ ) ) self.parent.assertTrue(len(lowercase_ ) == len(lowercase_ ) + 1 ) UpperCamelCase__ , UpperCamelCase__ : str =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase__ : List[Any] =ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCamelCase__ : Union[str, Any] =torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ : Optional[int] =model(lowercase_ )['''last_hidden_state'''] UpperCamelCase__ : Dict =model(lowercase_ , past_key_values=lowercase_ )['''last_hidden_state'''] # select random slice UpperCamelCase__ : List[str] =ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ : Any =output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase__ : Dict =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : Tuple , lowercase_ : Tuple , ): UpperCamelCase__ : Tuple =UMTaModel(config=lowercase_ ).to(lowercase_ ).half().eval() UpperCamelCase__ : Any =model(**lowercase_ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(lowercase_ ).any().item() ) @require_torch class __a ( snake_case__, snake_case__, snake_case__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = (UMTaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True # The small UMT5 model needs higher percentages for CPU/MP tests SCREAMING_SNAKE_CASE_ = [0.8, 0.9] def _lowerCAmelCase ( self : Union[str, Any] ): UpperCamelCase__ : Union[str, Any] =UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() UpperCamelCase__ : Optional[int] =UMTaModel(config_and_inputs[0] ).to(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( lowercase_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=lowercase_ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*lowercase_ ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : Dict =['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] UpperCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs() UpperCamelCase__ : str =config_and_inputs[0] UpperCamelCase__ : Tuple =UMTaForConditionalGeneration(lowercase_ ).eval() model.to(lowercase_ ) UpperCamelCase__ : Dict ={ '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=lowercase_ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase_ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase_ ), } for attn_name, (name, mask) in zip(lowercase_ , head_masking.items() ): UpperCamelCase__ : Optional[int] ={name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCamelCase__ : Tuple =torch.ones( config.num_decoder_layers , config.num_heads , device=lowercase_ ) UpperCamelCase__ : str =model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=lowercase_ , return_dict_in_generate=lowercase_ , **lowercase_ , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCamelCase__ : Union[str, Any] =out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _lowerCAmelCase ( self : Any ): pass @require_torch @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : Optional[int] =UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=lowercase_ ).to(lowercase_ ) UpperCamelCase__ : Any =AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=lowercase_ , legacy=lowercase_ ) UpperCamelCase__ : int =[ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] UpperCamelCase__ : Optional[int] =tokenizer(lowercase_ , return_tensors='''pt''' , padding=lowercase_ ).input_ids # fmt: off UpperCamelCase__ : int =torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(lowercase_ , lowercase_ ) UpperCamelCase__ : Optional[int] =model.generate(input_ids.to(lowercase_ ) ) UpperCamelCase__ : int =[ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] UpperCamelCase__ : Optional[Any] =tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ )
157
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 600_851_475_143 ): try: _UpperCAmelCase : int = int(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 2 while i * i <= n: while n % i == 0: _UpperCAmelCase : Tuple = i n //= i i += 1 if n > 1: _UpperCAmelCase : str = n return int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'''{solution() = }''')
234
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : str = """deformable_detr""" SCREAMING_SNAKE_CASE_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : int , UpperCamelCase__ : int=True , UpperCamelCase__ : str=None , UpperCamelCase__ : int=3 , UpperCamelCase__ : Dict=3_0_0 , UpperCamelCase__ : Optional[int]=1_0_2_4 , UpperCamelCase__ : int=6 , UpperCamelCase__ : List[Any]=1_0_2_4 , UpperCamelCase__ : List[Any]=8 , UpperCamelCase__ : str=6 , UpperCamelCase__ : str=1_0_2_4 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : str=True , UpperCamelCase__ : List[Any]="relu" , UpperCamelCase__ : Tuple=2_5_6 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Dict=1.0 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[str]="sine" , UpperCamelCase__ : Any="resnet50" , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Any=False , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Optional[int]=3_0_0 , UpperCamelCase__ : int=False , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : Optional[Any]=5 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : str=1 , UpperCamelCase__ : int=1 , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Union[str, Any]=0.25 , UpperCamelCase__ : List[Any]=False , **UpperCamelCase__ : Dict , )-> Optional[int]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.") if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") __lowerCAmelCase: List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"]) elif isinstance(UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: int = backbone_config.get("model_type") __lowerCAmelCase: List[str] = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase: Any = config_class.from_dict(UpperCamelCase__) __lowerCAmelCase: int = use_timm_backbone __lowerCAmelCase: Any = backbone_config __lowerCAmelCase: Tuple = num_channels __lowerCAmelCase: str = num_queries __lowerCAmelCase: List[str] = max_position_embeddings __lowerCAmelCase: List[Any] = d_model __lowerCAmelCase: Union[str, Any] = encoder_ffn_dim __lowerCAmelCase: Tuple = encoder_layers __lowerCAmelCase: List[str] = encoder_attention_heads __lowerCAmelCase: Any = decoder_ffn_dim __lowerCAmelCase: Union[str, Any] = decoder_layers __lowerCAmelCase: List[Any] = decoder_attention_heads __lowerCAmelCase: List[Any] = dropout __lowerCAmelCase: Optional[Any] = attention_dropout __lowerCAmelCase: Union[str, Any] = activation_dropout __lowerCAmelCase: Union[str, Any] = activation_function __lowerCAmelCase: Dict = init_std __lowerCAmelCase: int = init_xavier_std __lowerCAmelCase: str = encoder_layerdrop __lowerCAmelCase: Union[str, Any] = auxiliary_loss __lowerCAmelCase: List[Any] = position_embedding_type __lowerCAmelCase: str = backbone __lowerCAmelCase: Tuple = use_pretrained_backbone __lowerCAmelCase: int = dilation # deformable attributes __lowerCAmelCase: Union[str, Any] = num_feature_levels __lowerCAmelCase: Optional[Any] = encoder_n_points __lowerCAmelCase: Dict = decoder_n_points __lowerCAmelCase: Optional[Any] = two_stage __lowerCAmelCase: Tuple = two_stage_num_proposals __lowerCAmelCase: int = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True.") # Hungarian matcher __lowerCAmelCase: str = class_cost __lowerCAmelCase: List[str] = bbox_cost __lowerCAmelCase: List[str] = giou_cost # Loss coefficients __lowerCAmelCase: Tuple = mask_loss_coefficient __lowerCAmelCase: int = dice_loss_coefficient __lowerCAmelCase: Any = bbox_loss_coefficient __lowerCAmelCase: str = giou_loss_coefficient __lowerCAmelCase: int = eos_coefficient __lowerCAmelCase: Tuple = focal_alpha __lowerCAmelCase: Optional[Any] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__) @property def lowercase_ ( self : List[Any])-> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase_ ( self : Optional[Any])-> int: '''simple docstring''' return self.d_model def lowercase_ ( self : Union[str, Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: Tuple = copy.deepcopy(self.__dict__) if self.backbone_config is not None: __lowerCAmelCase: str = self.backbone_config.to_dict() __lowerCAmelCase: Tuple = self.__class__.model_type return output
217
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = filter(lambda __lowerCamelCase : p.requires_grad, model.parameters() ) SCREAMING_SNAKE_CASE_ = sum([np.prod(p.size() ) for p in model_parameters] ) return params __UpperCAmelCase = logging.getLogger(__name__) def A__ ( __lowerCamelCase, __lowerCamelCase ): if metric == "rouge2": SCREAMING_SNAKE_CASE_ = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": SCREAMING_SNAKE_CASE_ = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": SCREAMING_SNAKE_CASE_ = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": SCREAMING_SNAKE_CASE_ = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) SCREAMING_SNAKE_CASE_ = ModelCheckpoint( dirpath=__lowerCamelCase, filename=__lowerCamelCase, monitor=F'''val_{metric}''', mode='''max''', save_top_k=1, every_n_epochs=1, ) return checkpoint_callback def A__ ( __lowerCamelCase, __lowerCamelCase ): return EarlyStopping( monitor=F'''val_{metric}''', mode='''min''' if '''loss''' in metric else '''max''', patience=__lowerCamelCase, verbose=__lowerCamelCase, ) class UpperCamelCase__ ( pl.Callback ): """simple docstring""" def _UpperCamelCase ( self , _A , _A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = {F'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def _UpperCamelCase ( self , _A , _A , _A , _A=True ) -> None: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) SCREAMING_SNAKE_CASE_ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results SCREAMING_SNAKE_CASE_ = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE_ = od / '''test_results.txt''' SCREAMING_SNAKE_CASE_ = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE_ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' SCREAMING_SNAKE_CASE_ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , '''a+''' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE_ = metrics[key] if isinstance(_A , torch.Tensor ): SCREAMING_SNAKE_CASE_ = val.item() SCREAMING_SNAKE_CASE_ = F'''{key}: {val:.6f}\n''' writer.write(_A ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE_ = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_A ) @rank_zero_only def _UpperCamelCase ( self , _A , _A ) -> str: try: SCREAMING_SNAKE_CASE_ = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE_ = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE_ = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def _UpperCamelCase ( self , _A , _A ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , '''test''' ) @rank_zero_only def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
257
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=30 , _A=400 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , _A=True , _A=1 / 255 , _A=True , ) -> Optional[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean SCREAMING_SNAKE_CASE_ = image_std SCREAMING_SNAKE_CASE_ = do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor SCREAMING_SNAKE_CASE_ = do_pad def _UpperCamelCase ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCamelCase ( self , _A , _A=False ) -> str: if not batched: SCREAMING_SNAKE_CASE_ = image_inputs[0] if isinstance(_A , Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE_ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE_ = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ = max(_A , key=lambda _A : item[0] )[0] SCREAMING_SNAKE_CASE_ = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ConditionalDetrImageProcessor if is_vision_available() else None def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessingTester(self ) @property def _UpperCamelCase ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _A ) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _A ) def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> int: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A ) SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCamelCase ( self ) -> List[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCamelCase ( self ) -> Union[str, Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCamelCase ( self ) -> str: # prepare image and target SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {'''image_id''': 39769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) SCREAMING_SNAKE_CASE_ = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def _UpperCamelCase ( self ) -> Tuple: # prepare image, target and masks_path SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} SCREAMING_SNAKE_CASE_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE_ = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks SCREAMING_SNAKE_CASE_ = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
257
1
import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
123
from __future__ import annotations _snake_case : Any = "Muhammad Umer Farooq" _snake_case : Optional[int] = "MIT" _snake_case : Union[str, Any] = "1.0.0" _snake_case : Optional[Any] = "Muhammad Umer Farooq" _snake_case : List[Any] = "contact@muhammadumerfarooq.me" _snake_case : Dict = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : str ) -> None: super().__init__() __snake_case : list[str] = [] __snake_case : Any = domain def __snake_case ( self : List[str] , lowerCamelCase : str , lowerCamelCase : list[tuple[str, str | None]] ) -> None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case : Any = parse.urljoin(self.domain , lowerCamelCase ) self.urls.append(lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): return ".".join(get_sub_domain_name(__lowerCamelCase ).split("." )[-2:] ) def lowerCAmelCase_ ( __lowerCamelCase ): return parse.urlparse(__lowerCamelCase ).netloc def lowerCAmelCase_ ( __lowerCamelCase = "https://github.com" ): __snake_case : Tuple = get_domain_name(__lowerCamelCase ) # Initialize the parser __snake_case : Dict = Parser(__lowerCamelCase ) try: # Open URL __snake_case : Any = requests.get(__lowerCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case : List[str] = requests.get(__lowerCamelCase ) # Get the valid email. __snake_case : Any = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__lowerCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__lowerCamelCase ) if __name__ == "__main__": _snake_case : Union[str, Any] = emails_from_url("https://github.com") print(f'''{len(emails)} emails found:''') print("\n".join(sorted(emails)))
123
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def _A ( _lowerCAmelCase , _lowerCAmelCase=False ): """simple docstring""" __lowercase =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __lowercase =[(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __lowercase ='' else: __lowercase ='deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase =state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) __lowercase =state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase =in_proj_weight[ : config.hidden_size, : ] __lowercase =in_proj_bias[: config.hidden_size] __lowercase =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase =in_proj_weight[ -config.hidden_size :, : ] __lowercase =in_proj_bias[-config.hidden_size :] def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =dct.pop(_lowerCAmelCase ) __lowercase =val def _A ( ): """simple docstring""" __lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase =Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =DeiTConfig() # all deit models have fine-tuned heads __lowercase =False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __lowercase =1_000 __lowercase ='huggingface/label-files' __lowercase ='imagenet-1k-id2label.json' __lowercase =json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) __lowercase ={int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase =idalabel __lowercase ={v: k for k, v in idalabel.items()} __lowercase =int(deit_name[-6:-4] ) __lowercase =int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): __lowercase =192 __lowercase =768 __lowercase =12 __lowercase =3 elif deit_name[9:].startswith('small' ): __lowercase =384 __lowercase =1_536 __lowercase =12 __lowercase =6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): __lowercase =1_024 __lowercase =4_096 __lowercase =24 __lowercase =16 # load original model from timm __lowercase =timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowercase =timm_model.state_dict() __lowercase =create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model __lowercase =DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor __lowercase =int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __lowercase =DeiTImageProcessor(size=_lowerCAmelCase , crop_size=config.image_size ) __lowercase =image_processor(images=prepare_img() , return_tensors='pt' ) __lowercase =encoding['pixel_values'] __lowercase =model(_lowerCAmelCase ) __lowercase =timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
48
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """codegen""" lowerCAmelCase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Union[str, Any] , _lowerCAmelCase : List[Any]=5_0_4_0_0 , _lowerCAmelCase : Tuple=2_0_4_8 , _lowerCAmelCase : Dict=2_0_4_8 , _lowerCAmelCase : Tuple=4_0_9_6 , _lowerCAmelCase : Any=2_8 , _lowerCAmelCase : Optional[int]=1_6 , _lowerCAmelCase : int=6_4 , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Optional[int]=1e-5 , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : int=True , _lowerCAmelCase : str=5_0_2_5_6 , _lowerCAmelCase : Any=5_0_2_5_6 , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Dict , ): '''simple docstring''' __lowercase =vocab_size __lowercase =n_ctx __lowercase =n_positions __lowercase =n_embd __lowercase =n_layer __lowercase =n_head __lowercase =n_inner __lowercase =rotary_dim __lowercase =activation_function __lowercase =resid_pdrop __lowercase =embd_pdrop __lowercase =attn_pdrop __lowercase =layer_norm_epsilon __lowercase =initializer_range __lowercase =use_cache __lowercase =bos_token_id __lowercase =eos_token_id super().__init__( bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , **_lowerCAmelCase) class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : PretrainedConfig , _lowerCAmelCase : str = "default" , _lowerCAmelCase : List[PatchingSpec] = None , _lowerCAmelCase : bool = False , ): '''simple docstring''' super().__init__(_lowerCAmelCase , task=_lowerCAmelCase , patching_specs=_lowerCAmelCase , use_past=_lowerCAmelCase) if not getattr(self._config , 'pad_token_id' , _lowerCAmelCase): # TODO: how to do that better? __lowercase =0 @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs') __lowercase ={0: 'batch', 1: 'past_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'sequence'} return common_inputs @property def __lowerCamelCase ( self : Dict): '''simple docstring''' return self._config.n_layer @property def __lowerCamelCase ( self : List[str]): '''simple docstring''' return self._config.n_head def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =super(_lowerCAmelCase , self).generate_dummy_inputs( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) # We need to order the input in the way they appears in the forward() __lowercase =OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase =seqlen + 2 __lowercase =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowercase =[ (torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase)) for _ in range(self.num_layers) ] __lowercase =common_inputs['attention_mask'] if self.use_past: __lowercase =ordered_inputs['attention_mask'].dtype __lowercase =torch.cat( [ordered_inputs['attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase)] , dim=1) return ordered_inputs @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return 1_3
48
1
def _UpperCAmelCase (UpperCamelCase__ : int ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
11
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): _A : str = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ): _A : Tuple = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )] if matches and all(UpperCamelCase__ ): return True return False def _UpperCAmelCase (UpperCamelCase__ : str ): def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ): for rule, replacement in rules: if _match(UpperCamelCase__ , UpperCamelCase__ ): return replacement return val return replace def _UpperCAmelCase (): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , UpperCamelCase__ )), (("transformer", "wte", "embedding"), P("mp" , UpperCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _UpperCAmelCase (UpperCamelCase__ : List[str] ): _A : int = _get_partition_rules() _A : Optional[int] = _replacement_rules(UpperCamelCase__ ) _A : Optional[int] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )} _A : List[str] = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase__ ) )
11
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available __snake_case = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
112
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __lowerCAmelCase ( lowercase : Union[str, Any] , lowercase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" snake_case : Dict = OmegaConf.load(lowercase ) if display: print(yaml.dump(OmegaConf.to_container(lowercase ) ) ) return config def __lowerCAmelCase ( lowercase : Dict , lowercase : Dict=None , lowercase : Dict=None ) -> Union[str, Any]: """simple docstring""" if conf_path is None: snake_case : Optional[Any] = "./model_checkpoints/vqgan_only.yaml" snake_case : Union[str, Any] = load_config(lowercase , display=lowercase ) snake_case : List[Any] = VQModel(**config.model.params ) if ckpt_path is None: snake_case : Optional[int] = "./model_checkpoints/vqgan_only.pt" snake_case : Union[str, Any] = torch.load(lowercase , map_location=lowercase ) if ".ckpt" in ckpt_path: snake_case : Union[str, Any] = sd["state_dict"] model.load_state_dict(lowercase , strict=lowercase ) model.to(lowercase ) del sd return model def __lowerCAmelCase ( lowercase : str , lowercase : List[str] ) -> List[str]: """simple docstring""" snake_case ,snake_case ,snake_case : List[Any] = model.encode(lowercase ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) snake_case : Union[str, Any] = model.decode(lowercase ) return xrec def __lowerCAmelCase ( lowercase : List[Any] , lowercase : str=False ) -> Optional[int]: """simple docstring""" snake_case ,snake_case : Any = string.rsplit("." , 1 ) if reload: snake_case : List[Any] = importlib.import_module(lowercase ) importlib.reload(lowercase ) return getattr(importlib.import_module(lowercase , package=lowercase ) , cls ) def __lowerCAmelCase ( lowercase : List[str] ) -> Union[str, Any]: """simple docstring""" if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def __lowerCAmelCase ( lowercase : Tuple , lowercase : List[str] , lowercase : Tuple=True , lowercase : Optional[Any]=True ) -> Optional[int]: """simple docstring""" snake_case : Optional[Any] = instantiate_from_config(lowercase ) if sd is not None: model.load_state_dict(lowercase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __lowerCAmelCase ( lowercase : List[str] , lowercase : int , lowercase : Dict , lowercase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if ckpt: snake_case : Dict = torch.load(lowercase , map_location="cpu" ) snake_case : Any = pl_sd["global_step"] print(F'loaded model from global step {global_step}.' ) else: snake_case : Any = {"state_dict": None} snake_case : List[str] = None snake_case : Dict = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=lowercase , eval_mode=lowercase )["model"] return model, global_step
112
1
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A__ ( nn.Module): A_ : int A_ : int A_ : float = 0.0 A_ : int = 1 A_ : int = 1 A_ : bool = True A_ : bool = False A_ : bool = False A_ : bool = False A_ : jnp.dtype = jnp.floataa def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = [] __lowerCAmelCase : Any = [] for i in range(self.num_layers ): __lowerCAmelCase : Tuple = self.in_channels if i == 0 else self.out_channels __lowerCAmelCase : Any = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = resnets __lowerCAmelCase : Optional[int] = attentions if self.add_downsample: __lowerCAmelCase : str = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): __lowerCAmelCase : Tuple = () for resnet, attn in zip(self.resnets , self.attentions ): __lowerCAmelCase : Tuple = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: __lowerCAmelCase : Tuple = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class A__ ( nn.Module): A_ : int A_ : int A_ : float = 0.0 A_ : int = 1 A_ : bool = True A_ : jnp.dtype = jnp.floataa def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = [] for i in range(self.num_layers ): __lowerCAmelCase : Union[str, Any] = self.in_channels if i == 0 else self.out_channels __lowerCAmelCase : str = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = resnets if self.add_downsample: __lowerCAmelCase : Optional[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): __lowerCAmelCase : List[str] = () for resnet in self.resnets: __lowerCAmelCase : List[Any] = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: __lowerCAmelCase : Union[str, Any] = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class A__ ( nn.Module): A_ : int A_ : int A_ : int A_ : float = 0.0 A_ : int = 1 A_ : int = 1 A_ : bool = True A_ : bool = False A_ : bool = False A_ : bool = False A_ : jnp.dtype = jnp.floataa def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = [] __lowerCAmelCase : Union[str, Any] = [] for i in range(self.num_layers ): __lowerCAmelCase : Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCAmelCase : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels __lowerCAmelCase : List[str] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = resnets __lowerCAmelCase : Optional[Any] = attentions if self.add_upsample: __lowerCAmelCase : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __lowerCAmelCase : Union[str, Any] = res_hidden_states_tuple[-1] __lowerCAmelCase : List[str] = res_hidden_states_tuple[:-1] __lowerCAmelCase : str = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __lowerCAmelCase : Union[str, Any] = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: __lowerCAmelCase : Optional[Any] = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class A__ ( nn.Module): A_ : int A_ : int A_ : int A_ : float = 0.0 A_ : int = 1 A_ : bool = True A_ : jnp.dtype = jnp.floataa def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = [] for i in range(self.num_layers ): __lowerCAmelCase : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCAmelCase : List[Any] = self.prev_output_channel if i == 0 else self.out_channels __lowerCAmelCase : Union[str, Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = resnets if self.add_upsample: __lowerCAmelCase : Any = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): for resnet in self.resnets: # pop res hidden states __lowerCAmelCase : Any = res_hidden_states_tuple[-1] __lowerCAmelCase : List[Any] = res_hidden_states_tuple[:-1] __lowerCAmelCase : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __lowerCAmelCase : List[Any] = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: __lowerCAmelCase : Dict = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class A__ ( nn.Module): A_ : int A_ : float = 0.0 A_ : int = 1 A_ : int = 1 A_ : bool = False A_ : bool = False A_ : jnp.dtype = jnp.floataa def __lowerCamelCase ( self ): # there is always at least one resnet __lowerCAmelCase : str = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __lowerCAmelCase : List[Any] = [] for _ in range(self.num_layers ): __lowerCAmelCase : List[str] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = resnets __lowerCAmelCase : Union[str, Any] = attentions def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): __lowerCAmelCase : int = self.resnets[0](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __lowerCAmelCase : int = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) return hidden_states
86
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] __UpperCAmelCase : List[str] = (low + high) // 2 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = max_subarray(snake_case__, snake_case__, snake_case__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = max_subarray(snake_case__, mid + 1, snake_case__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = max_cross_sum(snake_case__, snake_case__, snake_case__, snake_case__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> tuple[int, int, float]: __UpperCAmelCase , __UpperCAmelCase : Any = float("-inf" ), -1 __UpperCAmelCase , __UpperCAmelCase : Dict = float("-inf" ), -1 __UpperCAmelCase : int | float = 0 for i in range(snake_case__, low - 1, -1 ): summ += arr[i] if summ > left_sum: __UpperCAmelCase : Optional[int] = summ __UpperCAmelCase : Optional[Any] = i __UpperCAmelCase : List[Any] = 0 for i in range(mid + 1, high + 1 ): summ += arr[i] if summ > right_sum: __UpperCAmelCase : List[str] = summ __UpperCAmelCase : Dict = i return max_left, max_right, (left_sum + right_sum) def _UpperCamelCase ( snake_case__ ) -> float: __UpperCAmelCase : Optional[int] = [randint(1, snake_case__ ) for _ in range(snake_case__ )] __UpperCAmelCase : Optional[int] = time.time() max_subarray(snake_case__, 0, input_size - 1 ) __UpperCAmelCase : List[str] = time.time() return end - start def _UpperCamelCase ( ) -> None: __UpperCAmelCase : str = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] __UpperCAmelCase : Optional[Any] = [time_max_subarray(snake_case__ ) for input_size in input_sizes] print("No of Inputs\t\tTime Taken" ) for input_size, runtime in zip(snake_case__, snake_case__ ): print(snake_case__, "\t\t", snake_case__ ) plt.plot(snake_case__, snake_case__ ) plt.xlabel("Number of Inputs" ) plt.ylabel("Time taken in seconds" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
157
0
from math import log from scipy.constants import Boltzmann, physical_constants __UpperCAmelCase : Tuple = 300 # TEMPERATURE (unit = K) def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): """simple docstring""" if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
364
def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : Any = set() # Replace all the whitespace in our sentence UpperCamelCase : Union[str, Any] = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == 2_6 def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : str = [False] * 2_6 for char in input_str: if char.islower(): UpperCamelCase : List[Any] = True elif char.isupper(): UpperCamelCase : List[Any] = True return all(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def a ( ): """simple docstring""" from timeit import timeit UpperCamelCase : int = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
315
0
lowerCAmelCase__ : Tuple =frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) lowerCAmelCase__ : int =frozenset(['''prompt''', '''negative_prompt''']) lowerCAmelCase__ : List[Any] =frozenset([]) lowerCAmelCase__ : int =frozenset(['''image''']) lowerCAmelCase__ : Dict =frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCAmelCase__ : Optional[Any] =frozenset(['''image''']) lowerCAmelCase__ : List[str] =frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) lowerCAmelCase__ : List[str] =frozenset(['''prompt''', '''image''', '''negative_prompt''']) lowerCAmelCase__ : Any =frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) lowerCAmelCase__ : List[Any] =frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) lowerCAmelCase__ : str =frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCAmelCase__ : Dict =frozenset(['''image''', '''mask_image''']) lowerCAmelCase__ : Optional[Any] =frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCAmelCase__ : Optional[Any] =frozenset(['''example_image''', '''image''', '''mask_image''']) lowerCAmelCase__ : Union[str, Any] =frozenset(['''class_labels''']) lowerCAmelCase__ : int =frozenset(['''class_labels''']) lowerCAmelCase__ : Dict =frozenset(['''batch_size''']) lowerCAmelCase__ : Tuple =frozenset([]) lowerCAmelCase__ : Dict =frozenset(['''batch_size''']) lowerCAmelCase__ : Tuple =frozenset([]) lowerCAmelCase__ : Union[str, Any] =frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) lowerCAmelCase__ : Any =frozenset(['''prompt''', '''negative_prompt''']) lowerCAmelCase__ : List[str] =frozenset(['''input_tokens''']) lowerCAmelCase__ : int =frozenset(['''input_tokens'''])
257
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : List[str] = '''Speech2TextFeatureExtractor''' UpperCamelCase__ : List[str] = '''Speech2TextTokenizer''' def __init__( self , _A , _A ): '''simple docstring''' super().__init__(_A , _A ) __SCREAMING_SNAKE_CASE = self.feature_extractor __SCREAMING_SNAKE_CASE = False def __call__( self , *_A , **_A ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) __SCREAMING_SNAKE_CASE = kwargs.pop('raw_speech' ) else: __SCREAMING_SNAKE_CASE = kwargs.pop('audio' , _A ) __SCREAMING_SNAKE_CASE = kwargs.pop('sampling_rate' , _A ) __SCREAMING_SNAKE_CASE = kwargs.pop('text' , _A ) if len(_A ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __SCREAMING_SNAKE_CASE = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: __SCREAMING_SNAKE_CASE = encodings['input_ids'] return inputs def _A ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.batch_decode(*_A , **_A ) def _A ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.decode(*_A , **_A ) @contextmanager def _A ( self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer yield __SCREAMING_SNAKE_CASE = self.feature_extractor __SCREAMING_SNAKE_CASE = False
257
1
'''simple docstring''' import os def __lowerCAmelCase (): with open(os.path.dirname(__lowerCAmelCase ) + "/grid.txt" ) as f: _UpperCAmelCase : List[Any] = [] # noqa: E741 for _ in range(20 ): l.append([int(__lowerCAmelCase ) for x in f.readline().split()] ) _UpperCAmelCase : Any = 0 # right for i in range(20 ): for j in range(17 ): _UpperCAmelCase : Optional[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _UpperCAmelCase : str = temp # down for i in range(17 ): for j in range(20 ): _UpperCAmelCase : Optional[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _UpperCAmelCase : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): _UpperCAmelCase : Union[str, Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _UpperCAmelCase : Optional[int] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): _UpperCAmelCase : Optional[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _UpperCAmelCase : Union[str, Any] = temp return maximum if __name__ == "__main__": print(solution())
322
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
1
from typing import Dict from .base import GenericTensor, Pipeline class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' def _lowercase ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Optional[int]: if tokenize_kwargs is None: lowerCamelCase : List[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) lowerCamelCase : Union[str, Any] = truncation lowerCamelCase : Optional[Any] = tokenize_kwargs lowerCamelCase : List[str] = {} if return_tensors is not None: lowerCamelCase : Tuple = return_tensors return preprocess_params, {}, postprocess_params def _lowercase ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> Dict[str, GenericTensor]: lowerCamelCase : int = self.framework lowerCamelCase : Optional[int] = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) return model_inputs def _lowercase ( self , UpperCamelCase__ ) -> Optional[Any]: lowerCamelCase : Dict = self.model(**UpperCamelCase__ ) return model_outputs def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__=False ) -> str: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: return super().__call__(*UpperCamelCase__ , **UpperCamelCase__ )
48
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ : List[Any] = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
1
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : List[str] = inspect.getfile(accelerate.test_utils ) __lowerCamelCase : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) __lowerCamelCase : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) __lowerCamelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def lowerCamelCase__ ( self : int ): print(F"""Found {torch.cuda.device_count()} devices.""" ) __lowerCamelCase : Union[str, Any] = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def lowerCamelCase__ ( self : List[str] ): print(F"""Found {torch.cuda.device_count()} devices.""" ) __lowerCamelCase : str = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def lowerCamelCase__ ( self : Any ): __lowerCamelCase : List[Any] = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def lowerCamelCase__ ( self : Any ): print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) __lowerCamelCase : Tuple = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": __A = Accelerator() __A = (accelerator.state.process_index + 2, 10) __A = torch.randint(0, 10, shape).to(accelerator.device) __A = '''''' __A = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __A = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __A = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
64
"""simple docstring""" from ...configuration_utils import PretrainedConfig class _snake_case ( a__ ): snake_case__ = "bert-generation" def __init__( self : Optional[int] , UpperCAmelCase : Dict=50358 , UpperCAmelCase : int=1024 , UpperCAmelCase : Optional[int]=24 , UpperCAmelCase : str=16 , UpperCAmelCase : str=4096 , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : str=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Union[str, Any]=512 , UpperCAmelCase : Optional[Any]=0.0_2 , UpperCAmelCase : int=1E-12 , UpperCAmelCase : Tuple=0 , UpperCAmelCase : int=2 , UpperCAmelCase : Optional[int]=1 , UpperCAmelCase : Union[str, Any]="absolute" , UpperCAmelCase : Tuple=True , **UpperCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : Any = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : int = hidden_act __lowerCamelCase : List[str] = intermediate_size __lowerCamelCase : Tuple = hidden_dropout_prob __lowerCamelCase : List[str] = attention_probs_dropout_prob __lowerCamelCase : Optional[Any] = max_position_embeddings __lowerCamelCase : List[Any] = initializer_range __lowerCamelCase : Union[str, Any] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : Optional[Any] = use_cache
64
1
'''simple docstring''' from __future__ import annotations import numpy as np def lowerCAmelCase_ ( _lowerCamelCase: list[float] ): return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
112
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
112
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _UpperCAmelCase = ["""gpt2"""] _UpperCAmelCase = """gpt2""" if is_tf_available(): class UpperCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self , lowercase ): """simple docstring""" super().__init__() A_ : Any = tokenizer A_ : Optional[Any] = AutoConfig.from_pretrained(lowercase ) A_ : int = TFGPTaLMHeadModel.from_config(lowercase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : List[str] = self.tokenizer(lowercase ) A_ : Tuple = tokenized['input_ids'].to_tensor() A_ : Optional[Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) A_ : List[Any] = self.model(input_ids=lowercase , attention_mask=lowercase )['logits'] return outputs @require_tf @require_keras_nlp class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" super().setUp() A_ : Any = [GPTaTokenizer.from_pretrained(lowercase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] A_ : Any = [TFGPTaTokenizer.from_pretrained(lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) A_ : Union[str, Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] A_ : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowerCAmelCase_ ( self ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: A_ : List[Any] = tokenizer([test_inputs] , return_tensors='tf' ) A_ : str = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors A_ : Optional[int] = python_outputs[key].numpy() A_ : Optional[int] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowercase , tf.intaa ) == tf_outputs_values ) ) @slow def lowerCAmelCase_ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: A_ : Any = tf.function(lowercase ) for test_inputs in self.test_sentences: A_ : Optional[int] = tf.constant(lowercase ) A_ : Tuple = compiled_tokenizer(lowercase ) A_ : Tuple = tf_tokenizer(lowercase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowerCAmelCase_ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: A_ : Any = ModelToSave(tokenizer=lowercase ) A_ : int = tf.convert_to_tensor([self.test_sentences[0]] ) A_ : Dict = model.serving(lowercase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: A_ : Dict = Path(lowercase ) / 'saved.model' tf.saved_model.save(lowercase , lowercase , signatures={'serving_default': model.serving} ) A_ : List[Any] = tf.saved_model.load(lowercase ) A_ : List[str] = loaded_model.signatures['serving_default'](lowercase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowerCAmelCase_ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: A_ : Dict = tf.convert_to_tensor([self.test_sentences[0]] ) A_ : List[str] = tf_tokenizer(lowercase ) # Build model with some sample inputs A_ : Any = tf_tokenizer.get_config() A_ : str = TFGPTaTokenizer.from_config(lowercase ) A_ : Any = model_from_config(lowercase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowerCAmelCase_ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run A_ : Dict = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: A_ : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] ) A_ : Any = tf_tokenizer(lowercase , max_length=lowercase ) A_ : Union[str, Any] = out['input_ids'].numpy().shape[1] assert out_length == max_length
363
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = 42 class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , ): """simple docstring""" super().__init__() self.register_modules( prior=lowercase , image_encoder=lowercase , image_processor=lowercase , scheduler=lowercase , renderer=lowercase , ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" if latents is None: A_ : Optional[Any] = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) A_ : Optional[int] = latents.to(lowercase ) A_ : List[Any] = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self , lowercase=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) A_ : Tuple = torch.device(F'''cuda:{gpu_id}''' ) A_ : Dict = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , ): """simple docstring""" if isinstance(lowercase , lowercase ) and isinstance(image[0] , torch.Tensor ): A_ : Tuple = torch.cat(lowercase , axis=0 ) if image[0].ndim == 4 else torch.stack(lowercase , axis=0 ) if not isinstance(lowercase , torch.Tensor ): A_ : Dict = self.image_processor(lowercase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) A_ : List[str] = image.to(dtype=self.image_encoder.dtype , device=lowercase ) A_ : Tuple = self.image_encoder(lowercase )['last_hidden_state'] A_ : Dict = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 A_ : List[str] = image_embeds.repeat_interleave(lowercase , dim=0 ) if do_classifier_free_guidance: A_ : str = torch.zeros_like(lowercase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self , lowercase , lowercase = 1 , lowercase = 2_5 , lowercase = None , lowercase = None , lowercase = 4.0 , lowercase = 6_4 , lowercase = "pil" , lowercase = True , ): """simple docstring""" if isinstance(lowercase , PIL.Image.Image ): A_ : int = 1 elif isinstance(lowercase , torch.Tensor ): A_ : int = image.shape[0] elif isinstance(lowercase , lowercase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): A_ : List[str] = len(lowercase ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase )}''' ) A_ : Any = self._execution_device A_ : List[Any] = batch_size * num_images_per_prompt A_ : int = guidance_scale > 1.0 A_ : Optional[int] = self._encode_image(lowercase , lowercase , lowercase , lowercase ) # prior self.scheduler.set_timesteps(lowercase , device=lowercase ) A_ : Dict = self.scheduler.timesteps A_ : int = self.prior.config.num_embeddings A_ : int = self.prior.config.embedding_dim A_ : Dict = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim A_ : Union[str, Any] = latents.reshape(latents.shape[0] , lowercase , lowercase ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance A_ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : List[Any] = self.scheduler.scale_model_input(lowercase , lowercase ) A_ : Any = self.prior( lowercase , timestep=lowercase , proj_embedding=lowercase , ).predicted_image_embedding # remove the variance A_ , A_ : int = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: A_ , A_ : List[Any] = noise_pred.chunk(2 ) A_ : str = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) A_ : Optional[int] = self.scheduler.step( lowercase , timestep=lowercase , sample=lowercase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase ) A_ : str = [] for i, latent in enumerate(lowercase ): print() A_ : Optional[Any] = self.renderer.decode( latent[None, :] , lowercase , size=lowercase , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(lowercase ) A_ : Dict = torch.stack(lowercase ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) A_ : Dict = images.cpu().numpy() if output_type == "pil": A_ : str = [self.numpy_to_pil(lowercase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase )
192
0
"""simple docstring""" from manim import * class __snake_case ( _lowercase): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : List[Any] = Rectangle(height=0.5 , width=0.5 ) _lowerCamelCase : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCamelCase : List[Any] = Rectangle(height=0.25 , width=0.25 ) _lowerCamelCase : int = [mem.copy() for i in range(6 )] _lowerCamelCase : List[str] = [mem.copy() for i in range(6 )] _lowerCamelCase : Any = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : Dict = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : Any = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : List[str] = Text('''CPU''' , font_size=2_4 ) _lowerCamelCase : Any = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [mem.copy() for i in range(4 )] _lowerCamelCase : List[str] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : List[str] = Text('''GPU''' , font_size=2_4 ) _lowerCamelCase : Optional[int] = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCAmelCase ) _lowerCamelCase : List[str] = [mem.copy() for i in range(6 )] _lowerCamelCase : Optional[int] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : Optional[Any] = Text('''Model''' , font_size=2_4 ) _lowerCamelCase : Tuple = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCAmelCase ) _lowerCamelCase : List[str] = [] _lowerCamelCase : List[str] = [] for i, rect in enumerate(__lowerCAmelCase ): _lowerCamelCase : List[str] = fill.copy().set_fill(__lowerCAmelCase , opacity=0.8 ) target.move_to(__lowerCAmelCase ) model_arr.append(__lowerCAmelCase ) _lowerCamelCase : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__lowerCAmelCase ) self.add(*__lowerCAmelCase , *__lowerCAmelCase ) _lowerCamelCase : Dict = [meta_mem.copy() for i in range(6 )] _lowerCamelCase : Dict = [meta_mem.copy() for i in range(6 )] _lowerCamelCase : Optional[Any] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : Optional[int] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : Optional[Any] = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : str = Text('''Disk''' , font_size=2_4 ) _lowerCamelCase : List[Any] = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCamelCase : List[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=1_8 , ) blue_text.next_to(__lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__lowerCAmelCase ) _lowerCamelCase : Tuple = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = Square(0.3 ) input.set_fill(__lowerCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , __lowerCAmelCase , buff=0.5 ) self.play(Write(__lowerCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=__lowerCAmelCase , buff=0.02 ) self.play(MoveToTarget(__lowerCAmelCase ) ) self.play(FadeOut(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = Arrow(start=__lowerCAmelCase , end=__lowerCAmelCase , color=__lowerCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , __lowerCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _lowerCamelCase : Any = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) ) _lowerCamelCase : List[str] = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(__lowerCAmelCase ) , Circumscribe(model_arr[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _lowerCamelCase : Optional[int] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , __lowerCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _lowerCamelCase : int = AnimationGroup( FadeOut(__lowerCAmelCase , run_time=0.5 ) , MoveToTarget(__lowerCAmelCase , run_time=0.5 ) , FadeIn(__lowerCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(__lowerCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _lowerCamelCase : Dict = 0.7 self.play( Circumscribe(model_arr[i] , **__lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **__lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(model_arr[i + 1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _lowerCamelCase : Dict = a_c _lowerCamelCase : List[str] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(__lowerCAmelCase ) , FadeOut(__lowerCAmelCase , run_time=0.5 ) , ) _lowerCamelCase : int = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) , MoveToTarget(__lowerCAmelCase ) ) self.wait()
72
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def _lowercase ( __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : Optional[int] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Any = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: SCREAMING_SNAKE_CASE__ : Optional[int] = s_dict.pop(__lowerCAmelCase ) elif "subsample" in key: SCREAMING_SNAKE_CASE__ : Dict = s_dict.pop(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int = emb.weight.shape SCREAMING_SNAKE_CASE__ : List[str] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = emb.weight.data return lin_layer def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : int = torch.load(__lowerCAmelCase , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ : List[Any] = mam_aaa["""args"""] SCREAMING_SNAKE_CASE__ : Optional[int] = mam_aaa["""model"""] SCREAMING_SNAKE_CASE__ : Dict = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(__lowerCAmelCase ) rename_keys(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = state_dict["""decoder.embed_tokens.weight"""].shape[0] SCREAMING_SNAKE_CASE__ : List[str] = args.share_decoder_input_output_embed SCREAMING_SNAKE_CASE__ : Optional[int] = [int(__lowerCAmelCase ) for i in args.conv_kernel_sizes.split(""",""" )] SCREAMING_SNAKE_CASE__ : str = SpeechaTextConfig( vocab_size=__lowerCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(__lowerCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=__lowerCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__lowerCAmelCase , num_beams=5 , max_length=200 , use_cache=__lowerCAmelCase , decoder_start_token_id=2 , early_stopping=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = SpeechaTextForConditionalGeneration(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0 and not set(__lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F''' but all the following weights are missing {missing}''' ) if tie_embeds: SCREAMING_SNAKE_CASE__ : Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: SCREAMING_SNAKE_CASE__ : int = lm_head_weights model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": a :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") a :str = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
364
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : Optional[int] = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ : int = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_sql_dataset(__lowerCAmelCase , __lowerCAmelCase ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : Tuple = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ : Union[str, Any] = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ : Dict = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_sql_dataset(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Optional[int]: with contextlib.closing(sqlitea.connect(__lowerCAmelCase ) ) as con: SCREAMING_SNAKE_CASE__ : Tuple = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Dict = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(__lowerCAmelCase , """tmp.sql""" ) SCREAMING_SNAKE_CASE__ : str = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCAmelCase ).read() SqlDatasetWriter(__lowerCAmelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() SCREAMING_SNAKE_CASE__ : Tuple = iter_sql_file(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = iter_sql_file(__lowerCAmelCase ) for rowa, rowa in zip(__lowerCAmelCase , __lowerCAmelCase ): assert rowa == rowa @require_sqlalchemy def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , """tmp.sql""" ) SCREAMING_SNAKE_CASE__ : int = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCAmelCase ).read() SqlDatasetWriter(__lowerCAmelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() SCREAMING_SNAKE_CASE__ : List[str] = iter_sql_file(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = iter_sql_file(__lowerCAmelCase ) for rowa, rowa in zip(__lowerCAmelCase , __lowerCAmelCase ): assert rowa == rowa @require_sqlalchemy def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Any = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(__lowerCAmelCase , """tmp.sql""" ) SCREAMING_SNAKE_CASE__ : List[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCAmelCase ).read() with pytest.raises(__lowerCAmelCase ): SqlDatasetWriter(__lowerCAmelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
56
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _a = logging.get_logger(__name__) class A_ ( snake_case__ ): _lowercase : Union[str, Any] = ['pixel_values'] def __init__( self : Optional[int] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PIL.Image.BICUBIC , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : List[Any] , ) -> None: super().__init__(**UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} __lowerCAmelCase: Any = get_size_dict(UpperCAmelCase ) __lowerCAmelCase: List[Any] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase: Optional[int] = get_size_dict(UpperCAmelCase , param_name='crop_size' ) __lowerCAmelCase: str = do_resize __lowerCAmelCase: int = size __lowerCAmelCase: Any = resample __lowerCAmelCase: Union[str, Any] = do_center_crop __lowerCAmelCase: Any = crop_size __lowerCAmelCase: Optional[Any] = do_rescale __lowerCAmelCase: List[str] = rescale_factor __lowerCAmelCase: int = do_normalize __lowerCAmelCase: Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase: Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self : Any , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PIL.Image.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : str , ) -> np.ndarray: __lowerCAmelCase: Dict = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( UpperCAmelCase , size=(size['height'], size['width']) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Tuple , ) -> np.ndarray: __lowerCAmelCase: List[Any] = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCAmelCase , size=(size['height'], size['width']) , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[str] , ) -> Optional[Any]: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : Any , ) -> PIL.Image.Image: __lowerCAmelCase: Optional[int] = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase: Optional[int] = resample if resample is not None else self.resample __lowerCAmelCase: Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase: str = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase: int = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase: Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase: Optional[Any] = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase: Any = image_std if image_std is not None else self.image_std __lowerCAmelCase: Optional[Any] = size if size is not None else self.size __lowerCAmelCase: Union[str, Any] = get_size_dict(UpperCAmelCase ) __lowerCAmelCase: Any = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase: int = get_size_dict(UpperCAmelCase , param_name='crop_size' ) __lowerCAmelCase: Dict = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase: Union[str, Any] = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: __lowerCAmelCase: Dict = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: __lowerCAmelCase: List[Any] = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: __lowerCAmelCase: int = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: __lowerCAmelCase: Tuple = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] __lowerCAmelCase: Optional[Any] = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] __lowerCAmelCase: Optional[int] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
322
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
63
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''deta''' __A = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Tuple , lowercase_ : int=None , lowercase_ : Union[str, Any]=900 , lowercase_ : Any=2048 , lowercase_ : Optional[int]=6 , lowercase_ : Optional[int]=2048 , lowercase_ : List[Any]=8 , lowercase_ : Union[str, Any]=6 , lowercase_ : Optional[Any]=1024 , lowercase_ : Dict=8 , lowercase_ : Any=0.0 , lowercase_ : str=True , lowercase_ : List[Any]="relu" , lowercase_ : Optional[int]=256 , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=0.02 , lowercase_ : List[str]=1.0 , lowercase_ : List[str]=True , lowercase_ : Any=False , lowercase_ : int="sine" , lowercase_ : str=5 , lowercase_ : int=4 , lowercase_ : Any=4 , lowercase_ : Tuple=True , lowercase_ : List[Any]=300 , lowercase_ : Tuple=True , lowercase_ : Any=True , lowercase_ : str=1 , lowercase_ : List[str]=5 , lowercase_ : Union[str, Any]=2 , lowercase_ : Tuple=1 , lowercase_ : int=1 , lowercase_ : Tuple=5 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=0.1 , lowercase_ : List[Any]=0.25 , **lowercase_ : Any , ) -> List[str]: """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _UpperCamelCase = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"]) else: if isinstance(lowercase_ , lowercase_): _UpperCamelCase = backbone_config.pop("model_type") _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(lowercase_) _UpperCamelCase = backbone_config _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine _UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True.") # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" return self.encoder_attention_heads @property def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" return self.d_model def __UpperCAmelCase ( self : Any) -> str: """simple docstring""" _UpperCamelCase = copy.deepcopy(self.__dict__) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
63
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.26.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('''>=''', '''0.0.12''') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
64
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Any = ort.SessionOptions() _snake_case : Union[str, Any] = False return options def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _snake_case : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _snake_case : Optional[Any] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""", revision="""onnx""", safety_checker=a_, feature_extractor=a_, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=a_ ) _snake_case : Optional[Any] = """A red cat sitting on a park bench""" _snake_case : Optional[int] = np.random.RandomState(0 ) _snake_case : Any = pipe( prompt=a_, image=a_, mask_image=a_, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=a_, output_type="""np""", ) _snake_case : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
64
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
"""simple docstring""" import os import sys import unittest UpperCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCAmelCase__ = os.path.join(git_repo_path, 'src', 'diffusers') class lowerCAmelCase__ ( unittest.TestCase ): def lowercase ( self : Any ): _snake_case = find_backend(''' if not is_torch_available():''' ) self.assertEqual(_lowerCamelCase , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(_lowerCamelCase , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(_lowerCamelCase , '''torch_and_transformers_and_onnx''' ) def lowercase ( self : List[str] ): _snake_case = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , _lowerCamelCase ) self.assertIn('''torch_and_transformers''' , _lowerCamelCase ) self.assertIn('''flax_and_transformers''' , _lowerCamelCase ) self.assertIn('''torch_and_transformers_and_onnx''' , _lowerCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def lowercase ( self : List[str] ): _snake_case = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(_lowerCamelCase , '''\nCONSTANT = None\n''' ) _snake_case = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( _lowerCamelCase , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) _snake_case = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' _snake_case = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : str ): _snake_case = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' _snake_case = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , _lowerCamelCase )
40
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
315
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline A_ : List[str] = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": A_ : Optional[int] = 'hopper-medium-v2' A_ : List[Any] = gym.make(env_name) A_ : str = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) A_ : List[Any] = env.reset() A_ : Optional[int] = 0 A_ : str = 0 A_ : Optional[Any] = 1000 A_ : Union[str, Any] = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy A_ : Tuple = pipeline(obs, planning_horizon=32) # execute action in environment A_ , A_ , A_ , A_ : Dict = env.step(denorm_actions) A_ : List[str] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) A_ : int = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
192
0
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = SamImageProcessor() SCREAMING_SNAKE_CASE_ = SamProcessor(_A ) processor.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self , **_A ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).image_processor def _UpperCamelCase ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = SamProcessor(image_processor=_A ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = processor(images=_A , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = SamProcessor(image_processor=_A ) SCREAMING_SNAKE_CASE_ = [torch.ones((1, 3, 5, 5) )] SCREAMING_SNAKE_CASE_ = [[1764, 2646]] SCREAMING_SNAKE_CASE_ = [[683, 1024]] SCREAMING_SNAKE_CASE_ = processor.post_process_masks(_A , _A , _A ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) SCREAMING_SNAKE_CASE_ = processor.post_process_masks( _A , torch.tensor(_A ) , torch.tensor(_A ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np SCREAMING_SNAKE_CASE_ = [np.ones((1, 3, 5, 5) )] SCREAMING_SNAKE_CASE_ = processor.post_process_masks(_A , np.array(_A ) , np.array(_A ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) SCREAMING_SNAKE_CASE_ = [[1, 0], [0, 1]] with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ = processor.post_process_masks(_A , np.array(_A ) , np.array(_A ) ) @require_vision @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = SamImageProcessor() SCREAMING_SNAKE_CASE_ = SamProcessor(_A ) processor.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self , **_A ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).image_processor def _UpperCamelCase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = SamProcessor(image_processor=_A ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = processor(images=_A , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = SamProcessor(image_processor=_A ) SCREAMING_SNAKE_CASE_ = [tf.ones((1, 3, 5, 5) )] SCREAMING_SNAKE_CASE_ = [[1764, 2646]] SCREAMING_SNAKE_CASE_ = [[683, 1024]] SCREAMING_SNAKE_CASE_ = processor.post_process_masks(_A , _A , _A , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) SCREAMING_SNAKE_CASE_ = processor.post_process_masks( _A , tf.convert_to_tensor(_A ) , tf.convert_to_tensor(_A ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np SCREAMING_SNAKE_CASE_ = [np.ones((1, 3, 5, 5) )] SCREAMING_SNAKE_CASE_ = processor.post_process_masks( _A , np.array(_A ) , np.array(_A ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) SCREAMING_SNAKE_CASE_ = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): SCREAMING_SNAKE_CASE_ = processor.post_process_masks( _A , np.array(_A ) , np.array(_A ) , return_tensors='''tf''' ) @require_vision @require_torchvision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = SamImageProcessor() SCREAMING_SNAKE_CASE_ = SamProcessor(_A ) processor.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self , **_A ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).image_processor def _UpperCamelCase ( self ) -> Any: shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = SamProcessor(image_processor=_A ) SCREAMING_SNAKE_CASE_ = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = [tf.convert_to_tensor(_A )] SCREAMING_SNAKE_CASE_ = [torch.tensor(_A )] SCREAMING_SNAKE_CASE_ = [[1764, 2646]] SCREAMING_SNAKE_CASE_ = [[683, 1024]] SCREAMING_SNAKE_CASE_ = processor.post_process_masks( _A , _A , _A , return_tensors='''tf''' ) SCREAMING_SNAKE_CASE_ = processor.post_process_masks( _A , _A , _A , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = SamProcessor(image_processor=_A ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(_A , return_tensors='''pt''' )['''pixel_values'''].numpy() SCREAMING_SNAKE_CASE_ = processor(images=_A , return_tensors='''pt''' )['''pixel_values'''].numpy() SCREAMING_SNAKE_CASE_ = image_processor(_A , return_tensors='''tf''' )['''pixel_values'''].numpy() SCREAMING_SNAKE_CASE_ = processor(images=_A , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(_A , _A ) ) self.assertTrue(np.allclose(_A , _A ) ) self.assertTrue(np.allclose(_A , _A ) )
369
__UpperCAmelCase = [ (10_00, "M"), (9_00, "CM"), (5_00, "D"), (4_00, "CD"), (1_00, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while place < len(__lowerCamelCase ): if (place + 1 < len(__lowerCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] for arabic, roman in ROMAN: ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = divmod(__lowerCamelCase, __lowerCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
257
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _lowerCamelCase ): '''simple docstring''' __A : int = (UnCLIPScheduler,) def _snake_case ( self , **__A ): """simple docstring""" lowerCamelCase : str = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**lowercase_ ) return config def _snake_case ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def _snake_case ( self ): """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase_ ) def _snake_case ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def _snake_case ( self ): """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase_ ) def _snake_case ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase_ ) def _snake_case ( self ): """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase_ , prev_timestep=lowercase_ ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = self.scheduler_classes[0] lowerCamelCase : str = self.get_scheduler_config(variance_type="fixed_small_log" ) lowerCamelCase : Optional[Any] = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type="learned_range" ) lowerCamelCase : Optional[Any] = scheduler_class(**lowercase_ ) lowerCamelCase : Optional[int] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase_ ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=lowercase_ ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=lowercase_ ) - -0.0010011 < 1e-5 def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = self.scheduler_classes[0] lowerCamelCase : Tuple = self.get_scheduler_config() lowerCamelCase : Tuple = scheduler_class(**lowercase_ ) lowerCamelCase : Optional[int] = scheduler.timesteps lowerCamelCase : str = self.dummy_model() lowerCamelCase : List[Any] = self.dummy_sample_deter lowerCamelCase : Tuple = torch.manual_seed(0 ) for i, t in enumerate(lowercase_ ): # 1. predict noise residual lowerCamelCase : Optional[Any] = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 lowerCamelCase : int = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample lowerCamelCase : List[str] = pred_prev_sample lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase_ ) ) lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = self.scheduler_classes[0] lowerCamelCase : Optional[int] = self.get_scheduler_config() lowerCamelCase : Union[str, Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(25 ) lowerCamelCase : Optional[Any] = scheduler.timesteps lowerCamelCase : int = self.dummy_model() lowerCamelCase : Union[str, Any] = self.dummy_sample_deter lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) for i, t in enumerate(lowercase_ ): # 1. predict noise residual lowerCamelCase : Union[str, Any] = model(lowercase_ , lowercase_ ) if i + 1 == timesteps.shape[0]: lowerCamelCase : Any = None else: lowerCamelCase : Any = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCamelCase : Optional[int] = scheduler.step( lowercase_ , lowercase_ , lowercase_ , prev_timestep=lowercase_ , generator=lowercase_ ).prev_sample lowerCamelCase : List[str] = pred_prev_sample lowerCamelCase : Tuple = torch.sum(torch.abs(lowercase_ ) ) lowerCamelCase : str = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def _snake_case ( self ): """simple docstring""" pass def _snake_case ( self ): """simple docstring""" pass
283
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters a : Dict = (720, 1280) # Height, Width a : Tuple = (0.4, 0.6) # if height or width lower than this scale, drop it. a : Dict = 1 / 100 a : str = '' a : Any = '' a : Optional[int] = '' a : List[str] = 250 def __magic_name__ ( ) -> None: '''simple docstring''' snake_case_ ,snake_case_ = get_dataset(__UpperCAmelCase, __UpperCAmelCase ) for index in range(__UpperCAmelCase ): snake_case_ = random.sample(range(len(__UpperCAmelCase ) ), 4 ) snake_case_ ,snake_case_ ,snake_case_ = update_image_and_anno( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, filter_scale=__UpperCAmelCase, ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case_ = random_chars(32 ) snake_case_ = path.split(os.sep )[-1].rsplit('''.''', 1 )[0] snake_case_ = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(F"{file_root}.jpg", __UpperCAmelCase, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) snake_case_ = [] for anno in new_annos: snake_case_ = anno[3] - anno[1] snake_case_ = anno[4] - anno[2] snake_case_ = anno[1] + width / 2 snake_case_ = anno[2] + height / 2 snake_case_ = F"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(__UpperCAmelCase ) with open(F"{file_root}.txt", '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> tuple[list, list]: '''simple docstring''' snake_case_ = [] snake_case_ = [] for label_file in glob.glob(os.path.join(__UpperCAmelCase, '''*.txt''' ) ): snake_case_ = label_file.split(os.sep )[-1].rsplit('''.''', 1 )[0] with open(__UpperCAmelCase ) as in_file: snake_case_ = in_file.readlines() snake_case_ = os.path.join(__UpperCAmelCase, F"{label_name}.jpg" ) snake_case_ = [] for obj_list in obj_lists: snake_case_ = obj_list.rstrip('''\n''' ).split(''' ''' ) snake_case_ = float(obj[1] ) - float(obj[3] ) / 2 snake_case_ = float(obj[2] ) - float(obj[4] ) / 2 snake_case_ = float(obj[1] ) + float(obj[3] ) / 2 snake_case_ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__UpperCAmelCase ) labels.append(__UpperCAmelCase ) return img_paths, labels def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = 0.0, ) -> tuple[list, list, str]: '''simple docstring''' snake_case_ = np.zeros([output_size[0], output_size[1], 3], dtype=np.uinta ) snake_case_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case_ = int(scale_x * output_size[1] ) snake_case_ = int(scale_y * output_size[0] ) snake_case_ = [] snake_case_ = [] for i, index in enumerate(__UpperCAmelCase ): snake_case_ = all_img_list[index] path_list.append(__UpperCAmelCase ) snake_case_ = all_annos[index] snake_case_ = cva.imread(__UpperCAmelCase ) if i == 0: # top-left snake_case_ = cva.resize(__UpperCAmelCase, (divid_point_x, divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = bbox[1] * scale_x snake_case_ = bbox[2] * scale_y snake_case_ = bbox[3] * scale_x snake_case_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right snake_case_ = cva.resize(__UpperCAmelCase, (output_size[1] - divid_point_x, divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = scale_x + bbox[1] * (1 - scale_x) snake_case_ = bbox[2] * scale_y snake_case_ = scale_x + bbox[3] * (1 - scale_x) snake_case_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left snake_case_ = cva.resize(__UpperCAmelCase, (divid_point_x, output_size[0] - divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = bbox[1] * scale_x snake_case_ = scale_y + bbox[2] * (1 - scale_y) snake_case_ = bbox[3] * scale_x snake_case_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right snake_case_ = cva.resize( __UpperCAmelCase, (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = scale_x + bbox[1] * (1 - scale_x) snake_case_ = scale_y + bbox[2] * (1 - scale_y) snake_case_ = scale_x + bbox[3] * (1 - scale_x) snake_case_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: snake_case_ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" snake_case_ = ascii_lowercase + digits return "".join(random.choice(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
56
0
from collections.abc import Sequence def lowerCAmelCase_ (lowerCAmelCase__: Sequence[float] , lowerCAmelCase__: bool = False ): """simple docstring""" if not arr: return 0 UpperCAmelCase_: Optional[Any] = 0 if allow_empty_subarrays else float("""-inf""" ) UpperCAmelCase_: str = 0.0 for num in arr: UpperCAmelCase_: List[str] = max(0 if allow_empty_subarrays else num , curr_sum + num ) UpperCAmelCase_: Union[str, Any] = max(lowerCAmelCase__ , lowerCAmelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() a : List[str] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
370
from collections import defaultdict class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Optional[int] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCAmelCase_: List[Any] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(SCREAMING_SNAKE_CASE_ ) ) ] UpperCAmelCase_: Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCAmelCase_: List[Any] = (1 << len(SCREAMING_SNAKE_CASE_ )) - 1 def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCAmelCase_: List[Any] = self.count_ways_until(SCREAMING_SNAKE_CASE_, task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p), task_no + 1 ) # save the value. UpperCAmelCase_: List[Any] = total_ways_util return self.dp[mask][task_no] def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> str: # Store the list of persons for each task for i in range(len(SCREAMING_SNAKE_CASE_ ) ): for j in task_performed[i]: self.task[j].append(SCREAMING_SNAKE_CASE_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0, 1 ) if __name__ == "__main__": a : Optional[Any] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. a : Optional[Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
82
0
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : Dict = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =AlbertTokenizer __a =AlbertTokenizerFast __a =True __a =True __a =True def UpperCamelCase__ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing _a = AlbertTokenizer(__a ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : Dict , __a : int ): _a = "this is a test" _a = "this is a test" return input_text, output_text def UpperCamelCase__ ( self : Any ): _a = "<pad>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def UpperCamelCase__ ( self : List[Any] ): _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(__a ) , 3_00_00 ) def UpperCamelCase__ ( self : Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def UpperCamelCase__ ( self : Dict ): if not self.test_rust_tokenizer: return _a = self.get_tokenizer() _a = self.get_rust_tokenizer() _a = "I was born in 92000, and this is falsé." _a = tokenizer.tokenize(__a ) _a = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) _a = tokenizer.encode(__a , add_special_tokens=__a ) _a = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) _a = self.get_rust_tokenizer() _a = tokenizer.encode(__a ) _a = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def UpperCamelCase__ ( self : Dict ): _a = AlbertTokenizer(__a , keep_accents=__a ) _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [48, 25, 21, 12_89] ) _a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) _a = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) _a = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def UpperCamelCase__ ( self : int ): _a = AlbertTokenizer(__a ) _a = tokenizer.encode("sequence builders" ) _a = tokenizer.encode("multi-sequence build" ) _a = tokenizer.build_inputs_with_special_tokens(__a ) _a = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase__ ( self : str ): # fmt: off _a = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
63
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ : int = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowerCAmelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
63
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __lowerCAmelCase ( _a ): lowerCamelCase_ : Union[str, Any] = '''facebook/bart-large-mnli''' lowerCamelCase_ : List[Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) lowerCamelCase_ : Dict = '''text_classifier''' lowerCamelCase_ : List[str] = AutoTokenizer lowerCamelCase_ : Optional[int] = AutoModelForSequenceClassification lowerCamelCase_ : int = ['''text''', ['''text''']] lowerCamelCase_ : Union[str, Any] = ['''text'''] def lowerCamelCase (self ) -> Tuple: '''simple docstring''' super().setup() snake_case_ : int = self.model.config snake_case_ : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): snake_case_ : Dict = int(__magic_name__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' snake_case_ : Tuple = labels return self.pre_processor( [text] * len(__magic_name__ ) , [F'''This example is {label}''' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def lowerCamelCase (self , __magic_name__ ) -> str: '''simple docstring''' snake_case_ : int = outputs.logits snake_case_ : List[Any] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
352
def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) snake_case_ : List[str] = len(bin(_UpperCamelCase )[3:] ) snake_case_ : str = bin(abs(_UpperCamelCase ) - (1 << binary_number_length) )[3:] snake_case_ : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_UpperCamelCase )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
279
0
UpperCamelCase = [0, 2, 4, 6, 8] UpperCamelCase = [1, 3, 5, 7, 9] def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] , _lowerCamelCase : int): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowercase__ : str = 0 for digit in range(10): lowercase__ : str = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _lowerCamelCase , _lowerCamelCase) return result lowercase__ : Dict = 0 for digita in range(10): lowercase__ : int = digita if (remainder + digita) % 2 == 0: lowercase__ : Optional[Any] = ODD_DIGITS else: lowercase__ : str = EVEN_DIGITS for digita in other_parity_digits: lowercase__ : List[str] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCamelCase , _lowerCamelCase , ) return result def lowercase_ ( _lowerCamelCase : int = 9): lowercase__ : Tuple = 0 for length in range(1 , max_power + 1): result += reversible_numbers(_lowerCamelCase , 0 , [0] * length , _lowerCamelCase) return result if __name__ == "__main__": print(f"{solution() = }")
87
"""simple docstring""" from itertools import permutations def lowercase ( A_ )-> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False a : Optional[int] = [7, 11, 13, 17] for i, test in enumerate(A_ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase ( A_ = 10 )-> int: '''simple docstring''' return sum( int("".join(map(A_ , A_ ) ) ) for num in permutations(range(A_ ) ) if is_substring_divisible(A_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
40
0
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__ : Tuple = random.Random() def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_=1.0 , lowerCAmelCase_=None , lowerCAmelCase_=None ): '''simple docstring''' if rng is None: __SCREAMING_SNAKE_CASE = global_rng __SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def __init__( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : Optional[int]=4_0_0 , UpperCAmelCase__ : Dict=2_0_0_0 , UpperCAmelCase__ : Any=2_0_4_8 , UpperCAmelCase__ : Any=1_2_8 , UpperCAmelCase__ : List[Any]=1 , UpperCAmelCase__ : List[Any]=5_1_2 , UpperCAmelCase__ : int=3_0 , UpperCAmelCase__ : Dict=4_4_1_0_0 , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = min_seq_length __SCREAMING_SNAKE_CASE = max_seq_length __SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __SCREAMING_SNAKE_CASE = spectrogram_length __SCREAMING_SNAKE_CASE = feature_size __SCREAMING_SNAKE_CASE = num_audio_channels __SCREAMING_SNAKE_CASE = hop_length __SCREAMING_SNAKE_CASE = chunk_length __SCREAMING_SNAKE_CASE = sampling_rate def UpperCAmelCase_ ( self : Optional[int] ) -> str: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Optional[int]=False ) -> List[Any]: def _flatten(UpperCAmelCase__ : Dict ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: __SCREAMING_SNAKE_CASE = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __SCREAMING_SNAKE_CASE = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __SCREAMING_SNAKE_CASE = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : int = TvltFeatureExtractor def UpperCAmelCase_ ( self : List[str] ) -> str: __SCREAMING_SNAKE_CASE = TvltFeatureExtractionTester(self ) def UpperCAmelCase_ ( self : Tuple ) -> str: __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , "spectrogram_length" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "feature_size" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "num_audio_channels" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "hop_length" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "chunk_length" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "sampling_rate" ) ) def UpperCAmelCase_ ( self : Dict ) -> str: __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = feat_extract_first.save_pretrained(UpperCAmelCase__ )[0] check_json_file_has_correct_format(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_pretrained(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() __SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() __SCREAMING_SNAKE_CASE = dict_first.pop("mel_filters" ) __SCREAMING_SNAKE_CASE = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , "feat_extract.json" ) feat_extract_first.to_json_file(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_json_file(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() __SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() __SCREAMING_SNAKE_CASE = dict_first.pop("mel_filters" ) __SCREAMING_SNAKE_CASE = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Any ) -> int: # Initialize feature_extractor __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __SCREAMING_SNAKE_CASE = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input __SCREAMING_SNAKE_CASE = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __SCREAMING_SNAKE_CASE = feature_extractor(UpperCAmelCase__ , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __SCREAMING_SNAKE_CASE = feature_extractor( UpperCAmelCase__ , return_tensors="np" , sampling_rate=4_4_1_0_0 , mask_audio=UpperCAmelCase__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __SCREAMING_SNAKE_CASE = np.asarray(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = feature_extractor(UpperCAmelCase__ , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : Any ) -> Tuple: __SCREAMING_SNAKE_CASE = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __SCREAMING_SNAKE_CASE = ds.sort("id" ).select(range(UpperCAmelCase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCAmelCase_ ( self : Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) __SCREAMING_SNAKE_CASE = TvltFeatureExtractor() __SCREAMING_SNAKE_CASE = feature_extractor(UpperCAmelCase__ , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) __SCREAMING_SNAKE_CASE = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , UpperCAmelCase__ , atol=1E-4 ) )
195
"""simple docstring""" from datetime import datetime import requests def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" __SCREAMING_SNAKE_CASE = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": a__ : str = input('''Enter Video/IGTV url: ''').strip() a__ : List[Any] = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F"Done. Video saved to disk as {file_name}.")
195
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _lowerCamelCase( UpperCamelCase_ ): lowercase_ : Dict = '''unispeech-sat''' def __init__( self, lowerCamelCase=32, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=12, lowerCamelCase=30_72, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=0.0_2, lowerCamelCase=1E-5, lowerCamelCase="group", lowerCamelCase="gelu", lowerCamelCase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12), lowerCamelCase=(5, 2, 2, 2, 2, 2, 2), lowerCamelCase=(10, 3, 3, 3, 3, 2, 2), lowerCamelCase=False, lowerCamelCase=1_28, lowerCamelCase=16, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=0.0_5, lowerCamelCase=10, lowerCamelCase=2, lowerCamelCase=0.0, lowerCamelCase=10, lowerCamelCase=0, lowerCamelCase=3_20, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=1_00, lowerCamelCase=2_56, lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase="mean", lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=2_56, lowerCamelCase=(5_12, 5_12, 5_12, 5_12, 15_00), lowerCamelCase=(5, 3, 3, 1, 1), lowerCamelCase=(1, 2, 3, 1, 1), lowerCamelCase=5_12, lowerCamelCase=0, lowerCamelCase=1, lowerCamelCase=2, lowerCamelCase=5_04, **lowerCamelCase, ) -> int: """simple docstring""" super().__init__(**_A, pad_token_id=_A, bos_token_id=_A, eos_token_id=_A) _lowercase : Tuple = hidden_size _lowercase : Dict = feat_extract_norm _lowercase : str = feat_extract_activation _lowercase : Dict = list(_A) _lowercase : Optional[Any] = list(_A) _lowercase : List[str] = list(_A) _lowercase : str = conv_bias _lowercase : int = num_conv_pos_embeddings _lowercase : List[Any] = num_conv_pos_embedding_groups _lowercase : List[Any] = len(self.conv_dim) _lowercase : Optional[Any] = num_hidden_layers _lowercase : Tuple = intermediate_size _lowercase : Union[str, Any] = hidden_act _lowercase : Dict = num_attention_heads _lowercase : Any = hidden_dropout _lowercase : Union[str, Any] = attention_dropout _lowercase : str = activation_dropout _lowercase : Optional[int] = feat_proj_dropout _lowercase : int = final_dropout _lowercase : Tuple = layerdrop _lowercase : Any = layer_norm_eps _lowercase : Optional[int] = initializer_range _lowercase : Dict = vocab_size _lowercase : Dict = num_clusters _lowercase : Union[str, Any] = do_stable_layer_norm _lowercase : List[Any] = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase : Union[str, Any] = apply_spec_augment _lowercase : List[Any] = mask_time_prob _lowercase : List[Any] = mask_time_length _lowercase : Any = mask_time_min_masks _lowercase : int = mask_feature_prob _lowercase : Union[str, Any] = mask_feature_length _lowercase : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowercase : Union[str, Any] = num_codevectors_per_group _lowercase : Any = num_codevector_groups _lowercase : Optional[Any] = contrastive_logits_temperature _lowercase : List[str] = feat_quantizer_dropout _lowercase : List[str] = num_negatives _lowercase : List[Any] = codevector_dim _lowercase : Union[str, Any] = proj_codevector_dim _lowercase : Tuple = diversity_loss_weight # ctc loss _lowercase : Union[str, Any] = ctc_loss_reduction _lowercase : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase : Union[str, Any] = list(_A) _lowercase : List[str] = list(_A) _lowercase : int = list(_A) _lowercase : Dict = xvector_output_dim @property def UpperCamelCase ( self) -> Dict: """simple docstring""" return functools.reduce(operator.mul, self.conv_stride, 1)
21
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ : Optional[int] =getLogger(__name__) lowerCAmelCase__ : List[str] ='''cuda''' if torch.cuda.is_available() else '''cpu''' def __lowercase ( a__ , a__ , a__ , a__ = 8 , a__ = DEFAULT_DEVICE , a__=False , a__="summarization" , a__=None , **a__ , ) -> Dict: __SCREAMING_SNAKE_CASE = Path(a__ ).open('w' , encoding='utf-8' ) __SCREAMING_SNAKE_CASE = str(a__ ) __SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(a__ ).to(a__ ) if fpaa: __SCREAMING_SNAKE_CASE = model.half() __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(a__ ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __SCREAMING_SNAKE_CASE = time.time() # update config with task specific params use_task_specific_params(a__ , a__ ) if prefix is None: __SCREAMING_SNAKE_CASE = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(a__ , a__ ) ) ): __SCREAMING_SNAKE_CASE = [prefix + text for text in examples_chunk] __SCREAMING_SNAKE_CASE = tokenizer(a__ , return_tensors='pt' , truncation=a__ , padding='longest' ).to(a__ ) __SCREAMING_SNAKE_CASE = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a__ , ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(a__ , skip_special_tokens=a__ , clean_up_tokenization_spaces=a__ ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() __SCREAMING_SNAKE_CASE = int(time.time() - start_time ) # seconds __SCREAMING_SNAKE_CASE = len(a__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def __lowercase ( ) -> Any: return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def __lowercase ( a__=True ) -> int: __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('model_name' , type=a__ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=a__ , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=a__ , help='where to save summaries' ) parser.add_argument('--reference_path' , type=a__ , required=a__ , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=a__ , required=a__ , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=a__ , required=a__ , default=a__ , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=a__ , required=a__ , default=a__ , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=a__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=a__ , default=8 , required=a__ , help='batch size' ) parser.add_argument( '--n_obs' , type=a__ , default=-1 , required=a__ , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=a__ , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_known_args() __SCREAMING_SNAKE_CASE = parse_numeric_n_bool_cl_kwargs(a__ ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __SCREAMING_SNAKE_CASE = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __SCREAMING_SNAKE_CASE = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) __SCREAMING_SNAKE_CASE = generate_summaries_or_translations( a__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a__ , ) if args.reference_path is None: return {} # Compute scores __SCREAMING_SNAKE_CASE = calculate_bleu if 'translation' in args.task else calculate_rouge __SCREAMING_SNAKE_CASE = [x.rstrip() for x in open(args.save_path ).readlines()] __SCREAMING_SNAKE_CASE = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a__ )] __SCREAMING_SNAKE_CASE = score_fn(a__ , a__ ) scores.update(a__ ) if args.dump_args: scores.update(a__ ) if args.info: __SCREAMING_SNAKE_CASE = args.info if verbose: print(a__ ) if args.score_path is not None: json.dump(a__ , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
257
0
def snake_case_ ( lowerCAmelCase_ : list , lowerCAmelCase_ : list , lowerCAmelCase_ : int ): __lowercase : int = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[0] * n for i in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ ): __lowercase : str = y_points[i] for i in range(2 , lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Dict = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
1
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=_snake_case , default=_snake_case , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=_snake_case , help="""Name of the model to download""" ) download_parser.set_defaults(func=_snake_case ) def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = model UpperCAmelCase__ = cache UpperCAmelCase__ = force UpperCAmelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
346
A__ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A__ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = True _lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(snake_case , snake_case , snake_case ) order.append(snake_case ) return order def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = True _lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(snake_case , snake_case , snake_case ) return component def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = len(snake_case ) * [False] _lowerCAmelCase = {vert: [] for vert in range(len(snake_case ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(snake_case ) _lowerCAmelCase = [] for i, was_visited in enumerate(snake_case ): if not was_visited: order += topology_sort(snake_case , snake_case , snake_case ) _lowerCAmelCase = [] _lowerCAmelCase = len(snake_case ) * [False] for i in range(len(snake_case ) ): _lowerCAmelCase = order[len(snake_case ) - i - 1] if not visited[vert]: _lowerCAmelCase = find_components(snake_case , snake_case , snake_case ) components_list.append(snake_case ) return components_list
82
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase = logging.getLogger(__name__) @dataclass class _a : _lowercase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _lowercase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) _lowercase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowercase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _a : _lowercase : str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) _lowercase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) _lowercase : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _a ( ): """simple docstring""" lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) lowercase__ = import_module('''tasks''' ) try: lowercase__ = getattr(_SCREAMING_SNAKE_CASE , model_args.task_type ) lowercase__ = token_classification_task_clazz() except AttributeError: raise ValueError( f'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' f'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ = token_classification_task.get_labels(data_args.labels ) lowercase__ = dict(enumerate(_SCREAMING_SNAKE_CASE ) ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid={label: i for i, label in enumerate(_SCREAMING_SNAKE_CASE )} , cache_dir=model_args.cache_dir , ) lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ = ( TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ = ( TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple[List[int], List[int]]: lowercase__ = np.argmax(_SCREAMING_SNAKE_CASE , axis=2 ) lowercase__ = preds.shape lowercase__ = [[] for _ in range(_SCREAMING_SNAKE_CASE )] lowercase__ = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "precision": precision_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "recall": recall_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "f1": fa_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), } # Data collator lowercase__ = DataCollatorWithPadding(_SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ = trainer.evaluate() lowercase__ = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_SCREAMING_SNAKE_CASE ) # Predict if training_args.do_predict: lowercase__ = TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ = trainer.predict(_SCREAMING_SNAKE_CASE ) lowercase__ = align_predictions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return results def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" main() if __name__ == "__main__": main()
351
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _a : _lowercase : CommonSchedulerState # setable values _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : Optional[int] = None @classmethod def lowerCamelCase_ ( cls: Dict , UpperCamelCase_: CommonSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray ) -> List[str]: """simple docstring""" return cls(common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_ ) @dataclass class _a ( UpperCamelCase__ ): _lowercase : DDPMSchedulerState class _a ( UpperCamelCase__ , UpperCamelCase__ ): _lowercase : Tuple = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowercase : jnp.dtype @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return True @register_to_config def __init__( self: Any , UpperCamelCase_: int = 1_000 , UpperCamelCase_: float = 0.0001 , UpperCamelCase_: float = 0.02 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[jnp.ndarray] = None , UpperCamelCase_: str = "fixed_small" , UpperCamelCase_: bool = True , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: jnp.dtype = jnp.floataa , ) -> int: """simple docstring""" lowercase__ = dtype def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: lowercase__ = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase__ = jnp.array(1.0 , dtype=self.dtype ) lowercase__ = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: Optional[int] = None ) -> jnp.ndarray: """simple docstring""" return sample def lowerCamelCase_ ( self: Dict , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: int , UpperCamelCase_: Tuple = () ) -> DDPMSchedulerState: """simple docstring""" lowercase__ = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase__ = (jnp.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: str=None ) -> List[Any]: """simple docstring""" lowercase__ = state.common.alphas_cumprod[t] lowercase__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase__ = jnp.clip(UpperCamelCase_ , a_min=1E-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase__ = jnp.log(jnp.clip(UpperCamelCase_ , a_min=1E-2_0 ) ) elif variance_type == "fixed_large": lowercase__ = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase__ = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase__ = variance lowercase__ = state.common.betas[t] lowercase__ = (predicted_variance + 1) / 2 lowercase__ = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase_ ( self: Any , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: int , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: Optional[jax.random.KeyArray] = None , UpperCamelCase_: bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" lowercase__ = timestep if key is None: lowercase__ = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase__ , lowercase__ = jnp.split(UpperCamelCase_ , sample.shape[1] , axis=1 ) else: lowercase__ = None # 1. compute alphas, betas lowercase__ = state.common.alphas_cumprod[t] lowercase__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowercase__ = 1 - alpha_prod_t lowercase__ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ = model_output elif self.config.prediction_type == "v_prediction": lowercase__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ = jnp.clip(UpperCamelCase_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase__ = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase__ = jax.random.split(UpperCamelCase_ , num=1 ) lowercase__ = jax.random.normal(UpperCamelCase_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(UpperCamelCase_ , UpperCamelCase_ , predicted_variance=UpperCamelCase_ ) ** 0.5) * noise lowercase__ = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowercase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=UpperCamelCase_ , state=UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __len__( self: str ) -> List[Any]: """simple docstring""" return self.config.num_train_timesteps
93
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') a : Union[str, Any] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) a : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->int: '''simple docstring''' with open(_lowercase , "rb" ) as f: a : Optional[int] = Image.open(_lowercase ) return im.convert("RGB" ) @dataclass class __UpperCamelCase : lowerCamelCase : Optional[str] =field( default=a__ , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCamelCase : Optional[str] =field(default=a__ , metadata={"""help""": """A folder containing the training data."""} ) lowerCamelCase : Optional[str] =field(default=a__ , metadata={"""help""": """A folder containing the validation data."""} ) lowerCamelCase : Optional[float] =field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowerCamelCase : Optional[int] =field( default=a__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowerCamelCase : Optional[int] =field( default=a__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self ) -> Tuple: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class __UpperCamelCase : lowerCamelCase : str =field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(a__ )} , ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowerCamelCase : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowerCamelCase : str =field(default=a__ , metadata={"""help""": """Name or path of preprocessor config."""} ) lowerCamelCase : bool =field( default=a__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowerCamelCase : bool =field( default=a__ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->Optional[Any]: '''simple docstring''' a : Union[str, Any] = torch.stack([example["pixel_values"] for example in examples] ) a : Dict = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _SCREAMING_SNAKE_CASE ( ) ->Tuple: '''simple docstring''' a : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a, a, a : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a, a, a : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a : List[str] = training_args.get_process_log_level() logger.setLevel(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. a : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: a : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: a : int = {} if data_args.train_dir is not None: a : List[Any] = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: a : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) a : List[Any] = load_dataset( "imagefolder" , data_files=_lowercase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. a : List[Any] = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _lowercase ) and data_args.train_val_split > 0.0: a : Tuple = dataset["train"].train_test_split(data_args.train_val_split ) a : List[str] = split["train"] a : Optional[int] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. a : Tuple = dataset["train"].features["labels"].names a, a : Optional[int] = {}, {} for i, label in enumerate(_lowercase ): a : Union[str, Any] = str(_lowercase ) a : Optional[Any] = label # Load the accuracy metric from the datasets package a : Optional[Any] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowercase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) a : str = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowercase ) , labelaid=_lowercase , idalabel=_lowercase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a : int = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) a : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: a : str = image_processor.size["shortest_edge"] else: a : Any = (image_processor.size["height"], image_processor.size["width"]) a : List[Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) a : List[Any] = Compose( [ RandomResizedCrop(_lowercase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) a : Optional[Any] = Compose( [ Resize(_lowercase ), CenterCrop(_lowercase ), ToTensor(), normalize, ] ) def train_transforms(_lowercase : Optional[int] ): a : Union[str, Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(_lowercase : List[str] ): a : List[Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: a : Union[str, Any] = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_lowercase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: a : Any = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_lowercase ) # Initalize our trainer a : Optional[Any] = Trainer( model=_lowercase , args=_lowercase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=_lowercase , tokenizer=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: a : Any = None if training_args.resume_from_checkpoint is not None: a : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: a : Union[str, Any] = last_checkpoint a : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: a : Optional[Any] = trainer.evaluate() trainer.log_metrics("eval" , _lowercase ) trainer.save_metrics("eval" , _lowercase ) # Write model card and (optionally) push to hub a : Optional[int] = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) if __name__ == "__main__": main()
105
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[int] = SpeechTaTokenizer lowerCamelCase_ : int = False lowerCamelCase_ : Dict = True def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : Tuple = SpeechTaTokenizer(__magic_name__ ) snake_case_ : Any = AddedToken('''<mask>''' , lstrip=__magic_name__ , rstrip=__magic_name__ ) snake_case_ : int = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Dict = '''this is a test''' snake_case_ : int = '''this is a test''' return input_text, output_text def lowerCamelCase (self , __magic_name__ , __magic_name__=False , __magic_name__=20 , __magic_name__=5 ) -> List[Any]: '''simple docstring''' snake_case_ , snake_case_ : int = self.get_input_output_texts(__magic_name__ ) snake_case_ : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) snake_case_ : Any = tokenizer.decode(__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) return text, ids def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[str] = '''<pad>''' snake_case_ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(__magic_name__ ) , 81 ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : int = tokenizer.vocab_size snake_case_ : Optional[Any] = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case_ : List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] snake_case_ : List[Any] = tokenizer.add_tokens(__magic_name__ ) snake_case_ : Dict = tokenizer.vocab_size snake_case_ : Optional[Any] = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , len(__magic_name__ ) ) self.assertEqual(__magic_name__ , all_size + len(__magic_name__ ) ) snake_case_ : Union[str, Any] = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__magic_name__ ) self.assertGreaterEqual(len(__magic_name__ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) snake_case_ : Union[str, Any] = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} snake_case_ : List[str] = tokenizer.add_special_tokens(__magic_name__ ) snake_case_ : Dict = tokenizer.vocab_size snake_case_ : Dict = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , len(__magic_name__ ) ) self.assertEqual(__magic_name__ , all_size_a + len(__magic_name__ ) ) snake_case_ : Tuple = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__magic_name__ ) self.assertGreaterEqual(len(__magic_name__ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' pass def lowerCamelCase (self ) -> List[str]: '''simple docstring''' pass def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Dict = self.get_tokenizer() snake_case_ : Optional[Any] = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(__magic_name__ , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) snake_case_ : List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) snake_case_ : List[str] = tokenizer.convert_tokens_to_ids(__magic_name__ ) # fmt: off self.assertListEqual(__magic_name__ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on snake_case_ : int = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off snake_case_ : List[Any] = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=__magic_name__ , )
279
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowercase__ : Dict = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class UpperCamelCase__ ( unittest.TestCase, lowercase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : List[str] = load_tool('text-question-answering' ) self.tool.setup() lowerCAmelCase_ : Dict = load_tool('text-question-answering' , remote=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : List[str] = self.tool(SCREAMING_SNAKE_CASE_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , 'launched the BigScience Research Workshop' ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : List[Any] = self.remote_tool(SCREAMING_SNAKE_CASE_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , 'launched the BigScience Research Workshop' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : Any = self.tool(text=SCREAMING_SNAKE_CASE_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , 'launched the BigScience Research Workshop' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : Tuple = self.remote_tool(text=SCREAMING_SNAKE_CASE_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , 'launched the BigScience Research Workshop' )
289
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : Optional[int] = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_, lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """maskformer-swin""" _SCREAMING_SNAKE_CASE = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_2_4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE_ : int=3 , SCREAMING_SNAKE_CASE_ : Dict=9_6 , SCREAMING_SNAKE_CASE_ : Optional[int]=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE_ : List[Any]=[3, 6, 1_2, 2_4] , SCREAMING_SNAKE_CASE_ : List[str]=7 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-5 , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , **SCREAMING_SNAKE_CASE_ : str , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = image_size lowerCAmelCase_ : Optional[Any] = patch_size lowerCAmelCase_ : Optional[int] = num_channels lowerCAmelCase_ : List[str] = embed_dim lowerCAmelCase_ : Dict = depths lowerCAmelCase_ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = num_heads lowerCAmelCase_ : List[str] = window_size lowerCAmelCase_ : Any = mlp_ratio lowerCAmelCase_ : Any = qkv_bias lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Tuple = drop_path_rate lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : Any = use_absolute_embeddings lowerCAmelCase_ : Optional[Any] = layer_norm_eps lowerCAmelCase_ : str = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE_ ) - 1) ) lowerCAmelCase_ : List[Any] = ['stem'] + [F"stage{idx}" for idx in range(1 , len(SCREAMING_SNAKE_CASE_ ) + 1 )] lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names )
289
1
import math import random def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value UpperCAmelCase = 0.02 def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__SCREAMING_SNAKE_CASE ): # Forward propagation lowercase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? lowercase = (expected / 100) - layer_a # Error delta lowercase = layer_1_error * sigmoid_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase = int(input('''Expected value: ''')) UpperCAmelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
195
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase_ ( ): lowercase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=__SCREAMING_SNAKE_CASE , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=__SCREAMING_SNAKE_CASE , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=__SCREAMING_SNAKE_CASE ) return parser.parse_args() def UpperCAmelCase_ ( ): lowercase = parse_args() # Import training_script as a module. lowercase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase = script_fpath.stem lowercase = importlib.import_module(__SCREAMING_SNAKE_CASE ) # Patch sys.argv lowercase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
195
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase: Tuple = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: List[str] = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Union[str, Any] = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: List[str] = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __lowercase: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
370
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
0
def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
306
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
1
from __future__ import annotations class A : '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = text, pattern lowercase__ , lowercase__ = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : str ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowerCamelCase__ (self : Dict , _UpperCAmelCase : int ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCamelCase__ (self : Any ) -> list[int]: """simple docstring""" lowercase__ = [] for i in range(self.textLen - self.patLen + 1 ): lowercase__ = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: lowercase__ = self.match_in_pattern(self.text[mismatch_index] ) lowercase__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A : List[str] = 'ABAABA' A : Optional[Any] = 'AB' A : List[Any] = BoyerMooreSearch(text, pattern) A : List[str] = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
146
from functools import lru_cache def UpperCamelCase ( __magic_name__ : int ) -> set: """simple docstring""" lowercase__ = 2 lowercase__ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__magic_name__ ) if n > 1: factors.add(__magic_name__ ) return factors @lru_cache def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" return len(unique_prime_factors(__magic_name__ ) ) def UpperCamelCase ( __magic_name__ : list ) -> bool: """simple docstring""" return len(set(__magic_name__ ) ) in (0, 1) def UpperCamelCase ( __magic_name__ : int ) -> list: """simple docstring""" lowercase__ = 2 while True: # Increment each value of a generated range lowercase__ = [base + i for i in range(__magic_name__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase__ = [upf_len(__magic_name__ ) for x in group] checker.append(__magic_name__ ) # If all numbers in the list are equal, return the group variable. if equality(__magic_name__ ): return group # Increment our base variable by 1 base += 1 def UpperCamelCase ( __magic_name__ : int = 4 ) -> int: """simple docstring""" lowercase__ = run(__magic_name__ ) return results[0] if len(__magic_name__ ) else None if __name__ == "__main__": print(solution())
146
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[str] = 'bloom' __UpperCAmelCase : Dict = ['past_key_values'] __UpperCAmelCase : Union[str, Any] = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__(self : Dict , __UpperCAmelCase : Tuple=2_5_0_8_8_0 , __UpperCAmelCase : Union[str, Any]=6_4 , __UpperCAmelCase : str=2 , __UpperCAmelCase : Tuple=8 , __UpperCAmelCase : str=1E-5 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : str=2 , __UpperCAmelCase : int=False , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : str=False , **__UpperCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" UpperCAmelCase__ = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase__ = kwargs.pop("n_embed" , __UpperCAmelCase ) UpperCAmelCase__ = hidden_size if n_embed is None else n_embed UpperCAmelCase__ = n_layer UpperCAmelCase__ = n_head UpperCAmelCase__ = layer_norm_epsilon UpperCAmelCase__ = initializer_range UpperCAmelCase__ = use_cache UpperCAmelCase__ = pretraining_tp UpperCAmelCase__ = apply_residual_connection_post_layernorm UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = bos_token_id UpperCAmelCase__ = eos_token_id UpperCAmelCase__ = slow_but_exact super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[str] = version.parse('1.12' ) def __init__(self : Dict , __UpperCAmelCase : PretrainedConfig , __UpperCAmelCase : str = "default" , __UpperCAmelCase : List[PatchingSpec] = None , __UpperCAmelCase : bool = False , ) -> Optional[int]: """simple docstring""" super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , "pad_token_id" , __UpperCAmelCase ): # TODO: how to do that better? UpperCAmelCase__ = 0 @property def lowercase_ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" UpperCAmelCase__ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__UpperCAmelCase , direction="inputs" , inverted_values_shape=__UpperCAmelCase ) UpperCAmelCase__ = {0: "batch", 1: "past_sequence + sequence"} else: UpperCAmelCase__ = {0: "batch", 1: "sequence"} return common_inputs @property def lowercase_ (self : List[str] ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase_ (self : Dict ) -> int: """simple docstring""" return self._config.n_head @property def lowercase_ (self : Any ) -> float: """simple docstring""" return 1E-3 def lowercase_ (self : int , __UpperCAmelCase : "PreTrainedTokenizer" , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCAmelCase__ = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() UpperCAmelCase__ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase__ , UpperCAmelCase__ = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCAmelCase__ = seqlen + 2 UpperCAmelCase__ = self._config.hidden_size // self.num_attention_heads UpperCAmelCase__ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCAmelCase__ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCAmelCase__ = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] UpperCAmelCase__ = common_inputs["attention_mask"] if self.use_past: UpperCAmelCase__ = ordered_inputs["attention_mask"].dtype UpperCAmelCase__ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def lowercase_ (self : Optional[Any] ) -> int: """simple docstring""" return 1_3
65
'''simple docstring''' from math import isqrt, loga def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Any = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = False return [i for i in range(2 , __SCREAMING_SNAKE_CASE ) if is_prime[i]] def snake_case_ ( __SCREAMING_SNAKE_CASE : int = 800800 , __SCREAMING_SNAKE_CASE : int = 800800 ): """simple docstring""" lowercase_ : Union[str, Any] = degree * loga(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = int(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = calculate_prime_numbers(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = 0 lowercase_ : List[Any] = 0 lowercase_ : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
93
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') A : Optional[Any] = {'target_lang': 'fi', 'source_lang': 'en'} A : List[Any] = '>>zh<<' A : int = 'Helsinki-NLP/' if is_torch_available(): A : Tuple = 'pt' elif is_tf_available(): A : Any = 'tf' else: A : Any = 'jax' @require_sentencepiece class __A( a , unittest.TestCase ): snake_case_ = MarianTokenizer snake_case_ = False snake_case_ = True def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' super().setUp() __a = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] __a = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) __a = Path(self.tmpdirname ) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) __a = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self , **_snake_case ) -> MarianTokenizer: '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = '''</s>''' __a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_snake_case ) , 9 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) __a = en_de_tokenizer(['''I am a small frog'''] , return_tensors=_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) __a = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(_snake_case , batch.input_ids[0] ) __a = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_snake_case ) __a = [x.name for x in Path(_snake_case ).glob('''*''' )] self.assertIn('''source.spm''' , _snake_case ) MarianTokenizer.from_pretrained(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.get_tokenizer() __a = tok( ['''I am a small frog''' * 1_000, '''I am a small frog'''] , padding=_snake_case , truncation=_snake_case , return_tensors=_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = self.get_tokenizer() __a = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=_snake_case , return_tensors=_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = {'''input_ids''': [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) __a = '''Tämä on testi''' __a = '''This is a test''' __a = [76, 7, 2_047, 2] __a = [69, 12, 11, 940, 2] __a = tokenizer(_snake_case ).input_ids self.assertListEqual(_snake_case , _snake_case ) __a = tokenizer(text_target=_snake_case ).input_ids self.assertListEqual(_snake_case , _snake_case ) __a = tokenizer.decode(_snake_case , skip_special_tokens=_snake_case ) self.assertEqual(_snake_case , _snake_case )
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A : str = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['PerceiverFeatureExtractor'] A : int = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
0
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a ( lowerCAmelCase_ ): _snake_case : Dict = (KDPMaDiscreteScheduler,) _snake_case : Tuple = 10 def lowerCAmelCase_ ( self : List[Any] , **__lowerCAmelCase : Optional[int] ): _UpperCAmelCase = { """num_train_timesteps""": 1100, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**__lowerCAmelCase ) return config def lowerCAmelCase_ ( self : Tuple ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=__lowerCAmelCase , beta_end=__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _UpperCAmelCase = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase = sample.to(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(__lowerCAmelCase ) ) _UpperCAmelCase = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def lowerCAmelCase_ ( self : Optional[int] ): if torch_device == "mps": return _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase = sample.to(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(__lowerCAmelCase ) ) _UpperCAmelCase = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def lowerCAmelCase_ ( self : Optional[Any] ): if torch_device == "mps": return _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__lowerCAmelCase ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.to(__lowerCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCAmelCase = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(__lowerCAmelCase ) ) _UpperCAmelCase = torch.mean(torch.abs(__lowerCAmelCase ) ) if str(__lowerCAmelCase ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
289
"""simple docstring""" import warnings warnings.warn( """memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """ """`from accelerate import find_executable_batch_size` to avoid this warning.""", FutureWarning, )
289
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : List[str] ) -> Any: '''simple docstring''' A__ = tempfile.mkdtemp() # fmt: off A__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on A__ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) A__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] A__ = {"unk_token": "<unk>"} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case_ ) ) A__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], } A__ = os.path.join(self.tmpdirname , snake_case_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(snake_case_ , snake_case_ ) def __magic_name__ ( self : Dict , **snake_case_ : Optional[Any] ) -> List[str]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __magic_name__ ( self : str , **snake_case_ : Dict ) -> str: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_ ) def __magic_name__ ( self : List[Any] , **snake_case_ : Optional[int] ) -> Any: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case_ ) def __magic_name__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self : Optional[Any] ) -> str: '''simple docstring''' A__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor_slow.save_pretrained(self.tmpdirname ) A__ = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case_ ) A__ = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor_fast.save_pretrained(self.tmpdirname ) A__ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case_ ) self.assertIsInstance(processor_fast.tokenizer , snake_case_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case_ ) self.assertIsInstance(processor_fast.image_processor , snake_case_ ) def __magic_name__ ( self : int ) -> List[str]: '''simple docstring''' A__ = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A__ = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) A__ = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def __magic_name__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) A__ = self.prepare_image_inputs() A__ = image_processor(snake_case_ , return_tensors="np" ) A__ = processor(images=snake_case_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) A__ = "lower newer" A__ = processor(text=snake_case_ ) A__ = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) A__ = "lower newer" A__ = self.prepare_image_inputs() A__ = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def __magic_name__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) A__ = self.prepare_image_inputs() A__ = self.prepare_image_inputs() A__ = processor(images=snake_case_ , visual_prompt=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def __magic_name__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(snake_case_ ) A__ = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ )
366
"""simple docstring""" from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[Any] , snake_case_ : Any ) -> List[str]: '''simple docstring''' A__ = data A__ = None def __repr__( self : Optional[int] ) -> str: '''simple docstring''' return F"""Node({self.data})""" class UpperCAmelCase_ : def __init__( self : Dict ) -> Any: '''simple docstring''' A__ = None def __iter__( self : List[Any] ) -> Any: '''simple docstring''' A__ = self.head while node: yield node.data A__ = node.next def __len__( self : Any ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : List[str] ) -> str: '''simple docstring''' return "->".join([str(snake_case_ ) for item in self] ) def __getitem__( self : str , snake_case_ : int ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Tuple , snake_case_ : int , snake_case_ : Any ) -> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("list index out of range." ) A__ = self.head for _ in range(snake_case_ ): A__ = current.next A__ = data def __magic_name__ ( self : List[Any] , snake_case_ : Any ) -> None: '''simple docstring''' self.insert_nth(len(self ) , snake_case_ ) def __magic_name__ ( self : Tuple , snake_case_ : Any ) -> None: '''simple docstring''' self.insert_nth(0 , snake_case_ ) def __magic_name__ ( self : Dict , snake_case_ : int , snake_case_ : Any ) -> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) A__ = Node(snake_case_ ) if self.head is None: A__ = new_node elif index == 0: A__ = self.head # link new_node to head A__ = new_node else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = new_node def __magic_name__ ( self : Dict ) -> None: # print every node data '''simple docstring''' print(self ) def __magic_name__ ( self : Dict ) -> Any: '''simple docstring''' return self.delete_nth(0 ) def __magic_name__ ( self : Optional[Any] ) -> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def __magic_name__ ( self : Any , snake_case_ : int = 0 ) -> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) A__ = self.head # default first node if index == 0: A__ = self.head.next else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = temp.next.next return delete_node.data def __magic_name__ ( self : Dict ) -> bool: '''simple docstring''' return self.head is None def __magic_name__ ( self : List[Any] ) -> None: '''simple docstring''' A__ = None A__ = self.head while current: # Store the current node's next node. A__ = current.next # Make the current node's next point backwards A__ = prev # Make the previous node be the current node A__ = current # Make the current node the next node (to progress iteration) A__ = next_node # Return prev in order to put the head at the end A__ = prev def _SCREAMING_SNAKE_CASE ( ) -> None: A__ = LinkedList() assert linked_list.is_empty() is True assert str(lowercase_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowercase_ ) == i linked_list.insert_nth(lowercase_ , i + 1 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowercase_ ) == 9 assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): A__ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE ( ) -> None: A__ = [ -9, 1_00, Node(77_34_51_12 ), "dlrow olleH", 7, 55_55, 0, -1_9_2.5_5_5_5_5, "Hello, world!", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] A__ = LinkedList() for i in test_input: linked_list.insert_tail(lowercase_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowercase_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head A__ = linked_list.delete_head() assert result == -9 assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail A__ = linked_list.delete_tail() assert result == 1_2.2 assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list A__ = linked_list.delete_nth(10 ) assert result is None assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(lowercase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowercase_ ) assert ( str(lowercase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowercase_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: from doctest import testmod testmod() A__ = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(lowercase_ ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) A__ = input("Enter New Value: " ).strip() print("New list:" ) print(lowercase_ ) print(f"""length of linked_list is : {len(lowercase_ )}""" ) if __name__ == "__main__": main()
230
0
import argparse from collections import defaultdict def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_UpperCAmelCase , '''r''' ) as f: lowercase : Union[str, Any] = f.readlines() lowercase : List[Any] = F"""class {class_name}(""" lowercase : int = F"""{4 * ' '}def {test_name}(""" lowercase : Union[str, Any] = F"""{8 * ' '}{correct_line.split()[0]}""" lowercase : Union[str, Any] = F"""{16 * ' '}{correct_line.split()[0]}""" lowercase : Union[str, Any] = False lowercase : Optional[Any] = False lowercase : List[str] = False lowercase : Optional[Any] = False lowercase : List[Any] = 0 lowercase : str = 0 lowercase : Tuple = [] for line in lines: if line.startswith(_UpperCAmelCase ): lowercase : List[Any] = True elif in_class and line.startswith(_UpperCAmelCase ): lowercase : List[str] = True elif in_class and in_func and (line.startswith(_UpperCAmelCase ) or line.startswith(_UpperCAmelCase )): lowercase : Dict = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: lowercase : Tuple = True if in_class and in_func and in_line: if ")" not in line: continue else: lowercase : str = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * ' '}{correct_line}""" ) lowercase : str = False else: new_lines.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' ) as f: for line in new_lines: f.write(_UpperCAmelCase ) def snake_case( __magic_name__ , __magic_name__=None ) -> Optional[int]: '''simple docstring''' if fail is not None: with open(_UpperCAmelCase , '''r''' ) as f: lowercase : Any = {l.strip() for l in f.readlines()} else: lowercase : int = None with open(_UpperCAmelCase , '''r''' ) as f: lowercase : Any = f.readlines() lowercase : Any = defaultdict(_UpperCAmelCase ) for line in correct_lines: lowercase : Optional[Any] = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) lowerCAmelCase_ = parser.parse_args() main(args.correct_filename, args.fail_filename)
308
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __SCREAMING_SNAKE_CASE : Optional[int] = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
31
0
"""simple docstring""" import random class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( __a : str ) -> tuple[list[int], list[int]]: _UpperCamelCase : List[Any] = [ord(__a ) for i in text] _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Any = [] for i in plain: _UpperCamelCase : List[str] = random.randint(1 , 300 ) _UpperCamelCase : List[str] = (i + k) * k cipher.append(__a ) key.append(__a ) return cipher, key @staticmethod def __SCREAMING_SNAKE_CASE ( __a : list[int] , __a : list[int] ) -> str: _UpperCamelCase : int = [] for i in range(len(__a ) ): _UpperCamelCase : Tuple = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(__a ) ) return "".join(__a ) if __name__ == "__main__": lowerCamelCase__ , lowerCamelCase__ = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
310
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "xlm-roberta-xl" def __init__( self : Any , __a : Tuple=25_0880 , __a : Optional[Any]=2560 , __a : List[str]=36 , __a : Any=32 , __a : Dict=1_0240 , __a : Optional[Any]="gelu" , __a : int=0.1 , __a : Tuple=0.1 , __a : str=514 , __a : Any=1 , __a : List[Any]=0.02 , __a : List[str]=1e-0_5 , __a : Optional[Any]=1 , __a : List[Any]=0 , __a : Tuple=2 , __a : int="absolute" , __a : Dict=True , __a : Dict=None , **__a : Tuple , ) -> str: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) _UpperCamelCase : Any = vocab_size _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Dict = max_position_embeddings _UpperCamelCase : Optional[Any] = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Union[str, Any] = use_cache _UpperCamelCase : Optional[Any] = classifier_dropout class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCamelCase : Any = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCamelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
310
1
import argparse from collections import defaultdict import yaml __UpperCamelCase : List[Any] = "docs/source/en/_toctree.yml" def _a ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" UpperCamelCase__ : str = defaultdict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : Dict = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = new_doc_list UpperCamelCase__ : Dict = [key for key, value in counts.items() if value > 1] UpperCamelCase__ : int = [] for duplicate_key in duplicates: UpperCamelCase__ : Union[str, Any] = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(SCREAMING_SNAKE_CASE ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) UpperCamelCase__ : str = sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : s["title"].lower() ) # "overview" gets special treatment and is always first if len(SCREAMING_SNAKE_CASE ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(SCREAMING_SNAKE_CASE ) # Sort return overview_doc def _a ( SCREAMING_SNAKE_CASE : str=False ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as f: UpperCamelCase__ : Dict = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ : Optional[Any] = content[api_idx]['''sections'''] # Then to the model doc UpperCamelCase__ : Dict = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCamelCase__ : Optional[Any] = api_doc[scheduler_idx]['''sections'''] UpperCamelCase__ : Optional[int] = clean_doc_toc(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = False if new_scheduler_doc != scheduler_doc: UpperCamelCase__ : int = True if overwrite: UpperCamelCase__ : Tuple = new_scheduler_doc if diff: if overwrite: UpperCamelCase__ : str = api_doc with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE , allow_unicode=SCREAMING_SNAKE_CASE ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def _a ( SCREAMING_SNAKE_CASE : int=False ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as f: UpperCamelCase__ : Dict = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ : Union[str, Any] = content[api_idx]['''sections'''] # Then to the model doc UpperCamelCase__ : Tuple = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCamelCase__ : Optional[int] = False UpperCamelCase__ : List[Any] = api_doc[pipeline_idx]['''sections'''] UpperCamelCase__ : Dict = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCamelCase__ : List[str] = pipeline_doc['''section'''] UpperCamelCase__ : Any = clean_doc_toc(SCREAMING_SNAKE_CASE ) if overwrite: UpperCamelCase__ : Union[str, Any] = new_sub_pipeline_doc new_pipeline_docs.append(SCREAMING_SNAKE_CASE ) # sort overall pipeline doc UpperCamelCase__ : List[Any] = clean_doc_toc(SCREAMING_SNAKE_CASE ) if new_pipeline_docs != pipeline_docs: UpperCamelCase__ : str = True if overwrite: UpperCamelCase__ : Dict = new_pipeline_docs if diff: if overwrite: UpperCamelCase__ : Dict = api_doc with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE , allow_unicode=SCREAMING_SNAKE_CASE ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCamelCase : str = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
146
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _a ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(SCREAMING_SNAKE_CASE , '''_dynamo''' ): return False return isinstance(SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : bool = True ): """simple docstring""" UpperCamelCase__ : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase__ : Optional[int] = is_compiled_module(SCREAMING_SNAKE_CASE ) if is_compiled: UpperCamelCase__ : Optional[int] = model UpperCamelCase__ : Optional[Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[int] = model.module if not keep_fpaa_wrapper: UpperCamelCase__ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE , '''forward''' ) UpperCamelCase__ : Optional[Any] = model.__dict__.pop('''_original_forward''' , SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(SCREAMING_SNAKE_CASE , '''__wrapped__''' ): UpperCamelCase__ : Optional[int] = forward.__wrapped__ if forward == original_forward: break UpperCamelCase__ : Optional[Any] = forward if getattr(SCREAMING_SNAKE_CASE , '''_converted_to_transformer_engine''' , SCREAMING_SNAKE_CASE ): convert_model(SCREAMING_SNAKE_CASE , to_transformer_engine=SCREAMING_SNAKE_CASE ) if is_compiled: UpperCamelCase__ : Tuple = model UpperCamelCase__ : Tuple = compiled_model return model def _a ( ): """simple docstring""" PartialState().wait_for_everyone() def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @contextmanager def _a ( **SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" for key, value in kwargs.items(): UpperCamelCase__ : Dict = str(SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if not hasattr(SCREAMING_SNAKE_CASE , '''__qualname__''' ) and not hasattr(SCREAMING_SNAKE_CASE , '''__name__''' ): UpperCamelCase__ : str = getattr(SCREAMING_SNAKE_CASE , '''__class__''' , SCREAMING_SNAKE_CASE ) if hasattr(SCREAMING_SNAKE_CASE , '''__qualname__''' ): return obj.__qualname__ if hasattr(SCREAMING_SNAKE_CASE , '''__name__''' ): return obj.__name__ return str(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" for key, value in source.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[Any] = destination.setdefault(SCREAMING_SNAKE_CASE , {} ) merge_dicts(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : List[Any] = value return destination def _a ( SCREAMING_SNAKE_CASE : int = None ): """simple docstring""" if port is None: UpperCamelCase__ : Union[str, Any] = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
146
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['YolosFeatureExtractor'] lowerCAmelCase_ = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
0
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ = {'''UserAgent''': UserAgent().random} def _A ( A__ ): """simple docstring""" __lowercase = script.contents[0] __lowercase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase_ : """simple docstring""" def __init__( self : List[Any] ,lowercase__ : Any ): __lowercase = F"https://www.instagram.com/{username}/" __lowercase = self.get_json() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = requests.get(self.url ,headers=lowercase__ ).text __lowercase = BeautifulSoup(lowercase__ ,'''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : int ): return F"{self.__class__.__name__}(\'{self.username}\')" def __str__( self : Dict ): return F"{self.fullname} ({self.username}) is {self.biography}" @property def SCREAMING_SNAKE_CASE ( self : Dict ): return self.user_data["username"] @property def SCREAMING_SNAKE_CASE ( self : Any ): return self.user_data["full_name"] @property def SCREAMING_SNAKE_CASE ( self : int ): return self.user_data["biography"] @property def SCREAMING_SNAKE_CASE ( self : int ): return self.user_data["business_email"] @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return self.user_data["external_url"] @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self.user_data["edge_followed_by"]["count"] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return self.user_data["edge_follow"]["count"] @property def SCREAMING_SNAKE_CASE ( self : Dict ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self.user_data["profile_pic_url_hd"] @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return self.user_data["is_verified"] @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self.user_data["is_private"] def _A ( A__ = "github" ): """simple docstring""" import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions __lowercase = InstagramUser(__snake_case ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __snake_case ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = InstagramUser('''github''') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
104
"""simple docstring""" def lowercase ( __snake_case : int = 1_0_0 ): lowercase_ : str = 0 lowercase_ : List[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
33
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : Any = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowercase : Optional[Any] = '''src/diffusers''' # Matches is_xxx_available() lowercase : Any = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla lowercase : Tuple = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') lowercase : Optional[Any] = ''' {0} = None ''' lowercase : Union[str, Any] = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' lowercase : List[str] = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def lowerCAmelCase__ ( _a : Union[str, Any] ): snake_case_ : str = _re_backend.findall(_a ) if len(_a ) == 0: return None return "_and_".join(_a ) def lowerCAmelCase__ ( ): with open(os.path.join(_a , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: snake_case_ : str = f.readlines() # Get to the point we do the actual imports for type checking snake_case_ : List[Any] = 0 snake_case_ : Optional[int] = {} # Go through the end of the file while line_index < len(_a ): # If the line contains is_backend_available, we grab all objects associated with the `else` block snake_case_ : Optional[int] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 snake_case_ : Dict = [] # Until we unindent, add backend objects to the list while line_index < len(_a ) and len(lines[line_index] ) > 1: snake_case_ : Any = lines[line_index] snake_case_ : Tuple = _re_single_line_import.search(_a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_a ) > 0: snake_case_ : List[str] = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase__ ( _a : Any , _a : Union[str, Any] ): if name.isupper(): return DUMMY_CONSTANT.format(_a ) elif name.islower(): return DUMMY_FUNCTION.format(_a , _a ) else: return DUMMY_CLASS.format(_a , _a ) def lowerCAmelCase__ ( _a : Optional[Any]=None ): if backend_specific_objects is None: snake_case_ : Dict = read_init() # For special correspondence backend to module name as used in the function requires_modulename snake_case_ : Optional[Any] = {} for backend, objects in backend_specific_objects.items(): snake_case_ : List[Any] = "[" + ", ".join(F'''"{b}"''' for b in backend.split("_and_" ) ) + "]" snake_case_ : Union[str, Any] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_a , _a ) for o in objects] ) snake_case_ : List[Any] = dummy_file return dummy_files def lowerCAmelCase__ ( _a : Tuple=False ): snake_case_ : Any = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py snake_case_ : str = {"torch": "pt"} # Locate actual dummy modules and read their content. snake_case_ : Tuple = os.path.join(_a , "utils" ) snake_case_ : str = { backend: os.path.join(_a , F'''dummy_{short_names.get(_a , _a )}_objects.py''' ) for backend in dummy_files.keys() } snake_case_ : Union[str, Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_a ): with open(_a , "r" , encoding="utf-8" , newline="\n" ) as f: snake_case_ : Optional[int] = f.read() else: snake_case_ : str = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(_a , _a )}_objects.py as the main ''' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F'''diffusers.utils.dummy_{short_names.get(_a , _a )}_objects.py. Run `make fix-copies` ''' "to fix this." ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowercase : str = parser.parse_args() check_dummies(args.fix_and_overwrite)
36
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) a : int = logging.getLogger(__name__) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=3_0_5_2_2, type=int) a : List[Any] = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, """rb""") as fp: a : str = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") a : str = Counter() for tk_ids in data: counter.update(tk_ids) a : int = [0] * args.vocab_size for k, v in counter.items(): a : Optional[int] = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
265
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A__ = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase ) -> List[Any]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main snake_case__ : Dict = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__lowerCAmelCase , id=__lowerCAmelCase )
230
0
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = analyze_text(lowerCamelCase_ ) UpperCAmelCase_ : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase_ : List[str] = sum(single_char_strings.values() ) # one length string UpperCAmelCase_ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase_ : Any = single_char_strings[ch] UpperCAmelCase_ : Dict = my_str / all_sum my_fir_sum += prob * math.loga(lowerCamelCase_ ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string UpperCAmelCase_ : Tuple = sum(two_char_strings.values() ) UpperCAmelCase_ : List[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase_ : Union[str, Any] = cha + cha if sequence in two_char_strings: UpperCAmelCase_ : str = two_char_strings[sequence] UpperCAmelCase_ : Optional[Any] = int(lowerCamelCase_ ) / all_sum my_sec_sum += prob * math.loga(lowerCamelCase_ ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : Any = Counter() # type: ignore UpperCAmelCase_ : Optional[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCamelCase_ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _lowerCamelCase ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
274
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : int = ['a', 'b', 'c'] # Defaults to last layer if both are None UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_aligned_output_features_output_indices(snake_case_ , snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , ['c'] ) self.assertEqual(snake_case_ , [2] ) # Out indices set to match out features UpperCAmelCase_ , UpperCAmelCase_ : int = get_aligned_output_features_output_indices(['a', 'c'] , snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , ['a', 'c'] ) self.assertEqual(snake_case_ , [0, 2] ) # Out features set to match out indices UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = get_aligned_output_features_output_indices(snake_case_ , [0, 2] , snake_case_ ) self.assertEqual(snake_case_ , ['a', 'c'] ) self.assertEqual(snake_case_ , [0, 2] ) # Out features selected from negative indices UpperCAmelCase_ , UpperCAmelCase_ : int = get_aligned_output_features_output_indices(snake_case_ , [-3, -1] , snake_case_ ) self.assertEqual(snake_case_ , ['a', 'c'] ) self.assertEqual(snake_case_ , [-3, -1] ) def _UpperCamelCase ( self ): '''simple docstring''' with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , snake_case_ ) # Out features must be a list with self.assertRaises(snake_case_ ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(snake_case_ ): verify_out_features_out_indices(snake_case_ , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(snake_case_ ): verify_out_features_out_indices(snake_case_ , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = BackboneMixin() UpperCAmelCase_ : Any = ['a', 'b', 'c'] UpperCAmelCase_ : str = ['a', 'c'] UpperCAmelCase_ : str = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly UpperCAmelCase_ : str = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) UpperCAmelCase_ : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
274
1
from __future__ import annotations from math import pi def _A ( _lowercase , _lowercase , _lowercase ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
310
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _SCREAMING_SNAKE_CASE = """facebook/wmt19-en-de""" _SCREAMING_SNAKE_CASE = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test _SCREAMING_SNAKE_CASE = tokenizer(["""Making tiny model"""], return_tensors="""pt""") _SCREAMING_SNAKE_CASE = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save _SCREAMING_SNAKE_CASE = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
367
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class SCREAMING_SNAKE_CASE_ : __magic_name__: int = MBartConfig __magic_name__: str = {} __magic_name__: Union[str, Any] = "gelu" def __init__( self : List[str] , _A : Optional[int] , _A : List[Any]=13 , _A : List[Any]=7 , _A : Dict=True , _A : Tuple=False , _A : Optional[Any]=99 , _A : Dict=32 , _A : str=2 , _A : str=4 , _A : Tuple=37 , _A : Tuple=0.1 , _A : Union[str, Any]=0.1 , _A : Optional[int]=20 , _A : Dict=2 , _A : List[str]=1 , _A : Union[str, Any]=0 , ) -> List[Any]: """simple docstring""" snake_case_ : str = parent snake_case_ : List[str] = batch_size snake_case_ : List[str] = seq_length snake_case_ : Union[str, Any] = is_training snake_case_ : Optional[int] = use_labels snake_case_ : Dict = vocab_size snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Optional[Any] = eos_token_id snake_case_ : Tuple = pad_token_id snake_case_ : int = bos_token_id def UpperCAmelCase_ ( self : List[str] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case_ : Union[str, Any] = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] , _A : Optional[Any] , _A : int ) -> str: """simple docstring""" snake_case_ : Dict = TFMBartModel(config=_A ).get_decoder() snake_case_ : Any = inputs_dict['input_ids'] snake_case_ : List[Any] = input_ids[:1, :] snake_case_ : Dict = inputs_dict['attention_mask'][:1, :] snake_case_ : Tuple = inputs_dict['head_mask'] snake_case_ : List[Any] = 1 # first forward pass snake_case_ : Any = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) snake_case_ ,snake_case_ : str = outputs.to_tuple() snake_case_ : int = past_key_values[1] def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , ): if attention_mask is None: snake_case_ : Optional[int] = tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ : str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: Tuple = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __magic_name__: int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __magic_name__: Union[str, Any] = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __magic_name__: Tuple = True __magic_name__: Tuple = False __magic_name__: Any = False def UpperCAmelCase_ ( self : Any , _A : Union[str, Any] , _A : List[Any] , _A : str , _A : int , _A : Dict ) -> Union[str, Any]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCAmelCase_ ( self : Dict ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFMBartModelTester(self ) snake_case_ : List[Any] = ConfigTester(self , config_class=_A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): __magic_name__: Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", ] __magic_name__: Union[str, Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] __magic_name__: List[Any] = "facebook/mbart-large-en-ro" @cached_property def UpperCAmelCase_ ( self : str ) -> List[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self : List[Any] ) -> Any: """simple docstring""" snake_case_ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase_ ( self : Optional[int] , **_A : str ) -> int: """simple docstring""" snake_case_ : List[str] = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def UpperCAmelCase_ ( self : Union[str, Any] , **_A : Dict ) -> int: """simple docstring""" snake_case_ : Optional[Any] = self.tokenizer(self.src_text , **_A , return_tensors='tf' ) snake_case_ : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) snake_case_ : Any = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def UpperCAmelCase_ ( self : str ) -> List[str]: """simple docstring""" self._assert_generated_batch_equal_expected()
88
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer snake_case : int = logging.getLogger(__name__) def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' __magic_name__ : List[Any] = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=_SCREAMING_SNAKE_CASE , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=_SCREAMING_SNAKE_CASE , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=_SCREAMING_SNAKE_CASE , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=_SCREAMING_SNAKE_CASE , default=1000 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=_SCREAMING_SNAKE_CASE , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=_SCREAMING_SNAKE_CASE , default=512 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=_SCREAMING_SNAKE_CASE , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) __magic_name__ : Optional[Any] = parser.parse_args() return args def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> List[str]: '''simple docstring''' def fn(_snake_case : str ): return tokenizer(examples["text"] ) return fn def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> int: '''simple docstring''' __magic_name__ : Dict = [] for i in range(len(tokenized_data["input_ids"] ) ): __magic_name__ : Dict = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } __magic_name__ : Union[str, Any] = tf.train.Features(feature=_SCREAMING_SNAKE_CASE ) __magic_name__ : Tuple = tf.train.Example(features=_SCREAMING_SNAKE_CASE ) __magic_name__ : str = example.SerializeToString() records.append(_SCREAMING_SNAKE_CASE ) return records def lowerCAmelCase_ ( _snake_case : str ) -> List[Any]: '''simple docstring''' __magic_name__ : List[Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __magic_name__ : Optional[int] = min(len(_SCREAMING_SNAKE_CASE ) , args.limit ) __magic_name__ : str = dataset.select(range(_SCREAMING_SNAKE_CASE ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) __magic_name__ : Dict = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __magic_name__ : Optional[int] = os.path.join(args.output_dir , args.split ) if not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) else: __magic_name__ : List[str] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __magic_name__ : Any = tokenize_function(_SCREAMING_SNAKE_CASE ) __magic_name__ : List[str] = dataset.map(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_snake_case : Optional[int] ): # Concatenate all texts. __magic_name__ : Dict = {k: sum(examples[k] , [] ) for k in examples.keys()} __magic_name__ : Optional[Any] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __magic_name__ : Tuple = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __magic_name__ : Dict = { k: [t[i : i + args.max_length] for i in range(0 , _SCREAMING_SNAKE_CASE , args.max_length )] for k, t in concatenated_examples.items() } return result __magic_name__ : List[Any] = dataset_tokenized.map(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , batch_size=1000 , num_proc=4 ) __magic_name__ : Tuple = 0 __magic_name__ : Any = 0 for shard in range(0 , len(_SCREAMING_SNAKE_CASE ) , args.shard_size ): __magic_name__ : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] __magic_name__ : Tuple = len(dataset_snapshot["input_ids"] ) __magic_name__ : int = os.path.join(_SCREAMING_SNAKE_CASE , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) __magic_name__ : Union[str, Any] = get_serialized_examples(_SCREAMING_SNAKE_CASE ) with tf.io.TFRecordWriter(_SCREAMING_SNAKE_CASE ) as out_file: for i in range(len(_SCREAMING_SNAKE_CASE ) ): __magic_name__ : Tuple = serialized_examples[i] out_file.write(_SCREAMING_SNAKE_CASE ) print("Wrote file {} containing {} records".format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , "w" ) as f: print(F'''Total {args.split} records: {total_records}''' , file=_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case : Dict = parse_args() main(args)
281
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] ='autoformer' __lowerCamelCase : str ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ): '''simple docstring''' # time series specific configuration __a = prediction_length __a = context_length if context_length is not None else prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __a = cardinality else: __a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(self.lags_sequence ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache # Autoformer __a = label_length __a = moving_average __a = autocorrelation_factor super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
302
0
'''simple docstring''' import datasets from .evaluate import evaluate __SCREAMING_SNAKE_CASE :List[Any] = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' __SCREAMING_SNAKE_CASE :Optional[Any] = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' __SCREAMING_SNAKE_CASE :Any = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowercase ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def lowercase ( self : Optional[Any] , snake_case_ : List[str] , snake_case_ : Optional[int] ): _UpperCAmelCase = {prediction['id']: prediction['prediction_text'] for prediction in predictions} _UpperCAmelCase = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] _UpperCAmelCase = evaluate(dataset=__a , predictions=__a ) return score
350
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : list ) -> list: '''simple docstring''' _UpperCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping _UpperCAmelCase = True for i in range(0 , len(__lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _UpperCAmelCase , _UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCAmelCase = False for i in range(1 , len(__lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _UpperCAmelCase , _UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCAmelCase = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') __SCREAMING_SNAKE_CASE :Optional[Any] = [int(x) for x in input().split()] # inputing elements of the list in one line __SCREAMING_SNAKE_CASE :List[str] = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
156
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging A: str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[Any] = ['input_features', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=16000 , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> Dict: '''simple docstring''' super().__init__(feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = do_ceptral_normalize UpperCAmelCase : Optional[int] = normalize_means UpperCAmelCase : Any = normalize_vars UpperCAmelCase : Any = True def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase : Optional[int] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers UpperCAmelCase : List[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) UpperCAmelCase : Dict = ta_kaldi.fbank(_SCREAMING_SNAKE_CASE , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0.0 , ) -> np.ndarray: '''simple docstring''' if normalize_means: UpperCAmelCase : Tuple = x[:input_length].mean(axis=0 ) UpperCAmelCase : Optional[Any] = np.subtract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if normalize_vars: UpperCAmelCase : Tuple = x[:input_length].std(axis=0 ) UpperCAmelCase : Dict = np.divide(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if input_length < x.shape[0]: UpperCAmelCase : Optional[int] = padding_value # make sure array is in float32 UpperCAmelCase : Any = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[np.ndarray]: '''simple docstring''' UpperCAmelCase : Any = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCAmelCase : Union[str, Any] = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) UpperCAmelCase : Union[str, Any] = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase : Any = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): UpperCAmelCase : Union[str, Any] = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase : List[str] = [raw_speech] # extract fbank features UpperCAmelCase : Optional[int] = [self._extract_fbank_features(_SCREAMING_SNAKE_CASE ) for waveform in raw_speech] # convert into correct format for padding UpperCAmelCase : Optional[Any] = BatchFeature({"""input_features""": features} ) UpperCAmelCase : Tuple = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # make sure list is in array format UpperCAmelCase : str = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[int] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] UpperCAmelCase : Optional[Any] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: UpperCAmelCase : int = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: UpperCAmelCase : List[str] = ( np.array(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) if self._get_padding_strategies(_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCAmelCase : Optional[int] = self.normalize( padded_inputs["""input_features"""] , attention_mask=_SCREAMING_SNAKE_CASE ) if return_tensors is not None: UpperCAmelCase : List[str] = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs
109
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version _snake_case = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if got_ver is None or want_ver is None: raise ValueError( F"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider" F" reinstalling {pkg}." ) if not ops[op](version.parse(_lowerCamelCase ) , version.parse(_lowerCamelCase ) ): raise ImportError( F"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" ) def A ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase : List[str] = F"\n{hint}" if hint is not None else "" # non-versioned check if re.match(r"^[\w_\-\d]+$" , _lowerCamelCase ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = requirement, None, None else: _lowerCAmelCase : Optional[int] = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" , _lowerCamelCase ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but" F" got {requirement}" ) _lowerCAmelCase , _lowerCAmelCase : Dict = match[0] _lowerCAmelCase : Any = want_full.split("," ) # there could be multiple requirements _lowerCAmelCase : Optional[int] = {} for w in want_range: _lowerCAmelCase : Any = re.findall(r"^([\s!=<>]{1,2})(.+)" , _lowerCamelCase ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23," F" but got {requirement}" ) _lowerCAmelCase , _lowerCAmelCase : Tuple = match[0] _lowerCAmelCase : Union[str, Any] = want_ver if op not in ops: raise ValueError(F"{requirement}: need one of {list(ops.keys() )}, but got {op}" ) # special case if pkg == "python": _lowerCAmelCase : Tuple = ".".join([str(_lowerCamelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return # check if any version is installed try: _lowerCAmelCase : Any = importlib.metadata.version(_lowerCamelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"The '{requirement}' distribution was not found and is required by this application. {hint}" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main" return require_version(_lowerCamelCase , _lowerCamelCase )
36
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') _snake_case = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) _snake_case = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) _snake_case = BeautifulSoup(res.text, 'html.parser') _snake_case = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F'''https://google.com{link.get('href')}''')
199
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Any = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE : Dict = 'BlipImageProcessor' _SCREAMING_SNAKE_CASE : Dict = 'AutoTokenizer' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" super().__init__(_UpperCamelCase , _UpperCamelCase ) # add QFormer tokenizer _lowercase : List[Any] = qformer_tokenizer def __call__( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" if images is None and text is None: raise ValueError("You have to specify at least images or text." ) _lowercase : str = BatchFeature() if text is not None: _lowercase : Dict = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) encoding.update(_UpperCamelCase ) _lowercase : Dict = self.qformer_tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) _lowercase : Union[str, Any] = qformer_text_encoding.pop("input_ids" ) _lowercase : List[Any] = qformer_text_encoding.pop("attention_mask" ) if images is not None: _lowercase : List[Any] = self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" if os.path.isfile(_UpperCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) _lowercase : Union[str, Any] = os.path.join(_UpperCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(_UpperCamelCase ) return super().save_pretrained(_UpperCamelCase , **_UpperCamelCase ) @classmethod def _lowerCamelCase ( cls , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" _lowercase : List[Any] = AutoTokenizer.from_pretrained(_UpperCamelCase , subfolder="qformer_tokenizer" ) _lowercase : Optional[Any] = cls._get_arguments_from_pretrained(_UpperCamelCase , **_UpperCamelCase ) args.append(_UpperCamelCase ) return cls(*_UpperCamelCase )
199
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class A (datasets.BuilderConfig ): '''simple docstring''' __lowerCamelCase : Optional[datasets.Features] = None class A (datasets.ArrowBasedBuilder ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = PandasConfig def a_ ( self : int ) -> str: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def a_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] ) -> Dict: """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCAmelCase , (str, list, tuple) ): A__ = data_files if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A__ = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] A__ = [] for split_name, files in data_files.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A__ = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCAmelCase , gen_kwargs={"""files""": files} ) ) return splits def a_ ( self : int , __lowerCAmelCase : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example A__ = table_cast(__lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def a_ ( self : List[Any] , __lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(__lowerCAmelCase ) ): with open(__lowerCAmelCase , """rb""" ) as f: A__ = pa.Table.from_pandas(pd.read_pickle(__lowerCAmelCase ) ) yield i, self._cast_table(__lowerCAmelCase )
274
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : str = '''▁''' A : Any = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } A : List[Any] = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } A : Tuple = { '''facebook/m2m100_418M''': 1_0_2_4, } # fmt: off A : Optional[int] = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = ['''input_ids''', '''attention_mask'''] __lowerCamelCase : List[int] = [] __lowerCamelCase : List[int] = [] def __init__( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : str=None , __lowerCAmelCase : List[Any]="<s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[int]="</s>" , __lowerCAmelCase : Optional[Any]="<pad>" , __lowerCAmelCase : Any="<unk>" , __lowerCAmelCase : Any="m2m100" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , __lowerCAmelCase : Dict=8 , **__lowerCAmelCase : Tuple , ) -> None: """simple docstring""" A__ = {} if sp_model_kwargs is None else sp_model_kwargs A__ = language_codes A__ = FAIRSEQ_LANGUAGE_CODES[language_codes] A__ = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} A__ = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__lowerCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(__lowerCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , language_codes=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__lowerCAmelCase , **__lowerCAmelCase , ) A__ = vocab_file A__ = load_json(__lowerCAmelCase ) A__ = {v: k for k, v in self.encoder.items()} A__ = spm_file A__ = load_spm(__lowerCAmelCase , self.sp_model_kwargs ) A__ = len(self.encoder ) A__ = { self.get_lang_token(__lowerCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase ) } A__ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase )} A__ = {v: k for k, v in self.lang_token_to_id.items()} A__ = src_lang if src_lang is not None else """en""" A__ = tgt_lang A__ = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) A__ = num_madeup_words @property def a_ ( self : Optional[int] ) -> int: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def a_ ( self : Optional[Any] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def a_ ( self : List[Any] , __lowerCAmelCase : str ) -> None: """simple docstring""" A__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a_ ( self : Optional[int] , __lowerCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def a_ ( self : Optional[Any] , __lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__lowerCAmelCase , self.encoder[self.unk_token] ) def a_ ( self : Optional[int] , __lowerCAmelCase : int ) -> str: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__lowerCAmelCase , self.unk_token ) def a_ ( self : Optional[int] , __lowerCAmelCase : Dict ) -> str: """simple docstring""" A__ = [] A__ = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCAmelCase ) + token A__ = [] else: current_sub_tokens.append(__lowerCAmelCase ) out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def a_ ( self : List[str] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) A__ = [1] * len(self.prefix_tokens ) A__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCAmelCase )) + ([0] * len(__lowerCAmelCase )) + suffix_ones def a_ ( self : Tuple , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self : int ) -> Dict: """simple docstring""" A__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : str , __lowerCAmelCase : Dict ) -> None: """simple docstring""" A__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ = {} A__ = load_spm(self.spm_file , self.sp_model_kwargs ) def a_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" A__ = Path(__lowerCAmelCase ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) A__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) A__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCAmelCase , """wb""" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (str(__lowerCAmelCase ), str(__lowerCAmelCase )) def a_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : str = "en" , __lowerCAmelCase : Optional[List[str]] = None , __lowerCAmelCase : str = "ro" , **__lowerCAmelCase : List[Any] , ) -> BatchEncoding: """simple docstring""" A__ = src_lang A__ = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def a_ ( self : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[str] , __lowerCAmelCase : Optional[str] , **__lowerCAmelCase : Tuple ) -> Tuple: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) A__ = src_lang A__ = self(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase ) A__ = self.get_lang_id(__lowerCAmelCase ) A__ = tgt_lang_id return inputs def a_ ( self : Dict ) -> int: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def a_ ( self : str , __lowerCAmelCase : str ) -> None: """simple docstring""" A__ = self.get_lang_token(__lowerCAmelCase ) A__ = self.lang_token_to_id[lang_token] A__ = [self.cur_lang_id] A__ = [self.eos_token_id] def a_ ( self : Tuple , __lowerCAmelCase : str ) -> None: """simple docstring""" A__ = self.get_lang_token(__lowerCAmelCase ) A__ = self.lang_token_to_id[lang_token] A__ = [self.cur_lang_id] A__ = [self.eos_token_id] def a_ ( self : Union[str, Any] , __lowerCAmelCase : str ) -> str: """simple docstring""" return self.lang_code_to_token[lang] def a_ ( self : Union[str, Any] , __lowerCAmelCase : str ) -> int: """simple docstring""" A__ = self.get_lang_token(__lowerCAmelCase ) return self.lang_token_to_id[lang_token] def __lowerCamelCase ( __a :str , __a :Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" A__ = sentencepiece.SentencePieceProcessor(**__a ) spm.Load(str(__a ) ) return spm def __lowerCamelCase ( __a :str ) -> Union[Dict, List]: """simple docstring""" with open(__a , """r""" ) as f: return json.load(__a ) def __lowerCamelCase ( __a :List[Any] , __a :str ) -> None: """simple docstring""" with open(__a , """w""" ) as f: json.dump(__a , __a , indent=2 )
274
1
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS A : Optional[Any] = logging.get_logger(__name__) A : Optional[Any] = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class __lowerCamelCase ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Tuple=None , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : List[str]): super().__init__(*__a , **__a) if config is None: assert isinstance(self.model , __a), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) _A : Dict = self.model.config else: _A : Any = config _A : Optional[int] = data_args _A : Optional[Any] = self.config.tgt_vocab_size if isinstance(self.config , __a) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..') if self.args.label_smoothing == 0: _A : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _A : str = label_smoothed_nll_loss def A ( self : Any , SCREAMING_SNAKE_CASE : List[str]): if self.optimizer is None: _A : List[str] = ['bias', 'LayerNorm.weight'] _A : Optional[Any] = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0, }, ] _A : Any = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _A : int = Adafactor _A : Any = {'scale_parameter': False, 'relative_step': False} else: _A : int = AdamW _A : Any = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } _A : Optional[int] = self.args.learning_rate if self.sharded_ddp: _A : List[Any] = OSS( params=__a , optim=__a , **__a , ) else: _A : Dict = optimizer_cls(__a , **__a) if self.lr_scheduler is None: _A : int = self._get_lr_scheduler(__a) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.') def A ( self : List[str] , SCREAMING_SNAKE_CASE : str): _A : int = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _A : List[Any] = schedule_func(self.optimizer) elif self.args.lr_scheduler == "constant_w_warmup": _A : List[str] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps) else: _A : str = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__a) return scheduler def A ( self : int): if isinstance(self.train_dataset , torch.utils.data.IterableDataset): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset) ) def A ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _A : Optional[int] = model(**__a , use_cache=__a)[0] _A : List[str] = self.loss_fn(logits.view(-1 , logits.shape[-1]) , labels.view(-1)) else: # compute usual loss via models _A , _A : Dict = model(**__a , labels=__a , use_cache=__a)[:2] else: # compute label smoothed loss _A : int = model(**__a , use_cache=__a)[0] _A : List[Any] = torch.nn.functional.log_softmax(__a , dim=-1) _A , _A : List[Any] = self.loss_fn(__a , __a , self.args.label_smoothing , ignore_index=self.config.pad_token_id) return loss, logits def A ( self : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple): _A : List[str] = inputs.pop('labels') _A , _A : Union[str, Any] = self._compute_loss(__a , __a , __a) return loss def A ( self : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] = None , ): _A : Union[str, Any] = self._prepare_inputs(__a) _A : List[str] = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _A : List[str] = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **__a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _A : str = self._pad_tensors_to_max_len(__a , gen_kwargs['max_length']) _A : List[str] = inputs.pop('labels') with torch.no_grad(): # compute loss on predict data _A , _A : Tuple = self._compute_loss(__a , __a , __a) _A : int = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _A : Dict = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _A : Union[str, Any] = self._pad_tensors_to_max_len(__a , gen_kwargs['max_length']) return (loss, logits, labels) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict): _A : Optional[int] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}') _A : Tuple = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device) _A : List[str] = tensor return padded_tensor
362
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : List[str] = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
227
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Any = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __a (_A ): __a : int = "perceiver" def __init__( self : List[str] , __magic_name__ : Any=2_56 , __magic_name__ : Union[str, Any]=12_80 , __magic_name__ : Optional[int]=7_68 , __magic_name__ : Optional[Any]=1 , __magic_name__ : Tuple=26 , __magic_name__ : Optional[Any]=8 , __magic_name__ : Dict=8 , __magic_name__ : int=None , __magic_name__ : str=None , __magic_name__ : List[str]="kv" , __magic_name__ : List[Any]=1 , __magic_name__ : List[str]=1 , __magic_name__ : List[Any]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : List[str]=0.0_2 , __magic_name__ : Optional[int]=1E-12 , __magic_name__ : Dict=True , __magic_name__ : Dict=2_62 , __magic_name__ : List[Any]=20_48 , __magic_name__ : Tuple=56 , __magic_name__ : Optional[int]=[3_68, 4_96] , __magic_name__ : str=16 , __magic_name__ : Union[str, Any]=19_20 , __magic_name__ : Tuple=16 , __magic_name__ : List[Any]=[1, 16, 2_24, 2_24] , **__magic_name__ : str , ) -> List[Any]: """simple docstring""" super().__init__(**UpperCamelCase__ ) UpperCAmelCase_ : Tuple = num_latents UpperCAmelCase_ : Union[str, Any] = d_latents UpperCAmelCase_ : List[Any] = d_model UpperCAmelCase_ : List[Any] = num_blocks UpperCAmelCase_ : Any = num_self_attends_per_block UpperCAmelCase_ : List[Any] = num_self_attention_heads UpperCAmelCase_ : Any = num_cross_attention_heads UpperCAmelCase_ : Any = qk_channels UpperCAmelCase_ : int = v_channels UpperCAmelCase_ : str = cross_attention_shape_for_attention UpperCAmelCase_ : int = self_attention_widening_factor UpperCAmelCase_ : Any = cross_attention_widening_factor UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Tuple = layer_norm_eps UpperCAmelCase_ : int = use_query_residual # masked language modeling attributes UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = max_position_embeddings # image classification attributes UpperCAmelCase_ : Optional[int] = image_size # flow attributes UpperCAmelCase_ : Tuple = train_size # multimodal autoencoding attributes UpperCAmelCase_ : Dict = num_frames UpperCAmelCase_ : Any = audio_samples_per_frame UpperCAmelCase_ : Dict = samples_per_patch UpperCAmelCase_ : Union[str, Any] = output_shape class __a (_A ): @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase_ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def UpperCAmelCase__ ( self : str ) -> float: """simple docstring""" return 1E-4 def UpperCAmelCase__ ( self : int , __magic_name__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , __magic_name__ : int = 3 , __magic_name__ : int = 40 , __magic_name__ : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : Dict = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : List[Any] = preprocessor.num_special_tokens_to_add(UpperCamelCase__ ) UpperCAmelCase_ : Dict = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Tuple = [''' '''.join(['''a'''] ) * seq_length] * batch_size UpperCAmelCase_ : str = dict(preprocessor(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) UpperCAmelCase_ : List[Any] = inputs.pop('''input_ids''' ) return inputs elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : List[str] = compute_effective_axis_dimension(UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase_ : Tuple = self._generate_dummy_images(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ : str = dict(preprocessor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) UpperCAmelCase_ : Dict = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
125
import re import string import numpy as np import datasets __lowerCAmelCase : Optional[int] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase : Optional[int] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase : Optional[int] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self : str ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : int=False , UpperCamelCase__ : Tuple=False , ) -> Dict: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: __magic_name__ = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in predictions] ) __magic_name__ = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in references] ) else: __magic_name__ = np.asarray(UpperCamelCase__ ) __magic_name__ = np.asarray(UpperCamelCase__ ) if ignore_case: __magic_name__ = np.char.lower(UpperCamelCase__ ) __magic_name__ = np.char.lower(UpperCamelCase__ ) if ignore_punctuation: __magic_name__ = string.punctuation.maketrans("""""" , """""" , string.punctuation ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) if ignore_numbers: __magic_name__ = string.digits.maketrans("""""" , """""" , string.digits ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = predictions == references return {"exact_match": np.mean(UpperCamelCase__ ) * 100}
88
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : Tuple = CanineTokenizer _lowerCamelCase : Optional[int] = False def lowercase ( self : Union[str, Any] ): super().setUp() _UpperCAmelCase = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self : Optional[int] ): return CanineTokenizer.from_pretrained("google/canine-s" ) def lowercase ( self : List[Any] , **snake_case_ : Dict ): _UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) _UpperCAmelCase = 1_0_2_4 return tokenizer @require_torch def lowercase ( self : Optional[Any] ): _UpperCAmelCase = self.canine_tokenizer _UpperCAmelCase = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off _UpperCAmelCase = [5_7_3_4_4, 7_6, 1_0_5, 1_0_2, 1_0_1, 3_2, 1_0_5, 1_1_5, 3_2, 1_0_8, 1_0_5, 1_0_7, 1_0_1, 3_2, 9_7, 3_2, 9_8, 1_1_1, 1_2_0, 3_2, 1_1_1, 1_0_2, 3_2, 9_9, 1_0_4, 1_1_1, 9_9, 1_1_1, 1_0_8, 9_7, 1_1_6, 1_0_1, 1_1_5, 4_6, 5_7_3_4_5, 0, 0, 0, 0] # fmt: on _UpperCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _UpperCAmelCase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 3_9) , batch.input_ids.shape ) self.assertEqual((2, 3_9) , batch.attention_mask.shape ) @require_torch def lowercase ( self : List[Any] ): _UpperCAmelCase = self.canine_tokenizer _UpperCAmelCase = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] _UpperCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , snake_case_ ) self.assertIn("attention_mask" , snake_case_ ) self.assertIn("token_type_ids" , snake_case_ ) @require_torch def lowercase ( self : str ): _UpperCAmelCase = self.canine_tokenizer _UpperCAmelCase = [ "What's the weater?", "It's about 25 degrees.", ] _UpperCAmelCase = tokenizer( text_target=snake_case_ , max_length=3_2 , padding="max_length" , truncation=snake_case_ , return_tensors="pt" ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) def lowercase ( self : List[Any] ): # safety check on max_len default value so we are sure the test works _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = " He is very happy, UNwant\u00E9d,running" _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) tokenizer.save_pretrained(snake_case_ ) _UpperCAmelCase = tokenizer.__class__.from_pretrained(snake_case_ ) _UpperCAmelCase = after_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) shutil.rmtree(snake_case_ ) _UpperCAmelCase = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = " He is very happy, UNwant\u00E9d,running" _UpperCAmelCase = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _UpperCAmelCase = chr(0Xe0_07 ) additional_special_tokens.append(snake_case_ ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) tokenizer.save_pretrained(snake_case_ ) _UpperCAmelCase = tokenizer.__class__.from_pretrained(snake_case_ ) _UpperCAmelCase = after_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertIn(snake_case_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _UpperCAmelCase = tokenizer.__class__.from_pretrained(snake_case_ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(snake_case_ ) def lowercase ( self : List[str] ): _UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase , _UpperCAmelCase = self.get_clean_sequence(snake_case_ ) # a special token for Canine can be defined as follows: _UpperCAmelCase = 0Xe0_05 _UpperCAmelCase = chr(snake_case_ ) tokenizer.add_special_tokens({"cls_token": special_token} ) _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertEqual(len(snake_case_ ) , 1 ) _UpperCAmelCase = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=snake_case_ ) _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , input_encoded + special_token_id ) _UpperCAmelCase = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) self.assertTrue(special_token not in decoded ) def lowercase ( self : Tuple ): _UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase = chr(0Xe0_05 ) _UpperCAmelCase = chr(0Xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=snake_case_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) _UpperCAmelCase = tokenizer.tokenize(snake_case_ ) _UpperCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertEqual(len(snake_case_ ) , 1 ) self.assertEqual(len(snake_case_ ) , 1 ) self.assertEqual(token_a[0] , snake_case_ ) self.assertEqual(token_a[0] , snake_case_ ) @require_tokenizers def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: _UpperCAmelCase = 0Xe0_06 _UpperCAmelCase = chr(snake_case_ ) _UpperCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(snake_case_ ) tokenizer.from_pretrained(snake_case_ ) def lowercase ( self : int ): _UpperCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(snake_case_ ) with open(os.path.join(snake_case_ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: _UpperCAmelCase = json.load(snake_case_ ) with open(os.path.join(snake_case_ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: _UpperCAmelCase = json.load(snake_case_ ) # a special token for Canine can be defined as follows: _UpperCAmelCase = 0Xe0_06 _UpperCAmelCase = chr(snake_case_ ) _UpperCAmelCase = [new_token_a] _UpperCAmelCase = [new_token_a] with open(os.path.join(snake_case_ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case_ , snake_case_ ) with open(os.path.join(snake_case_ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case_ , snake_case_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _UpperCAmelCase = tokenizer_class.from_pretrained(snake_case_ , extra_ids=0 ) self.assertIn(snake_case_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _UpperCAmelCase = 0Xe0_07 _UpperCAmelCase = chr(snake_case_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _UpperCAmelCase = [AddedToken(snake_case_ , lstrip=snake_case_ )] _UpperCAmelCase = tokenizer_class.from_pretrained( snake_case_ , additional_special_tokens=snake_case_ , extra_ids=0 ) self.assertIn(snake_case_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase ( self : List[str] ): _UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase = "hello world" if self.space_between_special_tokens: _UpperCAmelCase = "[CLS] hello world [SEP]" else: _UpperCAmelCase = input _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) _UpperCAmelCase = tokenizer.decode(snake_case_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(snake_case_ , [output, output.lower()] ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] _UpperCAmelCase = "a" _UpperCAmelCase = ord(snake_case_ ) for attr in attributes_list: setattr(snake_case_ , attr + "_id" , snake_case_ ) self.assertEqual(getattr(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(getattr(snake_case_ , attr + "_id" ) , snake_case_ ) setattr(snake_case_ , attr + "_id" , snake_case_ ) self.assertEqual(getattr(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(getattr(snake_case_ , attr + "_id" ) , snake_case_ ) setattr(snake_case_ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(snake_case_ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(snake_case_ , "additional_special_tokens_ids" ) , [] ) _UpperCAmelCase = 0Xe0_06 _UpperCAmelCase = chr(snake_case_ ) setattr(snake_case_ , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(snake_case_ , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(snake_case_ , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowercase ( self : Dict ): pass def lowercase ( self : List[str] ): pass def lowercase ( self : Optional[Any] ): pass def lowercase ( self : Any ): pass def lowercase ( self : Optional[Any] ): pass def lowercase ( self : Union[str, Any] ): pass def lowercase ( self : str ): pass def lowercase ( self : List[Any] ): pass
370
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = '''▁''' __SCREAMING_SNAKE_CASE :List[str] = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __SCREAMING_SNAKE_CASE :Tuple = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __SCREAMING_SNAKE_CASE :Optional[int] = { '''facebook/m2m100_418M''': 1024, } # fmt: off __SCREAMING_SNAKE_CASE :Dict = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : List[str] = VOCAB_FILES_NAMES _lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : List[str] = ["""input_ids""", """attention_mask"""] _lowerCamelCase : List[int] = [] _lowerCamelCase : List[int] = [] def __init__( self : List[str] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : str=None , snake_case_ : int=None , snake_case_ : str="<s>" , snake_case_ : int="</s>" , snake_case_ : Any="</s>" , snake_case_ : List[str]="<pad>" , snake_case_ : Optional[int]="<unk>" , snake_case_ : Union[str, Any]="m2m100" , snake_case_ : Optional[Dict[str, Any]] = None , snake_case_ : List[str]=8 , **snake_case_ : str , ): _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCAmelCase = language_codes _UpperCAmelCase = FAIRSEQ_LANGUAGE_CODES[language_codes] _UpperCAmelCase = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _UpperCAmelCase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = load_json(snake_case_ ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = spm_file _UpperCAmelCase = load_spm(snake_case_ , self.sp_model_kwargs ) _UpperCAmelCase = len(self.encoder ) _UpperCAmelCase = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } _UpperCAmelCase = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} _UpperCAmelCase = {v: k for k, v in self.lang_token_to_id.items()} _UpperCAmelCase = src_lang if src_lang is not None else "en" _UpperCAmelCase = tgt_lang _UpperCAmelCase = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _UpperCAmelCase = num_madeup_words @property def lowercase ( self : int ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowercase ( self : List[Any] ): return self._src_lang @src_lang.setter def lowercase ( self : str , snake_case_ : str ): _UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase ( self : str , snake_case_ : str ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowercase ( self : Optional[Any] , snake_case_ : int ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def lowercase ( self : Any , snake_case_ : int ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def lowercase ( self : List[str] , snake_case_ : List[str] ): _UpperCAmelCase = [] _UpperCAmelCase = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _UpperCAmelCase = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def lowercase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _UpperCAmelCase = [1] * len(self.prefix_tokens ) _UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def lowercase ( self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase ( self : Dict ): _UpperCAmelCase = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : List[str] , snake_case_ : Dict ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase ( self : int , snake_case_ : str , snake_case_ : Optional[str] = None ): _UpperCAmelCase = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _UpperCAmelCase = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) _UpperCAmelCase = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def lowercase ( self : Dict , snake_case_ : List[str] , snake_case_ : str = "en" , snake_case_ : Optional[List[str]] = None , snake_case_ : str = "ro" , **snake_case_ : Any , ): _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : Optional[Any] , snake_case_ : Optional[str] , snake_case_ : Optional[str] , **snake_case_ : Any ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) _UpperCAmelCase = src_lang _UpperCAmelCase = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) _UpperCAmelCase = self.get_lang_id(snake_case_ ) _UpperCAmelCase = tgt_lang_id return inputs def lowercase ( self : List[str] ): self.set_src_lang_special_tokens(self.src_lang ) def lowercase ( self : Optional[Any] ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase ( self : Any , snake_case_ : str ): _UpperCAmelCase = self.get_lang_token(snake_case_ ) _UpperCAmelCase = self.lang_token_to_id[lang_token] _UpperCAmelCase = [self.cur_lang_id] _UpperCAmelCase = [self.eos_token_id] def lowercase ( self : List[Any] , snake_case_ : str ): _UpperCAmelCase = self.get_lang_token(snake_case_ ) _UpperCAmelCase = self.lang_token_to_id[lang_token] _UpperCAmelCase = [self.cur_lang_id] _UpperCAmelCase = [self.eos_token_id] def lowercase ( self : Tuple , snake_case_ : str ): return self.lang_code_to_token[lang] def lowercase ( self : List[str] , snake_case_ : str ): _UpperCAmelCase = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def UpperCAmelCase_ ( __lowercase : str , __lowercase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' _UpperCAmelCase = sentencepiece.SentencePieceProcessor(**__lowercase ) spm.Load(str(__lowercase ) ) return spm def UpperCAmelCase_ ( __lowercase : str ) -> Union[Dict, List]: '''simple docstring''' with open(__lowercase , "r" ) as f: return json.load(__lowercase ) def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> None: '''simple docstring''' with open(__lowercase , "w" ) as f: json.dump(__lowercase , __lowercase , indent=2 )
156
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Union[str, Any] ): __lowercase : List[Any] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } __lowercase : str = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(_snake_case ) , _snake_case ) def snake_case_ ( self : Optional[int] ): __lowercase : int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_snake_case ) , x.transpose() ) ) __lowercase : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def snake_case_ ( self : Tuple ): __lowercase : Optional[int] = np.random.randn(3 , 4 ) __lowercase : List[Any] = torch.tensor(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , transpose(_snake_case ).numpy() ) ) __lowercase : List[Any] = np.random.randn(3 , 4 , 5 ) __lowercase : int = torch.tensor(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , transpose(_snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def snake_case_ ( self : Tuple ): __lowercase : Union[str, Any] = np.random.randn(3 , 4 ) __lowercase : Optional[Any] = tf.constant(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , transpose(_snake_case ).numpy() ) ) __lowercase : Optional[int] = np.random.randn(3 , 4 , 5 ) __lowercase : Optional[Any] = tf.constant(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , transpose(_snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def snake_case_ ( self : str ): __lowercase : Optional[Any] = np.random.randn(3 , 4 ) __lowercase : str = jnp.array(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , np.asarray(transpose(_snake_case ) ) ) ) __lowercase : Optional[Any] = np.random.randn(3 , 4 , 5 ) __lowercase : Optional[Any] = jnp.array(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(_snake_case , axes=(1, 2, 0) ) ) ) ) def snake_case_ ( self : Tuple ): __lowercase : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , np.reshape(_snake_case , (4, 3) ) ) ) __lowercase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , np.reshape(_snake_case , (12, 5) ) ) ) @require_torch def snake_case_ ( self : Optional[Any] ): __lowercase : str = np.random.randn(3 , 4 ) __lowercase : Optional[Any] = torch.tensor(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , reshape(_snake_case , (4, 3) ).numpy() ) ) __lowercase : Optional[Any] = np.random.randn(3 , 4 , 5 ) __lowercase : int = torch.tensor(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , reshape(_snake_case , (12, 5) ).numpy() ) ) @require_tf def snake_case_ ( self : Optional[int] ): __lowercase : str = np.random.randn(3 , 4 ) __lowercase : List[str] = tf.constant(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , reshape(_snake_case , (4, 3) ).numpy() ) ) __lowercase : Any = np.random.randn(3 , 4 , 5 ) __lowercase : Optional[int] = tf.constant(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , reshape(_snake_case , (12, 5) ).numpy() ) ) @require_flax def snake_case_ ( self : Dict ): __lowercase : Tuple = np.random.randn(3 , 4 ) __lowercase : Any = jnp.array(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , np.asarray(reshape(_snake_case , (4, 3) ) ) ) ) __lowercase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) __lowercase : Union[str, Any] = jnp.array(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , np.asarray(reshape(_snake_case , (12, 5) ) ) ) ) def snake_case_ ( self : List[Any] ): __lowercase : Dict = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_snake_case ) , np.squeeze(_snake_case ) ) ) __lowercase : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , np.squeeze(_snake_case , axis=2 ) ) ) @require_torch def snake_case_ ( self : int ): __lowercase : int = np.random.randn(1 , 3 , 4 ) __lowercase : Any = torch.tensor(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , squeeze(_snake_case ).numpy() ) ) __lowercase : List[Any] = np.random.randn(1 , 4 , 1 , 5 ) __lowercase : int = torch.tensor(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , squeeze(_snake_case , axis=2 ).numpy() ) ) @require_tf def snake_case_ ( self : Optional[int] ): __lowercase : List[Any] = np.random.randn(1 , 3 , 4 ) __lowercase : int = tf.constant(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , squeeze(_snake_case ).numpy() ) ) __lowercase : Any = np.random.randn(1 , 4 , 1 , 5 ) __lowercase : Any = tf.constant(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , squeeze(_snake_case , axis=2 ).numpy() ) ) @require_flax def snake_case_ ( self : Any ): __lowercase : Optional[Any] = np.random.randn(1 , 3 , 4 ) __lowercase : Optional[Any] = jnp.array(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , np.asarray(squeeze(_snake_case ) ) ) ) __lowercase : Any = np.random.randn(1 , 4 , 1 , 5 ) __lowercase : Optional[int] = jnp.array(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , np.asarray(squeeze(_snake_case , axis=2 ) ) ) ) def snake_case_ ( self : Any ): __lowercase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , np.expand_dims(_snake_case , axis=1 ) ) ) @require_torch def snake_case_ ( self : List[Any] ): __lowercase : List[str] = np.random.randn(3 , 4 ) __lowercase : Optional[Any] = torch.tensor(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , expand_dims(_snake_case , axis=1 ).numpy() ) ) @require_tf def snake_case_ ( self : Union[str, Any] ): __lowercase : Optional[Any] = np.random.randn(3 , 4 ) __lowercase : int = tf.constant(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , expand_dims(_snake_case , axis=1 ).numpy() ) ) @require_flax def snake_case_ ( self : List[Any] ): __lowercase : Optional[int] = np.random.randn(3 , 4 ) __lowercase : Optional[Any] = jnp.array(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , np.asarray(expand_dims(_snake_case , axis=1 ) ) ) )
156
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __lowerCAmelCase : Optional[Any] = {"UserAgent": UserAgent().random} def UpperCAmelCase_ ( __lowerCAmelCase ) -> dict: __lowercase : Optional[Any] = script.contents[0] __lowercase : int = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : Optional[int] ): __lowercase : Dict = F'https://www.instagram.com/{username}/' __lowercase : Tuple = self.get_json() def snake_case_ ( self : Tuple ): __lowercase : List[Any] = requests.get(self.url , headers=_snake_case ).text __lowercase : str = BeautifulSoup(_snake_case , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Optional[Any] ): return F'{self.__class__.__name__}(\'{self.username}\')' def __str__( self : Optional[int] ): return F'{self.fullname} ({self.username}) is {self.biography}' @property def snake_case_ ( self : Dict ): return self.user_data["username"] @property def snake_case_ ( self : List[Any] ): return self.user_data["full_name"] @property def snake_case_ ( self : Optional[Any] ): return self.user_data["biography"] @property def snake_case_ ( self : Any ): return self.user_data["business_email"] @property def snake_case_ ( self : int ): return self.user_data["external_url"] @property def snake_case_ ( self : Union[str, Any] ): return self.user_data["edge_followed_by"]["count"] @property def snake_case_ ( self : Dict ): return self.user_data["edge_follow"]["count"] @property def snake_case_ ( self : Any ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def snake_case_ ( self : int ): return self.user_data["profile_pic_url_hd"] @property def snake_case_ ( self : Optional[Any] ): return self.user_data["is_verified"] @property def snake_case_ ( self : Optional[Any] ): return self.user_data["is_private"] def UpperCAmelCase_ ( __lowerCAmelCase = "github" ) -> None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions __lowercase : Dict = InstagramUser(__lowerCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __lowerCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] = InstagramUser("github") print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
156
1
"""simple docstring""" import math import random def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value SCREAMING_SNAKE_CASE = 0.02 def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> float: A__ = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(lowercase_ ): # Forward propagation A__ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? A__ = (expected / 1_00) - layer_a # Error delta A__ = layer_1_error * sigmoid_function(lowercase_ , lowercase_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE = int(input("Expected value: ")) SCREAMING_SNAKE_CASE = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
366
"""simple docstring""" from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[Any] , snake_case_ : Any ) -> List[str]: '''simple docstring''' A__ = data A__ = None def __repr__( self : Optional[int] ) -> str: '''simple docstring''' return F"""Node({self.data})""" class UpperCAmelCase_ : def __init__( self : Dict ) -> Any: '''simple docstring''' A__ = None def __iter__( self : List[Any] ) -> Any: '''simple docstring''' A__ = self.head while node: yield node.data A__ = node.next def __len__( self : Any ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : List[str] ) -> str: '''simple docstring''' return "->".join([str(snake_case_ ) for item in self] ) def __getitem__( self : str , snake_case_ : int ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Tuple , snake_case_ : int , snake_case_ : Any ) -> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("list index out of range." ) A__ = self.head for _ in range(snake_case_ ): A__ = current.next A__ = data def __magic_name__ ( self : List[Any] , snake_case_ : Any ) -> None: '''simple docstring''' self.insert_nth(len(self ) , snake_case_ ) def __magic_name__ ( self : Tuple , snake_case_ : Any ) -> None: '''simple docstring''' self.insert_nth(0 , snake_case_ ) def __magic_name__ ( self : Dict , snake_case_ : int , snake_case_ : Any ) -> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) A__ = Node(snake_case_ ) if self.head is None: A__ = new_node elif index == 0: A__ = self.head # link new_node to head A__ = new_node else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = new_node def __magic_name__ ( self : Dict ) -> None: # print every node data '''simple docstring''' print(self ) def __magic_name__ ( self : Dict ) -> Any: '''simple docstring''' return self.delete_nth(0 ) def __magic_name__ ( self : Optional[Any] ) -> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def __magic_name__ ( self : Any , snake_case_ : int = 0 ) -> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) A__ = self.head # default first node if index == 0: A__ = self.head.next else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = temp.next.next return delete_node.data def __magic_name__ ( self : Dict ) -> bool: '''simple docstring''' return self.head is None def __magic_name__ ( self : List[Any] ) -> None: '''simple docstring''' A__ = None A__ = self.head while current: # Store the current node's next node. A__ = current.next # Make the current node's next point backwards A__ = prev # Make the previous node be the current node A__ = current # Make the current node the next node (to progress iteration) A__ = next_node # Return prev in order to put the head at the end A__ = prev def _SCREAMING_SNAKE_CASE ( ) -> None: A__ = LinkedList() assert linked_list.is_empty() is True assert str(lowercase_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowercase_ ) == i linked_list.insert_nth(lowercase_ , i + 1 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowercase_ ) == 9 assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): A__ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE ( ) -> None: A__ = [ -9, 1_00, Node(77_34_51_12 ), "dlrow olleH", 7, 55_55, 0, -1_9_2.5_5_5_5_5, "Hello, world!", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] A__ = LinkedList() for i in test_input: linked_list.insert_tail(lowercase_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowercase_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head A__ = linked_list.delete_head() assert result == -9 assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail A__ = linked_list.delete_tail() assert result == 1_2.2 assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list A__ = linked_list.delete_nth(10 ) assert result is None assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(lowercase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowercase_ ) assert ( str(lowercase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowercase_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: from doctest import testmod testmod() A__ = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(lowercase_ ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) A__ = input("Enter New Value: " ).strip() print("New list:" ) print(lowercase_ ) print(f"""length of linked_list is : {len(lowercase_ )}""" ) if __name__ == "__main__": main()
230
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
199
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class A ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase__ : List[Any] =[('size', ctypes.c_int), ('visible', ctypes.c_byte)] def a_ ( ): '''simple docstring''' if os.name == "nt": _lowerCamelCase : Optional[Any] =CursorInfo() _lowerCamelCase : Dict =ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) _lowerCamelCase : Any =False ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def a_ ( ): '''simple docstring''' if os.name == "nt": _lowerCamelCase : Any =CursorInfo() _lowerCamelCase : Optional[Any] =ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) _lowerCamelCase : Union[str, Any] =True ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def a_ ( ): '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
199
1
from __future__ import annotations UpperCamelCase__ : List[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCamelCase__ : str = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[float]: """simple docstring""" a = [] a = len(snake_case_ ) for i in range(snake_case_ ): a = -1 for j in range(i + 1, snake_case_ ): if arr[i] < arr[j]: a = arr[j] break result.append(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[float]: """simple docstring""" a = [] for i, outer in enumerate(snake_case_ ): a = -1 for inner in arr[i + 1 :]: if outer < inner: a = inner break result.append(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[float]: """simple docstring""" a = len(snake_case_ ) a = [] a = [-1] * arr_size for index in reversed(range(snake_case_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: a = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCamelCase__ : List[str] = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
330
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] = """tiny-wmt19-en-ru""" # Build # borrowed from a test UpperCamelCase__ : Any = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase__ : List[Any] = dict(zip(vocab, range(len(vocab)))) UpperCamelCase__ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Optional[Any] = Path(tmpdirname) UpperCamelCase__ : Tuple = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] UpperCamelCase__ : int = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] UpperCamelCase__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) UpperCamelCase__ : Dict = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCamelCase__ : Union[str, Any] = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test UpperCamelCase__ : List[str] = tokenizer(["""Making tiny model"""], return_tensors="""pt""") UpperCamelCase__ : Tuple = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
330
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) # TODO Update this UpperCAmelCase : Optional[Any] = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : List[Any] = """esm""" def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_0_2_6 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , mask_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Union[str, Any] =vocab_size a__ : List[Any] =hidden_size a__ : Optional[Any] =num_hidden_layers a__ : str =num_attention_heads a__ : Tuple =intermediate_size a__ : List[Any] =hidden_dropout_prob a__ : Optional[int] =attention_probs_dropout_prob a__ : int =max_position_embeddings a__ : List[str] =initializer_range a__ : Optional[int] =layer_norm_eps a__ : Dict =position_embedding_type a__ : int =use_cache a__ : Tuple =emb_layer_norm_before a__ : Union[str, Any] =token_dropout a__ : List[Any] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) a__ : List[Any] =EsmFoldConfig() elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Any =EsmFoldConfig(**lowerCAmelCase__ ) a__ : Any =esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) a__ : List[Any] =get_default_vocab_list() else: a__ : List[str] =vocab_list else: a__ : Any =None a__ : str =None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , lowerCAmelCase__ ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[Any] =super().to_dict() if isinstance(self.esmfold_config , lowerCAmelCase__ ): a__ : List[str] =self.esmfold_config.to_dict() return output @dataclass class __lowerCAmelCase : _lowercase : str = None _lowercase : bool = True _lowercase : bool = False _lowercase : bool = False _lowercase : bool = False _lowercase : float = 0 _lowercase : bool = True _lowercase : bool = False _lowercase : int = 128 _lowercase : "TrunkConfig" = None def _lowercase ( self ) -> List[Any]: '''simple docstring''' if self.trunk is None: a__ : List[Any] =TrunkConfig() elif isinstance(self.trunk , lowerCAmelCase__ ): a__ : Dict =TrunkConfig(**self.trunk ) def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Any =asdict(self ) a__ : List[str] =self.trunk.to_dict() return output @dataclass class __lowerCAmelCase : _lowercase : int = 48 _lowercase : int = 1024 _lowercase : int = 128 _lowercase : int = 32 _lowercase : int = 32 _lowercase : int = 32 _lowercase : float = 0 _lowercase : float = 0 _lowercase : bool = False _lowercase : int = 4 _lowercase : Optional[int] = 128 _lowercase : "StructureModuleConfig" = None def _lowercase ( self ) -> Any: '''simple docstring''' if self.structure_module is None: a__ : List[Any] =StructureModuleConfig() elif isinstance(self.structure_module , lowerCAmelCase__ ): a__ : Dict =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) a__ : int =self.sequence_state_dim // self.sequence_head_width a__ : Dict =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : str =asdict(self ) a__ : List[str] =self.structure_module.to_dict() return output @dataclass class __lowerCAmelCase : _lowercase : int = 384 _lowercase : int = 128 _lowercase : int = 16 _lowercase : int = 128 _lowercase : int = 12 _lowercase : int = 4 _lowercase : int = 8 _lowercase : float = 0.1 _lowercase : int = 8 _lowercase : int = 1 _lowercase : int = 2 _lowercase : int = 7 _lowercase : int = 10 _lowercase : float = 1E-8 _lowercase : float = 1E5 def _lowercase ( self ) -> Tuple: '''simple docstring''' return asdict(self ) def _A ( ): """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
95
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase: Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCamelCase_ (self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None ): """simple docstring""" a = {} a = {} if prompt is not None: a = prompt if generate_kwargs is not None: a = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: a = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) a = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__(self , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ): """simple docstring""" a = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( F'''Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) a = self.model.config.model_type if model_type == "git": a = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) a = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids a = [self.tokenizer.cls_token_id] + input_ids a = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": a = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation a = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) a = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(F'''Model type {model_type} does not support conditional text generation''' ) else: a = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: a = None return model_inputs def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCamelCase_ ) and all(x is None for x in model_inputs["input_ids"] ) ): a = None if generate_kwargs is None: a = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. a = model_inputs.pop(self.model.main_input_name ) a = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ ) return model_outputs def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = [] for output_ids in model_outputs: a = { "generated_text": self.tokenizer.decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , ) } records.append(lowerCamelCase_ ) return records
227
0
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowerCAmelCase__ ) ,"Tatoeba directory does not exist." ) class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ): lowercase__: Optional[Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self ): self.resolver.convert_models(['''heb-eng'''] ) @slow def _snake_case ( self ): lowercase__, lowercase__: List[str] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_SCREAMING_SNAKE_CASE ) assert mmeta["long_pair"] == "heb-eng"
354
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 5_0 ) -> int: lowercase__: str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
2
0
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class A__ : '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: List[Any]) -> Any: """simple docstring""" __lowerCAmelCase : Dict = data __lowerCAmelCase : str = [0X67_45_23_01, 0XEF_CD_AB_89, 0X98_BA_DC_FE, 0X10_32_54_76, 0XC3_D2_E1_F0] @staticmethod def _SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: str) -> int: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XFF_FF_FF_FF def _SCREAMING_SNAKE_CASE ( self: int) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data) + 8) % 64) __lowerCAmelCase : Dict = self.data + padding + struct.pack(">Q" , 8 * len(self.data)) return padded_data def _SCREAMING_SNAKE_CASE ( self: int) -> str: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: int) -> List[Any]: """simple docstring""" __lowerCAmelCase : Dict = list(struct.unpack(">16L" , _snake_case)) + [0] * 64 for i in range(16 , 80): __lowerCAmelCase : Optional[int] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = self.padding() __lowerCAmelCase : int = self.split_blocks() for block in self.blocks: __lowerCAmelCase : List[str] = self.expand_block(_snake_case) __lowerCAmelCase : str = self.h for i in range(0 , 80): if 0 <= i < 20: __lowerCAmelCase : int = (b & c) | ((~b) & d) __lowerCAmelCase : Optional[int] = 0X5A_82_79_99 elif 20 <= i < 40: __lowerCAmelCase : Optional[Any] = b ^ c ^ d __lowerCAmelCase : Union[str, Any] = 0X6E_D9_EB_A1 elif 40 <= i < 60: __lowerCAmelCase : List[str] = (b & c) | (b & d) | (c & d) __lowerCAmelCase : str = 0X8F_1B_BC_DC elif 60 <= i < 80: __lowerCAmelCase : int = b ^ c ^ d __lowerCAmelCase : List[str] = 0XCA_62_C1_D6 __lowerCAmelCase : int = ( self.rotate(_snake_case , 5) + f + e + k + expanded_block[i] & 0XFF_FF_FF_FF, a, self.rotate(_snake_case , 30), c, d, ) __lowerCAmelCase : Optional[int] = ( self.h[0] + a & 0XFF_FF_FF_FF, self.h[1] + b & 0XFF_FF_FF_FF, self.h[2] + c & 0XFF_FF_FF_FF, self.h[3] + d & 0XFF_FF_FF_FF, self.h[4] + e & 0XFF_FF_FF_FF, ) return ("{:08x}" * 5).format(*self.h) def _lowercase ( ) -> Union[str, Any]: __lowerCAmelCase : int = b'''Test String''' assert SHAaHash(__lowerCAmelCase ).final_hash() == hashlib.shaa(__lowerCAmelCase ).hexdigest() # noqa: S324 def _lowercase ( ) -> Optional[Any]: __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser(description="Process some strings or files" ) parser.add_argument( "--string" ,dest="input_string" ,default="Hello World!! Welcome to Cryptography" ,help="Hash the string" ,) parser.add_argument("--file" ,dest="input_file" ,help="Hash contents of a file" ) __lowerCAmelCase : Any = parser.parse_args() __lowerCAmelCase : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"rb" ) as f: __lowerCAmelCase : int = f.read() else: __lowerCAmelCase : Optional[Any] = bytes(__lowerCAmelCase ,"utf-8" ) print(SHAaHash(__lowerCAmelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
269
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Any = '''EncodecFeatureExtractor''' A__ : Optional[int] = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : Optional[Any] ): super().__init__(_snake_case , _snake_case ) __lowercase : List[Any] = self.feature_extractor __lowercase : Tuple = False def snake_case_ ( self : Optional[int] , _snake_case : Union[str, Any]=None , _snake_case : Optional[Any]=None , _snake_case : List[str]=True ): return self.tokenizer.get_decoder_prompt_ids(task=_snake_case , language=_snake_case , no_timestamps=_snake_case ) def __call__( self : str , *_snake_case : Tuple , **_snake_case : str ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_snake_case , **_snake_case ) __lowercase : Optional[Any] = kwargs.pop('''audio''' , _snake_case ) __lowercase : str = kwargs.pop('''sampling_rate''' , _snake_case ) __lowercase : Any = kwargs.pop('''text''' , _snake_case ) if len(_snake_case ) > 0: __lowercase : Dict = args[0] __lowercase : Any = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __lowercase : str = self.tokenizer(_snake_case , **_snake_case ) if audio is not None: __lowercase : List[str] = self.feature_extractor(_snake_case , *_snake_case , sampling_rate=_snake_case , **_snake_case ) if audio is None: return inputs elif text is None: return audio_inputs else: __lowercase : Tuple = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __lowercase : Tuple = audio_inputs['''padding_mask'''] return inputs def snake_case_ ( self : int , *_snake_case : int , **_snake_case : Any ): __lowercase : Dict = kwargs.pop('''audio''' , _snake_case ) __lowercase : Tuple = kwargs.pop('''padding_mask''' , _snake_case ) if len(_snake_case ) > 0: __lowercase : str = args[0] __lowercase : Tuple = args[1:] if audio_values is not None: return self._decode_audio(_snake_case , padding_mask=_snake_case ) else: return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def snake_case_ ( self : Optional[int] , *_snake_case : int , **_snake_case : List[str] ): return self.tokenizer.decode(*_snake_case , **_snake_case ) def snake_case_ ( self : Dict , _snake_case : List[Any] , _snake_case : Optional = None ): __lowercase : Union[str, Any] = to_numpy(_snake_case ) __lowercase , __lowercase , __lowercase : Optional[int] = audio_values.shape if padding_mask is None: return list(_snake_case ) __lowercase : Optional[int] = to_numpy(_snake_case ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __lowercase : int = seq_len - padding_mask.shape[-1] __lowercase : Optional[int] = 1 - self.feature_extractor.padding_value __lowercase : Tuple = np.pad(_snake_case , ((0, 0), (0, difference)) , '''constant''' , constant_values=_snake_case ) __lowercase : str = audio_values.tolist() for i in range(_snake_case ): __lowercase : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __lowercase : Any = sliced_audio.reshape(_snake_case , -1 ) return audio_values
156
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = jnp.ones((batch_size, length) ) / length return scores def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = None lowercase : Dict = 20 lowercase : Dict = self._get_uniform_logits(batch_size=2 ,length=snake_case ) # tweak scores to not be uniform anymore lowercase : Optional[int] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowercase : Tuple = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowercase : List[str] = jax.nn.softmax(snake_case ,axis=-1 ) lowercase : Any = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase : Optional[int] = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowercase : Optional[int] = jax.nn.softmax(temp_dist_warper_sharper(snake_case ,scores.copy() ,cur_len=snake_case ) ,axis=-1 ) lowercase : Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(snake_case ,scores.copy() ,cur_len=snake_case ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = None lowercase : List[Any] = 10 lowercase : Any = 2 # create ramp distribution lowercase : List[str] = np.broadcast_to(np.arange(snake_case )[None, :] ,(batch_size, vocab_size) ).copy() lowercase : Union[str, Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size lowercase : Optional[Any] = FlaxTopKLogitsWarper(3 ) lowercase : List[str] = top_k_warp(snake_case ,snake_case ,cur_len=snake_case ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowercase : int = 5 lowercase : Dict = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowercase : str = np.broadcast_to(np.arange(snake_case )[None, :] ,(batch_size, length) ).copy() lowercase : int = top_k_warp_safety_check(snake_case ,snake_case ,cur_len=snake_case ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = None lowercase : Dict = 10 lowercase : Union[str, Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowercase : Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowercase : Optional[int] = FlaxTopPLogitsWarper(0.8 ) lowercase : Dict = np.exp(top_p_warp(snake_case ,snake_case ,cur_len=snake_case ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowercase : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(snake_case ,snake_case ,atol=1e-3 ) ) # check edge cases with negative and extreme logits lowercase : Dict = np.broadcast_to(np.arange(snake_case )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowercase : Optional[int] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowercase : List[Any] = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowercase : Dict = top_p_warp(snake_case ,snake_case ,cur_len=snake_case ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = 20 lowercase : Any = 4 lowercase : List[str] = 0 lowercase : Any = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case ) # check that min length is applied at length 5 lowercase : Optional[Any] = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowercase : Tuple = 5 lowercase : Optional[Any] = self._get_uniform_logits(snake_case ,snake_case ) lowercase : str = min_dist_processor(snake_case ,snake_case ,cur_len=snake_case ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowercase : Union[str, Any] = self._get_uniform_logits(snake_case ,snake_case ) lowercase : List[Any] = 15 lowercase : str = min_dist_processor(snake_case ,snake_case ,cur_len=snake_case ) self.assertFalse(jnp.isinf(snake_case ).any() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = 20 lowercase : str = 4 lowercase : Dict = 0 lowercase : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case ) # check that all scores are -inf except the bos_token_id score lowercase : Any = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowercase : Dict = 1 lowercase : Tuple = self._get_uniform_logits(snake_case ,snake_case ) lowercase : Any = logits_processor(snake_case ,snake_case ,cur_len=snake_case ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowercase : int = 3 lowercase : List[Any] = self._get_uniform_logits(snake_case ,snake_case ) lowercase : List[Any] = logits_processor(snake_case ,snake_case ,cur_len=snake_case ) self.assertFalse(jnp.isinf(snake_case ).any() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = 20 lowercase : str = 4 lowercase : Dict = 0 lowercase : Any = 5 lowercase : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case ,eos_token_id=snake_case ) # check that all scores are -inf except the eos_token_id when max_length is reached lowercase : Any = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowercase : Any = 4 lowercase : Tuple = self._get_uniform_logits(snake_case ,snake_case ) lowercase : List[str] = logits_processor(snake_case ,snake_case ,cur_len=snake_case ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowercase : Dict = 3 lowercase : int = self._get_uniform_logits(snake_case ,snake_case ) lowercase : Dict = logits_processor(snake_case ,snake_case ,cur_len=snake_case ) self.assertFalse(jnp.isinf(snake_case ).any() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = 4 lowercase : Union[str, Any] = 10 lowercase : List[Any] = 15 lowercase : Any = 2 lowercase : Tuple = 1 lowercase : Union[str, Any] = 15 # dummy input_ids and scores lowercase : str = ids_tensor((batch_size, sequence_length) ,snake_case ) lowercase : str = input_ids.copy() lowercase : Any = self._get_uniform_logits(snake_case ,snake_case ) lowercase : Any = scores.copy() # instantiate all dist processors lowercase : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase : Union[str, Any] = FlaxTopKLogitsWarper(3 ) lowercase : List[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case ) lowercase : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case ) lowercase : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case ,eos_token_id=snake_case ) lowercase : Optional[Any] = 10 # no processor list lowercase : List[str] = temp_dist_warp(snake_case ,snake_case ,cur_len=snake_case ) lowercase : Optional[Any] = top_k_warp(snake_case ,snake_case ,cur_len=snake_case ) lowercase : str = top_p_warp(snake_case ,snake_case ,cur_len=snake_case ) lowercase : List[Any] = min_dist_proc(snake_case ,snake_case ,cur_len=snake_case ) lowercase : List[Any] = bos_dist_proc(snake_case ,snake_case ,cur_len=snake_case ) lowercase : Optional[Any] = eos_dist_proc(snake_case ,snake_case ,cur_len=snake_case ) # with processor list lowercase : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase : int = processor(snake_case ,snake_case ,cur_len=snake_case ) # scores should be equal self.assertTrue(jnp.allclose(snake_case ,snake_case ,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = 4 lowercase : int = 10 lowercase : List[Any] = 15 lowercase : Tuple = 2 lowercase : Optional[int] = 1 lowercase : Any = 15 # dummy input_ids and scores lowercase : int = ids_tensor((batch_size, sequence_length) ,snake_case ) lowercase : Dict = input_ids.copy() lowercase : int = self._get_uniform_logits(snake_case ,snake_case ) lowercase : Optional[Any] = scores.copy() # instantiate all dist processors lowercase : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase : Dict = FlaxTopKLogitsWarper(3 ) lowercase : Optional[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case ) lowercase : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case ) lowercase : int = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case ,eos_token_id=snake_case ) lowercase : Optional[Any] = 10 # no processor list def run_no_processor_list(snake_case ,snake_case ,snake_case ): lowercase : Optional[Any] = temp_dist_warp(snake_case ,snake_case ,cur_len=snake_case ) lowercase : Optional[Any] = top_k_warp(snake_case ,snake_case ,cur_len=snake_case ) lowercase : List[str] = top_p_warp(snake_case ,snake_case ,cur_len=snake_case ) lowercase : Union[str, Any] = min_dist_proc(snake_case ,snake_case ,cur_len=snake_case ) lowercase : List[str] = bos_dist_proc(snake_case ,snake_case ,cur_len=snake_case ) lowercase : Any = eos_dist_proc(snake_case ,snake_case ,cur_len=snake_case ) return scores # with processor list def run_processor_list(snake_case ,snake_case ,snake_case ): lowercase : int = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase : Union[str, Any] = processor(snake_case ,snake_case ,cur_len=snake_case ) return scores lowercase : List[Any] = jax.jit(snake_case ) lowercase : Dict = jax.jit(snake_case ) lowercase : Tuple = jitted_run_no_processor_list(snake_case ,snake_case ,snake_case ) lowercase : Any = jitted_run_processor_list(snake_case ,snake_case ,snake_case ) # scores should be equal self.assertTrue(jnp.allclose(snake_case ,snake_case ,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
370
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: # vision encoder if "img_encoder.pos_embed" in name: lowercase : Dict = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase : Any = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase : Tuple = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase : Tuple = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase : Optional[Any] = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase : Union[str, Any] = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase : Dict = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase : Dict = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase : Tuple = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase : Tuple = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase : List[Any] = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase : Tuple = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase : Any = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase : Dict = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase : List[str] = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase : Tuple = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase : str = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase : Union[str, Any] = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase : Tuple = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase : Optional[Any] = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase : List[str] = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase : Tuple = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase : List[Any] = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase : List[Any] = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase : Dict = key.split(""".""" ) lowercase , lowercase : Optional[Any] = int(key_split[2] ), int(key_split[4] ) lowercase : List[Any] = config.vision_config.hidden_size if "weight" in key: lowercase : str = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Optional[int] = val[-dim:, :] else: lowercase : Dict = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Dict = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase : int = key.split(""".""" ) lowercase : Tuple = int(key_split[3] ) lowercase : str = config.text_config.hidden_size if "weight" in key: lowercase : Optional[int] = val[:dim, :] lowercase : Optional[Any] = val[ dim : dim * 2, : ] lowercase : Optional[int] = val[-dim:, :] else: lowercase : Optional[int] = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : List[str] = val[-dim:] else: lowercase : Tuple = rename_key(SCREAMING_SNAKE_CASE__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase : str = val.squeeze_() else: lowercase : Any = val return orig_state_dict def _snake_case( ) -> List[Any]: lowercase : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="groupvit-gcc-yfcc" , SCREAMING_SNAKE_CASE__=False ) -> str: lowercase : Dict = GroupViTConfig() lowercase : Tuple = GroupViTModel(SCREAMING_SNAKE_CASE__ ).eval() lowercase : List[str] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Optional[Any] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : int = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(SCREAMING_SNAKE_CASE__ ) == 0) # verify result lowercase : Tuple = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase : Optional[Any] = prepare_img() lowercase : List[Any] = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) if model_name == "groupvit-gcc-yfcc": lowercase : Optional[int] = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase : int = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(f"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print("""Successfully saved processor and model to""" , SCREAMING_SNAKE_CASE__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""nielsr""" ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""nielsr""" ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) lowercase : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
285
0
'''simple docstring''' import baseaa def __lowerCamelCase ( _lowercase ) -> bytes: return baseaa.aaaencode(string.encode("""utf-8""" ) ) def __lowerCamelCase ( _lowercase ) -> str: return baseaa.aaadecode(__lowerCAmelCase ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
265
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A__ = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase ) -> List[Any]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main snake_case__ : Dict = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__lowerCAmelCase , id=__lowerCAmelCase )
230
0
from __future__ import annotations import time a = list[tuple[int, int]] a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowercase_ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Node | None ): _A = pos_x _A = pos_y _A = (pos_y, pos_x) _A = goal_x _A = goal_y _A = parent class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : tuple[int, int] , _UpperCAmelCase : tuple[int, int] ): _A = Node(start[1] , start[0] , goal[1] , goal[0] , _UpperCAmelCase ) _A = Node(goal[1] , goal[0] , goal[1] , goal[0] , _UpperCAmelCase ) _A = [self.start] _A = False def lowerCAmelCase_ ( self : Any ): while self.node_queue: _A = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _A = True return self.retrace_path(_UpperCAmelCase ) _A = self.get_successors(_UpperCAmelCase ) for node in successors: self.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Node ): _A = [] for action in delta: _A = parent.pos_x + action[1] _A = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_UpperCAmelCase , _UpperCAmelCase , self.target.pos_y , self.target.pos_x , _UpperCAmelCase ) ) return successors def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Node | None ): _A = node _A = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _A = current_node.parent path.reverse() return path class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): _A = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) _A = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) _A = False def lowerCAmelCase_ ( self : int ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _A = self.fwd_bfs.node_queue.pop(0 ) _A = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _A = True return self.retrace_bidirectional_path( _UpperCAmelCase , _UpperCAmelCase ) _A = current_bwd_node _A = current_fwd_node _A = { self.fwd_bfs: self.fwd_bfs.get_successors(_UpperCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(_UpperCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Node , _UpperCAmelCase : Node ): _A = self.fwd_bfs.retrace_path(_UpperCAmelCase ) _A = self.bwd_bfs.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() _A = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a = (0, 0) a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a = time.time() a = BreadthFirstSearch(init, goal) a = bfs.search() a = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) a = time.time() a = BidirectionalBreadthFirstSearch(init, goal) a = bd_bfs.search() a = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
367
"""simple docstring""" from collections import deque class lowercase_ : '''simple docstring''' def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = process_name # process name _A = arrival_time # arrival time of the process # completion time of finished process or last interrupted time _A = arrival_time _A = burst_time # remaining burst time _A = 0 # total time of the process wait in ready queue _A = 0 # time from arrival time to completion time class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : list[int] , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int , ): # total number of mlfq's queues _A = number_of_queues # time slice of queues that round robin algorithm applied _A = time_slices # unfinished process is in this ready_queue _A = queue # current time _A = current_time # finished process is in this sequence queue _A = deque() def lowerCAmelCase_ ( self : Dict ): _A = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : list[Process] ): _A = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : list[Process] ): _A = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : list[Process] ): _A = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : deque[Process] ): return [q.burst_time for q in queue] def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCAmelCase_ ( self : int , _UpperCAmelCase : deque[Process] ): _A = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: _A = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _A = 0 # set the process's turnaround time because it is finished _A = self.current_time - cp.arrival_time # set the completion time _A = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int ): _A = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): _A = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _A = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _A = 0 # set the finish time _A = self.current_time # update the process' turnaround time because it is finished _A = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCAmelCase_ ( self : str ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): _A , _A = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest a = Process('''P1''', 0, 53) a = Process('''P2''', 0, 17) a = Process('''P3''', 0, 68) a = Process('''P4''', 0, 24) a = 3 a = [17, 25] a = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) a = Process('''P1''', 0, 53) a = Process('''P2''', 0, 17) a = Process('''P3''', 0, 68) a = Process('''P4''', 0, 24) a = 3 a = [17, 25] a = deque([Pa, Pa, Pa, Pa]) a = MLFQ(number_of_queues, time_slices, queue, 0) a = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
271
0
import numpy as np a_ = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class __lowerCAmelCase : def __init__( self ): '''simple docstring''' __lowerCamelCase = np.array(__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = np.where(letter == self.SQUARE ) __lowerCamelCase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = message.lower() __lowerCamelCase = message.replace(''' ''' , '''''' ) __lowerCamelCase = message.replace('''j''' , '''i''' ) __lowerCamelCase = np.empty((2, len(__UpperCAmelCase )) ) for letter_index in range(len(__UpperCAmelCase ) ): __lowerCamelCase = self.letter_to_numbers(message[letter_index] ) __lowerCamelCase = numbers[0] __lowerCamelCase = numbers[1] __lowerCamelCase = first_step.reshape(2 * len(__UpperCAmelCase ) ) __lowerCamelCase = '''''' for numbers_index in range(len(__UpperCAmelCase ) ): __lowerCamelCase = int(second_step[numbers_index * 2] ) __lowerCamelCase = int(second_step[(numbers_index * 2) + 1] ) __lowerCamelCase = self.numbers_to_letter(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = encoded_message + letter return encoded_message def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = message.lower() message.replace(''' ''' , '''''' ) __lowerCamelCase = np.empty(2 * len(__UpperCAmelCase ) ) for letter_index in range(len(__UpperCAmelCase ) ): __lowerCamelCase = self.letter_to_numbers(message[letter_index] ) __lowerCamelCase = numbers[0] __lowerCamelCase = numbers[1] __lowerCamelCase = first_step.reshape((2, len(__UpperCAmelCase )) ) __lowerCamelCase = '''''' for numbers_index in range(len(__UpperCAmelCase ) ): __lowerCamelCase = int(second_step[0, numbers_index] ) __lowerCamelCase = int(second_step[1, numbers_index] ) __lowerCamelCase = self.numbers_to_letter(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = decoded_message + letter return decoded_message
330
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCamelCase = do_convert_rgb def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCamelCase = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] __lowerCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
330
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowerCamelCase_ : def __init__( self : Optional[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int]=13 ,__lowerCamelCase : Union[str, Any]=10 ,__lowerCamelCase : List[str]=3 ,__lowerCamelCase : int=2 ,__lowerCamelCase : List[Any]=2 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : Dict=True ,__lowerCamelCase : List[str]=32 ,__lowerCamelCase : List[str]=5 ,__lowerCamelCase : Union[str, Any]=4 ,__lowerCamelCase : List[str]=37 ,__lowerCamelCase : Optional[Any]="gelu" ,__lowerCamelCase : Optional[Any]=0.1 ,__lowerCamelCase : str=0.1 ,__lowerCamelCase : List[str]=10 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : Union[str, Any]="divided_space_time" ,__lowerCamelCase : Optional[int]=None ,): '''simple docstring''' a = parent a = batch_size a = image_size a = num_channels a = patch_size a = num_frames a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = attention_type a = initializer_range a = scope a = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token a = (image_size // patch_size) ** 2 a = (num_frames) * self.num_patches_per_frame + 1 def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] ,self.num_labels ) a = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = TimesformerConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,attention_type=self.attention_type ,) a = self.num_labels return config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Dict ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ): '''simple docstring''' a = TimesformerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Any ,__lowerCamelCase : int ): '''simple docstring''' a = TimesformerForVideoClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) # verify the logits shape a = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( a_ , a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = TimesformerModelTester(self ) a = ConfigTester( self ,config_class=__lowerCamelCase ,has_text_modality=__lowerCamelCase ,hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : str=False ): '''simple docstring''' a = copy.deepcopy(__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): a = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__lowerCamelCase ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase ,nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = TimesformerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' if not self.has_attentions: pass else: a , a = self.model_tester.prepare_config_and_inputs_for_common() a = True for model_class in self.all_model_classes: a = self.model_tester.seq_length a = self.model_tester.num_frames a = True a = False a = True a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCamelCase ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a = True a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCamelCase ) ,self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] ,) a = len(__lowerCamelCase ) # Check attention is always last and order is fine a = True a = True a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) ) self.assertEqual(out_len + 1 ,len(__lowerCamelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCamelCase ) ,self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] ,) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(__lowerCamelCase : Any ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Optional[int] ): a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) ) a = outputs.hidden_states a = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCamelCase ) ,__lowerCamelCase ) a = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = True check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" a = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' ) a = np.load(snake_case_ ) return list(snake_case_ ) @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __lowerCamelCase ) a = self.default_image_processor a = prepare_video() a = image_processor(video[:8] ,return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCamelCase ) # verify the logits a = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape ,__lowerCamelCase ) a = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__lowerCamelCase ,atol=1e-4 ) )
330
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" stooge(snake_case_, 0, len(snake_case_ ) - 1 ) return arr def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: a , a = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: a = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) # Recursively sort last 2/3 elements stooge(snake_case_, i + t, (snake_case_) ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) if __name__ == "__main__": UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
330
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _A ( unittest.TestCase ): @property def _lowerCamelCase ( self : Dict): '''simple docstring''' torch.manual_seed(0) __a = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.dummy_uncond_unet __a = PNDMScheduler() __a = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE) pndm.to(__SCREAMING_SNAKE_CASE) pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = torch.manual_seed(0) __a = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type='''numpy''').images __a = torch.manual_seed(0) __a = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE)[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = '''google/ddpm-cifar10-32''' __a = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = PNDMScheduler() __a = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE) pndm.to(__SCREAMING_SNAKE_CASE) pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = torch.manual_seed(0) __a = pndm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''').images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
49
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCamelCase : List[Any] = logging.getLogger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ): '''simple docstring''' lowercase__ = label_idx def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: lowercase__ = [] lowercase__ = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 lowercase__ = [] lowercase__ = [] else: lowercase__ = line.split(''' ''' ) words.append(splits[0] ) if len(UpperCamelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) return examples def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(UpperCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(UpperCamelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : List[Any] ): '''simple docstring''' super().__init__(label_idx=-2 ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: for sentence in parse_incr(UpperCamelCase ): lowercase__ = [] lowercase__ = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(UpperCamelCase ) == len(UpperCamelCase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 return examples def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for sentence in parse_incr(UpperCamelCase ): lowercase__ = preds_list[example_id] lowercase__ = '''''' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(UpperCamelCase ) example_id += 1 def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
2
0
from __future__ import annotations from scipy.special import comb # type: ignore class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: List[Any] , __A: list[tuple[float, float]] ) -> Optional[Any]: _A = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _A = len(__A ) - 1 def __A ( self: Optional[Any] , __A: float ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _A = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ) , 5 ) == 1 return output_values def __A ( self: List[Any] , __A: float ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _A = self.basis_function(__A ) _A = 0.0 _A = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __A ( self: List[Any] , __A: float = 0.01 ) -> int: from matplotlib import pyplot as plt # type: ignore _A = [] # x coordinates of points to plot _A = [] # y coordinates of points to plot _A = 0.0 while t <= 1: _A = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _A = [i[0] for i in self.list_of_points] _A = [i[1] for i in self.list_of_points] plt.plot( __A , __A , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(__A , __A , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
75
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def __A ( self: Dict ) -> Union[str, Any]: torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __A ( self: Any ) -> Union[str, Any]: _A = self.dummy_uncond_unet _A = ScoreSdeVeScheduler() _A = ScoreSdeVePipeline(unet=__A , scheduler=__A ) sde_ve.to(__A ) sde_ve.set_progress_bar_config(disable=__A ) _A = torch.manual_seed(0 ) _A = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__A ).images _A = torch.manual_seed(0 ) _A = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__A , return_dict=__A )[ 0 ] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: Dict ) -> Any: _A = '''google/ncsnpp-church-256''' _A = UNetaDModel.from_pretrained(__A ) _A = ScoreSdeVeScheduler.from_pretrained(__A ) _A = ScoreSdeVePipeline(unet=__A , scheduler=__A ) sde_ve.to(__A ) sde_ve.set_progress_bar_config(disable=__A ) _A = torch.manual_seed(0 ) _A = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=__A ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _A = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
75
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( _snake_case : Dict ) -> int: '''simple docstring''' def is_in_circle(_snake_case : Any , _snake_case : List[str] ) -> bool: __magic_name__ : str = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : int = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCamelCase__ ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : int = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Optional[Any] = 0.0 , _snake_case : int = 1.0 , ) -> Optional[int]: '''simple docstring''' return mean( function_to_integrate(uniform(UpperCamelCase__ , UpperCamelCase__ ) ) for _ in range(UpperCamelCase__ ) ) * (max_value - min_value) def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : Union[str, Any] = 0.0 , _snake_case : Union[str, Any] = 1.0 ) -> Dict: '''simple docstring''' def identity_function(_snake_case : List[str] ) -> float: return x __magic_name__ : Optional[int] = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ : str = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print("******************" ) def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' def function_to_integrate(_snake_case : Tuple ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Any = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
281
def __lowerCamelCase ( ): '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] _UpperCAmelCase : Union[str, Any] = generate_large_matrix() _UpperCAmelCase : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' assert all(row == sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ) for row in grid ) assert all(list(UpperCamelCase__ ) == sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ) for col in zip(*UpperCamelCase__ ) ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 snake_case_ = len(UpperCamelCase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: snake_case_ = (left + right) // 2 snake_case_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: snake_case_ = mid + 1 else: snake_case_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 snake_case_ = len(grid[0] ) for i in range(len(UpperCamelCase__ ) ): snake_case_ = find_negative_index(grid[i][:bound] ) total += bound return (len(UpperCamelCase__ ) * len(grid[0] )) - total def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 for row in grid: for i, number in enumerate(UpperCamelCase__ ): if number < 0: total += len(UpperCamelCase__ ) - i break return total def __lowerCamelCase ( ): '''simple docstring''' from timeit import timeit print('Running benchmarks' ) snake_case_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): snake_case_ = timeit(F'''{func}(grid=grid)''' , setup=UpperCamelCase__ , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
285
0
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : Dict = '''true''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Tuple=82 , _UpperCAmelCase : Tuple=16 ): set_seed(42 ) lowerCAmelCase = RegressionModel() lowerCAmelCase = deepcopy(_UpperCAmelCase ) lowerCAmelCase = RegressionDataset(length=_UpperCAmelCase ) lowerCAmelCase = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase ) model.to(accelerator.device ) lowerCAmelCase ,lowerCAmelCase = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return model, ddp_model, dataloader def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Accelerator , _UpperCAmelCase : Dict=False ): lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) lowerCAmelCase = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(_UpperCAmelCase : Dict ): lowerCAmelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs with accelerator.main_process_first(): lowerCAmelCase = dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) lowerCAmelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_UpperCAmelCase : int ): if use_longest: return tokenizer.pad(_UpperCAmelCase , padding='longest' , return_tensors='pt' ) return tokenizer.pad(_UpperCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=16 ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ): lowerCAmelCase = Accelerator(dispatch_batches=_UpperCAmelCase , split_batches=_UpperCAmelCase ) lowerCAmelCase = get_dataloader(_UpperCAmelCase , not dispatch_batches ) lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ): lowerCAmelCase = [] for batch in dataloader: lowerCAmelCase ,lowerCAmelCase = batch.values() with torch.no_grad(): lowerCAmelCase = model(_UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCAmelCase ,lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCAmelCase ) targs.append(_UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = torch.cat(_UpperCAmelCase ), torch.cat(_UpperCAmelCase ) return logits, targs def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Accelerator , _UpperCAmelCase : str=82 , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Any=16 ): lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = get_basic_setup(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = generate_predictions(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) assert ( len(_UpperCAmelCase ) == num_samples ), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCAmelCase )}' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False ): lowerCAmelCase = evaluate.load('glue' , 'mrpc' ) lowerCAmelCase ,lowerCAmelCase = get_mrpc_setup(_UpperCAmelCase , _UpperCAmelCase ) # First do baseline lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = setup['no'] model.to(_UpperCAmelCase ) model.eval() for batch in dataloader: batch.to(_UpperCAmelCase ) with torch.inference_mode(): lowerCAmelCase = model(**_UpperCAmelCase ) lowerCAmelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCAmelCase , references=batch['labels'] ) lowerCAmelCase = metric.compute() # Then do distributed lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCAmelCase = model(**_UpperCAmelCase ) lowerCAmelCase = outputs.logits.argmax(dim=-1 ) lowerCAmelCase = batch['labels'] lowerCAmelCase ,lowerCAmelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCAmelCase , references=_UpperCAmelCase ) lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(_UpperCAmelCase , _UpperCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCAmelCase = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(_UpperCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) lowerCAmelCase = Accelerator() test_torch_metrics(_UpperCAmelCase , 512 ) accelerator.state._reset_state() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
309
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ): """simple docstring""" lowerCAmelCase = size if size is not None else {'shortest_edge': 20} lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_flip_channel_order def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class a ( a__ , unittest.TestCase ): snake_case__ = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MobileViTImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , 'do_resize' ) ) self.assertTrue(hasattr(_snake_case , 'size' ) ) self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
309
1
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowercase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = '''efficientformer''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[int] = [3, 2, 6, 4] , SCREAMING_SNAKE_CASE_ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , SCREAMING_SNAKE_CASE_ : List[bool] = [True, True, True, True] , SCREAMING_SNAKE_CASE_ : int = 4_4_8 , SCREAMING_SNAKE_CASE_ : int = 3_2 , SCREAMING_SNAKE_CASE_ : int = 4 , SCREAMING_SNAKE_CASE_ : int = 7 , SCREAMING_SNAKE_CASE_ : int = 5 , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 4 , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : int = 1_6 , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : float = 1E-5 , SCREAMING_SNAKE_CASE_ : str = "gelu" , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1E-12 , SCREAMING_SNAKE_CASE_ : int = 2_2_4 , SCREAMING_SNAKE_CASE_ : float = 1E-05 , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ): super().__init__(**_a ) lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = hidden_sizes lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : Optional[int] = num_channels lowerCAmelCase_ : List[str] = depths lowerCAmelCase_ : int = mlp_expansion_ratio lowerCAmelCase_ : List[Any] = downsamples lowerCAmelCase_ : Any = dim lowerCAmelCase_ : Tuple = key_dim lowerCAmelCase_ : Union[str, Any] = attention_ratio lowerCAmelCase_ : Union[str, Any] = resolution lowerCAmelCase_ : Union[str, Any] = pool_size lowerCAmelCase_ : Tuple = downsample_patch_size lowerCAmelCase_ : Tuple = downsample_stride lowerCAmelCase_ : str = downsample_pad lowerCAmelCase_ : str = drop_path_rate lowerCAmelCase_ : List[str] = num_metaad_blocks lowerCAmelCase_ : Any = distillation lowerCAmelCase_ : Any = use_layer_scale lowerCAmelCase_ : Optional[Any] = layer_scale_init_value lowerCAmelCase_ : str = image_size lowerCAmelCase_ : List[str] = batch_norm_eps
224
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : Any ,_a : Optional[int]=2 ,_a : Optional[Any]=True ,_a : Dict=False ,_a : Dict=10 ,_a : Any=3 ,_a : str=32 * 8 ,_a : Optional[int]=32 * 8 ,_a : int=4 ,_a : str=64 ,): '''simple docstring''' _a : Dict = parent _a : Union[str, Any] = batch_size _a : Tuple = is_training _a : List[str] = use_auxiliary_loss _a : Optional[Any] = num_queries _a : str = num_channels _a : List[str] = min_size _a : int = max_size _a : Optional[int] = num_labels _a : List[str] = hidden_dim _a : int = hidden_dim def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) _a : Optional[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=_a ) _a : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=_a ) > 0.5 ).float() _a : Tuple = (torch.rand((self.batch_size, self.num_labels) ,device=_a ) > 0.5).long() _a : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = MaskaFormerConfig( hidden_size=self.hidden_dim ,) _a : str = self.num_queries _a : Union[str, Any] = self.num_labels _a : Tuple = [1, 1, 1, 1] _a : Dict = self.num_channels _a : str = 64 _a : Tuple = 128 _a : Optional[Any] = self.hidden_dim _a : Union[str, Any] = self.hidden_dim _a : List[Any] = self.hidden_dim return config def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a, _a, _a, _a, _a : Optional[Any] = self.prepare_config_and_inputs() _a : str = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __lowercase ( self : List[str] ,_a : Optional[Any] ,_a : str ): '''simple docstring''' _a : str = output.encoder_hidden_states _a : Any = output.pixel_decoder_hidden_states _a : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) ,config.decoder_layers ) def __lowercase ( self : List[str] ,_a : str ,_a : List[Any] ,_a : Any ,_a : Union[str, Any]=False ): '''simple docstring''' with torch.no_grad(): _a : str = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() _a : Any = model(pixel_values=_a ,pixel_mask=_a ) _a : Optional[Any] = model(_a ,output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a ,_a ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Union[str, Any] ,_a : Tuple ,_a : List[str] ,_a : Any ): '''simple docstring''' _a : int = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(_a : Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _a : Any = model(pixel_values=_a ,pixel_mask=_a ) _a : Optional[int] = model(_a ) comm_check_on_output(_a ) _a : List[str] = model( pixel_values=_a ,pixel_mask=_a ,mask_labels=_a ,class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __UpperCAmelCase : Dict = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} __UpperCAmelCase : Dict = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : Dict = False __UpperCAmelCase : List[Any] = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Union[str, Any] = MaskaFormerModelTester(self ) _a : Dict = ConfigTester(self ,config_class=_a ,has_text_modality=_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Optional[int] ): '''simple docstring''' _a, _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a ) def __lowercase ( self : str ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def __lowercase ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def __lowercase ( self : str ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __lowercase ( self : Dict ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass def __lowercase ( self : int ): '''simple docstring''' _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Union[str, Any] = model_class(_a ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Optional[Any] = [*signature.parameters.keys()] _a : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) @slow def __lowercase ( self : List[str] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _a : Dict = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : int = (self.model_tester.min_size,) * 2 _a : Any = { 'pixel_values': torch.randn((2, 3, *size) ,device=_a ), 'mask_labels': torch.randn((2, 10, *size) ,device=_a ), 'class_labels': torch.zeros(2 ,10 ,device=_a ).long(), } _a : List[Any] = self.model_tester.get_config() _a : int = MaskaFormerForUniversalSegmentation(_a ).to(_a ) _a : str = model(**_a ) self.assertTrue(outputs.loss is not None ) def __lowercase ( self : List[str] ): '''simple docstring''' _a, _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a ) def __lowercase ( self : int ): '''simple docstring''' _a, _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ).to(_a ) _a : Optional[int] = model(**_a ,output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def __lowercase ( self : Tuple ): '''simple docstring''' if not self.model_tester.is_training: return _a : List[str] = self.all_model_classes[1] _a, _a, _a, _a, _a : List[str] = self.model_tester.prepare_config_and_inputs() _a : Any = model_class(_a ) model.to(_a ) model.train() _a : Union[str, Any] = model(_a ,mask_labels=_a ,class_labels=_a ).loss loss.backward() def __lowercase ( self : int ): '''simple docstring''' _a : int = self.all_model_classes[1] _a, _a, _a, _a, _a : List[Any] = self.model_tester.prepare_config_and_inputs() _a : str = True _a : str = True _a : List[str] = model_class(_a ).to(_a ) model.train() _a : Optional[int] = model(_a ,mask_labels=_a ,class_labels=_a ) _a : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _a : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _a : Dict = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _a : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1e-4 def UpperCAmelCase_ (): """simple docstring""" _a : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def __lowercase ( self : Any ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __lowercase ( self : Any ): '''simple docstring''' _a : List[str] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) _a : int = self.default_image_processor _a : Tuple = prepare_img() _a : Any = image_processor(_a ,return_tensors='pt' ).to(_a ) _a : Union[str, Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a ,(1, 3, 384, 384) ) with torch.no_grad(): _a : Optional[Any] = model(**_a ) _a : List[Any] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) ) _a : str = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) ) _a : Any = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,_a ,atol=_a ) ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() _a : Optional[Any] = self.default_image_processor _a : List[Any] = prepare_img() _a : str = image_processor(_a ,return_tensors='pt' ).to(_a ) _a : Any = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a ,(1, 3, 384, 384) ) with torch.no_grad(): _a : Optional[int] = model(**_a ) # masks_queries_logits _a : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _a : Dict = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _a : Optional[Any] = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,_a ,atol=_a ) ) # class_queries_logits _a : str = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) _a : str = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,_a ,atol=_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() _a : Tuple = self.default_image_processor _a : Tuple = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) _a : str = inputs['pixel_values'].to(_a ) _a : str = [el.to(_a ) for el in inputs['mask_labels']] _a : Dict = [el.to(_a ) for el in inputs['class_labels']] with torch.no_grad(): _a : List[str] = model(**_a ) self.assertTrue(outputs.loss is not None )
271
0
def __lowerCamelCase (UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set({"(", "[", "{"} ) SCREAMING_SNAKE_CASE = set({")", "]", "}"} ) SCREAMING_SNAKE_CASE = {"{": "}", "[": "]", "(": ")"} for i in range(len(UpperCAmelCase__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCAmelCase__ ) == 0 or (len(UpperCAmelCase__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCAmelCase__ ) == 0 def __lowerCamelCase (): SCREAMING_SNAKE_CASE = input("Enter sequence of brackets: " ) if is_balanced(UpperCAmelCase__ ): print(UpperCAmelCase__ , "is balanced" ) else: print(UpperCAmelCase__ , "is not balanced" ) if __name__ == "__main__": main()
352
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class lowercase ( a ): lowercase__ : Optional[Any] = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) lowercase__ : Optional[int] = """CIDAS/clipseg-rd64-refined""" lowercase__ : Tuple = """image_segmenter""" lowercase__ : Optional[Any] = CLIPSegForImageSegmentation lowercase__ : int = ["""image""", """text"""] lowercase__ : List[str] = ["""image"""] def __init__( self : str , *_UpperCamelCase : str , **_UpperCamelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["vision"] ) super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : int , _UpperCamelCase : "Image" , _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=_UpperCamelCase , return_tensors="pt" ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE = self.model(**_UpperCamelCase ).logits return logits def __snake_case( self : Any , _UpperCamelCase : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = outputs.cpu().detach().numpy() SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
206
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = BarthezTokenizer lowerCAmelCase__ = BarthezTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowerCamelCase ( self ): '''simple docstring''' super().setUp() __lowerCamelCase = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__UpperCAmelCase ) __lowerCamelCase = tokenizer def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''<pad>''' __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__UpperCAmelCase ) , 101122 ) def lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __lowerCamelCase = [0, 57, 3018, 70307, 91, 2] __lowerCamelCase = self.tokenizer( __UpperCAmelCase , max_length=len(__UpperCAmelCase ) , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __lowerCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = '''I was born in 92000, and this is falsé.''' __lowerCamelCase = tokenizer.tokenize(__UpperCAmelCase ) __lowerCamelCase = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowerCamelCase = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(__UpperCAmelCase ) __lowerCamelCase = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' # fmt: off __lowerCamelCase = {'''input_ids''': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __lowerCamelCase = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__UpperCAmelCase , )
330
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } a_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Dict ): for attribute in key.split('''.''' ): __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ) if weight_type is not None: __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Any ): __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(_UpperCamelCase )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' ,_UpperCamelCase ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = '''weight''' else: __lowerCamelCase = None set_recursively(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ): __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : List[str] ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : List[Any]=True ): if config_path is not None: __lowerCamelCase = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatConfig() __lowerCamelCase = '''''' if is_finetuned: __lowerCamelCase = UniSpeechSatForCTC(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatForPreTraining(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowerCamelCase = model[0].eval() recursively_load_weights(_UpperCamelCase ,_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : List[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int]=None , _A : Dict=False , _A : Dict=False , _A : Optional[Any]=False , ) -> List[str]: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[str] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : int = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Optional[Any] = np.asarray(_A ) snake_case_ : Optional[Any] = np.asarray(_A ) if ignore_case: snake_case_ : int = np.char.lower(_A ) snake_case_ : List[str] = np.char.lower(_A ) if ignore_punctuation: snake_case_ : str = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Any = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : int = string.digits.maketrans('' , '' , string.digits ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : Optional[Any] = np.char.translate(_A , table=_A ) snake_case_ : Optional[Any] = predictions == references return {"exact_match": np.mean(_A ) * 100}
88
1
'''simple docstring''' from __future__ import annotations a_ : Tuple = list[list[int]] # assigning initial values to the grid a_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution a_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a_ ( __snake_case : Matrix , __snake_case : int , __snake_case : int , __snake_case : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a_ ( __snake_case : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a_ ( __snake_case : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__snake_case ): lowerCamelCase_, lowerCamelCase_ =location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__snake_case , __snake_case , __snake_case , __snake_case ): lowerCamelCase_ =digit if sudoku(__snake_case ) is not None: return grid lowerCamelCase_ =0 return None def a_ ( __snake_case : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__snake_case , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") a_ : Tuple = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
75
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Any = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] ='efficientformer' def __init__( self, lowerCAmelCase = [3, 2, 6, 4], lowerCAmelCase = [48, 96, 224, 448], lowerCAmelCase = [True, True, True, True], lowerCAmelCase = 448, lowerCAmelCase = 32, lowerCAmelCase = 4, lowerCAmelCase = 7, lowerCAmelCase = 5, lowerCAmelCase = 8, lowerCAmelCase = 4, lowerCAmelCase = 0.0, lowerCAmelCase = 16, lowerCAmelCase = 3, lowerCAmelCase = 3, lowerCAmelCase = 3, lowerCAmelCase = 2, lowerCAmelCase = 1, lowerCAmelCase = 0.0, lowerCAmelCase = 1, lowerCAmelCase = True, lowerCAmelCase = True, lowerCAmelCase = 1e-5, lowerCAmelCase = "gelu", lowerCAmelCase = 0.0_2, lowerCAmelCase = 1e-12, lowerCAmelCase = 224, lowerCAmelCase = 1e-05, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =hidden_sizes lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =patch_size lowerCamelCase_ =num_channels lowerCamelCase_ =depths lowerCamelCase_ =mlp_expansion_ratio lowerCamelCase_ =downsamples lowerCamelCase_ =dim lowerCamelCase_ =key_dim lowerCamelCase_ =attention_ratio lowerCamelCase_ =resolution lowerCamelCase_ =pool_size lowerCamelCase_ =downsample_patch_size lowerCamelCase_ =downsample_stride lowerCamelCase_ =downsample_pad lowerCamelCase_ =drop_path_rate lowerCamelCase_ =num_metaad_blocks lowerCamelCase_ =distillation lowerCamelCase_ =use_layer_scale lowerCamelCase_ =layer_scale_init_value lowerCamelCase_ =image_size lowerCamelCase_ =batch_norm_eps
75
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
163
0
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ (_a ): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): super().__init__() _lowerCAmelCase : List[str] = value_function _lowerCAmelCase : List[str] = unet _lowerCAmelCase : Dict = scheduler _lowerCAmelCase : int = env _lowerCAmelCase : Union[str, Any] = env.get_dataset() _lowerCAmelCase : List[Any] = {} for key in self.data.keys(): try: _lowerCAmelCase : List[Any] = self.data[key].mean() except: # noqa: E722 pass _lowerCAmelCase : int = {} for key in self.data.keys(): try: _lowerCAmelCase : Optional[int] = self.data[key].std() except: # noqa: E722 pass _lowerCAmelCase : List[Any] = env.observation_space.shape[0] _lowerCAmelCase : List[str] = env.action_space.shape[0] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): return (x_in - self.means[key]) / self.stds[key] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): return x_in * self.stds[key] + self.means[key] def __UpperCamelCase ( self , snake_case_ ): if type(snake_case_ ) is dict: return {k: self.to_torch(snake_case_ ) for k, v in x_in.items()} elif torch.is_tensor(snake_case_ ): return x_in.to(self.unet.device ) return torch.tensor(snake_case_ , device=self.unet.device ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): for key, val in cond.items(): _lowerCAmelCase : List[Any] = val.clone() return x_in def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = x.shape[0] _lowerCAmelCase : Optional[int] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _lowerCAmelCase : Dict = torch.full((batch_size,) , snake_case_ , device=self.unet.device , dtype=torch.long ) for _ in range(snake_case_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _lowerCAmelCase : int = self.value_function(x.permute(0 , 2 , 1 ) , snake_case_ ).sample _lowerCAmelCase : Any = torch.autograd.grad([y.sum()] , [x] )[0] _lowerCAmelCase : Any = self.scheduler._get_variance(snake_case_ ) _lowerCAmelCase : Union[str, Any] = torch.exp(0.5 * posterior_variance ) _lowerCAmelCase : str = model_std * grad _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Union[str, Any] = x.detach() _lowerCAmelCase : str = x + scale * grad _lowerCAmelCase : List[str] = self.reset_xa(snake_case_ , snake_case_ , self.action_dim ) _lowerCAmelCase : str = self.unet(x.permute(0 , 2 , 1 ) , snake_case_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg _lowerCAmelCase : Dict = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , predict_epsilon=snake_case_ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) _lowerCAmelCase : int = self.reset_xa(snake_case_ , snake_case_ , self.action_dim ) _lowerCAmelCase : Optional[Any] = self.to_torch(snake_case_ ) return x, y def __call__( self , snake_case_ , snake_case_=6_4 , snake_case_=3_2 , snake_case_=2 , snake_case_=0.1 ): # normalize the observations and create batch dimension _lowerCAmelCase : int = self.normalize(snake_case_ , """observations""" ) _lowerCAmelCase : Dict = obs[None].repeat(snake_case_ , axis=0 ) _lowerCAmelCase : List[str] = {0: self.to_torch(snake_case_ )} _lowerCAmelCase : Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _lowerCAmelCase : Tuple = randn_tensor(snake_case_ , device=self.unet.device ) _lowerCAmelCase : Optional[Any] = self.reset_xa(snake_case_ , snake_case_ , self.action_dim ) _lowerCAmelCase : str = self.to_torch(snake_case_ ) # run the diffusion process _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.run_diffusion(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # sort output trajectories by value _lowerCAmelCase : Tuple = y.argsort(0 , descending=snake_case_ ).squeeze() _lowerCAmelCase : List[str] = x[sorted_idx] _lowerCAmelCase : int = sorted_values[:, :, : self.action_dim] _lowerCAmelCase : Optional[int] = actions.detach().cpu().numpy() _lowerCAmelCase : int = self.de_normalize(snake_case_ , key="""actions""" ) # select the action with the highest value if y is not None: _lowerCAmelCase : Union[str, Any] = 0 else: # if we didn't run value guiding, select a random action _lowerCAmelCase : str = np.random.randint(0 , snake_case_ ) _lowerCAmelCase : Dict = denorm_actions[selected_index, 0] return denorm_actions
309
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
1
def SCREAMING_SNAKE_CASE ( ): return 1 def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return 0 if x < 0 else five_pence(x - 5 ) + two_pence(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return 0 if x < 0 else two_pound(x - 200 ) + one_pound(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : int = 200 ): return two_pound(snake_case_ ) if __name__ == "__main__": print(solution(int(input().strip())))
286
import sys __lowerCamelCase : List[str] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str = N ): snake_case__ : Any = -sys.maxsize - 1 for i in range(len(snake_case_ ) - 12 ): snake_case__ : Tuple = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case__ : Dict = product return largest_product if __name__ == "__main__": print(f"{solution() = }")
286
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : str ={ '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _A : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=10_24 , lowerCamelCase__=10_24 , lowerCamelCase__=False , **lowerCamelCase__ ): '''simple docstring''' A_ : Any = AutoTokenizer.from_pretrained(lowerCamelCase__ ) A_ : Union[str, Any] = SeqaSeqDataset(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , type_path="""train""" , **lowerCamelCase__ ) A_ : Optional[Any] = tok.pad_token_id def get_lens(lowerCamelCase__ ): A_ : int = tqdm( DataLoader(lowerCamelCase__ , batch_size=5_12 , num_workers=8 , shuffle=lowerCamelCase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) A_ : int = [] for batch in dl: A_ : str = batch["""input_ids"""].ne(lowerCamelCase__ ).sum(1 ).tolist() A_ : Tuple = batch["""labels"""].ne(lowerCamelCase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCamelCase__ , lowerCamelCase__ ): max_lens.append(max(lowerCamelCase__ , lowerCamelCase__ ) ) else: max_lens.extend(lowerCamelCase__ ) return max_lens A_ : str = get_lens(lowerCamelCase__ ) A_ : Dict = SeqaSeqDataset(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , type_path="""val""" , **lowerCamelCase__ ) A_ : List[Any] = get_lens(lowerCamelCase__ ) pickle_save(lowerCamelCase__ , train_ds.len_file ) pickle_save(lowerCamelCase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
206
0
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar A_ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T] ): def __init__( self : Any , snake_case : bool = True ): '''simple docstring''' A__ : dict[T, list[T]] = {} # dictionary of lists A__ : Union[str, Any] = directed def _UpperCamelCase ( self : Optional[int] , snake_case : T , snake_case : T ): '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case ) self.adj_list[destination_vertex].append(snake_case ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case ) A__ : List[Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(snake_case ) A__ : List[str] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: A__ : str = [destination_vertex] A__ : Union[str, Any] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case ) A__ : Dict = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: A__ : Optional[int] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: A__ : Union[str, Any] = [destination_vertex] A__ : Tuple = [] return self def __repr__( self : Any ): '''simple docstring''' return pformat(self.adj_list )
296
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , snake_case : Optional[Any] , snake_case : Tuple=13 , snake_case : Dict=7 , snake_case : Optional[int]=True , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : Any=True , snake_case : List[str]=99 , snake_case : str=64 , snake_case : Optional[int]=5 , snake_case : str=4 , snake_case : List[Any]=37 , snake_case : Optional[Any]="gelu" , snake_case : List[str]=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=512 , snake_case : Dict=16 , snake_case : List[Any]=2 , snake_case : Optional[int]=0.02 , snake_case : Any=3 , snake_case : Union[str, Any]=4 , snake_case : Dict=None , ): '''simple docstring''' A__ : Tuple = parent A__ : Union[str, Any] = batch_size A__ : List[str] = seq_length A__ : Optional[int] = is_training A__ : Dict = use_input_mask A__ : Any = use_token_type_ids A__ : Optional[Any] = use_labels A__ : List[str] = vocab_size A__ : Optional[int] = hidden_size A__ : Optional[Any] = num_hidden_layers A__ : Any = num_attention_heads A__ : List[Any] = intermediate_size A__ : Optional[Any] = hidden_act A__ : Optional[int] = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : str = max_position_embeddings A__ : List[str] = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[Any] = initializer_range A__ : Optional[int] = num_labels A__ : Dict = num_choices A__ : Dict = scope A__ : List[Any] = vocab_size - 1 def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : List[Any] = None if self.use_input_mask: A__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_labels: A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Tuple = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ , A__ , A__ , A__ : str = self.prepare_config_and_inputs() A__ : Union[str, Any] = True return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] , snake_case : int ): '''simple docstring''' A__ : Any = GPTNeoXModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case ) A__ : Optional[int] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : str , snake_case : Any , snake_case : Union[str, Any] ): '''simple docstring''' A__ : int = True A__ : str = GPTNeoXModel(snake_case ) model.to(snake_case ) model.eval() A__ : Tuple = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Dict , snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : Any ): '''simple docstring''' A__ : Any = GPTNeoXForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Tuple = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple ): '''simple docstring''' A__ : int = self.num_labels A__ : int = GPTNeoXForQuestionAnswering(snake_case ) model.to(snake_case ) model.eval() A__ : Optional[Any] = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : str , snake_case : Tuple , snake_case : int , snake_case : int , snake_case : Dict ): '''simple docstring''' A__ : List[Any] = self.num_labels A__ : Tuple = GPTNeoXForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Any , snake_case : Union[str, Any] , snake_case : int , snake_case : Tuple , snake_case : Any ): '''simple docstring''' A__ : Tuple = self.num_labels A__ : Any = GPTNeoXForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : Dict = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Any ): '''simple docstring''' A__ : Optional[int] = True A__ : Any = GPTNeoXForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() # first forward pass A__ : Tuple = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) A__ : Tuple = model(snake_case , attention_mask=snake_case , output_hidden_states=snake_case ) A__ : List[Any] = output_from_no_past["""hidden_states"""][0] A__ : List[str] = model( snake_case , attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )["""hidden_states"""][0] # select random slice A__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : str = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ : Dict = config_and_inputs A__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) snake_case_ = (GPTNeoXForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = GPTNeoXModelTester(self ) A__ : Any = ConfigTester(self , config_class=snake_case , hidden_size=64 , num_attention_heads=8 ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ , A__ , A__ , A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ , A__ , A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ , A__ , A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() A__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ , A__ , A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[Any] ): '''simple docstring''' A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() A__ : List[Any] = ids_tensor([1, 10] , config.vocab_size ) A__ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ : Union[str, Any] = GPTNeoXModel(snake_case ) original_model.to(snake_case ) original_model.eval() A__ : Optional[int] = original_model(snake_case ).last_hidden_state A__ : List[str] = original_model(snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} A__ : Optional[int] = GPTNeoXModel(snake_case ) scaled_model.to(snake_case ) scaled_model.eval() A__ : List[str] = scaled_model(snake_case ).last_hidden_state A__ : Tuple = scaled_model(snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: A__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case ) A__ : Optional[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(snake_case ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 A__ : Union[str, Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" A__ : Tuple = model.generate(**snake_case , do_sample=snake_case , max_new_tokens=20 ) A__ : Tuple = tokenizer.batch_decode(snake_case )[0] self.assertEqual(snake_case , snake_case )
296
1
import os __lowerCAmelCase : int = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} def a__ ( A_ ): '''simple docstring''' __magic_name__ = 0 __magic_name__ = 0 while index < len(A_ ) - 1: __magic_name__ = SYMBOLS[numerals[index]] __magic_name__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a__ ( A_ ): '''simple docstring''' __magic_name__ = """""" __magic_name__ = num // 1000 numerals += m_count * "M" num %= 1000 __magic_name__ = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __magic_name__ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a__ ( A_ = "/p089_roman.txt" ): '''simple docstring''' __magic_name__ = 0 with open(os.path.dirname(A_ ) + roman_numerals_filename ) as filea: __magic_name__ = filea.readlines() for line in lines: __magic_name__ = line.strip() __magic_name__ = parse_roman_numerals(A_ ) __magic_name__ = generate_roman_numerals(A_ ) savings += len(A_ ) - len(A_ ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
88
def a__ ( A_ ): '''simple docstring''' if not isinstance(A_, A_ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(A_ ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(A_ ) == 1: return True __magic_name__ = series[1] - series[0] for index in range(len(A_ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def a__ ( A_ ): '''simple docstring''' if not isinstance(A_, A_ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(A_ ) == 0: raise ValueError("""Input list must be a non empty list""" ) __magic_name__ = 0 for val in series: answer += val return answer / len(A_ ) if __name__ == "__main__": import doctest doctest.testmod()
88
1
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests SCREAMING_SNAKE_CASE : Any = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user SCREAMING_SNAKE_CASE : Tuple = BASE_URL + """/user""" # https://github.com/settings/tokens SCREAMING_SNAKE_CASE : Optional[Any] = os.environ.get("""USER_TOKEN""", """""") def lowercase ( _snake_case : str ) ->dict[Any, Any]: """simple docstring""" __snake_case : Dict = { '''Authorization''': f"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_snake_case , headers=_snake_case ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'{key}: {value}') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
24
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
1
def a_ ( lowerCAmelCase_ : int ): if n_term == "": return [] __lowerCAmelCase = [] for temp in range(int(UpperCamelCase__ ) ): series.append(F"""1/{temp + 1}""" if series else '1' ) return series if __name__ == "__main__": _snake_case : Dict = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
284
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __A =namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : List[Any] = _TestCommandArgs(dataset=UpperCamelCase__ , all_configs=UpperCamelCase__ , save_infos=UpperCamelCase__ ) UpperCAmelCase__ : Any = TestCommand(*UpperCamelCase__ ) test_command.run() UpperCAmelCase__ : List[str] = os.path.join(UpperCamelCase__ , """README.md""" ) assert os.path.exists(UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) UpperCAmelCase__ : Any = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_3_5_1_5_6_3, """num_examples""": 1_0_0_0_0, }, { """name""": """validation""", """num_bytes""": 2_3_8_4_1_8, """num_examples""": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = getattr(dataset_infos["""default"""] , UpperCamelCase__ ), getattr(expected_dataset_infos["""default"""] , UpperCamelCase__ ) if key == "num_bytes": assert is_apercent_close(UpperCamelCase__ , UpperCamelCase__ ) elif key == "splits": assert list(UpperCamelCase__ ) == list(UpperCamelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
163
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
"""simple docstring""" def __lowerCAmelCase ( lowercase : int ) -> int: """simple docstring""" if not isinstance(lowercase , lowercase ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
112
0