code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A__: str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : List[str] ) -> str: _a : List[Any] =b.T _a : Optional[Any] =np.sum(np.square(__UpperCamelCase ) ,axis=1 ) _a : Union[str, Any] =np.sum(np.square(__UpperCamelCase ) ,axis=0 ) _a : Any =np.matmul(__UpperCamelCase ,__UpperCamelCase ) _a : Union[str, Any] =aa[:, None] - 2 * ab + ba[None, :] return d def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Any ) -> Dict: _a : Union[str, Any] =x.reshape(-1 ,3 ) _a : int =squared_euclidean_distance(__UpperCamelCase ,__UpperCamelCase ) return np.argmin(__UpperCamelCase ,axis=1 ) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Union[str, Any] = ["pixel_values"] def __init__( self :int , SCREAMING_SNAKE_CASE :Optional[Any] = None , SCREAMING_SNAKE_CASE :Optional[Any] = True , SCREAMING_SNAKE_CASE :Optional[Any] = None , SCREAMING_SNAKE_CASE :List[str] = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE :str = True , SCREAMING_SNAKE_CASE :Tuple = True , **SCREAMING_SNAKE_CASE :int , ) -> None: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _a : Union[str, Any] =size if size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} _a : str =get_size_dict(UpperCamelCase_ ) _a : Optional[Any] =np.array(UpperCamelCase_ ) if clusters is not None else None _a : Optional[Any] =do_resize _a : List[str] =size _a : Dict =resample _a : Any =do_normalize _a : int =do_color_quantize def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE :Any = None , **SCREAMING_SNAKE_CASE :int , ) -> np.ndarray: '''simple docstring''' _a : int =get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( UpperCamelCase_ , size=(size["""height"""], size["""width"""]) , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] = None , ) -> np.ndarray: '''simple docstring''' _a : List[str] =rescale(image=UpperCamelCase_ , scale=1 / 1_2_7.5 , data_format=UpperCamelCase_ ) _a : Optional[Any] =image - 1 return image def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any = None , SCREAMING_SNAKE_CASE :Optional[int] = None , SCREAMING_SNAKE_CASE :List[str] = None , SCREAMING_SNAKE_CASE :str = None , SCREAMING_SNAKE_CASE :Dict = None , SCREAMING_SNAKE_CASE :Optional[int] = None , SCREAMING_SNAKE_CASE :Union[str, Any] = None , SCREAMING_SNAKE_CASE :Any = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE :Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' _a : Any =do_resize if do_resize is not None else self.do_resize _a : int =size if size is not None else self.size _a : str =get_size_dict(UpperCamelCase_ ) _a : Optional[int] =resample if resample is not None else self.resample _a : Union[str, Any] =do_normalize if do_normalize is not None else self.do_normalize _a : Optional[int] =do_color_quantize if do_color_quantize is not None else self.do_color_quantize _a : Union[str, Any] =clusters if clusters is not None else self.clusters _a : Optional[int] =np.array(UpperCamelCase_ ) _a : List[Any] =make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. _a : Any =[to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: _a : List[Any] =[self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_normalize: _a : Optional[int] =[self.normalize(image=UpperCamelCase_ ) for image in images] if do_color_quantize: _a : int =[to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _a : Optional[int] =np.array(UpperCamelCase_ ) _a : str =color_quantize(UpperCamelCase_ , UpperCamelCase_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _a : Union[str, Any] =images.shape[0] _a : Optional[Any] =images.reshape(UpperCamelCase_ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _a : Optional[int] =list(UpperCamelCase_ ) else: _a : List[Any] =[to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] _a : str ={'''input_ids''': images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
276
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run a_ = True except (ImportError, AttributeError): a_ = object def __UpperCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): pass a_ = False a_ = logging.get_logger('transformers-cli/serving') def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Optional[Any] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__UpperCamelCase , args.host , args.port , args.workers ) class UpperCAmelCase_ ( snake_case ): UpperCamelCase =42 class UpperCAmelCase_ ( snake_case ): UpperCamelCase =42 UpperCamelCase =42 class UpperCAmelCase_ ( snake_case ): UpperCamelCase =42 class UpperCAmelCase_ ( snake_case ): UpperCamelCase =42 class UpperCAmelCase_ ( snake_case ): @staticmethod def _lowerCamelCase ( UpperCamelCase_ ) -> Tuple: __lowercase : Dict = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=UpperCamelCase_ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=UpperCamelCase_ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=UpperCamelCase_ , default=88_88 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=UpperCamelCase_ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=UpperCamelCase_ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=UpperCamelCase_ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=UpperCamelCase_ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=UpperCamelCase_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: __lowercase : List[Any] = pipeline __lowercase : str = host __lowercase : List[str] = port __lowercase : str = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F"""Serving model over {host}:{port}""" ) __lowercase : int = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=UpperCamelCase_ , response_class=UpperCamelCase_ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=UpperCamelCase_ , response_class=UpperCamelCase_ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=UpperCamelCase_ , response_class=UpperCamelCase_ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=UpperCamelCase_ , response_class=UpperCamelCase_ , methods=['''POST'''] , ), ] , timeout=6_00 , ) def _lowerCamelCase ( self ) -> Union[str, Any]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def _lowerCamelCase ( self ) -> Tuple: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _lowerCamelCase ( self , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) ) -> Optional[int]: try: __lowercase : Any = self._pipeline.tokenizer.tokenize(UpperCamelCase_ ) if return_ids: __lowercase : Dict = self._pipeline.tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) return ServeTokenizeResult(tokens=UpperCamelCase_ , tokens_ids=UpperCamelCase_ ) else: return ServeTokenizeResult(tokens=UpperCamelCase_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(UpperCamelCase_ )} ) def _lowerCamelCase ( self , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) , ) -> Dict: try: __lowercase : Tuple = self._pipeline.tokenizer.decode(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return ServeDeTokenizeResult(model='''''' , text=UpperCamelCase_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(UpperCamelCase_ )} ) async def _lowerCamelCase ( self , UpperCamelCase_=Body(UpperCamelCase_ , embed=UpperCamelCase_ ) ) -> Union[str, Any]: # Check we don't have empty string if len(UpperCamelCase_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __lowercase : Optional[Any] = self._pipeline(UpperCamelCase_ ) return ServeForwardResult(output=UpperCamelCase_ ) except Exception as e: raise HTTPException(5_00 , {'''error''': str(UpperCamelCase_ )} )
249
0
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = '''ylacombe/bark-small''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = '''en_speaker_1''' _UpperCamelCase = '''This is a test string''' _UpperCamelCase = '''speaker_embeddings_path.json''' _UpperCamelCase = '''speaker_embeddings''' def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **__lowerCAmelCase) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = BarkProcessor(tokenizer=__lowerCAmelCase) processor.save_pretrained(self.tmpdirname) _UpperCamelCase = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _UpperCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') _UpperCamelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _UpperCamelCase = 35 _UpperCamelCase = 2 _UpperCamelCase = 8 _UpperCamelCase = { '''semantic_prompt''': np.ones(__lowerCAmelCase), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len)), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset _UpperCamelCase = processor(text=self.input_string , voice_preset=__lowerCAmelCase) _UpperCamelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCAmelCase , np.array([])).tolist()) # test loading voice preset from npz file _UpperCamelCase = os.path.join(self.tmpdirname , '''file.npz''') np.savez(__lowerCAmelCase , **__lowerCAmelCase) _UpperCamelCase = processor(text=self.input_string , voice_preset=__lowerCAmelCase) _UpperCamelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCAmelCase , np.array([])).tolist()) # test loading voice preset from the hub _UpperCamelCase = processor(text=self.input_string , voice_preset=self.voice_preset) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = BarkProcessor(tokenizer=__lowerCAmelCase) _UpperCamelCase = processor(text=self.input_string) _UpperCamelCase = tokenizer( self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
358
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
100
0
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" __a = [] __a = [] __a = { """^""": 3, """*""": 2, """/""": 2, """%""": 2, """+""": 1, """-""": 1, } # Priority of each operator __a = len(_SCREAMING_SNAKE_CASE ) if (len(_SCREAMING_SNAKE_CASE ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(_SCREAMING_SNAKE_CASE ) , """Postfix""".center(_SCREAMING_SNAKE_CASE ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_SCREAMING_SNAKE_CASE ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_SCREAMING_SNAKE_CASE ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_SCREAMING_SNAKE_CASE ) == 0: stack.append(_SCREAMING_SNAKE_CASE ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_SCREAMING_SNAKE_CASE ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_SCREAMING_SNAKE_CASE ) # push x to stack print( x.center(8 ) , ("""""".join(_SCREAMING_SNAKE_CASE )).ljust(_SCREAMING_SNAKE_CASE ) , ("""""".join(_SCREAMING_SNAKE_CASE )).ljust(_SCREAMING_SNAKE_CASE ) , sep=""" | """ , ) # Output in tabular format while len(_SCREAMING_SNAKE_CASE ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(_SCREAMING_SNAKE_CASE )).ljust(_SCREAMING_SNAKE_CASE ) , ("""""".join(_SCREAMING_SNAKE_CASE )).ljust(_SCREAMING_SNAKE_CASE ) , sep=""" | """ , ) # Output in tabular format return "".join(_SCREAMING_SNAKE_CASE ) # return Postfix as str def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" __a = list(infix[::-1] ) # reverse the infix equation for i in range(len(_SCREAMING_SNAKE_CASE ) ): if infix[i] == "(": __a = """)""" # change "(" to ")" elif infix[i] == ")": __a = """(""" # change ")" to "(" return (infix_2_postfix("""""".join(_SCREAMING_SNAKE_CASE ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": lowerCamelCase__ = input("""\nEnter an Infix Equation = """) # Input an Infix equation lowerCamelCase__ = """""".join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
302
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
302
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] UpperCamelCase = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] UpperCamelCase = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): UpperCamelCase = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 6_55_36 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : str = "fourier" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE_ : Tuple[str] = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : Tuple[int] = (32, 32, 64) , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() A: Optional[Any] = sample_size # time if time_embedding_type == "fourier": A: Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE_ , log=SCREAMING_SNAKE_CASE_ , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ ) A: List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": A: str = Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , downscale_freq_shift=SCREAMING_SNAKE_CASE_ ) A: Any = block_out_channels[0] if use_timestep_embedding: A: Optional[Any] = block_out_channels[0] * 4 A: List[Any] = TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE_ , time_embed_dim=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , out_dim=block_out_channels[0] , ) A: Optional[Any] = nn.ModuleList([] ) A: str = None A: str = nn.ModuleList([] ) A: Tuple = None # down A: Any = in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: Optional[int] = output_channel A: List[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels A: List[Any] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[int] = get_down_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE_ ) # mid A: Union[str, Any] = get_mid_block( SCREAMING_SNAKE_CASE_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE_ , add_downsample=SCREAMING_SNAKE_CASE_ , ) # up A: Optional[Any] = list(reversed(SCREAMING_SNAKE_CASE_ ) ) A: List[str] = reversed_block_out_channels[0] if out_block_type is None: A: int = out_channels else: A: Union[str, Any] = block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: List[Any] = output_channel A: int = ( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels ) A: Optional[int] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[Any] = get_up_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE_ ) A: Any = output_channel # out A: List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) A: Optional[int] = get_out_block( out_block_type=SCREAMING_SNAKE_CASE_ , num_groups_out=SCREAMING_SNAKE_CASE_ , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' A: Any = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): A: Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: A: List[str] = timesteps[None].to(sample.device ) A: int = self.time_proj(SCREAMING_SNAKE_CASE_ ) if self.config.use_timestep_embedding: A: List[Any] = self.time_mlp(SCREAMING_SNAKE_CASE_ ) else: A: str = timestep_embed[..., None] A: Union[str, Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) A: Tuple = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down A: List[str] = () for downsample_block in self.down_blocks: A , A: Optional[int] = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: A: Dict = self.mid_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): A: List[Any] = down_block_res_samples[-1:] A: List[str] = down_block_res_samples[:-1] A: Optional[int] = upsample_block(SCREAMING_SNAKE_CASE_ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) # 5. post-process if self.out_block: A: Any = self.out_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _lowerCAmelCase = 50_0000 _lowerCAmelCase , _lowerCAmelCase = os.path.split(__file__) _lowerCAmelCase = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def _SCREAMING_SNAKE_CASE ( UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = dataset.map(**UpperCamelCase ) @get_duration def _SCREAMING_SNAKE_CASE ( UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = dataset.filter(**UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Tuple = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ : List[str] = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowerCAmelCase__ : Union[str, Any] = generate_example_dataset( os.path.join(UpperCamelCase , """dataset.arrow""" ) , UpperCamelCase , num_examples=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=UpperCamelCase ) def tokenize(UpperCamelCase ): return tokenizer(examples["""text"""] ) lowerCAmelCase__ : int = map(UpperCamelCase ) lowerCAmelCase__ : List[Any] = map(UpperCamelCase , batched=UpperCamelCase ) lowerCAmelCase__ : int = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) with dataset.formatted_as(type="""numpy""" ): lowerCAmelCase__ : Optional[Any] = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) with dataset.formatted_as(type="""pandas""" ): lowerCAmelCase__ : Dict = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowerCAmelCase__ : Any = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowerCAmelCase__ : Dict = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = map(UpperCamelCase , function=UpperCamelCase , batched=UpperCamelCase ) lowerCAmelCase__ : Any = filter(UpperCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase , """wb""" ) as f: f.write(json.dumps(UpperCamelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
37
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=_A ) snake_case_ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=_A ) env_command_parser(subparsers=_A ) launch_command_parser(subparsers=_A ) tpu_command_parser(subparsers=_A ) test_command_parser(subparsers=_A ) # Let's go snake_case_ = parser.parse_args() if not hasattr(_A , "func" ): parser.print_help() exit(1 ) # Run args.func(_A ) if __name__ == "__main__": main()
187
0
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __SCREAMING_SNAKE_CASE : List[str] = '\\n Text data.\n Second line of data.' __SCREAMING_SNAKE_CASE : Optional[Any] = 'file' @pytest.fixture(scope="""session""" ) def _a ( _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") snake_case_ = bytes(_SCREAMING_SNAKE_CASE , """utf-8""" ) with zstd.open(_SCREAMING_SNAKE_CASE , """wb""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , """w""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} snake_case_ = input_paths[compression_format] snake_case_ = tmp_path / """cache""" snake_case_ = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE ) snake_case_ = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ) as f: snake_case_ = f.read() with open(_SCREAMING_SNAKE_CASE ) as f: snake_case_ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ = """custom_cache""" snake_case_ = """custom_extracted_dir""" snake_case_ = tmp_path / """custom_extracted_path""" if default_extracted: snake_case_ = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) ) snake_case_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) snake_case_ = xz_file snake_case_ = ( DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE ) ) snake_case_ = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected def _a ( _SCREAMING_SNAKE_CASE ) -> Dict: # absolute path snake_case_ = str(Path(_SCREAMING_SNAKE_CASE ).resolve() ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file # relative path snake_case_ = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]: # absolute path snake_case_ = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) # relative path snake_case_ = """./__missing_file__.txt""" with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(_SCREAMING_SNAKE_CASE ) as f: snake_case_ = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def _a ( ) -> List[Any]: with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): http_get("""https://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_get("""ftp://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]: snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_get("""s3://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_head("""s3://huggingface.co""" )
362
"""simple docstring""" from collections import defaultdict from math import gcd def _a ( _SCREAMING_SNAKE_CASE = 1_500_000 ) -> int: snake_case_ = defaultdict(_SCREAMING_SNAKE_CASE ) snake_case_ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _SCREAMING_SNAKE_CASE , 2 ): if gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) > 1: continue snake_case_ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_SCREAMING_SNAKE_CASE , limit + 1 , _SCREAMING_SNAKE_CASE ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f"""{solution() = }""")
233
0
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : str = ["""image_processor""", """tokenizer"""] a_ : List[str] = """ViTImageProcessor""" a_ : List[str] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[str] , a_ : str=None , a_ : Dict=None , **a_ : List[Any] ): lowerCAmelCase_ : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a_ , ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("feature_extractor" ) lowerCAmelCase_ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a_ , a_ ) def __call__( self : Union[str, Any] , a_ : Any=None , a_ : Dict=None , a_ : List[str]=None , a_ : str=None , **a_ : Any ): if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if visual_prompt is not None: lowerCAmelCase_ : Optional[Any] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if images is not None: lowerCAmelCase_ : List[str] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if visual_prompt is not None and images is not None: lowerCAmelCase_ : Union[str, Any] = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ : Dict = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def lowerCamelCase ( self : Optional[int] , *a_ : Optional[Any] , **a_ : List[str] ): return self.tokenizer.batch_decode(*a_ , **a_ ) def lowerCamelCase ( self : Optional[Any] , *a_ : Tuple , **a_ : Tuple ): return self.tokenizer.decode(*a_ , **a_ ) @property def lowerCamelCase ( self : List[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a_ , ) return self.image_processor_class @property def lowerCamelCase ( self : Dict ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a_ , ) return self.image_processor
241
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch __a :Dict = logging.get_logger(__name__) @dataclass class _a : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : List[str]=6.0 , UpperCAmelCase : int=None , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Any=None , UpperCAmelCase : Any="fp4" , UpperCAmelCase : Any=False , **UpperCAmelCase : Tuple , ): A_ = load_in_abit A_ = load_in_abit A_ = llm_inta_threshold A_ = llm_inta_skip_modules A_ = llm_inta_enable_fpaa_cpu_offload A_ = llm_inta_has_fpaa_weight A_ = bnb_abit_quant_type A_ = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: A_ = torch.floataa elif isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = getattr(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , torch.dtype ): A_ = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def __A ( self : int ): if not isinstance(self.llm_inta_threshold , UpperCAmelCase ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , UpperCAmelCase ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , UpperCAmelCase ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , UpperCAmelCase ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , UpperCAmelCase ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , UpperCAmelCase ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def __A ( self : Tuple ): return self.load_in_abit or self.load_in_abit def __A ( self : Union[str, Any] ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def __A ( cls : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ): A_ = cls(**UpperCAmelCase ) A_ = [] for key, value in kwargs.items(): if hasattr(UpperCAmelCase , UpperCAmelCase ): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) to_remove.append(UpperCAmelCase ) for key in to_remove: kwargs.pop(UpperCAmelCase , UpperCAmelCase ) if return_unused_kwargs: return config, kwargs else: return config def __A ( self : int , UpperCAmelCase : Union[str, os.PathLike] ): with open(UpperCAmelCase , "w" , encoding="utf-8" ) as writer: A_ = self.to_dict() A_ = json.dumps(UpperCAmelCase , indent=2 , sort_keys=UpperCAmelCase ) + "\n" writer.write(UpperCAmelCase ) def __A ( self : Any ): A_ = copy.deepcopy(self.__dict__ ) A_ = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self : Dict ): return f'''{self.__class__.__name__} {self.to_json_string()}''' def __A ( self : Any , UpperCAmelCase : bool = True ): if use_diff is True: A_ = self.to_diff_dict() else: A_ = self.to_dict() return json.dumps(UpperCAmelCase , indent=2 , sort_keys=UpperCAmelCase ) + "\n" def __A ( self : Union[str, Any] ): A_ = self.to_dict() # get the default config dict A_ = BitsAndBytesConfig().to_dict() A_ = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: A_ = value return serializable_config_dict
329
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ): A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = "gelu" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): A_ = TFConvBertModel(config=UpperCAmelCase ) A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A_ = [input_ids, input_mask] A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = TFConvBertForMaskedLM(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ): A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ): A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ): A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : List[str] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase : Any = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False def __A ( self : List[str] ): A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Tuple ): self.config_tester.run_common_tests() def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(UpperCAmelCase , "use_cache" ): A_ = True A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) A_ = len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" ) A_ = tf.keras.models.load_model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) if self.is_encoder_decoder: A_ = outputs["encoder_hidden_states"] A_ = outputs["encoder_attentions"] else: A_ = outputs["hidden_states"] A_ = outputs["attentions"] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self : List[str] ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ): A_ = len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCAmelCase )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
329
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _lowerCamelCase : Tuple = random.Random() def __lowerCamelCase ( A__ , A__=1.0 , A__=None , A__=None ) -> Union[str, Any]: """simple docstring""" if rng is None: UpperCamelCase = global_rng UpperCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : List[str]=4_0_0 , UpperCamelCase__ : str=2_0_0_0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Tuple=1_6_0_0_0 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Dict=True , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = min_seq_length UpperCamelCase = max_seq_length UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase = feature_size UpperCamelCase = padding_value UpperCamelCase = sampling_rate UpperCamelCase = return_attention_mask UpperCamelCase = do_normalize def A ( self : Optional[int] ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A ( self : Union[str, Any] , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Union[str, Any]=False ): """simple docstring""" def _flatten(UpperCamelCase__ : Optional[Any] ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: UpperCamelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = WavaVecaFeatureExtractionTester(self ) def A ( self : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" self.assertTrue(np.all(np.mean(UpperCamelCase__ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase__ , axis=0 ) - 1 ) < 1E-3 ) ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values UpperCamelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) ) # Test batched UpperCamelCase = feat_extract(UpperCamelCase__ , return_tensors='np' ).input_values UpperCamelCase = feat_extract(UpperCamelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCamelCase = np.asarray(UpperCamelCase__ ) UpperCamelCase = feat_extract(UpperCamelCase__ , return_tensors='np' ).input_values UpperCamelCase = feat_extract(UpperCamelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase = [None, 1_6_0_0, None] for max_length, padding in zip(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = feat_extract(UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors='np' ) UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase = range(8_0_0 , 1_4_0_0 , 2_0_0 ) UpperCamelCase = [floats_list((1, x) )[0] for x in lengths] UpperCamelCase = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase = [None, 1_6_0_0, None] for max_length, padding in zip(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = feat_extract(UpperCamelCase__ , max_length=UpperCamelCase__ , padding=UpperCamelCase__ ) UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def A ( self : str ): """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase = feat_extract( UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=1_0_0_0 , padding='max_length' , return_tensors='np' ) UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase = feat_extract( UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=1_0_0_0 , padding='longest' , return_tensors='np' ) UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) UpperCamelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase = feat_extract( UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=2_0_0_0 , padding='longest' , return_tensors='np' ) UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def A ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase = np.random.rand(1_0_0 ).astype(np.floataa ) UpperCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def A ( self : Any ): """simple docstring""" for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCamelCase = WavaVecaConfig.from_pretrained(UpperCamelCase__ ) UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer' )
28
"""simple docstring""" from collections import defaultdict def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = first_str.lower().strip() __SCREAMING_SNAKE_CASE = second_str.lower().strip() # Remove whitespace __SCREAMING_SNAKE_CASE = first_str.replace(""" """ , """""" ) __SCREAMING_SNAKE_CASE = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): return False # Default values for count should be 0 __SCREAMING_SNAKE_CASE = defaultdict(UpperCamelCase_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(UpperCamelCase_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __magic_name__ = input("Enter the first string ").strip() __magic_name__ = input("Enter the second string ").strip() __magic_name__ = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
100
0
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging snake_case__ = logging.get_logger(__name__) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None @experimental def snake_case__ ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] ) -> List[str]: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return _map_with_joblib(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] ) -> List[str]: A_ : Any = num_proc if num_proc <= len(_lowerCamelCase ) else len(_lowerCamelCase ) A_ : str = [] # We organize the splits ourselve (contiguous splits) for index in range(_lowerCamelCase ): A_ : Dict = len(_lowerCamelCase ) // num_proc A_ : Union[str, Any] = len(_lowerCamelCase ) % num_proc A_ : Tuple = div * index + min(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(_lowerCamelCase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f'Error dividing inputs iterable among processes. ' f'Total number of objects {len(_lowerCamelCase )}, ' f'length: {sum(len(i[1] ) for i in split_kwds )}' ) logger.info( f'Spawning {num_proc} processes for {len(_lowerCamelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}' ) A_ : Optional[Any] = None, None if not disable_tqdm: A_ : Optional[int] = (RLock(),), tqdm.set_lock with Pool(_lowerCamelCase , initargs=_lowerCamelCase , initializer=_lowerCamelCase ) as pool: A_ : Dict = pool.map(_lowerCamelCase , _lowerCamelCase ) logger.info(f'Finished {num_proc} processes' ) A_ : Union[str, Any] = [obj for proc_res in mapped for obj in proc_res] logger.info(f'Unpacked {len(_lowerCamelCase )} objects' ) return mapped def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=_lowerCamelCase ): return joblib.Parallel()( joblib.delayed(_lowerCamelCase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def snake_case__ ( lowerCamelCase__ : str ) -> int: A_ : Optional[int] = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: A_ : int = None
369
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
0
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging __a: List[Any] = logging.get_logger(__name__) class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , __lowerCAmelCase=None , **__lowerCAmelCase ) -> Any: warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , __lowerCAmelCase , ) super().__init__(args=__lowerCAmelCase , **__lowerCAmelCase )
198
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_vision_model' def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =qkv_bias @classmethod def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_qformer' def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,): super().__init__(pad_token_id=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =position_embedding_type SCREAMING_SNAKE_CASE =cross_attention_frequency SCREAMING_SNAKE_CASE =encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip-2' __UpperCAmelCase = True def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ): super().__init__(**snake_case ) if vision_config is None: SCREAMING_SNAKE_CASE ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: SCREAMING_SNAKE_CASE ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: SCREAMING_SNAKE_CASE ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case ) SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case ) SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt' SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case ) SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE =num_query_tokens SCREAMING_SNAKE_CASE =self.vision_config.hidden_size SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE =1.0 SCREAMING_SNAKE_CASE =0.02 @classmethod def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE =self.vision_config.to_dict() SCREAMING_SNAKE_CASE =self.qformer_config.to_dict() SCREAMING_SNAKE_CASE =self.text_config.to_dict() SCREAMING_SNAKE_CASE =self.__class__.model_type return output
334
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if not isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ : List[str] = f'''Input value of [number={number}] must be an integer''' raise TypeError(UpperCamelCase ) if number < 1: lowerCamelCase__ : Union[str, Any] = f'''Input value of [number={number}] must be > 0''' raise ValueError(UpperCamelCase ) lowerCamelCase__ : List[Any] = 1 for i in range(1 , UpperCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _A : List[Any] =True except ImportError: _A : int =False _A : Union[str, Any] =logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Tuple: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _lowercase ( _lowercase ): @staticmethod def lowerCamelCase_ ( UpperCamelCase__: ArgumentParser ): lowerCamelCase__ : List[str] = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=UpperCamelCase__ , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=UpperCamelCase__ , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self: Optional[int] , UpperCamelCase__: bool , UpperCamelCase__: str , UpperCamelCase__: str=None , *UpperCamelCase__: Optional[int] ): lowerCamelCase__ : List[Any] = testing lowerCamelCase__ : Tuple = testing_file lowerCamelCase__ : int = path def lowerCamelCase_ ( self: int ): warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCamelCase__ : List[Any] = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(UpperCamelCase__ ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) lowerCamelCase__ : int = ( Path(UpperCamelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCamelCase__ : int = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase__ ) ) else: with open(self._testing_file , """r""" ) as configuration_file: lowerCamelCase__ : List[str] = json.load(UpperCamelCase__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=UpperCamelCase__ , extra_context=UpperCamelCase__ , ) lowerCamelCase__ : Optional[Any] = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: lowerCamelCase__ : int = json.load(UpperCamelCase__ ) lowerCamelCase__ : Tuple = configuration["""lowercase_modelname"""] lowerCamelCase__ : int = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(F'''{directory}/configuration.json''' ) lowerCamelCase__ : Union[str, Any] = """PyTorch""" in generate_tensorflow_pytorch_and_flax lowerCamelCase__ : Union[str, Any] = """TensorFlow""" in generate_tensorflow_pytorch_and_flax lowerCamelCase__ : Tuple = """Flax""" in generate_tensorflow_pytorch_and_flax lowerCamelCase__ : List[str] = F'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) os.makedirs(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=UpperCamelCase__ ) # Tests require submodules as they have parent imports with open(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , """w""" ): pass shutil.move( F'''{directory}/__init__.py''' , F'''{model_dir}/__init__.py''' , ) shutil.move( F'''{directory}/configuration_{lowercase_model_name}.py''' , F'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(UpperCamelCase__: Optional[int] ): with open(UpperCamelCase__ , """r""" ) as f: lowerCamelCase__ : Union[str, Any] = f.readlines() with open(UpperCamelCase__ , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase__ ) if output_pytorch: if not self._testing: remove_copy_lines(F'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_tf_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_flax_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/{lowercase_model_name}.md''' , F'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( F'''{directory}/tokenization_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: List[str] ): # Create temp file lowerCamelCase__ , lowerCamelCase__ : Any = mkstemp() lowerCamelCase__ : Tuple = False with fdopen(UpperCamelCase__ , """w""" ) as new_file: with open(UpperCamelCase__ ) as old_file: for line in old_file: new_file.write(UpperCamelCase__ ) if line_to_copy_below in line: lowerCamelCase__ : int = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase__ ) if not line_found: raise ValueError(F'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase__ , UpperCamelCase__ ) # Remove original file remove(UpperCamelCase__ ) # Move new file move(UpperCamelCase__ , UpperCamelCase__ ) def skip_units(UpperCamelCase__: Optional[int] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase__: List[str] ): with open(UpperCamelCase__ ) as datafile: lowerCamelCase__ : int = [] lowerCamelCase__ : Tuple = False lowerCamelCase__ : int = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCamelCase__ : List[str] = line.split("""\"""" )[1] lowerCamelCase__ : List[str] = skip_units(UpperCamelCase__ ) elif "# Below: " in line and "##" not in line: lowerCamelCase__ : List[Any] = line.split("""\"""" )[1] lowerCamelCase__ : Union[str, Any] = skip_units(UpperCamelCase__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = [] elif "# Replace with" in line and "##" not in line: lowerCamelCase__ : str = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase__ ) remove(UpperCamelCase__ ) replace_in_files(F'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(UpperCamelCase__ )
129
0
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) _snake_case : int = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(__a ) from datasets import load_dataset _snake_case : Any = load_dataset("""nielsr/rvlcdip-demo""" ) _snake_case : List[str] = dataset["""train"""][0]["""image"""].convert("""RGB""" ) _snake_case : Any = image_processor(__a, return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): _snake_case : List[Any] = model(**__a ) _snake_case : List[str] = outputs.logits _snake_case : Union[str, Any] = torch.Size((1, 16) ) self.assertEqual(logits.shape, __a ) _snake_case : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347], device=__a, dtype=torch.float, ) self.assertTrue(torch.allclose(logits[0, :3], __a, atol=1E-4 ) )
64
from itertools import permutations def snake_case_ ( lowerCAmelCase_ : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __lowercase : Dict = [7, 11, 13, 17] for i, test in enumerate(lowerCAmelCase_ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def snake_case_ ( lowerCAmelCase_ : int = 10 ): return sum( int("""""".join(map(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) for num in permutations(range(lowerCAmelCase_ ) ) if is_substring_divisible(lowerCAmelCase_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
233
0
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class a ( _lowerCamelCase ): snake_case_ = (DDPMParallelScheduler,) def A_ ( self : List[Any] , **lowercase_ : str ): snake_case_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowercase_ ) return config def A_ ( self : List[Any] ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def A_ ( self : Optional[Any] ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def A_ ( self : Optional[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def A_ ( self : List[str] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowercase_ ) def A_ ( self : Optional[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def A_ ( self : Optional[Any] ): self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , ) def A_ ( self : List[str] ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def A_ ( self : Union[str, Any] ): for t in [0, 500, 999]: self.check_over_forward(time_step=lowercase_ ) def A_ ( self : Dict ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def A_ ( self : Dict ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = len(lowercase_ ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter snake_case_ = self.dummy_sample_deter + 0.1 snake_case_ = self.dummy_sample_deter - 0.1 snake_case_ = samplea.shape[0] snake_case_ = torch.stack([samplea, samplea, samplea] , dim=0 ) snake_case_ = torch.arange(lowercase_ )[0:3, None].repeat(1 , lowercase_ ) snake_case_ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) snake_case_ = scheduler.batch_step_no_noise(lowercase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def A_ ( self : str ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = len(lowercase_ ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter snake_case_ = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual snake_case_ = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 snake_case_ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample snake_case_ = pred_prev_sample snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def A_ ( self : int ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = len(lowercase_ ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter snake_case_ = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual snake_case_ = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 snake_case_ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample snake_case_ = pred_prev_sample snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def A_ ( self : int ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowercase_ ) snake_case_ = scheduler.timesteps for i, timestep in enumerate(lowercase_ ): if i == len(lowercase_ ) - 1: snake_case_ = -1 else: snake_case_ = timesteps[i + 1] snake_case_ = scheduler.previous_timestep(lowercase_ ) snake_case_ = prev_t.item() self.assertEqual(lowercase_ , lowercase_ ) def A_ ( self : str ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = [100, 87, 50, 51, 0] with self.assertRaises(lowercase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = [100, 87, 50, 1, 0] snake_case_ = len(lowercase_ ) with self.assertRaises(lowercase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowercase_ , timesteps=lowercase_ ) def A_ ( self : Any ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowercase_ )
370
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Optional[Any] = {'vocab_file': 'spiece.model'} a : Tuple = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } a : Dict = {'bert_for_seq_generation': 512} class a ( _lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = [] snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Any , lowercase_ : str , lowercase_ : Optional[Any]="<s>" , lowercase_ : Any="</s>" , lowercase_ : Optional[Any]="<unk>" , lowercase_ : List[Any]="<pad>" , lowercase_ : List[str]="<::::>" , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Optional[int] , ): snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , sep_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def A_ ( self : int ): return self.sp_model.get_piece_size() def A_ ( self : Union[str, Any] ): snake_case_ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Any , lowercase_ : Optional[int] ): snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self : Any , lowercase_ : str ): return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def A_ ( self : Optional[int] , lowercase_ : Union[str, Any] ): return self.sp_model.piece_to_id(lowercase_ ) def A_ ( self : Dict , lowercase_ : str ): snake_case_ = self.sp_model.IdToPiece(lowercase_ ) return token def A_ ( self : Optional[int] , lowercase_ : List[Any] ): snake_case_ = [] snake_case_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token snake_case_ = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def A_ ( self : List[str] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not os.path.isdir(lowercase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
72
0
def lowerCAmelCase__ ( a__: list ) -> bool: '''simple docstring''' if not isinstance(a__ , a__ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(a__ ) == 0: raise ValueError('Input list must be a non empty list' ) if len(a__ ) == 1: return True _UpperCAmelCase = series[1] - series[0] for index in range(len(a__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def lowerCAmelCase__ ( a__: list ) -> float: '''simple docstring''' if not isinstance(a__ , a__ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(a__ ) == 0: raise ValueError('Input list must be a non empty list' ) _UpperCAmelCase = 0 for val in series: answer += val return answer / len(a__ ) if __name__ == "__main__": import doctest doctest.testmod()
329
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCAmelCase__ ( a__: Tuple , a__: Optional[Any] , a__: Any ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = AutoConfig.from_pretrained(a__ ) _UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=a__ ) _UpperCAmelCase = checkpoints.load_tax_checkpoint(a__ ) _UpperCAmelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": _UpperCAmelCase = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": _UpperCAmelCase = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): _UpperCAmelCase = F'''layers_{str(a__ )}''' # Self-Attention _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCAmelCase = flax_model.params['encoder']['block'][str(a__ )]['layer'] _UpperCAmelCase = tax_attention_key _UpperCAmelCase = tax_attention_out _UpperCAmelCase = tax_attention_query _UpperCAmelCase = tax_attention_value _UpperCAmelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_global_layer_norm if split_mlp_wi: _UpperCAmelCase = tax_mlp_wi_a _UpperCAmelCase = tax_mlp_wi_a else: _UpperCAmelCase = tax_mlp_wi _UpperCAmelCase = tax_mlp_wo _UpperCAmelCase = tax_mlp_layer_norm _UpperCAmelCase = flax_model_encoder_layer_block # Only for layer 0: _UpperCAmelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_encoder_global_rel_embedding # Assigning _UpperCAmelCase = tax_model['target']['encoder']['encoder_norm']['scale'] _UpperCAmelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _UpperCAmelCase = F'''layers_{str(a__ )}''' # Self-Attention _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] _UpperCAmelCase = tax_enc_dec_attention_module['key']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['out']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['query']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCAmelCase = flax_model.params['decoder']['block'][str(a__ )]['layer'] _UpperCAmelCase = tax_attention_key _UpperCAmelCase = tax_attention_out _UpperCAmelCase = tax_attention_query _UpperCAmelCase = tax_attention_value _UpperCAmelCase = tax_pre_attention_layer_norm _UpperCAmelCase = tax_enc_dec_attention_key _UpperCAmelCase = tax_enc_dec_attention_out _UpperCAmelCase = tax_enc_dec_attention_query _UpperCAmelCase = tax_enc_dec_attention_value _UpperCAmelCase = tax_cross_layer_norm if split_mlp_wi: _UpperCAmelCase = tax_mlp_wi_a _UpperCAmelCase = tax_mlp_wi_a else: _UpperCAmelCase = tax_mlp_wi _UpperCAmelCase = tax_mlp_wo _UpperCAmelCase = txa_mlp_layer_norm _UpperCAmelCase = flax_model_decoder_layer_block # Decoder Normalization _UpperCAmelCase = tax_model['target']['decoder']['decoder_norm']['scale'] _UpperCAmelCase = txa_decoder_norm # Only for layer 0: _UpperCAmelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_decoder_rel_embedding # Token Embeddings _UpperCAmelCase = tax_model['target']['token_embedder']['embedding'] _UpperCAmelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _UpperCAmelCase = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(a__ ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": lowerCAmelCase__ :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowerCAmelCase__ :List[str] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
329
1
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] = FlaxAutoencoderKL @property def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Any = 4 lowerCAmelCase_ : Optional[Any] = 3 lowerCAmelCase_ : Tuple = (32, 32) lowerCAmelCase_ : List[str] = jax.random.PRNGKey(0 ) lowerCAmelCase_ : Dict = jax.random.uniform(a_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Optional[int] = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } lowerCAmelCase_ : Optional[int] = self.dummy_input return init_dict, inputs_dict
366
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , a_ : List[str] , a_ : Tuple=7 , a_ : Any=3 , a_ : Union[str, Any]=18 , a_ : List[str]=30 , a_ : List[str]=4_00 , a_ : str=True , a_ : Tuple=None , a_ : str=True , a_ : Optional[int]=None , ): lowerCAmelCase_ : Any = size if size is not None else {"shortest_edge": 20} lowerCAmelCase_ : Any = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCAmelCase_ : int = parent lowerCAmelCase_ : Dict = batch_size lowerCAmelCase_ : Any = num_channels lowerCAmelCase_ : str = image_size lowerCAmelCase_ : int = min_resolution lowerCAmelCase_ : Tuple = max_resolution lowerCAmelCase_ : str = do_resize lowerCAmelCase_ : List[Any] = size lowerCAmelCase_ : Any = do_center_crop lowerCAmelCase_ : Tuple = crop_size def lowerCamelCase ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : int = MobileNetVaImageProcessingTester(self ) @property def lowerCamelCase ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , "do_resize" ) ) self.assertTrue(hasattr(a_ , "size" ) ) self.assertTrue(hasattr(a_ , "do_center_crop" ) ) self.assertTrue(hasattr(a_ , "crop_size" ) ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowerCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowerCamelCase ( self : Tuple ): pass def lowerCamelCase ( self : Any ): # Initialize image_processing lowerCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input lowerCAmelCase_ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ : List[str] = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase ( self : str ): # Initialize image_processing lowerCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input lowerCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ : Dict = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input lowerCAmelCase_ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ : str = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
161
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list ): """simple docstring""" def merge(snake_case__ : list , snake_case__ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _snake_case : str = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() A_ = input('''Enter numbers separated by a comma:\n''').strip() A_ = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
64
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case =logging.get_logger("""transformers.models.encodec""") __snake_case ={ """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case ={ """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case ={ """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case ={ """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case ={ """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case =[] __snake_case =[] def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = EncodecModel(lowerCamelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ = 'marian' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] , _A : Dict=58_101 , _A : Union[str, Any]=None , _A : Union[str, Any]=1_024 , _A : str=12 , _A : int=4_096 , _A : Optional[int]=16 , _A : str=12 , _A : Union[str, Any]=4_096 , _A : Optional[int]=16 , _A : str=0.0 , _A : Tuple=0.0 , _A : Dict=True , _A : Any=True , _A : int="gelu" , _A : List[Any]=1_024 , _A : List[str]=0.1 , _A : List[Any]=0.0 , _A : str=0.0 , _A : int=0.0_2 , _A : str=58_100 , _A : Optional[int]=False , _A : Tuple=58_100 , _A : int=0 , _A : Optional[int]=0 , _A : int=True , **_A : str , ): '''simple docstring''' UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Optional[Any] = decoder_vocab_size or vocab_size UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : str = d_model UpperCAmelCase__ : int = encoder_ffn_dim UpperCAmelCase__ : Union[str, Any] = encoder_layers UpperCAmelCase__ : Any = encoder_attention_heads UpperCAmelCase__ : Tuple = decoder_ffn_dim UpperCAmelCase__ : List[Any] = decoder_layers UpperCAmelCase__ : List[Any] = decoder_attention_heads UpperCAmelCase__ : List[Any] = dropout UpperCAmelCase__ : Optional[Any] = attention_dropout UpperCAmelCase__ : Optional[int] = activation_dropout UpperCAmelCase__ : Dict = activation_function UpperCAmelCase__ : int = init_std UpperCAmelCase__ : Union[str, Any] = encoder_layerdrop UpperCAmelCase__ : Union[str, Any] = decoder_layerdrop UpperCAmelCase__ : Optional[Any] = use_cache UpperCAmelCase__ : Any = encoder_layers UpperCAmelCase__ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase__ : str = share_encoder_decoder_embeddings super().__init__( pad_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , decoder_start_token_id=_A , forced_eos_token_id=_A , **_A , ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowercase_ ( self : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase__ : Optional[int] = {0: '''batch'''} UpperCAmelCase__ : Dict = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase__ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase__ : List[str] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_A , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase__ : Dict = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.num_layers for i in range(_A ): UpperCAmelCase__ : int = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase__ : int = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase__ : Dict = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowercase_ ( self : Optional[Any] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Optional[Any] = super().outputs else: UpperCAmelCase__ : Optional[int] = super(_A , self ).outputs if self.use_past: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.num_layers for i in range(_A ): UpperCAmelCase__ : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase__ : int = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowercase_ ( self : int , _A : int , _A : Tuple = -1 , _A : Dict = -1 , _A : int = False , _A : Optional[Any] = None , ): '''simple docstring''' UpperCAmelCase__ : Any = self._generate_dummy_inputs_for_encoder_and_decoder( _A , _A , _A , _A , _A ) # Generate decoder inputs UpperCAmelCase__ : Union[str, Any] = seq_length if not self.use_past else 1 UpperCAmelCase__ : Optional[int] = self._generate_dummy_inputs_for_encoder_and_decoder( _A , _A , _A , _A , _A ) UpperCAmelCase__ : Tuple = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase__ : List[str] = dict(**_A , **_A ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase__ , UpperCAmelCase__ : List[str] = common_inputs['''input_ids'''].shape UpperCAmelCase__ : Union[str, Any] = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.num_attention_heads UpperCAmelCase__ : Any = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ : List[str] = decoder_seq_length + 3 UpperCAmelCase__ : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase__ : Union[str, Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_A , _A )] , dim=1 ) UpperCAmelCase__ : Tuple = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.num_layers UpperCAmelCase__ : str = min(_A , _A ) UpperCAmelCase__ : int = max(_A , _A ) - min_num_layers UpperCAmelCase__ : Dict = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_A ): common_inputs["past_key_values"].append( ( torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), ) ) # TODO: test this. UpperCAmelCase__ : Any = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_A , _A ): common_inputs["past_key_values"].append((torch.zeros(_A ), torch.zeros(_A )) ) return common_inputs def lowercase_ ( self : Union[str, Any] , _A : int , _A : Optional[int] = -1 , _A : str = -1 , _A : Optional[Any] = False , _A : Any = None , ): '''simple docstring''' UpperCAmelCase__ : Any = self._generate_dummy_inputs_for_encoder_and_decoder( _A , _A , _A , _A , _A ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase__ : Dict = seqlen + 2 UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.num_layers UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.num_attention_heads UpperCAmelCase__ : List[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ : Tuple = common_inputs['''attention_mask'''].dtype UpperCAmelCase__ : Union[str, Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_A , _A , dtype=_A )] , dim=1 ) UpperCAmelCase__ : Optional[int] = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(_A ) ] return common_inputs def lowercase_ ( self : List[Any] , _A : List[Any] , _A : List[Any] = -1 , _A : int = -1 , _A : List[Any] = False , _A : str = None , ): '''simple docstring''' UpperCAmelCase__ : Any = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ : List[str] = tokenizer.num_special_tokens_to_add(_A ) UpperCAmelCase__ : List[Any] = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ : Dict = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase__ : Optional[Any] = dict(tokenizer(_A , return_tensors=_A ) ) return common_inputs def lowercase_ ( self : List[Any] , _A : str , _A : Optional[int] = -1 , _A : List[Any] = -1 , _A : str = False , _A : Dict = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Optional[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) else: UpperCAmelCase__ : List[Any] = self._generate_dummy_inputs_for_causal_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) return common_inputs def lowercase_ ( self : Dict , _A : str , _A : List[str] , _A : Dict , _A : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Optional[int] = super()._flatten_past_key_values_(_A , _A , _A , _A ) else: UpperCAmelCase__ : int = super(_A , self )._flatten_past_key_values_( _A , _A , _A , _A ) @property def lowercase_ ( self : int ): '''simple docstring''' return 1e-4
366
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Tuple = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase__ : Optional[int] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : int = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) # load decoder from hub UpperCAmelCase__ : Any = '''hf-internal-testing/ngram-beam-search-decoder''' def lowercase_ ( self : int , **_A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def lowercase_ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : List[Any] = floats_list((3, 1_000) ) UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''np''' ) UpperCAmelCase__ : str = processor(_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : str = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Union[str, Any] = '''This is a test string''' UpperCAmelCase__ : Optional[int] = processor(text=_A ) UpperCAmelCase__ : List[str] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Dict , _A : Optional[int]=(2, 10, 16) , _A : List[str]=77 ): '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : int = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase__ : List[Any] = processor.decode(_A ) UpperCAmelCase__ : List[Any] = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowercase_ ( self : Any , _A : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A , _A ) UpperCAmelCase__ : str = list(_A ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase__ : Dict = decoder.decode_beams_batch(_A , _A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.get_feature_extractor() UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : str = self._get_dummy_logits() UpperCAmelCase__ : Optional[int] = 15 UpperCAmelCase__ : Dict = -2_0.0 UpperCAmelCase__ : Optional[Any] = -4.0 UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : List[Any] = decoded_processor_out.text UpperCAmelCase__ : List[str] = list(_A ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : Optional[int] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[Any] = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , _A , atol=1e-3 ) ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_decoder() UpperCAmelCase__ : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[int] = self._get_dummy_logits() UpperCAmelCase__ : List[str] = 2.0 UpperCAmelCase__ : Union[str, Any] = 5.0 UpperCAmelCase__ : str = -2_0.0 UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) UpperCAmelCase__ : Union[str, Any] = decoded_processor_out.text UpperCAmelCase__ : Tuple = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Optional[Any] = decoder.decode_beams_batch( _A , _A , ) UpperCAmelCase__ : str = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _A ) UpperCAmelCase__ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[int] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : Dict = os.listdir(_A ) UpperCAmelCase__ : Optional[Any] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained(_A ) UpperCAmelCase__ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : str = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : List[str] = os.listdir(_A ) UpperCAmelCase__ : Any = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase__ : int = processor_wavaveca(_A , return_tensors='''np''' ) UpperCAmelCase__ : List[str] = processor_auto(_A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) UpperCAmelCase__ : Tuple = self._get_dummy_logits() UpperCAmelCase__ : List[str] = processor_wavaveca.batch_decode(_A ) UpperCAmelCase__ : int = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def lowercase_ ( _A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : int = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : str = self._get_dummy_logits()[0] UpperCAmelCase__ : List[str] = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = self._get_dummy_logits() UpperCAmelCase__ : Dict = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self : Optional[Any] ): '''simple docstring''' import torch UpperCAmelCase__ : Any = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_A ) UpperCAmelCase__ : Dict = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : List[Any] = iter(_A ) UpperCAmelCase__ : Optional[Any] = next(_A ) UpperCAmelCase__ : Any = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase__ : int = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : int = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase__ : Dict = model(_A ).logits.cpu().numpy() UpperCAmelCase__ : int = processor.decode(logits[0] , output_word_offsets=_A ) UpperCAmelCase__ : Any = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : Any = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase__ : int = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , _A ) self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , output.text ) # output times UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(_A , '''start_time''' ) ) UpperCAmelCase__ : List[str] = torch.tensor(self.get_from_offsets(_A , '''end_time''' ) ) # fmt: off UpperCAmelCase__ : int = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : List[str] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) )
299
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _a = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. _a = direct_transformers_import(PATH_TO_TRANSFORMERS) _a = transformers.models.auto.configuration_auto.CONFIG_MAPPING _a = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Dict: """simple docstring""" _UpperCAmelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): _UpperCAmelCase = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __lowerCAmelCase , ) is not None ): _UpperCAmelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _UpperCAmelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _UpperCAmelCase = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] _UpperCAmelCase = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed _UpperCAmelCase = True if not attribute_used: _UpperCAmelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _UpperCAmelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: _UpperCAmelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _UpperCAmelCase = True elif attribute.endswith('_token_id' ): _UpperCAmelCase = True # configuration class specific cases if not case_allowed: _UpperCAmelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _UpperCAmelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def __A ( __lowerCAmelCase )-> Optional[int]: """simple docstring""" _UpperCAmelCase = dict(inspect.signature(config_class.__init__ ).parameters ) _UpperCAmelCase = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] _UpperCAmelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _UpperCAmelCase = {} if len(config_class.attribute_map ) > 0: _UpperCAmelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _UpperCAmelCase = inspect.getsourcefile(__lowerCAmelCase ) _UpperCAmelCase = os.path.dirname(__lowerCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _UpperCAmelCase = [os.path.join(__lowerCAmelCase , __lowerCAmelCase ) for fn in os.listdir(__lowerCAmelCase ) if fn.startswith('modeling_' )] # Get the source code strings _UpperCAmelCase = [] for path in modeling_paths: if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase ) as fp: modeling_sources.append(fp.read() ) _UpperCAmelCase = [] for config_param, default_value in zip(__lowerCAmelCase , __lowerCAmelCase ): # `attributes` here is all the variant names for `config_param` _UpperCAmelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(__lowerCAmelCase ) def __A ( )-> int: """simple docstring""" _UpperCAmelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _UpperCAmelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __lowerCAmelCase : inspect.isclass(__lowerCAmelCase ) and issubclass(__lowerCAmelCase , __lowerCAmelCase ) and inspect.getmodule(__lowerCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _UpperCAmelCase = check_config_attributes_being_used(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: _UpperCAmelCase = unused_attributes if len(__lowerCAmelCase ) > 0: _UpperCAmelCase = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__lowerCAmelCase ) if __name__ == "__main__": check_config_attributes()
39
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __snake_case : List[str] =logging.get_logger(__name__) # General docstring __snake_case : List[Any] ='MobileNetV1Config' # Base docstring __snake_case : Optional[Any] ='google/mobilenet_v1_1.0_224' __snake_case : Any =[1, 1_0_2_4, 7, 7] # Image classification docstring __snake_case : Tuple ='google/mobilenet_v1_1.0_224' __snake_case : Tuple ='tabby, tabby cat' __snake_case : Optional[Any] =[ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : Dict=None): '''simple docstring''' lowerCAmelCase__ : Dict = {} if isinstance(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : Any = model.mobilenet_va else: lowerCAmelCase__ : Tuple = model lowerCAmelCase__ : Union[str, Any] = '''MobilenetV1/Conv2d_0/''' lowerCAmelCase__ : Tuple = backbone.conv_stem.convolution.weight lowerCAmelCase__ : int = backbone.conv_stem.normalization.bias lowerCAmelCase__ : Optional[int] = backbone.conv_stem.normalization.weight lowerCAmelCase__ : str = backbone.conv_stem.normalization.running_mean lowerCAmelCase__ : str = backbone.conv_stem.normalization.running_var for i in range(13): lowerCAmelCase__ : Tuple = i + 1 lowerCAmelCase__ : Any = i * 2 lowerCAmelCase__ : Any = backbone.layer[pt_index] lowerCAmelCase__ : List[str] = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" lowerCAmelCase__ : Optional[int] = pointer.convolution.weight lowerCAmelCase__ : Optional[int] = pointer.normalization.bias lowerCAmelCase__ : Union[str, Any] = pointer.normalization.weight lowerCAmelCase__ : List[Any] = pointer.normalization.running_mean lowerCAmelCase__ : List[Any] = pointer.normalization.running_var lowerCAmelCase__ : Dict = backbone.layer[pt_index + 1] lowerCAmelCase__ : Optional[Any] = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" lowerCAmelCase__ : Tuple = pointer.convolution.weight lowerCAmelCase__ : int = pointer.normalization.bias lowerCAmelCase__ : Union[str, Any] = pointer.normalization.weight lowerCAmelCase__ : Any = pointer.normalization.running_mean lowerCAmelCase__ : str = pointer.normalization.running_var if isinstance(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : str = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' lowerCAmelCase__ : Tuple = model.classifier.weight lowerCAmelCase__ : Dict = model.classifier.bias return tf_to_pt_map def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : int ,lowerCamelCase_ : int): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''') raise # Load weights from TF model lowerCAmelCase__ : str = tf.train.list_variables(lowerCamelCase_) lowerCAmelCase__ : Optional[int] = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""") lowerCAmelCase__ : Dict = tf.train.load_variable(lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : List[str] = array # Build TF to PyTorch weights loading map lowerCAmelCase__ : List[Any] = _build_tf_to_pytorch_map(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""") if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""") continue lowerCAmelCase__ : Any = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''') lowerCAmelCase__ : Optional[Any] = np.transpose(lowerCamelCase_ ,(2, 3, 0, 1)) elif "weights" in name: logger.info('''Transposing''') if len(pointer.shape) == 2: # copying into linear layer lowerCAmelCase__ : List[str] = array.squeeze().transpose() else: lowerCAmelCase__ : Tuple = np.transpose(lowerCamelCase_ ,(3, 2, 0, 1)) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""") logger.info(f"""Initialize PyTorch weight {name} {array.shape}""") lowerCAmelCase__ : str = torch.from_numpy(lowerCamelCase_) tf_weights.pop(lowerCamelCase_ ,lowerCamelCase_) tf_weights.pop(name + '''/RMSProp''' ,lowerCamelCase_) tf_weights.pop(name + '''/RMSProp_1''' ,lowerCamelCase_) tf_weights.pop(name + '''/ExponentialMovingAverage''' ,lowerCamelCase_) logger.info(f"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}""") return model def lowerCAmelCase__ ( lowerCamelCase_ : torch.Tensor ,lowerCamelCase_ : nn.Convad): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = features.shape[-2:] lowerCAmelCase__ , lowerCAmelCase__ : Tuple = conv_layer.stride lowerCAmelCase__ , lowerCAmelCase__ : Dict = conv_layer.kernel_size if in_height % stride_height == 0: lowerCAmelCase__ : Dict = max(kernel_height - stride_height ,0) else: lowerCAmelCase__ : List[str] = max(kernel_height - (in_height % stride_height) ,0) if in_width % stride_width == 0: lowerCAmelCase__ : List[Any] = max(kernel_width - stride_width ,0) else: lowerCAmelCase__ : Any = max(kernel_width - (in_width % stride_width) ,0) lowerCAmelCase__ : Union[str, Any] = pad_along_width // 2 lowerCAmelCase__ : Optional[Any] = pad_along_width - pad_left lowerCAmelCase__ : List[Any] = pad_along_height // 2 lowerCAmelCase__ : int = pad_along_height - pad_top lowerCAmelCase__ : str = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCamelCase_ ,lowerCamelCase_ ,'''constant''' ,0.0) class lowerCamelCase__ ( nn.Module): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = 1 ,__lowerCamelCase = 1 ,__lowerCamelCase = False ,__lowerCamelCase = True ,__lowerCamelCase = True ,) -> None: """simple docstring""" super().__init__() lowerCAmelCase__ : str = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) lowerCAmelCase__ : List[Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCAmelCase__ : Optional[int] = nn.Convad( in_channels=__lowerCamelCase ,out_channels=__lowerCamelCase ,kernel_size=__lowerCamelCase ,stride=__lowerCamelCase ,padding=__lowerCamelCase ,groups=__lowerCamelCase ,bias=__lowerCamelCase ,padding_mode='''zeros''' ,) if use_normalization: lowerCAmelCase__ : Optional[int] = nn.BatchNormad( num_features=__lowerCamelCase ,eps=config.layer_norm_eps ,momentum=0.9997 ,affine=__lowerCamelCase ,track_running_stats=__lowerCamelCase ,) else: lowerCAmelCase__ : Dict = None if use_activation: if isinstance(__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase__ : Tuple = ACTaFN[use_activation] elif isinstance(config.hidden_act ,__lowerCamelCase ): lowerCAmelCase__ : Any = ACTaFN[config.hidden_act] else: lowerCAmelCase__ : List[str] = config.hidden_act else: lowerCAmelCase__ : int = None def lowerCAmelCase__ (self ,__lowerCamelCase ) -> torch.Tensor: """simple docstring""" if self.config.tf_padding: lowerCAmelCase__ : str = apply_tf_padding(__lowerCamelCase ,self.convolution ) lowerCAmelCase__ : Tuple = self.convolution(__lowerCamelCase ) if self.normalization is not None: lowerCAmelCase__ : Tuple = self.normalization(__lowerCamelCase ) if self.activation is not None: lowerCAmelCase__ : Union[str, Any] = self.activation(__lowerCamelCase ) return features class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =MobileNetVaConfig snake_case_ =load_tf_weights_in_mobilenet_va snake_case_ ="""mobilenet_v1""" snake_case_ ="""pixel_values""" snake_case_ =False def lowerCAmelCase__ (self ,__lowerCamelCase ) -> None: """simple docstring""" if isinstance(__lowerCamelCase ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCamelCase ,nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __snake_case : Optional[int] =R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __snake_case : List[Any] =R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , lowerCamelCase__ , ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase = True ) -> int: """simple docstring""" super().__init__(__lowerCamelCase ) lowerCAmelCase__ : Dict = config lowerCAmelCase__ : Dict = 32 lowerCAmelCase__ : List[str] = max(int(depth * config.depth_multiplier ) ,config.min_depth ) lowerCAmelCase__ : Optional[int] = MobileNetVaConvLayer( __lowerCamelCase ,in_channels=config.num_channels ,out_channels=__lowerCamelCase ,kernel_size=3 ,stride=2 ,) lowerCAmelCase__ : Optional[Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCAmelCase__ : Union[str, Any] = nn.ModuleList() for i in range(13 ): lowerCAmelCase__ : Tuple = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCAmelCase__ : Optional[int] = max(int(depth * config.depth_multiplier ) ,config.min_depth ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase ,in_channels=__lowerCamelCase ,out_channels=__lowerCamelCase ,kernel_size=3 ,stride=strides[i] ,groups=__lowerCamelCase ,) ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase ,in_channels=__lowerCamelCase ,out_channels=__lowerCamelCase ,kernel_size=1 ,) ) lowerCAmelCase__ : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def lowerCAmelCase__ (self ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: """simple docstring""" lowerCAmelCase__ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) lowerCAmelCase__ : Optional[Any] = self.conv_stem(__lowerCamelCase ) lowerCAmelCase__ : Any = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCAmelCase__ : int = layer_module(__lowerCamelCase ) if output_hidden_states: lowerCAmelCase__ : Optional[Any] = all_hidden_states + (hidden_states,) lowerCAmelCase__ : Any = hidden_states if self.pooler is not None: lowerCAmelCase__ : str = torch.flatten(self.pooler(__lowerCamelCase ) ,start_dim=1 ) else: lowerCAmelCase__ : str = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=__lowerCamelCase ,) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , lowerCamelCase__ , ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def __init__(self ,__lowerCamelCase ) -> None: """simple docstring""" super().__init__(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = config.num_labels lowerCAmelCase__ : Dict = MobileNetVaModel(__lowerCamelCase ) lowerCAmelCase__ : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCAmelCase__ : str = nn.Dropout(config.classifier_dropout_prob ,inplace=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = nn.Linear(__lowerCamelCase ,config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def lowerCAmelCase__ (self ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,) -> Union[tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" lowerCAmelCase__ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : Union[str, Any] = self.mobilenet_va(__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ) lowerCAmelCase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ : Optional[int] = self.classifier(self.dropout(__lowerCamelCase ) ) lowerCAmelCase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ : Optional[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ : int = '''single_label_classification''' else: lowerCAmelCase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCAmelCase__ : Dict = MSELoss() if self.num_labels == 1: lowerCAmelCase__ : Optional[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowerCAmelCase__ : Tuple = loss_fct(__lowerCamelCase ,__lowerCamelCase ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ : int = CrossEntropyLoss() lowerCAmelCase__ : Union[str, Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ : Optional[int] = BCEWithLogitsLoss() lowerCAmelCase__ : List[Any] = loss_fct(__lowerCamelCase ,__lowerCamelCase ) if not return_dict: lowerCAmelCase__ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states ,)
129
0
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-1' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-2' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-3' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-4' class a_ ( lowerCamelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> int: """simple docstring""" super()._init_() UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , requires_safety_checker=_SCREAMING_SNAKE_CASE , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , _SCREAMING_SNAKE_CASE ) for k in self.config.keys() if not k.startswith("""_""" )} def A__ ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" UpperCamelCase = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(_SCREAMING_SNAKE_CASE ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
183
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowercase__ ( )-> Tuple: # Get the sagemaker specific mp parameters from smp_options variable. UpperCamelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCamelCase = json.loads(__UpperCamelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCamelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCamelCase = json.loads(__UpperCamelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , __UpperCamelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class a_ ( lowerCamelCase ): lowercase = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def A__ ( self ) -> Tuple: """simple docstring""" super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , _SCREAMING_SNAKE_CASE , ) @cached_property def A__ ( self ) -> "torch.device": """simple docstring""" logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: UpperCamelCase = torch.device("""cpu""" ) UpperCamelCase = 0 elif is_sagemaker_model_parallel_available(): UpperCamelCase = smp.local_rank() UpperCamelCase = torch.device("""cuda""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) UpperCamelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) UpperCamelCase = torch.device("""cuda""" , self.local_rank ) UpperCamelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCamelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCamelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) UpperCamelCase = torch.device("""cuda""" , self.local_rank ) UpperCamelCase = 1 if device.type == "cuda": torch.cuda.set_device(_SCREAMING_SNAKE_CASE ) return device @property def A__ ( self ) -> Tuple: """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[Any]: """simple docstring""" return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> str: """simple docstring""" return False
183
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase__( UpperCamelCase__ : str , UpperCamelCase__ : float | Decimal , UpperCamelCase__ : float = 10**-10 )->Optional[Any]: A__ = a while True: A__ = Decimal(A_ ) - ( Decimal(eval(A_ ) ) / Decimal(eval(str(diff(A_ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(A_ ) ) < precision: # noqa: S307 return float(A_ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(F"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(F"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(F"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
193
"""simple docstring""" import math def snake_case_ ( A_ : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(A_ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( A_ : float = 0.1 ): '''simple docstring''' _lowerCamelCase : Optional[int] = 3 _lowerCamelCase : List[str] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1, (j + 2) * (j + 2), j + 1 ): primes += is_prime(A_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
72
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1000 , ) -> int: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFLayoutLMModel(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = TFLayoutLMForMaskedLM(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFLayoutLMForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFLayoutLMForTokenClassification(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = TFLayoutLMForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : List[str] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _a : Any = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _a : Optional[int] = False _a : List[Any] = True _a : Tuple = 10 def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = TFLayoutLMModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self ) -> int: """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFLayoutLMModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def lowerCAmelCase__ ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = tf.convert_to_tensor([[1_0_1,1_0_1_9,1_0_1_4,1_0_1_6,1_0_3_7,1_2_8_4_9,4_7_4_7,1_0_0_4,1_4_2_4_6,2_2_7_8,5_4_3_9,4_5_2_4,5_0_0_2,2_9_3_0,2_1_9_3,2_9_3_0,4_3_4_1,3_2_0_8,1_0_0_5,1_0_5_5,2_1_7_1,2_8_4_8,1_1_3_0_0,3_5_3_1,1_0_2],[1_0_1,4_0_7_0,4_0_3_4,7_0_2_0,1_0_2_4,3_0_5_8,1_0_1_5,1_0_1_3,2_8_6_1,1_0_1_3,6_0_7_0,1_9_2_7_4,2_7_7_2,6_2_0_5,2_7_8_1_4,1_6_1_4_7,1_6_1_4_7,4_3_4_3,2_0_4_7,1_0_2_8_3,1_0_9_6_9,1_4_3_8_9,1_0_1_2,2_3_3_8,1_0_2]] ) # noqa: E231 _UpperCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _UpperCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[4_2_3,2_3_7,4_4_0,2_5_1],[4_2_7,2_7_2,4_4_1,2_8_7],[4_1_9,1_1_5,4_3_7,1_2_9],[9_6_1,8_8_5,9_9_2,9_1_2],[2_5_6,3_8,3_3_0,5_8],[2_5_6,3_8,3_3_0,5_8],[3_3_6,4_2,3_5_3,5_7],[3_6_0,3_9,4_0_1,5_6],[3_6_0,3_9,4_0_1,5_6],[4_1_1,3_9,4_7_1,5_9],[4_7_9,4_1,5_2_8,5_9],[5_3_3,3_9,6_3_0,6_0],[6_7,1_1_3,1_3_4,1_3_1],[1_4_1,1_1_5,2_0_9,1_3_2],[6_8,1_4_9,1_3_3,1_6_6],[1_4_1,1_4_9,1_8_7,1_6_4],[1_9_5,1_4_8,2_8_7,1_6_5],[1_9_5,1_4_8,2_8_7,1_6_5],[1_9_5,1_4_8,2_8_7,1_6_5],[2_9_5,1_4_8,3_4_9,1_6_5],[4_4_1,1_4_9,4_9_2,1_6_6],[4_9_7,1_4_9,5_4_6,1_6_4],[6_4,2_0_1,1_2_5,2_1_8],[1_0_0_0,1_0_0_0,1_0_0_0,1_0_0_0]],[[0,0,0,0],[6_6_2,1_5_0,7_5_4,1_6_6],[6_6_5,1_9_9,7_4_2,2_1_1],[5_1_9,2_1_3,5_5_4,2_2_8],[5_1_9,2_1_3,5_5_4,2_2_8],[1_3_4,4_3_3,1_8_7,4_5_4],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[3_1_4,4_6_9,3_7_6,4_8_2],[5_0_4,6_8_4,5_8_2,7_0_6],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[6_1_0,7_4_9,6_5_2,7_6_5],[1_3_0,6_5_9,1_6_8,6_7_2],[1_7_6,6_5_7,2_3_7,6_7_2],[2_3_8,6_5_7,3_1_2,6_7_2],[4_4_3,6_5_3,6_2_8,6_7_2],[4_4_3,6_5_3,6_2_8,6_7_2],[7_1_6,3_0_1,8_2_5,3_1_7],[1_0_0_0,1_0_0_0,1_0_0_0,1_0_0_0]]] ) # noqa: E231 _UpperCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _UpperCAmelCase = tf.convert_to_tensor([[-1_0_0,1_0,1_0,1_0,9,1,-1_0_0,7,7,-1_0_0,7,7,4,2,5,2,8,8,-1_0_0,-1_0_0,5,0,3,2,-1_0_0],[-1_0_0,1_2,1_2,1_2,-1_0_0,1_2,1_0,-1_0_0,-1_0_0,-1_0_0,-1_0_0,1_0,1_2,9,-1_0_0,-1_0_0,-1_0_0,1_0,1_0,1_0,9,1_2,-1_0_0,1_0,-1_0_0]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __a ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCAmelCase = model(input_ids=_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) # test the sequence output on [0, :3, :3] _UpperCAmelCase = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # test the pooled output on [1, :3] _UpperCAmelCase = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) @slow def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCAmelCase = model( input_ids=_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _UpperCAmelCase = outputs.loss _UpperCAmelCase = (2,) self.assertEqual(loss.shape , _SCREAMING_SNAKE_CASE ) # test the shape of the logits _UpperCAmelCase = outputs.logits _UpperCAmelCase = (2, 2) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCAmelCase = model( input_ids=_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) # test the shape of the logits _UpperCAmelCase = outputs.logits _UpperCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCAmelCase = model(input_ids=_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) # test the shape of the logits _UpperCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _SCREAMING_SNAKE_CASE ) self.assertEqual(outputs.end_logits.shape , _SCREAMING_SNAKE_CASE )
185
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ :List[str] = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Any = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase__ :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
185
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE__ : List[str] = 16 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 32 def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] = 16 ) -> Dict: __lowerCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowerCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCAmelCase : List[str] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCAmelCase : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase = 8 else: __lowerCamelCase = None return tokenizer.pad( __lowerCAmelCase , padding='''longest''' , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) __lowerCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE__ : Tuple = mocked_dataloaders # noqa: F811 def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCAmelCase ) == "1": __lowerCamelCase = 2 # New Code # __lowerCamelCase = int(args.gradient_accumulation_steps ) __lowerCamelCase = int(args.local_sgd_steps ) # Initialize accelerator __lowerCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowerCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['''lr'''] __lowerCamelCase = int(config['''num_epochs'''] ) __lowerCamelCase = int(config['''seed'''] ) __lowerCamelCase = int(config['''batch_size'''] ) __lowerCamelCase = evaluate.load('''glue''' , '''mrpc''' ) set_seed(__lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() with LocalSGD( accelerator=__lowerCAmelCase , model=__lowerCAmelCase , local_sgd_steps=__lowerCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowerCAmelCase ): __lowerCamelCase = model(**__lowerCAmelCase ) __lowerCamelCase = output.loss accelerator.backward(__lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**__lowerCAmelCase ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) __lowerCamelCase , __lowerCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) __lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __lowerCAmelCase ) def __magic_name__ ( ) -> str: __lowerCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__lowerCAmelCase , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=__lowerCAmelCase , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
270
'''simple docstring''' import math import unittest def snake_case ( UpperCAmelCase )-> bool: """simple docstring""" assert isinstance(UpperCAmelCase , UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCamelCase__ ( unittest.TestCase): def lowercase_ ( self :List[Any] ) -> str: '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def lowercase_ ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' with self.assertRaises(_A ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
161
0
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __A ( a_ :str) -> None: __a : Union[str, Any] = analyze_text(a_) __a : List[str] = list(''' ''' + ascii_lowercase) # what is our total sum of probabilities. __a : Any = sum(single_char_strings.values()) # one length string __a : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __a : Dict = single_char_strings[ch] __a : List[str] = my_str / all_sum my_fir_sum += prob * math.loga(a_) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum):.1f}""") # two len string __a : int = sum(two_char_strings.values()) __a : Tuple = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __a : Any = cha + cha if sequence in two_char_strings: __a : str = two_char_strings[sequence] __a : Dict = int(a_) / all_sum my_sec_sum += prob * math.loga(a_) # print second entropy print(F"""{round(-1 * my_sec_sum):.1f}""") # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum)):.1f}""") def __A ( a_ :str) -> tuple[dict, dict]: __a : Union[str, Any] = Counter() # type: ignore __a : Any = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(a_) - 1): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __A ( ) -> Dict: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
360
"""simple docstring""" def __A ( a_ :int = 1_00_00_00) -> int: __a : Tuple = [i - 1 for i in range(limit + 1)] for i in range(2 , limit + 1): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , a_): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1]) if __name__ == "__main__": print(solution())
188
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = 10 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = [1, 2, 3, 4] UpperCamelCase__ :Tuple = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCamelCase__ :Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCamelCase__ :Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCamelCase__ , UpperCamelCase__ :int = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = '''''' UpperCamelCase__ , UpperCamelCase__ :List[str] = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) self.assertEqual(UpperCamelCase_ , [] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCamelCase__ , UpperCamelCase__ :Tuple = process_story(UpperCamelCase_ ) UpperCamelCase__ :Any = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :str = ['''It was the best of times.'''] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = torch.tensor([1, 2, 3, 4] ) UpperCamelCase__ :Optional[int] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 0 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCamelCase__ :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 23 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCamelCase__ :Tuple = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 1 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = 101 UpperCamelCase__ :List[str] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCamelCase__ :Tuple = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCamelCase__ :Any = compute_token_type_ids(UpperCamelCase_ , UpperCamelCase_ ) np.testing.assert_array_equal(UpperCamelCase_ , UpperCamelCase_ )
97
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
0
"""simple docstring""" from ....utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: str , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: int=2048) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = config.__dict__ __lowerCAmelCase : Dict = modal_hidden_size if num_labels: __lowerCAmelCase : Optional[int] = num_labels
58
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __snake_case : Tuple = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def _lowercase ( __snake_case ,__snake_case ,__snake_case=None ) -> str: if rng is None: __lowerCAmelCase : str = random.Random() __lowerCAmelCase : List[Any] = 1 for dim in shape: total_dims *= dim __lowerCAmelCase : int = [] for _ in range(__snake_case ): values.append(rng.randint(0 ,vocab_size - 1 ) ) __lowerCAmelCase : Dict = np.array(__snake_case ,dtype=jnp.intaa ).reshape(__snake_case ) return output def _lowercase ( __snake_case ,__snake_case=None ) -> Optional[Any]: __lowerCAmelCase : List[str] = ids_tensor(__snake_case ,vocab_size=2 ,rng=__snake_case ) # make sure that at least one token is attended to for each batch __lowerCAmelCase : str = 1 return attn_mask @require_flax class A__ : '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = () def _SCREAMING_SNAKE_CASE ( self: int) -> Tuple: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __lowerCAmelCase : Tuple = 2 __lowerCAmelCase : Dict = inputs["input_ids"].shape[-1] // 2 __lowerCAmelCase : Union[str, Any] = inputs["input_ids"][:max_batch_size, :sequence_length] __lowerCAmelCase : str = jnp.ones_like(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __lowerCAmelCase : Dict = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __lowerCAmelCase : int = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self: int) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : str = self._get_input_ids_and_config() __lowerCAmelCase : Dict = False __lowerCAmelCase : Dict = max_length __lowerCAmelCase : Any = 0 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase : int = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = pt_model_class(_SCREAMING_SNAKE_CASE).eval() __lowerCAmelCase : Optional[int] = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , flax_model.params) __lowerCAmelCase : int = flax_model.generate(_SCREAMING_SNAKE_CASE).sequences __lowerCAmelCase : Any = pt_model.generate(torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __lowerCAmelCase : Any = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() __lowerCAmelCase : List[str] = False __lowerCAmelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : List[str] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = jit(model.generate) __lowerCAmelCase : List[str] = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Dict) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() __lowerCAmelCase : Dict = True __lowerCAmelCase : List[str] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = jit(model.generate) __lowerCAmelCase : Optional[Any] = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = self._get_input_ids_and_config() __lowerCAmelCase : Tuple = False __lowerCAmelCase : Tuple = max_length __lowerCAmelCase : Any = 2 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Optional[int] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = jit(model.generate) __lowerCAmelCase : Dict = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: str) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = self._get_input_ids_and_config() __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Any = max_length __lowerCAmelCase : Dict = 2 __lowerCAmelCase : int = 2 for model_class in self.all_generative_model_classes: __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = self._get_input_ids_and_config() __lowerCAmelCase : str = True __lowerCAmelCase : Tuple = max_length __lowerCAmelCase : Tuple = 0.8 __lowerCAmelCase : Any = 10 __lowerCAmelCase : Any = 0.3 __lowerCAmelCase : List[Any] = 1 __lowerCAmelCase : int = 8 __lowerCAmelCase : Optional[int] = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = jit(model.generate) __lowerCAmelCase : str = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = self._get_input_ids_and_config() __lowerCAmelCase : int = max_length __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : List[str] = 8 __lowerCAmelCase : str = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = jit(model.generate) __lowerCAmelCase : str = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = self._get_input_ids_and_config() __lowerCAmelCase : Union[str, Any] = max_length __lowerCAmelCase : Dict = 2 __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : int = 8 __lowerCAmelCase : str = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = jit(model.generate) __lowerCAmelCase : Union[str, Any] = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: str) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : Tuple = attention_mask.at[(0, 0)].set(0) __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : int = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = jit(model.generate) __lowerCAmelCase : Dict = jit_generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : int = attention_mask.at[(0, 0)].set(0) __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = jit(model.generate) __lowerCAmelCase : Any = jit_generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : int = attention_mask.at[(0, 0)].set(0) __lowerCAmelCase : Tuple = 2 __lowerCAmelCase : Dict = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = jit(model.generate) __lowerCAmelCase : int = jit_generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") __lowerCAmelCase : Optional[int] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") __lowerCAmelCase : Optional[Any] = "Hello world" __lowerCAmelCase : str = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "do_samples"): model.generate(_SCREAMING_SNAKE_CASE , do_samples=_SCREAMING_SNAKE_CASE) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "foo"): __lowerCAmelCase : int = {"foo": "bar"} model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
58
1
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) @dataclass class a : SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__snake_case , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) SCREAMING_SNAKE_CASE : bool = field( default=__snake_case , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class a : SCREAMING_SNAKE_CASE : str = field( default=__snake_case , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) SCREAMING_SNAKE_CASE : str = field( default=__snake_case , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__snake_case , metadata={"""help""": """Train language if it is different from the evaluation language."""} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__snake_case , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__snake_case , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) SCREAMING_SNAKE_CASE : bool = field( default=__snake_case , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) SCREAMING_SNAKE_CASE : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) SCREAMING_SNAKE_CASE : bool = field( default=__snake_case , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__snake_case , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowerCamelCase__ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , _lowerCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) datasets.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCamelCase_ = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase_ = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = train_dataset.features['label'].names if training_args.do_eval: lowerCamelCase_ = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = eval_dataset.features['label'].names if training_args.do_predict: lowerCamelCase_ = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = predict_dataset.features['label'].names # Labels lowerCamelCase_ = len(_lowerCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowerCamelCase , idalabel={str(_lowerCamelCase ): label for i, label in enumerate(_lowerCamelCase )} , labelaid={label: i for i, label in enumerate(_lowerCamelCase )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False def preprocess_function(_lowerCamelCase : str ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=_lowerCamelCase , max_length=data_args.max_seq_length , truncation=_lowerCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase_ = min(len(_lowerCamelCase ) , data_args.max_train_samples ) lowerCamelCase_ = train_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): lowerCamelCase_ = train_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(_lowerCamelCase ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase_ = min(len(_lowerCamelCase ) , data_args.max_eval_samples ) lowerCamelCase_ = eval_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): lowerCamelCase_ = eval_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCamelCase_ = min(len(_lowerCamelCase ) , data_args.max_predict_samples ) lowerCamelCase_ = predict_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): lowerCamelCase_ = predict_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function lowerCamelCase_ = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase : EvalPrediction ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions , _lowerCamelCase ) else p.predictions lowerCamelCase_ = np.argmax(_lowerCamelCase , axis=1 ) return metric.compute(predictions=_lowerCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(_lowerCamelCase , pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , data_collator=_lowerCamelCase , ) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=_lowerCamelCase ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCamelCase ) ) lowerCamelCase_ = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _lowerCamelCase ) trainer.save_metrics('train' , _lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=_lowerCamelCase ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowerCamelCase ) lowerCamelCase_ = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.log_metrics('eval' , _lowerCamelCase ) trainer.save_metrics('eval' , _lowerCamelCase ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = trainer.predict(_lowerCamelCase , metric_key_prefix='predict' ) lowerCamelCase_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_lowerCamelCase ) ) lowerCamelCase_ = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.log_metrics('predict' , _lowerCamelCase ) trainer.save_metrics('predict' , _lowerCamelCase ) lowerCamelCase_ = np.argmax(_lowerCamelCase , axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(_lowerCamelCase , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(_lowerCamelCase ): lowerCamelCase_ = label_list[item] writer.write(F'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
183
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _SCREAMING_SNAKE_CASE : List[Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class a ( nn.Module ): def __init__( self : int , __SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: super().__init__() lowerCamelCase_ = torchvision.models.resnetaaa(pretrained=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = list(model.children() )[:-2] lowerCamelCase_ = nn.Sequential(*__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Any: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowerCamelCase_ = self.pool(self.model(__SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ = torch.flatten(__SCREAMING_SNAKE_CASE , start_dim=2 ) lowerCamelCase_ = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class a ( __snake_case ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: lowerCamelCase_ = [json.loads(__SCREAMING_SNAKE_CASE ) for l in open(__SCREAMING_SNAKE_CASE )] lowerCamelCase_ = os.path.dirname(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer lowerCamelCase_ = labels lowerCamelCase_ = len(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = max_seq_length lowerCamelCase_ = transforms def __len__( self : Any ) -> Any: return len(self.data ) def __getitem__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: lowerCamelCase_ = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = sentence[0], sentence[1:-1], sentence[-1] lowerCamelCase_ = sentence[: self.max_seq_length] lowerCamelCase_ = torch.zeros(self.n_classes ) lowerCamelCase_ = 1 lowerCamelCase_ = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) lowerCamelCase_ = self.transforms(__SCREAMING_SNAKE_CASE ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCamelCase ( self : Dict ) -> Dict: lowerCamelCase_ = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def lowerCamelCase__ ( _lowerCamelCase : Union[str, Any] ) -> str: lowerCamelCase_ = [len(row['sentence'] ) for row in batch] lowerCamelCase_ , lowerCamelCase_ = len(_lowerCamelCase ), max(_lowerCamelCase ) lowerCamelCase_ = torch.zeros(_lowerCamelCase , _lowerCamelCase , dtype=torch.long ) lowerCamelCase_ = torch.zeros(_lowerCamelCase , _lowerCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_lowerCamelCase , _lowerCamelCase ) ): lowerCamelCase_ = input_row['sentence'] lowerCamelCase_ = 1 lowerCamelCase_ = torch.stack([row['image'] for row in batch] ) lowerCamelCase_ = torch.stack([row['label'] for row in batch] ) lowerCamelCase_ = torch.stack([row['image_start_token'] for row in batch] ) lowerCamelCase_ = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase__ ( ) -> List[str]: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase__ ( ) -> Union[str, Any]: return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
183
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Any: # vision encoder if "img_encoder.pos_embed" in name: _lowerCAmelCase : Optional[Any] = name.replace("""img_encoder.pos_embed""" ,"""vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: _lowerCAmelCase : List[str] = name.replace("""img_encoder.patch_embed.proj""" ,"""vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: _lowerCAmelCase : str = name.replace("""img_encoder.patch_embed.norm""" ,"""vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: _lowerCAmelCase : Union[str, Any] = name.replace("""img_encoder.layers""" ,"""vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: _lowerCAmelCase : Optional[int] = name.replace("""blocks""" ,"""layers""" ) if "attn" in name and "pre_assign" not in name: _lowerCAmelCase : Union[str, Any] = name.replace("""attn""" ,"""self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCAmelCase : List[str] = name.replace("""proj""" ,"""out_proj""" ) if "pre_assign_attn.attn.proj" in name: _lowerCAmelCase : List[Any] = name.replace("""pre_assign_attn.attn.proj""" ,"""pre_assign_attn.attn.out_proj""" ) if "norm1" in name: _lowerCAmelCase : Optional[int] = name.replace("""norm1""" ,"""layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: _lowerCAmelCase : Union[str, Any] = name.replace("""norm2""" ,"""layer_norm2""" ) if "img_encoder.norm" in name: _lowerCAmelCase : int = name.replace("""img_encoder.norm""" ,"""vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCAmelCase : Union[str, Any] = name.replace("""text_encoder.token_embedding""" ,"""text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: _lowerCAmelCase : int = name.replace("""text_encoder.positional_embedding""" ,"""text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: _lowerCAmelCase : Optional[int] = name.replace("""text_encoder.transformer.resblocks.""" ,"""text_model.encoder.layers.""" ) if "ln_1" in name: _lowerCAmelCase : Tuple = name.replace("""ln_1""" ,"""layer_norm1""" ) if "ln_2" in name: _lowerCAmelCase : int = name.replace("""ln_2""" ,"""layer_norm2""" ) if "c_fc" in name: _lowerCAmelCase : str = name.replace("""c_fc""" ,"""fc1""" ) if "c_proj" in name: _lowerCAmelCase : List[Any] = name.replace("""c_proj""" ,"""fc2""" ) if "text_encoder" in name: _lowerCAmelCase : Dict = name.replace("""text_encoder""" ,"""text_model""" ) if "ln_final" in name: _lowerCAmelCase : Optional[Any] = name.replace("""ln_final""" ,"""final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCAmelCase : Union[str, Any] = name.replace("""img_projector.linear_hidden.""" ,"""visual_projection.""" ) if "img_projector.linear_out." in name: _lowerCAmelCase : List[str] = name.replace("""img_projector.linear_out.""" ,"""visual_projection.3.""" ) if "text_projector.linear_hidden" in name: _lowerCAmelCase : Tuple = name.replace("""text_projector.linear_hidden""" ,"""text_projection""" ) if "text_projector.linear_out" in name: _lowerCAmelCase : List[Any] = name.replace("""text_projector.linear_out""" ,"""text_projection.3""" ) return name def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Optional[Any] ) -> List[Any]: for key in orig_state_dict.copy().keys(): _lowerCAmelCase : Tuple = orig_state_dict.pop(_lowerCamelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCAmelCase : Optional[Any] = key.split(""".""" ) _lowerCAmelCase : int = int(key_split[2] ), int(key_split[4] ) _lowerCAmelCase : Union[str, Any] = config.vision_config.hidden_size if "weight" in key: _lowerCAmelCase : str = val[:dim, :] _lowerCAmelCase : Union[str, Any] = val[dim : dim * 2, :] _lowerCAmelCase : Union[str, Any] = val[-dim:, :] else: _lowerCAmelCase : str = val[:dim] _lowerCAmelCase : Any = val[dim : dim * 2] _lowerCAmelCase : List[str] = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCAmelCase : Optional[int] = key.split(""".""" ) _lowerCAmelCase : str = int(key_split[3] ) _lowerCAmelCase : Dict = config.text_config.hidden_size if "weight" in key: _lowerCAmelCase : Any = val[:dim, :] _lowerCAmelCase : int = val[ dim : dim * 2, : ] _lowerCAmelCase : Optional[int] = val[-dim:, :] else: _lowerCAmelCase : Union[str, Any] = val[:dim] _lowerCAmelCase : int = val[dim : dim * 2] _lowerCAmelCase : Optional[int] = val[-dim:] else: _lowerCAmelCase : List[Any] = rename_key(_lowerCamelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCAmelCase : Any = val.squeeze_() else: _lowerCAmelCase : Union[str, Any] = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ) -> Tuple: _lowerCAmelCase : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase : Dict = Image.open(requests.get(_lowerCamelCase ,stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Optional[int]="groupvit-gcc-yfcc" ,_lowerCamelCase : List[Any]=False ) -> Dict: _lowerCAmelCase : Tuple = GroupViTConfig() _lowerCAmelCase : Dict = GroupViTModel(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = torch.load(_lowerCamelCase ,map_location="""cpu""" )["""model"""] _lowerCAmelCase : List[str] = convert_state_dict(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : int = model.load_state_dict(_lowerCamelCase ,strict=_lowerCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCamelCase ) == 0) # verify result _lowerCAmelCase : Tuple = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : Union[str, Any] = processor(text=["""a photo of a cat""", """a photo of a dog"""] ,images=_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors="""pt""" ) with torch.no_grad(): _lowerCAmelCase : str = model(**_lowerCamelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCAmelCase : str = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCAmelCase : Union[str, Any] = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image ,_lowerCamelCase ,atol=1e-3 ) processor.save_pretrained(_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) print("""Successfully saved processor and model to""" ,_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(_lowerCamelCase ,organization="""nielsr""" ) model.push_to_hub(_lowerCamelCase ,organization="""nielsr""" ) if __name__ == "__main__": _a : str = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) _a : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
362
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _a : Union[str, Any] = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : def __init__( self , a__ , a__=16 , a__=13 , a__=7 , a__=14 , a__=10 , a__=19 , a__=5 , a__=4 , a__=True , a__=16 , a__=2 , a__=4 , a__=4 , a__="gelu" , a__=0.1 , a__=0.1 , a__=[1, 2, 3, 4, 5] , a__=25 , a__=5 , ): _lowerCAmelCase : Union[str, Any] = d_model _lowerCAmelCase : int = parent _lowerCAmelCase : List[Any] = batch_size _lowerCAmelCase : Optional[int] = prediction_length _lowerCAmelCase : int = context_length _lowerCAmelCase : Optional[Any] = cardinality _lowerCAmelCase : Tuple = num_time_features _lowerCAmelCase : str = lags_sequence _lowerCAmelCase : int = embedding_dimension _lowerCAmelCase : Dict = is_training _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Tuple = context_length _lowerCAmelCase : Optional[int] = prediction_length + label_length _lowerCAmelCase : Dict = label_length _lowerCAmelCase : Dict = moving_average _lowerCAmelCase : Union[str, Any] = autocorrelation_factor def __A ( self ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __A ( self , a__ ): _lowerCAmelCase : Dict = config.context_length + max(config.lags_sequence ) _lowerCAmelCase : int = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _lowerCAmelCase : int = floats_tensor([self.batch_size, _past_length] ) _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _lowerCAmelCase : Any = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _lowerCAmelCase : Dict = floats_tensor([self.batch_size, config.prediction_length] ) _lowerCAmelCase : Dict = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def __A ( self ): _lowerCAmelCase : Any = self.get_config() _lowerCAmelCase : str = self.prepare_autoformer_inputs_dict(a__ ) return config, inputs_dict def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[int] = AutoformerModel(config=a__ ).to(a__ ).eval() _lowerCAmelCase : int = model(**a__ ) _lowerCAmelCase : List[str] = outputs.encoder_last_hidden_state _lowerCAmelCase : Any = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Optional[int] = model.get_encoder() encoder.save_pretrained(a__ ) _lowerCAmelCase : Optional[int] = AutoformerEncoder.from_pretrained(a__ ).to(a__ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = model.create_network_inputs(**a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _lowerCAmelCase : Any = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _lowerCAmelCase : Dict = encoder(inputs_embeds=a__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _lowerCAmelCase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _lowerCAmelCase : Optional[Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _lowerCAmelCase : Optional[int] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _lowerCAmelCase : Optional[int] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Optional[int] = model.get_decoder() decoder.save_pretrained(a__ ) _lowerCAmelCase : Any = AutoformerDecoder.from_pretrained(a__ ).to(a__ ) _lowerCAmelCase : List[Any] = decoder( trend=a__ , inputs_embeds=a__ , encoder_hidden_states=a__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _UpperCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () _UpperCamelCase : int = {"feature-extraction": AutoformerModel} if is_torch_available() else {} _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[int] = False _UpperCamelCase : Optional[int] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : str = False def __A ( self ): _lowerCAmelCase : Tuple = AutoformerModelTester(self ) _lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(a__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__ ) _lowerCAmelCase , _lowerCAmelCase : List[str] = model_class.from_pretrained(a__ , output_loading_info=a__ ) self.assertEqual(info["""missing_keys"""] , [] ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*a__ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : Dict = inspect.signature(getattr(a__ , """forward""" ) ) # The main input is the name of the argument after `self` _lowerCAmelCase : Dict = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(a__ ) _lowerCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Tuple = [*signature.parameters.keys()] _lowerCAmelCase : List[str] = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(a__ )] , a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Optional[Any] = getattr(self.model_tester , """seq_length""" , a__ ) _lowerCAmelCase : List[str] = getattr(self.model_tester , """decoder_seq_length""" , a__ ) _lowerCAmelCase : Union[str, Any] = getattr(self.model_tester , """encoder_seq_length""" , a__ ) _lowerCAmelCase : int = getattr(self.model_tester , """d_model""" , a__ ) _lowerCAmelCase : Optional[Any] = getattr(self.model_tester , """num_attention_heads""" , a__ ) _lowerCAmelCase : Optional[int] = d_model // num_attention_heads for model_class in self.all_model_classes: _lowerCAmelCase : Dict = True _lowerCAmelCase : Dict = False _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : List[Any] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(a__ , a__ ) ) _lowerCAmelCase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase : int = True _lowerCAmelCase : Optional[Any] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : int = model(**self._prepare_for_class(a__ , a__ ) ) _lowerCAmelCase : Optional[int] = outputs.encoder_attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _lowerCAmelCase : Dict = len(a__ ) _lowerCAmelCase : List[str] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(a__ , a__ ) # decoder attentions _lowerCAmelCase : int = outputs.decoder_attentions self.assertIsInstance(a__ , (list, tuple) ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _lowerCAmelCase : Optional[Any] = outputs.cross_attentions self.assertIsInstance(a__ , (list, tuple) ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _lowerCAmelCase : Dict = True _lowerCAmelCase : List[str] = True _lowerCAmelCase : Optional[int] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + 2 , len(a__ ) ) _lowerCAmelCase : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __A ( self ): super().test_retain_grad_hidden_states_attentions() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any="train-batch.pt" ) -> Optional[int]: _lowerCAmelCase : List[Any] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" ,filename=_lowerCamelCase ,repo_type="""dataset""" ) _lowerCAmelCase : Dict = torch.load(_lowerCamelCase ,map_location=_lowerCamelCase ) return batch @require_torch @slow class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(a__ ) _lowerCAmelCase : List[Any] = prepare_batch() with torch.no_grad(): _lowerCAmelCase : str = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] _lowerCAmelCase : Optional[int] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , a__ ) _lowerCAmelCase : Optional[int] = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=a__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , a__ , atol=a__ ) ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(a__ ) _lowerCAmelCase : Union[str, Any] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _lowerCAmelCase : str = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state _lowerCAmelCase : Optional[int] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , a__ ) _lowerCAmelCase : Any = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=a__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , a__ , atol=a__ ) ) def __A ( self ): _lowerCAmelCase : List[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(a__ ) _lowerCAmelCase : str = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _lowerCAmelCase : str = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) _lowerCAmelCase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , a__ ) _lowerCAmelCase : Optional[Any] = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=a__ ) _lowerCAmelCase : Optional[int] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , a__ , rtol=1e-1 ) )
126
0
'''simple docstring''' from bisect import bisect from itertools import accumulate def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str ) -> int: __lowerCamelCase : Dict = sorted(zip(UpperCAmelCase_ , UpperCAmelCase_ ) , key=lambda UpperCAmelCase_ : x[0] / x[1] , reverse=UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : List[Any] = [i[0] for i in r], [i[1] for i in r] __lowerCamelCase : Dict = list(accumulate(UpperCAmelCase_ ) ) __lowerCamelCase : Union[str, Any] = bisect(UpperCAmelCase_ , UpperCAmelCase_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
185
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> str: __lowerCamelCase : Tuple = 0 __lowerCamelCase : Optional[int] = len(UpperCAmelCase_ ) for i in range(n - 1 ): for j in range(i + 1 , UpperCAmelCase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> Optional[int]: if len(UpperCAmelCase_ ) <= 1: return arr, 0 __lowerCamelCase : str = len(UpperCAmelCase_ ) // 2 __lowerCamelCase : List[Any] = arr[0:mid] __lowerCamelCase : List[str] = arr[mid:] __lowerCamelCase , __lowerCamelCase : int = count_inversions_recursive(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = count_inversions_recursive(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Any = _count_cross_inversions(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) -> Optional[Any]: __lowerCamelCase : List[str] = [] __lowerCamelCase : Optional[int] = 0 while i < len(UpperCAmelCase_ ) and j < len(UpperCAmelCase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(UpperCAmelCase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(UpperCAmelCase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCAmelCase__ ( ) -> List[str]: __lowerCamelCase : Any = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCamelCase : Optional[Any] = count_inversions_bf(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Dict = count_inversions_recursive(UpperCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , UpperCAmelCase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCamelCase : Optional[Any] = count_inversions_bf(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : int = count_inversions_recursive(UpperCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , UpperCAmelCase_ ) # an empty list should also have zero inversions __lowerCamelCase : Dict = [] __lowerCamelCase : Optional[Any] = count_inversions_bf(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = count_inversions_recursive(UpperCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , UpperCAmelCase_ ) if __name__ == "__main__": main()
185
1
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def a__ ( ) -> Generator[int, None, None]: UpperCAmelCase__ : dict[int, int] = {} UpperCAmelCase__ : Tuple = 2 while True: UpperCAmelCase__ : str = factor_map.pop(lowerCAmelCase , lowerCAmelCase ) if factor: UpperCAmelCase__ : str = factor + prime while x in factor_map: x += factor UpperCAmelCase__ : Dict = factor else: UpperCAmelCase__ : str = prime yield prime prime += 1 def a__ ( lowerCAmelCase = 1E10 ) -> int: UpperCAmelCase__ : Optional[int] = sieve() UpperCAmelCase__ : Union[str, Any] = 1 while True: UpperCAmelCase__ : Tuple = next(lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
166
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase=0.01 , _lowerCamelCase=1000 ): """simple docstring""" UpperCAmelCase__ : List[str] = p_stop UpperCAmelCase__ : Any = max_length def __iter__(self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Tuple = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase__ : Dict = random.random() < self.p_stop class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=True ): """simple docstring""" UpperCAmelCase__ : int = [ BatchSamplerShard(_lowerCamelCase , 2 , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) for i in range(2 ) ] UpperCAmelCase__ : List[Any] = [list(_lowerCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_lowerCamelCase ) for shard in batch_sampler_shards] , [len(_lowerCamelCase ) for e in expected] ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : List[str] = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase__ : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase__ : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase__ : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is very small. UpperCAmelCase__ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase__ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase__ : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) UpperCAmelCase__ : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. UpperCAmelCase__ : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase__ : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase__ : Optional[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. UpperCAmelCase__ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Tuple = [[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase__ : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase__ : List[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. UpperCAmelCase__ : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Tuple = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase__ : List[str] = [BatchSamplerShard(_lowerCamelCase , 2 , _lowerCamelCase , even_batches=_lowerCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=False ): """simple docstring""" random.seed(_lowerCamelCase ) UpperCAmelCase__ : Tuple = list(_lowerCamelCase ) UpperCAmelCase__ : Any = [ IterableDatasetShard( _lowerCamelCase , batch_size=_lowerCamelCase , drop_last=_lowerCamelCase , num_processes=_lowerCamelCase , process_index=_lowerCamelCase , split_batches=_lowerCamelCase , ) for i in range(_lowerCamelCase ) ] UpperCAmelCase__ : List[Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_lowerCamelCase ) iterable_dataset_lists.append(list(_lowerCamelCase ) ) UpperCAmelCase__ : Union[str, Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase__ : str = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) self.assertTrue(len(_lowerCamelCase ) % shard_batch_size == 0 ) UpperCAmelCase__ : Union[str, Any] = [] for idx in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_lowerCamelCase ) < len(_lowerCamelCase ): reference += reference self.assertListEqual(_lowerCamelCase , reference[: len(_lowerCamelCase )] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = 42 UpperCAmelCase__ : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) # Edge case with a very small dataset UpperCAmelCase__ : str = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = BatchSampler(range(16 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : int = SkipBatchSampler(_lowerCamelCase , 2 ) self.assertListEqual(list(_lowerCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase__ : int = skip_first_batches(_lowerCamelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _a (self ): """simple docstring""" Accelerator() UpperCAmelCase__ : Dict = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
166
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( lowerCamelCase__ ): __UpperCAmelCase : List[Any] = ['image_processor', 'tokenizer'] __UpperCAmelCase : Dict = 'ChineseCLIPImageProcessor' __UpperCAmelCase : str = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) snake_case : Any = kwargs.pop("feature_extractor" ) snake_case : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase_ , lowercase_ ) snake_case : Optional[int] = self.image_processor def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: snake_case : str = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: snake_case : List[str] = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: snake_case : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Optional[Any] = self.tokenizer.model_input_names snake_case : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase ( self ) -> str: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , ) return self.image_processor_class
203
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self, **lowercase_ ) -> Dict: """simple docstring""" super().__init__(**lowercase_ ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self, lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" return super().__call__(lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, **lowercase_ ) -> int: """simple docstring""" a__ ={} if "candidate_labels" in kwargs: a__ =kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: a__ =kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _UpperCAmelCase ( self, lowercase_, lowercase_=None, lowercase_="This is a sound of {}." ) -> Union[str, Any]: """simple docstring""" if isinstance(lowercase_, lowercase_ ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png a__ =requests.get(lowercase_ ).content else: with open(lowercase_, '''rb''' ) as f: a__ =f.read() if isinstance(lowercase_, lowercase_ ): a__ =ffmpeg_read(lowercase_, self.feature_extractor.sampling_rate ) if not isinstance(lowercase_, np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) a__ =self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='''pt''' ) a__ =candidate_labels a__ =[hypothesis_template.format(lowercase_ ) for x in candidate_labels] a__ =self.tokenizer(lowercase_, return_tensors=self.framework, padding=lowercase_ ) a__ =[text_inputs] return inputs def _UpperCAmelCase ( self, lowercase_ ) -> str: """simple docstring""" a__ =model_inputs.pop('''candidate_labels''' ) a__ =model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0], lowercase_ ): a__ =text_inputs[0] else: # Batching case. a__ =text_inputs[0][0] a__ =self.model(**lowercase_, **lowercase_ ) a__ ={ '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def _UpperCAmelCase ( self, lowercase_ ) -> Any: """simple docstring""" a__ =model_outputs.pop('''candidate_labels''' ) a__ =model_outputs['''logits'''][0] if self.framework == "pt": a__ =logits.softmax(dim=0 ) a__ =probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) a__ =[ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowercase_, lowercase_ ), key=lambda lowercase_ : -x[0] ) ] return result
188
0
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] = True , _snake_case : int = math.inf , _snake_case : Tuple = -math.inf , _snake_case : Union[str, Any] = math.inf , _snake_case : List[Any] = -math.inf , _snake_case : Dict = False , _snake_case : Any = 100 , _snake_case : Dict = 0.01 , _snake_case : List[Any] = 1 , ): lowerCAmelCase : Dict = False lowerCAmelCase : Tuple = search_prob lowerCAmelCase : Optional[int] = start_temperate lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Dict = 0 lowerCAmelCase : Union[str, Any] = None while not search_end: lowerCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): lowerCAmelCase : Optional[Any] = current_state scores.append(A_ ) iterations += 1 lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCAmelCase : Optional[int] = random.randint(0 , len(A_ ) - 1 ) # picking a random neighbor lowerCAmelCase : Dict = neighbors.pop(A_ ) lowerCAmelCase : Any = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCAmelCase : Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCAmelCase : int = picked_neighbor else: lowerCAmelCase : Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCAmelCase : Optional[int] = picked_neighbor lowerCAmelCase : Tuple = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCAmelCase : Optional[Any] = True else: lowerCAmelCase : Any = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(A_ ) , A_ ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Optional[Any] ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) snake_case__ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) snake_case__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) snake_case__ : Any = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) snake_case__ : int = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def _snake_case ( _snake_case : List[Any] , _snake_case : Optional[Any] ): return (3 * x**2) - (6 * y) snake_case__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) snake_case__ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f"""{local_min.score()}""" ) snake_case__ : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) snake_case__ : Union[str, Any] = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f"""{local_min.score()}""" )
358
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase_ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''facebook/nllb-200-distilled-600M''' UpperCamelCase = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) UpperCamelCase = '''translator''' UpperCamelCase = AutoTokenizer UpperCamelCase = AutoModelForSeqaSeqLM UpperCamelCase = LANGUAGE_CODES UpperCamelCase = ['''text''', '''text''', '''text'''] UpperCamelCase = ['''text'''] def snake_case_( self , A , A , A ) -> Optional[int]: if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) _SCREAMING_SNAKE_CASE = self.lang_to_code[src_lang] _SCREAMING_SNAKE_CASE = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( A , return_tensors="""pt""" , src_lang=A , tgt_lang=A ) def snake_case_( self , A ) -> str: return self.model.generate(**A ) def snake_case_( self , A ) -> Any: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=A )
58
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=8 ) ->Tuple: _SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A , A , A , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=A , scheduler=A , movq=A , ) _SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case_( self , A , A , A , A , A , A ) -> Union[str, Any]: if latents is None: _SCREAMING_SNAKE_CASE = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _SCREAMING_SNAKE_CASE = latents.to(A ) _SCREAMING_SNAKE_CASE = latents * scheduler.init_noise_sigma return latents def snake_case_( self , A=0 ) -> Dict: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _SCREAMING_SNAKE_CASE = torch.device(f'cuda:{gpu_id}' ) _SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) def snake_case_( self , A=0 ) -> str: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _SCREAMING_SNAKE_CASE = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cpu_offload_with_hook(A , A , prev_module_hook=A ) # We'll offload the last model manually. _SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case_( self ) -> Tuple: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A ) def __call__( self , A , A , A = 512 , A = 512 , A = 100 , A = 4.0 , A = 1 , A = None , A = None , A = "pil" , A = True , ) -> List[str]: _SCREAMING_SNAKE_CASE = self._execution_device _SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(A , A ): _SCREAMING_SNAKE_CASE = torch.cat(A , dim=0 ) _SCREAMING_SNAKE_CASE = image_embeds.shape[0] * num_images_per_prompt if isinstance(A , A ): _SCREAMING_SNAKE_CASE = torch.cat(A , dim=0 ) if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(A , dim=0 ) _SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(A , dim=0 ) _SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A ) self.scheduler.set_timesteps(A , device=A ) _SCREAMING_SNAKE_CASE = self.scheduler.timesteps _SCREAMING_SNAKE_CASE = self.unet.config.in_channels _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = downscale_height_and_width(A , A , self.movq_scale_factor ) # create initial latent _SCREAMING_SNAKE_CASE = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A , A , A , self.scheduler , ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance _SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _SCREAMING_SNAKE_CASE = {"""image_embeds""": image_embeds} _SCREAMING_SNAKE_CASE = self.unet( sample=A , timestep=A , encoder_hidden_states=A , added_cond_kwargs=A , return_dict=A , )[0] if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) _SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE = self.scheduler.step( A , A , A , generator=A , )[0] # post-processing _SCREAMING_SNAKE_CASE = self.movq.decode(A , force_not_quantize=A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 _SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
58
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = ['image_processor', 'tokenizer'] A : Optional[Any] = 'CLIPImageProcessor' A : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : str , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : List[str]): """simple docstring""" a : Tuple = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __lowerCAmelCase , ) a : Optional[int] = kwargs.pop('feature_extractor') a : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(__lowerCAmelCase , __lowerCAmelCase) def __call__( self : List[Any] , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Tuple): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: a : Any = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase) if images is not None: a : int = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase) if text is not None and images is not None: a : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase) , tensor_type=__lowerCAmelCase) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase) def SCREAMING_SNAKE_CASE_ ( self : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = self.tokenizer.model_input_names a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __lowerCAmelCase , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __lowerCAmelCase , ) return self.image_processor
360
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=1_3 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=9_9 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=3_2 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int="last" , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=0 , ): """simple docstring""" a : Tuple = parent a : Optional[Any] = batch_size a : Tuple = seq_length a : Union[str, Any] = is_training a : List[str] = use_input_lengths a : Union[str, Any] = use_token_type_ids a : Optional[int] = use_labels a : int = gelu_activation a : Dict = sinusoidal_embeddings a : Any = causal a : Optional[int] = asm a : int = n_langs a : List[str] = vocab_size a : List[str] = n_special a : List[str] = hidden_size a : Any = num_hidden_layers a : Union[str, Any] = num_attention_heads a : Optional[Any] = hidden_dropout_prob a : str = attention_probs_dropout_prob a : Dict = max_position_embeddings a : Union[str, Any] = type_sequence_label_size a : str = initializer_range a : List[Any] = num_labels a : Union[str, Any] = num_choices a : Optional[Any] = summary_type a : Optional[Any] = use_proj a : Optional[Any] = scope a : Dict = bos_token_id def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) a : Optional[int] = None if self.use_input_lengths: a : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a : int = None if self.use_token_type_ids: a : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a : Optional[Any] = None a : Tuple = None a : Optional[Any] = None if self.use_labels: a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : Optional[Any] = ids_tensor([self.batch_size] , 2).float() a : Dict = ids_tensor([self.batch_size] , self.num_choices) a : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Any = XLMModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_ , lengths=UpperCAmelCase_ , langs=UpperCAmelCase_) a : str = model(UpperCAmelCase_ , langs=UpperCAmelCase_) a : int = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , ): """simple docstring""" a : Optional[Any] = XLMWithLMHeadModel(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Union[str, Any] = XLMForQuestionAnsweringSimple(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_) a : Tuple = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) a : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , ): """simple docstring""" a : Any = XLMForQuestionAnswering(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_) a : Dict = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , p_mask=UpperCAmelCase_ , ) a : int = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , ) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() a : int = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , ): """simple docstring""" a : Dict = XLMForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_) a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , ): """simple docstring""" a : Dict = self.num_labels a : int = XLMForTokenClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , ): """simple docstring""" a : str = self.num_choices a : Dict = XLMForMultipleChoice(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : str = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Any = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : int = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" A : int = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A : Optional[Any] = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=False): """simple docstring""" a : List[Any] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": a : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) a : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[Any] = XLMModelTester(self) a : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , emb_dim=3_7) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_attentions in attentions] , [True] * len(UpperCAmelCase_)) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(UpperCAmelCase_): # adds PAD dummy token a : List[str] = min_length + idx + 1 a : Optional[Any] = min_length + idx + 1 a : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase_) , ) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(UpperCAmelCase_): # adds PAD dummy token a : int = min_length + idx + 1 a : Any = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase_) , ) pass @slow def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Union[str, Any] = XLMModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(UpperCAmelCase_) a : List[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase_) # the president a : Dict = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference a : Optional[Any] = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase_)
345
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 100 ) -> int: __lowercase = n * (n + 1) * (2 * n + 1) / 6 __lowercase = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'''{solution() = }''')
325
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class A_ : """simple docstring""" @staticmethod def UpperCAmelCase__ ( *lowerCamelCase_ :Optional[int] , **lowerCamelCase_ :Optional[Any] ): """simple docstring""" pass def lowerCAmelCase_ ( snake_case_ : List[str] ) ->str: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCAmelCase = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class A_ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :int ): """simple docstring""" lowerCamelCase__ : Optional[int] =pipeline( 'document-question-answering' , model=lowerCamelCase_ , tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) lowerCamelCase__ : Tuple =INVOICE_URL lowerCamelCase__ : Optional[Any] =list(zip(*apply_tesseract(load_image(lowerCamelCase_ ) , lowerCamelCase_ , '' ) ) ) lowerCamelCase__ : Optional[Any] ='What is the placebo?' lowerCamelCase__ : List[str] =[ { 'image': load_image(lowerCamelCase_ ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def UpperCAmelCase__ ( self :int , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple ): """simple docstring""" lowerCamelCase__ : List[str] =dqa_pipeline(lowerCamelCase_ , top_k=2 ) self.assertEqual( lowerCamelCase_ , [ [ {'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ ), 'start': ANY(lowerCamelCase_ ), 'end': ANY(lowerCamelCase_ )}, {'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ ), 'start': ANY(lowerCamelCase_ ), 'end': ANY(lowerCamelCase_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : str =pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) lowerCamelCase__ : Any =INVOICE_URL lowerCamelCase__ : Union[str, Any] ='How many cats are there?' lowerCamelCase__ : List[Any] =[ {'score': 0.00_01, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.00_01, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] lowerCamelCase__ : Dict =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase_ , decimals=4 ) , lowerCamelCase_ ) lowerCamelCase__ : int =dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase_ , decimals=4 ) , lowerCamelCase_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCamelCase__ : str ='./tests/fixtures/tests_samples/COCO/000000039769.png' lowerCamelCase__ : Union[str, Any] =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual(lowerCamelCase_ , [] ) # We can optionnally pass directly the words and bounding boxes lowerCamelCase__ : str ='./tests/fixtures/tests_samples/COCO/000000039769.png' lowerCamelCase__ : Optional[Any] =[] lowerCamelCase__ : Tuple =[] lowerCamelCase__ : Tuple =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , words=lowerCamelCase_ , boxes=lowerCamelCase_ , top_k=2 ) self.assertEqual(lowerCamelCase_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : int =pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) lowerCamelCase__ : Dict =INVOICE_URL lowerCamelCase__ : int ='What is the invoice number?' lowerCamelCase__ : Union[str, Any] =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase__ : Optional[int] =dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase__ : List[str] =dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : int =pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) lowerCamelCase__ : Tuple =INVOICE_URL lowerCamelCase__ : Any ='What is the invoice number?' lowerCamelCase__ : Union[str, Any] =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase__ : List[Any] =dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase__ : List[Any] =dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : int =AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] =pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=lowerCamelCase_ , revision='3dc6de3' , ) lowerCamelCase__ : int =INVOICE_URL lowerCamelCase__ : Tuple ='What is the invoice number?' lowerCamelCase__ : Optional[Any] =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowerCamelCase__ : Optional[int] =dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowerCamelCase__ : Optional[Any] =dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) lowerCamelCase__ : Tuple =list(zip(*apply_tesseract(load_image(lowerCamelCase_ ) , lowerCamelCase_ , '' ) ) ) # This model should also work if `image` is set to None lowerCamelCase__ : Optional[int] =dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] =AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Any =pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=lowerCamelCase_ , revision='3dc6de3' , max_seq_len=50 , ) lowerCamelCase__ : Dict =INVOICE_URL lowerCamelCase__ : Optional[Any] ='What is the invoice number?' lowerCamelCase__ : Tuple =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase__ : Tuple =dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) lowerCamelCase__ : str =list(zip(*apply_tesseract(load_image(lowerCamelCase_ ) , lowerCamelCase_ , '' ) ) ) # This model should also work if `image` is set to None lowerCamelCase__ : Union[str, Any] =dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : List[Any] =pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) lowerCamelCase__ : Union[str, Any] =INVOICE_URL lowerCamelCase__ : Union[str, Any] ='What is the invoice number?' lowerCamelCase__ : Union[str, Any] =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase_ , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def UpperCAmelCase__ ( self :str ): """simple docstring""" pass
126
0
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : List[str] = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """bart""" lowerCAmelCase_ = ["""past_key_values"""] lowerCAmelCase_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , A_=50265 , A_=1024 , A_=12 , A_=4096 , A_=16 , A_=12 , A_=4096 , A_=16 , A_=0.0 , A_=0.0 , A_="gelu" , A_=1024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=0.0 , A_=False , A_=True , A_=3 , A_=1 , A_=0 , A_=2 , A_=True , A_=2 , A_=2 , **A_ , )-> Tuple: '''simple docstring''' UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = classifier_dropout UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , A_ ): UpperCamelCase = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' ) class SCREAMING_SNAKE_CASE__ ( snake_case_): @property def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: UpperCamelCase = {0: 'batch'} UpperCamelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'} UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(A_ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: UpperCamelCase , UpperCamelCase = self.num_layers for i in range(A_ ): UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} else: UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = super().outputs else: UpperCamelCase = super(A_ , self ).outputs if self.use_past: UpperCamelCase , UpperCamelCase = self.num_layers for i in range(A_ ): UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , )-> Mapping[str, Any]: '''simple docstring''' UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) # Generate decoder inputs UpperCamelCase = seq_length if not self.use_past else 1 UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) UpperCamelCase = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} UpperCamelCase = dict(**A_ , **A_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs['input_ids'].shape UpperCamelCase = common_inputs['decoder_input_ids'].shape[1] UpperCamelCase , UpperCamelCase = self.num_attention_heads UpperCamelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase = decoder_seq_length + 3 UpperCamelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(A_ , A_ )] , dim=1 ) UpperCamelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase , UpperCamelCase = self.num_layers UpperCamelCase = min(A_ , A_ ) UpperCamelCase = max(A_ , A_ ) - min_num_layers UpperCamelCase = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(A_ ): common_inputs["past_key_values"].append( ( torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), ) ) # TODO: test this. UpperCamelCase = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(A_ , A_ ): common_inputs["past_key_values"].append((torch.zeros(A_ ), torch.zeros(A_ )) ) return common_inputs def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , )-> Mapping[str, Any]: '''simple docstring''' UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase = seqlen + 2 UpperCamelCase , UpperCamelCase = self.num_layers UpperCamelCase , UpperCamelCase = self.num_attention_heads UpperCamelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase = common_inputs['attention_mask'].dtype UpperCamelCase = torch.cat( [common_inputs['attention_mask'], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) UpperCamelCase = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(A_ ) ] return common_inputs def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , )-> Mapping[str, Any]: '''simple docstring''' UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = tokenizer.num_special_tokens_to_add(A_ ) UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase = dict(tokenizer(A_ , return_tensors=A_ ) ) return common_inputs def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , )-> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) elif self.task == "causal-lm": UpperCamelCase = self._generate_dummy_inputs_for_causal_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) else: UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) return common_inputs def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Union[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = super()._flatten_past_key_values_(A_ , A_ , A_ , A_ ) else: UpperCamelCase = super(A_ , self )._flatten_past_key_values_( A_ , A_ , A_ , A_ )
369
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : Any = logging.get_logger(__name__) # General docstring lowerCAmelCase : Tuple = 'MobileNetV1Config' # Base docstring lowerCAmelCase : Dict = 'google/mobilenet_v1_1.0_224' lowerCAmelCase : Any = [1, 10_24, 7, 7] # Image classification docstring lowerCAmelCase : Optional[Any] = 'google/mobilenet_v1_1.0_224' lowerCAmelCase : List[str] = 'tabby, tabby cat' lowerCAmelCase : str = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_( A : Union[str, Any] , A : Optional[Any] , A : Optional[Any]=None): UpperCamelCase = {} if isinstance(A , A): UpperCamelCase = model.mobilenet_va else: UpperCamelCase = model UpperCamelCase = 'MobilenetV1/Conv2d_0/' UpperCamelCase = backbone.conv_stem.convolution.weight UpperCamelCase = backbone.conv_stem.normalization.bias UpperCamelCase = backbone.conv_stem.normalization.weight UpperCamelCase = backbone.conv_stem.normalization.running_mean UpperCamelCase = backbone.conv_stem.normalization.running_var for i in range(13): UpperCamelCase = i + 1 UpperCamelCase = i * 2 UpperCamelCase = backbone.layer[pt_index] UpperCamelCase = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var UpperCamelCase = backbone.layer[pt_index + 1] UpperCamelCase = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var if isinstance(A , A): UpperCamelCase = 'MobilenetV1/Logits/Conv2d_1c_1x1/' UpperCamelCase = model.classifier.weight UpperCamelCase = model.classifier.bias return tf_to_pt_map def A_( A : int , A : str , A : Optional[int]): try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.') raise # Load weights from TF model UpperCamelCase = tf.train.list_variables(A) UpperCamelCase = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''') UpperCamelCase = tf.train.load_variable(A , A) UpperCamelCase = array # Build TF to PyTorch weights loading map UpperCamelCase = _build_tf_to_pytorch_map(A , A , A) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''') if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''') continue UpperCamelCase = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise') UpperCamelCase = np.transpose(A , (2, 3, 0, 1)) elif "weights" in name: logger.info('Transposing') if len(pointer.shape) == 2: # copying into linear layer UpperCamelCase = array.squeeze().transpose() else: UpperCamelCase = np.transpose(A , (3, 2, 0, 1)) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''') logger.info(f'''Initialize PyTorch weight {name} {array.shape}''') UpperCamelCase = torch.from_numpy(A) tf_weights.pop(A , A) tf_weights.pop(name + '/RMSProp' , A) tf_weights.pop(name + '/RMSProp_1' , A) tf_weights.pop(name + '/ExponentialMovingAverage' , A) logger.info(f'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys())}''') return model def A_( A : torch.Tensor , A : nn.Convad): UpperCamelCase , UpperCamelCase = features.shape[-2:] UpperCamelCase , UpperCamelCase = conv_layer.stride UpperCamelCase , UpperCamelCase = conv_layer.kernel_size if in_height % stride_height == 0: UpperCamelCase = max(kernel_height - stride_height , 0) else: UpperCamelCase = max(kernel_height - (in_height % stride_height) , 0) if in_width % stride_width == 0: UpperCamelCase = max(kernel_width - stride_width , 0) else: UpperCamelCase = max(kernel_width - (in_width % stride_width) , 0) UpperCamelCase = pad_along_width // 2 UpperCamelCase = pad_along_width - pad_left UpperCamelCase = pad_along_height // 2 UpperCamelCase = pad_along_height - pad_top UpperCamelCase = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(A , A , 'constant' , 0.0) class SCREAMING_SNAKE_CASE__ ( nn.Module): def __init__( self , A_ , A_ , A_ , A_ , A_ = 1 , A_ = 1 , A_ = False , A_ = True , A_ = True , )-> None: '''simple docstring''' super().__init__() UpperCamelCase = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) UpperCamelCase = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) UpperCamelCase = nn.Convad( in_channels=A_ , out_channels=A_ , kernel_size=A_ , stride=A_ , padding=A_ , groups=A_ , bias=A_ , padding_mode='zeros' , ) if use_normalization: UpperCamelCase = nn.BatchNormad( num_features=A_ , eps=config.layer_norm_eps , momentum=0.9_997 , affine=A_ , track_running_stats=A_ , ) else: UpperCamelCase = None if use_activation: if isinstance(A_ , A_ ): UpperCamelCase = ACTaFN[use_activation] elif isinstance(config.hidden_act , A_ ): UpperCamelCase = ACTaFN[config.hidden_act] else: UpperCamelCase = config.hidden_act else: UpperCamelCase = None def UpperCAmelCase_ ( self , A_ )-> torch.Tensor: '''simple docstring''' if self.config.tf_padding: UpperCamelCase = apply_tf_padding(A_ , self.convolution ) UpperCamelCase = self.convolution(A_ ) if self.normalization is not None: UpperCamelCase = self.normalization(A_ ) if self.activation is not None: UpperCamelCase = self.activation(A_ ) return features class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = MobileNetVaConfig lowerCAmelCase_ = load_tf_weights_in_mobilenet_va lowerCAmelCase_ = """mobilenet_v1""" lowerCAmelCase_ = """pixel_values""" lowerCAmelCase_ = False def UpperCAmelCase_ ( self , A_ )-> None: '''simple docstring''' if isinstance(A_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(A_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowerCAmelCase : Union[str, Any] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase : Union[str, Any] = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , A_ = True )-> Union[str, Any]: '''simple docstring''' super().__init__(A_ ) UpperCamelCase = config UpperCamelCase = 32 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) UpperCamelCase = MobileNetVaConvLayer( A_ , in_channels=config.num_channels , out_channels=A_ , kernel_size=3 , stride=2 , ) UpperCamelCase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCamelCase = nn.ModuleList() for i in range(13 ): UpperCamelCase = out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( A_ , in_channels=A_ , out_channels=A_ , kernel_size=3 , stride=strides[i] , groups=A_ , ) ) self.layer.append( MobileNetVaConvLayer( A_ , in_channels=A_ , out_channels=A_ , kernel_size=1 , ) ) UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCAmelCase_ ( self , A_ )-> Tuple: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , )-> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) UpperCamelCase = self.conv_stem(A_ ) UpperCamelCase = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): UpperCamelCase = layer_module(A_ ) if output_hidden_states: UpperCamelCase = all_hidden_states + (hidden_states,) UpperCamelCase = hidden_states if self.pooler is not None: UpperCamelCase = torch.flatten(self.pooler(A_ ) , start_dim=1 ) else: UpperCamelCase = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=A_ , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ )-> None: '''simple docstring''' super().__init__(A_ ) UpperCamelCase = config.num_labels UpperCamelCase = MobileNetVaModel(A_ ) UpperCamelCase = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCamelCase = nn.Dropout(config.classifier_dropout_prob , inplace=A_ ) UpperCamelCase = nn.Linear(A_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , )-> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.mobilenet_va(A_ , output_hidden_states=A_ , return_dict=A_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier(self.dropout(A_ ) ) UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase = 'single_label_classification' else: UpperCamelCase = 'multi_label_classification' if self.config.problem_type == "regression": UpperCamelCase = MSELoss() if self.num_labels == 1: UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase = loss_fct(A_ , A_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase = CrossEntropyLoss() UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase = BCEWithLogitsLoss() UpperCamelCase = loss_fct(A_ , A_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=A_ , logits=A_ , hidden_states=outputs.hidden_states , )
251
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowerCamelCase = False class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion') pipe.to(_lowerCAmelCase) pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg') __lowercase =torch.manual_seed(0) __lowercase =pipe( image=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images __lowercase =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase =np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
166
'''simple docstring''' from scipy.stats import spearmanr import datasets lowerCamelCase = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowerCamelCase = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowerCamelCase = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : int=False): '''simple docstring''' __lowercase =spearmanr(_lowerCAmelCase , _lowerCAmelCase) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
166
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer _lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast _lowerCAmelCase : int = TaTokenizerFast _lowerCAmelCase : List[Any] = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys _lowerCAmelCase : List[str] = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
354
"""simple docstring""" _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCamelCase : Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCamelCase : List[Any] = state_late + state_absent + state_ontime _lowerCamelCase : int = prizestrings return prizestrings def lowerCamelCase_( _lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
340
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __a = True except (ImportError, AttributeError): __a = object def A_ ( *_lowercase, **_lowercase ): '''simple docstring''' pass __a = False __a = logging.get_logger("transformers-cli/serving") def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Optional[Any] = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(_lowercase, args.host, args.port, args.workers ) class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : dict class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : List[str] _A : Optional[List[int]] class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : str class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Any class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' @staticmethod def lowerCAmelCase_ ( snake_case: ArgumentParser ) -> Tuple: snake_case_ :Any = parser.add_parser( """serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" ) serve_parser.add_argument( """--task""" , type=snake_case , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , ) serve_parser.add_argument("""--host""" , type=snake_case , default="""localhost""" , help="""Interface the server will listen on.""" ) serve_parser.add_argument("""--port""" , type=snake_case , default=8_888 , help="""Port the serving will listen to.""" ) serve_parser.add_argument("""--workers""" , type=snake_case , default=1 , help="""Number of http workers""" ) serve_parser.add_argument("""--model""" , type=snake_case , help="""Model's name or path to stored model.""" ) serve_parser.add_argument("""--config""" , type=snake_case , help="""Model's config name or path to stored model.""" ) serve_parser.add_argument("""--tokenizer""" , type=snake_case , help="""Tokenizer name to use.""" ) serve_parser.add_argument( """--device""" , type=snake_case , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) serve_parser.set_defaults(func=snake_case ) def __init__( self: int , snake_case: Pipeline , snake_case: str , snake_case: int , snake_case: int ) -> List[Any]: snake_case_ :Optional[Any] = pipeline snake_case_ :Optional[Any] = host snake_case_ :Optional[Any] = port snake_case_ :Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( """Using serve command requires FastAPI and uvicorn. """ """Please install transformers with [serving]: pip install \"transformers[serving]\".""" """Or install FastAPI and uvicorn separately.""" ) else: logger.info(f"""Serving model over {host}:{port}""" ) snake_case_ :List[str] = FastAPI( routes=[ APIRoute( """/""" , self.model_info , response_model=snake_case , response_class=snake_case , methods=["""GET"""] , ), APIRoute( """/tokenize""" , self.tokenize , response_model=snake_case , response_class=snake_case , methods=["""POST"""] , ), APIRoute( """/detokenize""" , self.detokenize , response_model=snake_case , response_class=snake_case , methods=["""POST"""] , ), APIRoute( """/forward""" , self.forward , response_model=snake_case , response_class=snake_case , methods=["""POST"""] , ), ] , timeout=600 , ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Dict: run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowerCAmelCase_ ( self: Any ) -> Any: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowerCAmelCase_ ( self: Tuple , snake_case: str = Body(snake_case , embed=snake_case ) , snake_case: bool = Body(snake_case , embed=snake_case ) ) -> Union[str, Any]: try: snake_case_ :Dict = self._pipeline.tokenizer.tokenize(snake_case ) if return_ids: snake_case_ :int = self._pipeline.tokenizer.convert_tokens_to_ids(snake_case ) return ServeTokenizeResult(tokens=snake_case , tokens_ids=snake_case ) else: return ServeTokenizeResult(tokens=snake_case ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(snake_case )} ) def lowerCAmelCase_ ( self: Optional[Any] , snake_case: List[int] = Body(snake_case , embed=snake_case ) , snake_case: bool = Body(snake_case , embed=snake_case ) , snake_case: bool = Body(snake_case , embed=snake_case ) , ) -> Union[str, Any]: try: snake_case_ :Dict = self._pipeline.tokenizer.decode(snake_case , snake_case , snake_case ) return ServeDeTokenizeResult(model="""""" , text=snake_case ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(snake_case )} ) async def lowerCAmelCase_ ( self: Dict , snake_case: Optional[int]=Body(snake_case , embed=snake_case ) ) -> Union[str, Any]: # Check we don't have empty string if len(snake_case ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model snake_case_ :List[str] = self._pipeline(snake_case ) return ServeForwardResult(output=snake_case ) except Exception as e: raise HTTPException(500 , {"""error""": str(snake_case )} )
66
from functools import reduce _SCREAMING_SNAKE_CASE : Any = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( _A = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) ) for i in range(len(_A ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
314
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: super().__init__() self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 50 , lowerCAmelCase_ = None , lowerCAmelCase_ = "pil" , lowerCAmelCase_ = True , **lowerCAmelCase_ , ) -> Union[Tuple, ImagePipelineOutput]: _snake_case = self.unet.config.sample_size _snake_case = (batch_size, 3, img_size, img_size) _snake_case = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _snake_case = self.scheduler.schedule[t] _snake_case = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _snake_case , _snake_case = self.scheduler.add_noise_to_input(lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _snake_case = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _snake_case = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _snake_case = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _snake_case = self.scheduler.step_correct( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , step_output.prev_sample , step_output['derivative'] , ) _snake_case = step_output.prev_sample _snake_case = (sample / 2 + 0.5).clamp(0 , 1 ) _snake_case = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
295
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''gpt_neo''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , lowerCAmelCase_=5_0257 , lowerCAmelCase_=2048 , lowerCAmelCase_=2048 , lowerCAmelCase_=24 , lowerCAmelCase_=[[["global", "local"], 12]] , lowerCAmelCase_=16 , lowerCAmelCase_=None , lowerCAmelCase_=256 , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=0.02 , lowerCAmelCase_=True , lowerCAmelCase_=5_0256 , lowerCAmelCase_=5_0256 , **lowerCAmelCase_ , ) -> Tuple: _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_layers _snake_case = num_heads _snake_case = intermediate_size _snake_case = window_size _snake_case = activation_function _snake_case = resid_dropout _snake_case = embed_dropout _snake_case = attention_dropout _snake_case = classifier_dropout _snake_case = layer_norm_epsilon _snake_case = initializer_range _snake_case = use_cache _snake_case = bos_token_id _snake_case = eos_token_id _snake_case = attention_types _snake_case = self.expand_attention_types_params(lowerCAmelCase_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) @staticmethod def lowerCAmelCase ( lowerCAmelCase_ ) -> Any: _snake_case = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Any: '''simple docstring''' import torch _snake_case = input.size() _snake_case = len(UpperCamelCase__ ) _snake_case = shape[dimension] _snake_case = torch.arange(0 , UpperCamelCase__ , UpperCamelCase__ ) _snake_case = torch.div(sizedim - size , UpperCamelCase__ , rounding_mode='floor' ) + 1 _snake_case = torch.arange(UpperCamelCase__ ) + low_indices[:min_length][:, None] _snake_case = [slice(UpperCamelCase__ )] * rank _snake_case = indices _snake_case = input[s] _snake_case = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ) -> str: '''simple docstring''' import torch _snake_case = torch.arange(1 , UpperCamelCase__ ) _snake_case = torch.remainder(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = remainders == 0 _snake_case = candidates[divisor_indices] _snake_case = torch.max(UpperCamelCase__ ) return largest_divisor, torch.div(UpperCamelCase__ , UpperCamelCase__ , rounding_mode='floor' ) class UpperCamelCase_ ( _lowerCamelCase ): @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) _snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowerCAmelCase ( self ) -> int: return self._config.num_heads def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ) -> Mapping[str, Any]: _snake_case = super(lowerCAmelCase_ , self ).generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) # We need to order the input in the way they appears in the forward() _snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(self.num_layers ) ] _snake_case = common_inputs['attention_mask'] if self.use_past: _snake_case = ordered_inputs['attention_mask'].dtype _snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase ( self ) -> int: return 13
295
1
from collections import defaultdict def SCREAMING_SNAKE_CASE_ ( __A : int ) -> int: """simple docstring""" a_ : str = 1 a_ : Optional[Any] = True for v in tree[start]: if v not in visited: ret += dfs(__A ) if ret % 2 == 0: cuts.append(__A ) return ret def SCREAMING_SNAKE_CASE_ ( ) -> Dict: """simple docstring""" dfs(1 ) if __name__ == "__main__": UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = 10, 9 UpperCAmelCase_ : List[Any] = defaultdict(list) UpperCAmelCase_ : dict[int, bool] = {} UpperCAmelCase_ : list[int] = [] UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[Any] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
32
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: int ,**lowerCamelCase_: List[str] ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[str] ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: int ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Any = ["flax"] def __init__( self: int ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Dict = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[Any] ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[str] = ["flax"] def __init__( self: str ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : int = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[Any] ) -> str: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: str ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[int] ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[Any] ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[Any] = ["flax"] def __init__( self: Union[str, Any] ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: int ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: Any ,**lowerCamelCase_: int ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Union[str, Any] ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Dict ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : str = ["flax"] def __init__( self: Optional[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: int ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: int ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Union[str, Any] = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Optional[int] ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Dict ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: List[str] ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[Any] = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Optional[int] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Dict ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Optional[Any]: requires_backends(cls ,["""flax"""] )
345
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowercase : Union[str, Any] = "pt" elif is_tf_available(): _lowercase : int = "tf" else: _lowercase : Union[str, Any] = "jax" class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = PerceiverTokenizer _a = False def snake_case ( self : Optional[Any] )-> Optional[int]: super().setUp() lowerCamelCase__ : Optional[Any] =PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case ( self : str )-> Optional[int]: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def snake_case ( self : List[str], **lowerCamelCase : int )-> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase ) def snake_case ( self : List[Any], lowerCamelCase : List[str], lowerCamelCase : str=False, lowerCamelCase : Dict=20, lowerCamelCase : str=5 )-> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCamelCase__ : Optional[int] =[] for i in range(len(lowerCamelCase ) ): try: lowerCamelCase__ : List[Any] =tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any =list(filter(lambda lowerCamelCase : re.match(r'''^[ a-zA-Z]+$''', t[1] ), lowerCamelCase ) ) lowerCamelCase__ : Optional[int] =list(filter(lambda lowerCamelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase ), lowerCamelCase ) ) if max_length is not None and len(lowerCamelCase ) > max_length: lowerCamelCase__ : Tuple =toks[:max_length] if min_length is not None and len(lowerCamelCase ) < min_length and len(lowerCamelCase ) > 0: while len(lowerCamelCase ) < min_length: lowerCamelCase__ : int =toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : str =[t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Dict =tokenizer.decode(lowerCamelCase, clean_up_tokenization_spaces=lowerCamelCase ) if " " not in output_txt and len(lowerCamelCase ) > 1: lowerCamelCase__ : Optional[int] =( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase ) ) if with_prefix_space: lowerCamelCase__ : Tuple =''' ''' + output_txt lowerCamelCase__ : Union[str, Any] =tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase ) return output_txt, output_ids def snake_case ( self : str )-> Dict: lowerCamelCase__ : int =self.perceiver_tokenizer lowerCamelCase__ : List[Any] ='''Unicode €.''' lowerCamelCase__ : List[Any] =tokenizer(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =[4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''], lowerCamelCase ) # decoding lowerCamelCase__ : str =tokenizer.decode(lowerCamelCase ) self.assertEqual(lowerCamelCase, '''[CLS]Unicode €.[SEP]''' ) lowerCamelCase__ : int =tokenizer('''e è é ê ë''' ) lowerCamelCase__ : int =[4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''], lowerCamelCase ) # decoding lowerCamelCase__ : str =tokenizer.decode(lowerCamelCase ) self.assertEqual(lowerCamelCase, '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ), '''[CLS]e è é ê ë[SEP]''' ) def snake_case ( self : str )-> List[Any]: lowerCamelCase__ : Tuple =self.perceiver_tokenizer lowerCamelCase__ : str =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowerCamelCase__ : int =[4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on lowerCamelCase__ : int =tokenizer(lowerCamelCase, padding=lowerCamelCase, return_tensors=lowerCamelCase ) self.assertIsInstance(lowerCamelCase, lowerCamelCase ) if FRAMEWORK != "jax": lowerCamelCase__ : Optional[Any] =list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : Dict =list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) self.assertEqual((2, 38), batch.input_ids.shape ) self.assertEqual((2, 38), batch.attention_mask.shape ) def snake_case ( self : Any )-> Any: lowerCamelCase__ : Tuple =self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase__ : str =tokenizer(lowerCamelCase, padding=lowerCamelCase, return_tensors=lowerCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''', lowerCamelCase ) self.assertIn('''attention_mask''', lowerCamelCase ) self.assertNotIn('''decoder_input_ids''', lowerCamelCase ) self.assertNotIn('''decoder_attention_mask''', lowerCamelCase ) def snake_case ( self : List[Any] )-> List[Any]: lowerCamelCase__ : List[str] =self.perceiver_tokenizer lowerCamelCase__ : int =[ '''Summary of the text.''', '''Another summary.''', ] lowerCamelCase__ : Any =tokenizer( text_target=lowerCamelCase, max_length=32, padding='''max_length''', truncation=lowerCamelCase, return_tensors=lowerCamelCase ) self.assertEqual(32, targets['''input_ids'''].shape[1] ) def snake_case ( self : Optional[Any] )-> Any: # safety check on max_len default value so we are sure the test works lowerCamelCase__ : List[Any] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : List[str] =tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] =''' He is very happy, UNwant\u00E9d,running''' lowerCamelCase__ : int =tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) lowerCamelCase__ : Any =tokenizer.__class__.from_pretrained(lowerCamelCase ) lowerCamelCase__ : str =after_tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) shutil.rmtree(lowerCamelCase ) lowerCamelCase__ : List[str] =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Tuple =tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] =''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowerCamelCase__ : int =tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowerCamelCase__ : str =tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =tokenizer.__class__.from_pretrained(lowerCamelCase ) lowerCamelCase__ : Dict =after_tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) self.assertIn('''new_additional_special_token''', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowerCamelCase__ : List[Any] =tokenizer.__class__.from_pretrained(lowerCamelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(lowerCamelCase ) def snake_case ( self : List[str] )-> Union[str, Any]: lowerCamelCase__ : Optional[Any] =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase ) with open(os.path.join(lowerCamelCase, '''special_tokens_map.json''' ), encoding='''utf-8''' ) as json_file: lowerCamelCase__ : List[Any] =json.load(lowerCamelCase ) with open(os.path.join(lowerCamelCase, '''tokenizer_config.json''' ), encoding='''utf-8''' ) as json_file: lowerCamelCase__ : Tuple =json.load(lowerCamelCase ) lowerCamelCase__ : Dict =[F'''<extra_id_{i}>''' for i in range(125 )] lowerCamelCase__ : Dict =added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowerCamelCase__ : Optional[Any] =added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCamelCase, '''special_tokens_map.json''' ), '''w''', encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase, lowerCamelCase ) with open(os.path.join(lowerCamelCase, '''tokenizer_config.json''' ), '''w''', encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase, lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Union[str, Any] =tokenizer_class.from_pretrained( lowerCamelCase, ) self.assertIn( '''an_additional_special_token''', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[int] =added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''', lstrip=lowerCamelCase )] lowerCamelCase__ : Any =tokenizer_class.from_pretrained( lowerCamelCase, additional_special_tokens=lowerCamelCase, ) self.assertIn('''a_new_additional_special_token''', tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ), ) def snake_case ( self : int )-> Optional[Any]: lowerCamelCase__ : int =self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ), '''�''' ) def snake_case ( self : Any )-> Union[str, Any]: pass def snake_case ( self : Union[str, Any] )-> int: pass def snake_case ( self : int )-> str: pass def snake_case ( self : Optional[Any] )-> List[str]: pass def snake_case ( self : str )-> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens lowerCamelCase__ : List[str] =self.get_tokenizers(fast=lowerCamelCase, do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Dict =['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] lowerCamelCase__ : Any =tokenizer.convert_tokens_to_string(lowerCamelCase ) self.assertIsInstance(lowerCamelCase, lowerCamelCase )
355
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowercase : Tuple = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : List[Any] )-> Dict: lowerCamelCase__ : str =VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCamelCase__ : Dict =torch.manual_seed(0 ) lowerCamelCase__ : str =pipe( image=lowerCamelCase, generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=50, output_type='''numpy''', ).images lowerCamelCase__ : Dict =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : List[Any] =np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
272
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a__ ( A_ = True, *A_, **A_ ): '''simple docstring''' if not is_tqdm_available(): raise ImportError("""Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __magic_name__ = False if main_process_only: __magic_name__ = PartialState().local_process_index == 0 return _tqdm(*__UpperCamelCase, **__UpperCamelCase, disable=__UpperCamelCase )
88
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @slow def _a ( self ): UpperCamelCase_: Optional[int] = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=_lowerCamelCase ).to(_lowerCamelCase ) UpperCamelCase_: Dict = AutoTokenizer.from_pretrained('google/mt5-small' ) UpperCamelCase_: Dict = tokenizer('Hello there' , return_tensors='pt' ).input_ids UpperCamelCase_: Optional[Any] = tokenizer('Hi I am' , return_tensors='pt' ).input_ids UpperCamelCase_: int = model(input_ids.to(_lowerCamelCase ) , labels=labels.to(_lowerCamelCase ) ).loss UpperCamelCase_: Tuple = -(labels.shape[-1] * loss.item()) UpperCamelCase_: Any = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
365
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() A_ : str = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] A_ : Optional[int] = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: Dict = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks UpperCamelCase_: Tuple = int(re.match(R'.*layer_(\d*).*' , UpperCAmelCase__ )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def snake_case (UpperCAmelCase__ ) -> List[str]: if dtype == torch.bool: return 1 / 8 UpperCamelCase_: Optional[Any] = re.search(R'[^\d](\d+)$' , str(UpperCAmelCase__ ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) UpperCamelCase_: List[Any] = int(bit_search.groups()[0] ) return bit_size // 8 def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: # Construct model if bloom_config_file == "": UpperCamelCase_: List[str] = BloomConfig() else: UpperCamelCase_: List[str] = BloomConfig.from_json_file(UpperCAmelCase__ ) if shard_model: UpperCamelCase_: str = os.listdir(UpperCAmelCase__ ) UpperCamelCase_: List[str] = sorted(filter(lambda UpperCAmelCase__ : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase__ ) ) UpperCamelCase_: Optional[int] = {'weight_map': {}, 'metadata': {}} UpperCamelCase_: str = 0 UpperCamelCase_: Optional[Any] = None UpperCamelCase_: int = BloomConfig() for j, file in enumerate(UpperCAmelCase__ ): print('Processing file: {}'.format(UpperCAmelCase__ ) ) UpperCamelCase_: Tuple = None for i in range(UpperCAmelCase__ ): # load all TP files UpperCamelCase_: List[Any] = file.replace('model_00' , F'''model_0{i}''' ) UpperCamelCase_: List[str] = torch.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , map_location='cpu' ) # Rename keys in the transformers names UpperCamelCase_: Optional[int] = list(temp.keys() ) for key in keys: UpperCamelCase_: List[Any] = temp.pop(UpperCAmelCase__ ) if tensors is None: UpperCamelCase_: Dict = temp else: for key in tensors.keys(): if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCamelCase_: List[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCamelCase_: Dict = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCamelCase_: Optional[int] = tensors[key] / pretraining_tp torch.save( UpperCAmelCase__ , os.path.join( UpperCAmelCase__ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): UpperCamelCase_: int = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: UpperCamelCase_: Dict = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase__ ) ).zfill(5 ) ) UpperCamelCase_: Union[str, Any] = BloomConfig() UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + CONFIG_NAME UpperCamelCase_: Optional[int] = total_size with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCAmelCase__ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: UpperCamelCase_: Tuple = json.dumps(UpperCAmelCase__ , indent=2 , sort_keys=UpperCAmelCase__ ) + '\n' f.write(UpperCAmelCase__ ) else: UpperCamelCase_: Optional[Any] = BloomModel(UpperCAmelCase__ ) UpperCamelCase_: Tuple = os.listdir(UpperCAmelCase__ ) UpperCamelCase_: Tuple = sorted(filter(lambda UpperCAmelCase__ : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase__ ) ) UpperCamelCase_: Tuple = None for i, file in enumerate(UpperCAmelCase__ ): UpperCamelCase_: Union[str, Any] = None for i in range(UpperCAmelCase__ ): # load all TP files UpperCamelCase_: Any = file.replace('model_00' , F'''model_0{i}''' ) UpperCamelCase_: Union[str, Any] = torch.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , map_location='cpu' ) # Rename keys in the transformers names UpperCamelCase_: Dict = list(temp.keys() ) for key in keys: UpperCamelCase_: Any = temp.pop(UpperCAmelCase__ ) if tensors is None: UpperCamelCase_: Any = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCamelCase_: int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCamelCase_: Optional[int] = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCamelCase_: Tuple = tensors[key] / pretraining_tp UpperCamelCase_: Any = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: UpperCamelCase_: Any = set(other_keys.missing_keys ) else: UpperCamelCase_: int = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: UpperCamelCase_: Tuple = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCAmelCase__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) A_ : Any = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
292
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _UpperCAmelCase = None _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } _UpperCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } _UpperCAmelCase = """▁""" # Segments (not really needed) _UpperCAmelCase = 0 _UpperCAmelCase = 1 _UpperCAmelCase = 2 _UpperCAmelCase = 3 _UpperCAmelCase = 4 class a ( _UpperCAmelCase ): UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : List[Any] = 'left' UpperCamelCase : int = XLNetTokenizer def __init__( self : Optional[int] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Dict=False , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Any=False , lowerCAmelCase : Dict="<s>" , lowerCAmelCase : Any="</s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : Optional[Any]="<sep>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : List[Any]="<cls>" , lowerCAmelCase : Dict="<mask>" , lowerCAmelCase : List[str]=["<eop>", "<eod>"] , **lowerCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: Tuple =3 SCREAMING_SNAKE_CASE_: List[Any] =do_lower_case SCREAMING_SNAKE_CASE_: Optional[Any] =remove_space SCREAMING_SNAKE_CASE_: Optional[int] =keep_accents SCREAMING_SNAKE_CASE_: List[str] =vocab_file SCREAMING_SNAKE_CASE_: int =False if not self.vocab_file else True def lowerCamelCase__ ( self : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =[self.sep_token_id] SCREAMING_SNAKE_CASE_: Tuple =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : int = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =[self.sep_token_id] SCREAMING_SNAKE_CASE_: List[Any] =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_: List[str] =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
173
import collections import importlib.util import os import re from pathlib import Path a_ = '''src/transformers''' # Matches is_xxx_available() a_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: a_ = re.compile(r'''^\s*try:''') # Catches a line with else: a_ = re.compile(r'''^\s*else:''') def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if _re_test_backend.search(UpperCamelCase_ ) is None: return None lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )] backends.sort() return "_and_".join(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = 0 while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase_ ): lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0] lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ ) if single_line_import_search is not None: lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase__ = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_between_brackets.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_quote_object.search(UpperCamelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ = [] while ( line_index < len(UpperCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" def find_duplicates(UpperCamelCase_ : str ): return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ = [] for key in import_dict_objects.keys(): lowerCAmelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowerCAmelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [] for root, _, files in os.walk(UpperCamelCase_ ): if "__init__.py" in files: lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" ) lowerCAmelCase__ = parse_init(UpperCamelCase_ ) if objects is not None: lowerCAmelCase__ = analyze_results(*UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > 0: raise ValueError("\n\n".join(UpperCamelCase_ ) ) def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = [] for path, directories, files in os.walk(UpperCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(UpperCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(os.path.sep , "." ) submodules.append(UpperCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(UpperCamelCase_ ) return submodules a_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _a ( ) -> int: """simple docstring""" lowerCAmelCase__ = importlib.util.spec_from_file_location( "transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
340
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A_ ( snake_case_ : int ): '''simple docstring''' UpperCamelCase : int = int(number**0.5 ) return number == sq * sq def A_ ( snake_case_ : int ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ): '''simple docstring''' UpperCamelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCamelCase : int = x_den * y_den * z_den UpperCamelCase : int = gcd(snake_case_ ,snake_case_ ) top //= hcf bottom //= hcf return top, bottom def A_ ( snake_case_ : int = 3_5 ): '''simple docstring''' UpperCamelCase : set = set() UpperCamelCase : int UpperCamelCase : Fraction = Fraction(0 ) UpperCamelCase : tuple[int, int] for x_num in range(1 ,order + 1 ): for x_den in range(x_num + 1 ,order + 1 ): for y_num in range(1 ,order + 1 ): for y_den in range(y_num + 1 ,order + 1 ): # n=1 UpperCamelCase : Union[str, Any] = x_num * y_den + x_den * y_num UpperCamelCase : Any = x_den * y_den UpperCamelCase : List[str] = gcd(snake_case_ ,snake_case_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase : Union[str, Any] = add_three( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) unique_s.add(snake_case_ ) # n=2 UpperCamelCase : str = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCamelCase : int = x_den * x_den * y_den * y_den if is_sq(snake_case_ ) and is_sq(snake_case_ ): UpperCamelCase : Optional[Any] = int(sqrt(snake_case_ ) ) UpperCamelCase : int = int(sqrt(snake_case_ ) ) UpperCamelCase : Optional[int] = gcd(snake_case_ ,snake_case_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase : Union[str, Any] = add_three( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) unique_s.add(snake_case_ ) # n=-1 UpperCamelCase : Optional[Any] = x_num * y_num UpperCamelCase : Any = x_den * y_num + x_num * y_den UpperCamelCase : Optional[Any] = gcd(snake_case_ ,snake_case_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase : List[str] = add_three( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) unique_s.add(snake_case_ ) # n=2 UpperCamelCase : Union[str, Any] = x_num * x_num * y_num * y_num UpperCamelCase : List[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(snake_case_ ) and is_sq(snake_case_ ): UpperCamelCase : List[str] = int(sqrt(snake_case_ ) ) UpperCamelCase : List[str] = int(sqrt(snake_case_ ) ) UpperCamelCase : str = gcd(snake_case_ ,snake_case_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase : Optional[Any] = add_three( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) unique_s.add(snake_case_ ) for num, den in unique_s: total += Fraction(snake_case_ ,snake_case_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F'''{solution() = }''')
27
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A_ ( snake_case_ : Dataset ,snake_case_ : Dict[str, str] ): '''simple docstring''' UpperCamelCase : List[str] = args.log_outputs UpperCamelCase : Tuple = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric UpperCamelCase : List[Any] = load_metric("""wer""" ) UpperCamelCase : Any = load_metric("""cer""" ) # compute metrics UpperCamelCase : str = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) UpperCamelCase : Dict = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) # print & log results UpperCamelCase : Optional[int] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case_ ) with open(f'{dataset_id}_eval_results.txt' ,"""w""" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCamelCase : Optional[Any] = f'log_{dataset_id}_predictions.txt' UpperCamelCase : str = f'log_{dataset_id}_targets.txt' with open(snake_case_ ,"""w""" ) as p, open(snake_case_ ,"""w""" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] ,snake_case_ : Tuple ): p.write(f'{i}' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(f'{i}' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(snake_case_ ,with_indices=snake_case_ ) def A_ ( snake_case_ : str ): '''simple docstring''' UpperCamelCase : Dict = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCamelCase : str = re.sub(snake_case_ ,"""""" ,text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCamelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: UpperCamelCase : Tuple = """ """.join(text.split(snake_case_ ) ) return text def A_ ( snake_case_ : str ): '''simple docstring''' # load dataset UpperCamelCase : Union[str, Any] = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCamelCase : Dict = feature_extractor.sampling_rate # resample audio UpperCamelCase : Optional[Any] = dataset.cast_column("""audio""" ,Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: UpperCamelCase : int = 0 if torch.cuda.is_available() else -1 UpperCamelCase : Union[str, Any] = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Union[str, Any] ): UpperCamelCase : List[Any] = asr( batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s ) UpperCamelCase : Union[str, Any] = prediction["""text"""] UpperCamelCase : Optional[Any] = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples UpperCamelCase : Any = dataset.map(snake_case_ ,remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ ,snake_case_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) __A : Optional[Any] = parser.parse_args() main(args)
27
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCAmelCase = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class A : UpperCamelCase_ : int UpperCamelCase_ : Node | None class A : def __init__(self , lowerCAmelCase ): __lowercase= None for i in sorted(lowerCAmelCase , reverse=lowerCAmelCase ): __lowercase= Node(lowerCAmelCase , self.head ) def __iter__(self ): __lowercase= self.head while node: yield node.data __lowercase= node.next_node def __len__(self ): return sum(1 for _ in self ) def __str__(self ): return " -> ".join([str(lowerCAmelCase ) for node in self] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
295
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') lowerCAmelCase = parser.parse_args() if args.check_lib: lowerCAmelCase = importlib.import_module('''transformers''') lowerCAmelCase = Path(transformers_module.__file__).parent else: lowerCAmelCase = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
295
1
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP UpperCAmelCase_ : Dict = False try: UpperCAmelCase_ : Optional[Any] = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : str = None , _UpperCAmelCase : list = [] ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = choices UpperCAmelCase__ = prompt if sys.platform == "win32": UpperCAmelCase__ = """*""" else: UpperCAmelCase__ = """➔ """ def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : str = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _UpperCAmelCase ) else: forceWrite(self.choices[index] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ): """simple docstring""" if index == self.position: forceWrite(f''' {self.arrow_char} ''' ) self.write_choice(_UpperCAmelCase ) else: forceWrite(f''' {self.choices[index]}''' ) reset_cursor() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Direction , _UpperCAmelCase : int = 1 ): """simple docstring""" UpperCAmelCase__ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_UpperCAmelCase ) move_cursor(_UpperCAmelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_UpperCAmelCase )] for number in range(10 )] ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = int(chr(self.current_selection ) ) UpperCAmelCase__ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _UpperCAmelCase ) else: return else: return def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) UpperCAmelCase__ = default_choice for i in range(len(self.choices ) ): self.print_choice(_UpperCAmelCase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: UpperCAmelCase__ = int(builtins.input() ) except ValueError: UpperCAmelCase__ = default_choice else: UpperCAmelCase__ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_UpperCAmelCase , """\n""" ) return choice
364
'''simple docstring''' import os def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = len(grid[0] ) UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(n_rows - 3 ): UpperCAmelCase__ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] UpperCAmelCase__ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: UpperCAmelCase__ = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: UpperCAmelCase__ = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) UpperCAmelCase__ = max( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if max_product > largest: UpperCAmelCase__ = max_product return largest def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = [] with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) UpperCAmelCase__ = [[int(SCREAMING_SNAKE_CASE__ ) for i in grid[j]] for j in range(len(SCREAMING_SNAKE_CASE__ ) )] return largest_product(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(solution())
61
0
'''simple docstring''' def _lowerCamelCase ( lowercase : int , lowercase : int ) -> int: while a != 0: _a , _a = b % a, a return b def _lowerCamelCase ( lowercase : int , lowercase : int ) -> int: if gcd(_A , _A ) != 1: _a = F'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(_A ) _a , _a , _a = 1, 0, a _a , _a , _a = 0, 1, m while va != 0: _a = ua // va _a , _a , _a , _a , _a , _a = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
63
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def snake_case__ ( _A: str ) -> str: '''simple docstring''' if not sentence: return "" lowerCAmelCase = dict(zip(_A , _A ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
272
0
"""simple docstring""" from math import pow, sqrt def __UpperCAmelCase ( *lowercase ): """simple docstring""" _UpperCAmelCase = len(lowercase ) > 0 and all(value > 0.0 for value in values ) return result def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(lowercase ,lowercase ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(lowercase ,lowercase ,lowercase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(lowercase ,lowercase ,lowercase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a ,2 ) ,6 ) if validate(lowercase ,lowercase ,lowercase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a ,2 ) / molar_mass ,6 ) if validate(lowercase ,lowercase ,lowercase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
30
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : List[str] = False def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=99 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : str=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = TFMobileBertModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = TFMobileBertForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = TFMobileBertForPreTraining(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__lowerCAmelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : int ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 3_0522] self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 )
30
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any], lowerCamelCase : str, lowerCamelCase : Tuple=13, lowerCamelCase : List[str]=7, lowerCamelCase : Optional[int]=True, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=False, lowerCamelCase : Dict=True, lowerCamelCase : str=99, lowerCamelCase : Any=64, lowerCamelCase : int=5, lowerCamelCase : Dict=4, lowerCamelCase : Tuple=64, lowerCamelCase : Union[str, Any]="gelu", lowerCamelCase : List[str]=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : List[Any]=512, lowerCamelCase : List[Any]=16, lowerCamelCase : str=2, lowerCamelCase : str=0.02, lowerCamelCase : Dict=3, lowerCamelCase : Optional[int]=4, lowerCamelCase : Dict=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def lowercase__ ( self : str ): '''simple docstring''' return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return MPNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def lowercase__ ( self : str, lowerCamelCase : Any, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = MPNetModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model(__UpperCamelCase, __UpperCamelCase ) lowercase__ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Any, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = MPNetForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model( __UpperCamelCase, attention_mask=__UpperCamelCase, start_positions=__UpperCamelCase, end_positions=__UpperCamelCase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[Any], lowerCamelCase : Dict, lowerCamelCase : List[Any], lowerCamelCase : List[Any], lowerCamelCase : str, lowerCamelCase : Tuple, lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = MPNetForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model(__UpperCamelCase, attention_mask=__UpperCamelCase, labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = MPNetForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = model( __UpperCamelCase, attention_mask=__UpperCamelCase, labels=__UpperCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self : str, lowerCamelCase : Optional[int], lowerCamelCase : int, lowerCamelCase : Tuple, lowerCamelCase : List[str], lowerCamelCase : Any, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = MPNetForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model(__UpperCamelCase, attention_mask=__UpperCamelCase, labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowercase_ ,lowercase_ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = True def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = MPNetModelTester(self ) lowercase__ = ConfigTester(self, config_class=__UpperCamelCase, hidden_size=37 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*__UpperCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*__UpperCamelCase ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = MPNetModel.from_pretrained('''microsoft/mpnet-base''' ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) lowercase__ = model(__UpperCamelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape, __UpperCamelCase ) lowercase__ = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3], __UpperCamelCase, atol=1E-4 ) )
207
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _snake_case : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( lowercase_ ): def __init__( self :Dict , __UpperCamelCase :WhisperForConditionalGeneration , __UpperCamelCase :WhisperProcessor , __UpperCamelCase :AutoencoderKL , __UpperCamelCase :CLIPTextModel , __UpperCamelCase :CLIPTokenizer , __UpperCamelCase :UNetaDConditionModel , __UpperCamelCase :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __UpperCamelCase :StableDiffusionSafetyChecker , __UpperCamelCase :CLIPImageProcessor , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=__UpperCamelCase , speech_processor=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , feature_extractor=__UpperCamelCase , ) def lowerCamelCase ( self :Any , __UpperCamelCase :Optional[Union[str, int]] = "auto" ): if slice_size == "auto": A = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def lowerCamelCase ( self :Tuple ): self.enable_attention_slicing(__UpperCamelCase ) @torch.no_grad() def __call__( self :Optional[Any] , __UpperCamelCase :Any , __UpperCamelCase :Dict=1_60_00 , __UpperCamelCase :int = 5_12 , __UpperCamelCase :int = 5_12 , __UpperCamelCase :int = 50 , __UpperCamelCase :float = 7.5 , __UpperCamelCase :Optional[Union[str, List[str]]] = None , __UpperCamelCase :Optional[int] = 1 , __UpperCamelCase :float = 0.0 , __UpperCamelCase :Optional[torch.Generator] = None , __UpperCamelCase :Optional[torch.FloatTensor] = None , __UpperCamelCase :Optional[str] = "pil" , __UpperCamelCase :bool = True , __UpperCamelCase :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCamelCase :int = 1 , **__UpperCamelCase :Dict , ): A = self.speech_processor.feature_extractor( __UpperCamelCase , return_tensors="pt" , sampling_rate=__UpperCamelCase ).input_features.to(self.device ) A = self.speech_model.generate(__UpperCamelCase , max_length=48_00_00 ) A = self.speech_processor.tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase , normalize=__UpperCamelCase )[ 0 ] if isinstance(__UpperCamelCase , __UpperCamelCase ): A = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): A = len(__UpperCamelCase ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(__UpperCamelCase )}." ) # get prompt text embeddings A = self.tokenizer( __UpperCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A = text_input_ids[:, : self.tokenizer.model_max_length] A = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A, A, A = text_embeddings.shape A = text_embeddings.repeat(1 , __UpperCamelCase , 1 ) A = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A = 42 if negative_prompt is None: A = [""] * batch_size elif type(__UpperCamelCase ) is not type(__UpperCamelCase ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCamelCase )} !=" f" {type(__UpperCamelCase )}." ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): A = [negative_prompt] elif batch_size != len(__UpperCamelCase ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(__UpperCamelCase )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: A = negative_prompt A = text_input_ids.shape[-1] A = self.tokenizer( __UpperCamelCase , padding="max_length" , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="pt" , ) A = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A = uncond_embeddings.shape[1] A = uncond_embeddings.repeat(1 , __UpperCamelCase , 1 ) A = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="cpu" , dtype=__UpperCamelCase ).to( self.device ) else: A = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A = {} if accepts_eta: A = eta for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual A = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: A, A = noise_pred.chunk(2 ) A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A = 1 / 0.18_215 * latents A = self.vae.decode(__UpperCamelCase ).sample A = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
292
0
from string import ascii_uppercase a_ = {char: i for i, char in enumerate(ascii_uppercase)} a_ = dict(enumerate(ascii_uppercase)) def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): UpperCamelCase_ : Tuple = len(lowerCamelCase ) UpperCamelCase_ : List[str] = 0 while True: if x == i: UpperCamelCase_ : Dict = 0 if len(lowerCamelCase ) == len(lowerCamelCase ): break key += key[i] i += 1 return key def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): UpperCamelCase_ : Dict = '' UpperCamelCase_ : List[Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: UpperCamelCase_ : Dict = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): UpperCamelCase_ : str = '' UpperCamelCase_ : str = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: UpperCamelCase_ : Dict = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __lowercase ( ): UpperCamelCase_ : Tuple = 'THE GERMAN ATTACK' UpperCamelCase_ : Union[str, Any] = 'SECRET' UpperCamelCase_ : Dict = generate_key(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : Optional[Any] = cipher_text(lowerCamelCase , lowerCamelCase ) print(F"Encrypted Text = {s}" ) print(F"Original Text = {original_text(lowerCamelCase , lowerCamelCase )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
50
from __future__ import annotations import numpy as np def __lowercase ( lowerCamelCase : list[float] ): return np.maximum(0 , lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
50
1
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __UpperCamelCase : def __init__( self , __a , __a=14 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ): '''simple docstring''' __a : Union[str, Any] = parent __a : str = batch_size __a : Optional[int] = seq_length __a : Any = is_training __a : Tuple = use_token_type_ids __a : Optional[int] = use_input_mask __a : Optional[int] = use_labels __a : Dict = use_mc_token_ids __a : Union[str, Any] = vocab_size __a : Optional[Any] = hidden_size __a : Optional[int] = num_hidden_layers __a : List[str] = num_attention_heads __a : List[Any] = intermediate_size __a : int = hidden_act __a : List[str] = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : Any = max_position_embeddings __a : Union[str, Any] = type_vocab_size __a : int = type_sequence_label_size __a : Union[str, Any] = initializer_range __a : Optional[Any] = num_labels __a : List[str] = num_choices __a : Any = scope __a : List[Any] = self.vocab_size - 1 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_input_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Tuple = None if self.use_token_type_ids: __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Optional[int] = None if self.use_mc_token_ids: __a : Optional[Any] = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __a : List[Any] = None __a : Dict = None __a : Tuple = None if self.use_labels: __a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Any = ids_tensor([self.batch_size] , self.num_choices ) __a : Optional[int] = self.get_config() __a : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __UpperCAmelCase ( self ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a ): '''simple docstring''' __a : Optional[int] = CTRLModel(config=__a ) model.to(__a ) model.eval() model(__a , token_type_ids=__a , head_mask=__a ) model(__a , token_type_ids=__a ) __a : Any = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a ): '''simple docstring''' __a : Dict = CTRLLMHeadModel(__a ) model.to(__a ) model.eval() __a : List[str] = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Any = config_and_inputs __a : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def __UpperCAmelCase ( self , __a , __a , __a , __a , *__a ): '''simple docstring''' __a : Any = self.num_labels __a : Union[str, Any] = CTRLForSequenceClassification(__a ) model.to(__a ) model.eval() __a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : str = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () A_ = (CTRLLMHeadModel,) if is_torch_available() else () A_ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) A_ = True A_ = False A_ = False def __UpperCAmelCase ( self , __a , __a , __a , __a , __a ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = CTRLModelTester(self ) __a : str = ConfigTester(self , config_class=__a , n_embd=37 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Dict = CTRLModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def __UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__a ) __a : Union[str, Any] = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=__a ) # Legal the president is __a : List[Any] = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __a : List[str] = model.generate(__a , do_sample=__a ) self.assertListEqual(output_ids[0].tolist() , __a )
27
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] ): __a : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F"""{test_file} instead.""" ) __a : Tuple = components[-1] if not test_fn.endswith('py' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) __a : List[str] = components[:-1] + [test_fn.replace('.py' , '' )] __a : Optional[Any] = '.'.join(_SCREAMING_SNAKE_CASE ) return test_module_path def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : List[str] = get_module_path(_SCREAMING_SNAKE_CASE ) __a : Dict = importlib.import_module(_SCREAMING_SNAKE_CASE ) return test_module def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : List[str] = [] __a : List[str] = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : Any = [] __a : str = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): __a : int = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __a : Optional[Any] = getattr(_SCREAMING_SNAKE_CASE , 'all_model_classes' , [] ) if len(_SCREAMING_SNAKE_CASE ) > 0: test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : str = get_test_classes(_SCREAMING_SNAKE_CASE ) __a : Any = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Tuple = test_class() if hasattr(_SCREAMING_SNAKE_CASE , 'setUp' ): test.setUp() __a : List[Any] = None if hasattr(_SCREAMING_SNAKE_CASE , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __a : List[str] = test.model_tester.__class__ return model_tester def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] ): __a : str = get_test_classes(_SCREAMING_SNAKE_CASE ) __a : int = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] ): __a : List[Any] = get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = [] for test_class in test_classes: __a : Any = get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) if tester_class is not None: tester_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): __a : str = get_test_classes(_SCREAMING_SNAKE_CASE ) __a : int = {test_class: get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) for test_class in test_classes} return test_tester_mapping def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): __a : Optional[Any] = get_model_classes(_SCREAMING_SNAKE_CASE ) __a : Optional[int] = { model_class: get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_test_mapping def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): __a : Optional[Any] = get_model_classes(_SCREAMING_SNAKE_CASE ) __a : str = { model_class: get_tester_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_to_tester_mapping def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o.__name__ elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): return [to_json(_SCREAMING_SNAKE_CASE ) for x in o] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {to_json(_SCREAMING_SNAKE_CASE ): to_json(_SCREAMING_SNAKE_CASE ) for k, v in o.items()} else: return o
27
1
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = MvpTokenizer __lowerCAmelCase = MvpTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = filter_roberta_detectors def lowerCamelCase_ ( self : List[str] ): """simple docstring""" super().setUp() UpperCamelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) UpperCamelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCamelCase = {"""unk_token""": """<unk>"""} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str , **lowerCamelCase_ : Optional[int] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[Any] , **lowerCamelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str ): """simple docstring""" return "lower newer", "lower newer" @cached_property def lowerCamelCase_ ( self : str ): """simple docstring""" return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(lowerCamelCase_ , max_length=len(lowerCamelCase_ ) , padding=lowerCamelCase_ , return_tensors="""pt""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Test that special tokens are reset @require_torch def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , lowerCamelCase_ ) self.assertIn("""attention_mask""" , lowerCamelCase_ ) self.assertNotIn("""labels""" , lowerCamelCase_ ) self.assertNotIn("""decoder_attention_mask""" , lowerCamelCase_ ) @require_torch def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(text_target=lowerCamelCase_ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , return_tensors="""pt""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = ["""A long paragraph for summarization."""] UpperCamelCase = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(lowerCamelCase_ , text_target=lowerCamelCase_ , return_tensors="""pt""" ) UpperCamelCase = inputs["""input_ids"""] UpperCamelCase = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = """A, <mask> AllenNLP sentence.""" UpperCamelCase = tokenizer_r.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) UpperCamelCase = tokenizer_p.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCamelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowerCamelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
362
def lowercase( UpperCamelCase_ ) -> Tuple: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = len(UpperCamelCase_ ) for i in range(n - 1 ): for j in range(i + 1 , UpperCamelCase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' if len(UpperCamelCase_ ) <= 1: return arr, 0 UpperCamelCase = len(UpperCamelCase_ ) // 2 UpperCamelCase = arr[0:mid] UpperCamelCase = arr[mid:] UpperCamelCase , UpperCamelCase = count_inversions_recursive(UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = count_inversions_recursive(UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = _count_cross_inversions(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = UpperCamelCase = UpperCamelCase = 0 while i < len(UpperCamelCase_ ) and j < len(UpperCamelCase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(UpperCamelCase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(UpperCamelCase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowercase( ) -> List[str]: '''simple docstring''' UpperCamelCase = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) UpperCamelCase = count_inversions_bf(UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = count_inversions_recursive(UpperCamelCase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , UpperCamelCase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() UpperCamelCase = count_inversions_bf(UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = count_inversions_recursive(UpperCamelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , UpperCamelCase_ ) # an empty list should also have zero inversions UpperCamelCase = [] UpperCamelCase = count_inversions_bf(UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = count_inversions_recursive(UpperCamelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , UpperCamelCase_ ) if __name__ == "__main__": main()
165
0
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home snake_case_ = HUGGINGFACE_HUB_CACHE snake_case_ = 'config.json' snake_case_ = 'diffusion_pytorch_model.bin' snake_case_ = 'diffusion_flax_model.msgpack' snake_case_ = 'model.onnx' snake_case_ = 'diffusion_pytorch_model.safetensors' snake_case_ = 'weights.pb' snake_case_ = 'https://huggingface.co' snake_case_ = default_cache_path snake_case_ = 'diffusers_modules' snake_case_ = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) snake_case_ = ['fp16', 'non-ema'] snake_case_ = '.self_attn'
24
"""simple docstring""" from collections import namedtuple _a = namedtuple('from_to', 'from_ to') _a = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0454, 264.172), 'cubicyard': from_to(0.7_6455, 1.3_0795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.0_0023_6588, 4226.75), } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ", ".join(__lowerCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ", ".join(__lowerCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
61
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[int]=False ) -> Any: UpperCAmelCase_ = OmegaConf.load(__UpperCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(__UpperCamelCase ) ) ) return config def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[int]=None ) -> Dict: if conf_path is None: UpperCAmelCase_ = '''./model_checkpoints/vqgan_only.yaml''' UpperCAmelCase_ = load_config(__UpperCamelCase , display=__UpperCamelCase ) UpperCAmelCase_ = VQModel(**config.model.params ) if ckpt_path is None: UpperCAmelCase_ = '''./model_checkpoints/vqgan_only.pt''' UpperCAmelCase_ = torch.load(__UpperCamelCase , map_location=__UpperCamelCase ) if ".ckpt" in ckpt_path: UpperCAmelCase_ = sd['''state_dict'''] model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) model.to(__UpperCamelCase ) del sd return model def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] ) -> int: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = model.encode(__UpperCamelCase ) print(f'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) UpperCAmelCase_ = model.decode(__UpperCamelCase ) return xrec def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ = string.rsplit('''.''' , 1 ) if reload: UpperCAmelCase_ = importlib.import_module(__UpperCamelCase ) importlib.reload(__UpperCamelCase ) return getattr(importlib.import_module(__UpperCamelCase , package=__UpperCamelCase ) , cls ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[Any]=True ) -> List[str]: UpperCAmelCase_ = instantiate_from_config(__UpperCamelCase ) if sd is not None: model.load_state_dict(__UpperCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] ) -> Dict: # load the specified checkpoint if ckpt: UpperCAmelCase_ = torch.load(__UpperCamelCase , map_location='''cpu''' ) UpperCAmelCase_ = pl_sd['''global_step'''] print(f'loaded model from global step {global_step}.' ) else: UpperCAmelCase_ = {'''state_dict''': None} UpperCAmelCase_ = None UpperCAmelCase_ = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=__UpperCamelCase , eval_mode=__UpperCamelCase )['''model'''] return model, global_step
177
import baseaa def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> bytes: return baseaa.baaencode(string.encode('''utf-8''' ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : bytes ) -> str: return baseaa.baadecode(__UpperCamelCase ).decode('''utf-8''' ) if __name__ == "__main__": _lowerCamelCase = 'Hello World!' _lowerCamelCase = baseaa_encode(test) print(encoded) _lowerCamelCase = baseaa_decode(encoded) print(decoded)
177
1
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __a = logging.get_logger(__name__) def a ( snake_case__: Optional[int] , snake_case__: Dict , snake_case__: int , snake_case__: List[str]=None , snake_case__: List[Any]=None ): '''simple docstring''' # Recurse if needed if "." in tensor_name: lowercase_ = tensor_name.split('''.''' ) for split in splits[:-1]: lowercase_ = getattr(snake_case__ , snake_case__ ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) lowercase_ = new_module lowercase_ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) lowercase_ = tensor_name in module._buffers lowercase_ = getattr(snake_case__ , snake_case__ ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) lowercase_ = False lowercase_ = False if is_buffer or not is_bitsandbytes_available(): lowercase_ = False lowercase_ = False else: lowercase_ = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowercase_ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowercase_ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowercase_ = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): lowercase_ = value.to('''cpu''' ) if value.dtype == torch.inta: lowercase_ = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: lowercase_ = torch.tensor(snake_case__ , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None: lowercase_ = new_value.T lowercase_ = old_value.__dict__ if is_abit: lowercase_ = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) elif is_abit: lowercase_ = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) lowercase_ = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(snake_case__ ) ) else: if value is None: lowercase_ = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): lowercase_ = value.to(snake_case__ ) else: lowercase_ = torch.tensor(snake_case__ , device=snake_case__ ) if is_buffer: lowercase_ = new_value else: lowercase_ = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad ) lowercase_ = new_value def a ( snake_case__: str , snake_case__: Union[str, Any]=None , snake_case__: Any=None , snake_case__: List[str]=None , snake_case__: Optional[Any]=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: lowercase_ = [] current_key_name.append(snake_case__ ) if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(snake_case__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case__ , snake_case__ ): lowercase_ , lowercase_ = module.weight.shape else: lowercase_ = module.in_features lowercase_ = module.out_features if quantization_config.quantization_method() == "llm_int8": lowercase_ = bnb.nn.LinearabitLt( snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowercase_ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowercase_ = bnb.nn.Linearabit( snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowercase_ = True # Store the module class in case we need to transpose the weight later lowercase_ = type(snake_case__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case__ ) if len(list(module.children() ) ) > 0: lowercase_ , lowercase_ = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def a ( snake_case__: Any , snake_case__: Any=None , snake_case__: Union[str, Any]=None , snake_case__: str=None ): '''simple docstring''' lowercase_ = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert lowercase_ , lowercase_ = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def a ( *snake_case__: str , **snake_case__: Dict ): '''simple docstring''' warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , snake_case__ , ) return replace_with_bnb_linear(*snake_case__ , **snake_case__ ) def a ( *snake_case__: Any , **snake_case__: List[Any] ): '''simple docstring''' warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , snake_case__ , ) return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ ) def a ( snake_case__: Optional[Any] ): '''simple docstring''' lowercase_ = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowercase_ = find_tied_parameters(snake_case__ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__ ): lowercase_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase_ = sum(snake_case__ , [] ) lowercase_ = len(snake_case__ ) > 0 # Check if it is a base model lowercase_ = not hasattr(snake_case__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase_ = list(model.named_children() ) lowercase_ = [list_modules[-1][0]] # add last module together with tied weights lowercase_ = set(snake_case__ ) - set(snake_case__ ) lowercase_ = list(set(snake_case__ ) ) + list(snake_case__ ) # remove ".weight" from the keys lowercase_ = ['''.weight''', '''.bias'''] lowercase_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase_ = name.replace(snake_case__ , '''''' ) filtered_module_names.append(snake_case__ ) return filtered_module_names
30
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __a = logging.get_logger(__name__) class lowercase__( UpperCAmelCase ): """simple docstring""" a :Union[str, Any] = 'upernet' def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : str=5_1_2 , SCREAMING_SNAKE_CASE_ : Tuple=0.02 , SCREAMING_SNAKE_CASE_ : Optional[Any]=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : Tuple=0.4 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_8_4 , SCREAMING_SNAKE_CASE_ : str=2_5_6 , SCREAMING_SNAKE_CASE_ : Dict=1 , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : str=2_5_5 , **SCREAMING_SNAKE_CASE_ : str , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase_ = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = backbone_config.get('''model_type''' ) lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) lowercase_ = backbone_config lowercase_ = hidden_size lowercase_ = initializer_range lowercase_ = pool_scales lowercase_ = use_auxiliary_head lowercase_ = auxiliary_loss_weight lowercase_ = auxiliary_in_channels lowercase_ = auxiliary_channels lowercase_ = auxiliary_num_convs lowercase_ = auxiliary_concat_input lowercase_ = loss_ignore_index def _lowercase ( self : List[str] ) -> List[str]: lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.backbone_config.to_dict() lowercase_ = self.__class__.model_type return output
30
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : str = logging.get_logger(__name__) A : Union[str, Any] = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class lowerCamelCase (snake_case_ ): """simple docstring""" lowerCamelCase__ = '''audio-spectrogram-transformer''' def __init__( self : Any , __magic_name__ : List[Any]=768 , __magic_name__ : Optional[Any]=12 , __magic_name__ : Tuple=12 , __magic_name__ : Union[str, Any]=3_072 , __magic_name__ : Dict="gelu" , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : str=1e-12 , __magic_name__ : int=16 , __magic_name__ : List[Any]=True , __magic_name__ : str=10 , __magic_name__ : str=10 , __magic_name__ : List[str]=1_024 , __magic_name__ : Tuple=128 , **__magic_name__ : List[str] , ) -> List[Any]: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = frequency_stride SCREAMING_SNAKE_CASE_ = time_stride SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = num_mel_bins
353
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : int=100 , __magic_name__ : Optional[Any]=13 , __magic_name__ : Dict=30 , __magic_name__ : Tuple=2 , __magic_name__ : str=3 , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : Union[str, Any]=32 , __magic_name__ : Optional[int]=4 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Any="gelu" , __magic_name__ : int=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Optional[int]=10 , __magic_name__ : Tuple=0.02 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=None , __magic_name__ : Tuple=[0, 1, 2, 3] , ) -> List[str]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = 100 SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = out_indices SCREAMING_SNAKE_CASE_ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ = num_patches + 1 def __A ( self : Any ) -> int: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self : Dict ) -> Optional[int]: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __A ( self : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = BeitModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str ) -> int: SCREAMING_SNAKE_CASE_ = BeitForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __A ( self : Dict , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = BeitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = BeitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : Tuple , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int ) -> int: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = BeitModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def __A ( self : Dict ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __A ( self : List[str] ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __A ( self : str ) -> List[str]: pass def __A ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __A ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __A ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def __A ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) def __A ( self : int ) -> Optional[int]: if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__magic_name__ ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__magic_name__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.gradient_checkpointing_enable() model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = _config_zero_init(__magic_name__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __A ( self : int ) -> Optional[int]: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = BeitModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : List[Any] ) -> str: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __A ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).pixel_values.to(__magic_name__ ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE_ = torch.ones((1, 196) , dtype=torch.bool ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(pixel_values=__magic_name__ , bool_masked_pos=__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __magic_name__ , atol=1e-2 ) ) @slow def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = 281 self.assertEqual(logits.argmax(-1 ).item() , __magic_name__ ) @slow def __A ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = 2_396 self.assertEqual(logits.argmax(-1 ).item() , __magic_name__ ) @slow def __A ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE_ = model.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = BeitImageProcessor(do_resize=__magic_name__ , size=640 , do_center_crop=__magic_name__ ) SCREAMING_SNAKE_CASE_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=__magic_name__ , ) else: SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=__magic_name__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1e-4 ) ) @slow def __A ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE_ = model.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = BeitImageProcessor(do_resize=__magic_name__ , size=640 , do_center_crop=__magic_name__ ) SCREAMING_SNAKE_CASE_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ , target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __magic_name__ )
305
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : str = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """pix2struct_text_model""" UpperCAmelCase__ = ["""past_key_values"""] UpperCAmelCase__ = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , UpperCAmelCase : Any=50244 , UpperCAmelCase : Union[str, Any]=768 , UpperCAmelCase : List[Any]=64 , UpperCAmelCase : str=2048 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Tuple=32 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : List[Any]=1e-6 , UpperCAmelCase : List[str]=1.0 , UpperCAmelCase : Any="gelu_new" , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Dict=False , UpperCAmelCase : List[str]=True , **UpperCAmelCase : Optional[int] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Optional[int] = d_kv lowerCamelCase__ : Union[str, Any] = d_ff lowerCamelCase__ : Dict = num_layers lowerCamelCase__ : Tuple = num_heads lowerCamelCase__ : str = relative_attention_num_buckets lowerCamelCase__ : Optional[Any] = relative_attention_max_distance lowerCamelCase__ : Tuple = dropout_rate lowerCamelCase__ : str = layer_norm_epsilon lowerCamelCase__ : str = initializer_factor lowerCamelCase__ : Optional[Any] = use_cache lowerCamelCase__ : Dict = eos_token_id lowerCamelCase__ : Dict = decoder_start_token_id # for backwards compatibility lowerCamelCase__ : Tuple = dense_act_fn super().__init__( pad_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , is_decoder=UpperCAmelCase , **UpperCAmelCase , ) @classmethod def A_ ( cls : Tuple , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : str ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": lowerCamelCase__ : Union[str, Any] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """pix2struct_vision_model""" def __init__( self : Optional[int] , UpperCAmelCase : int=768 , UpperCAmelCase : Optional[Any]=768 , UpperCAmelCase : Optional[Any]=2048 , UpperCAmelCase : str=64 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : Any="gelu_new" , UpperCAmelCase : List[Any]=1e-6 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Union[str, Any]=1e-10 , UpperCAmelCase : List[Any]=1.0 , UpperCAmelCase : Optional[int]=4096 , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : Union[str, Any]=128 , **UpperCAmelCase : List[str] , ) -> Tuple: super().__init__(**UpperCAmelCase ) lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Any = patch_embed_hidden_size lowerCamelCase__ : Any = d_ff lowerCamelCase__ : int = dropout_rate lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Optional[int] = initializer_factor lowerCamelCase__ : int = attention_dropout lowerCamelCase__ : str = layer_norm_eps lowerCamelCase__ : List[Any] = dense_act_fn lowerCamelCase__ : int = seq_len lowerCamelCase__ : str = relative_attention_num_buckets lowerCamelCase__ : List[str] = relative_attention_max_distance lowerCamelCase__ : Dict = d_kv @classmethod def A_ ( cls : Any , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : int ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": lowerCamelCase__ : Optional[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """pix2struct""" UpperCAmelCase__ = True def __init__( self : str , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : str=None , UpperCAmelCase : str=1.0 , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : List[Any]=True , **UpperCAmelCase : Dict , ) -> Optional[int]: super().__init__(tie_word_embeddings=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) if text_config is None: lowerCamelCase__ : List[Any] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: lowerCamelCase__ : Tuple = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) lowerCamelCase__ : List[Any] = PixaStructTextConfig(**UpperCAmelCase ) lowerCamelCase__ : List[Any] = PixaStructVisionConfig(**UpperCAmelCase ) lowerCamelCase__ : List[str] = self.text_config.decoder_start_token_id lowerCamelCase__ : int = self.text_config.pad_token_id lowerCamelCase__ : Any = self.text_config.eos_token_id lowerCamelCase__ : Optional[int] = initializer_factor lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : Union[str, Any] = self.initializer_range lowerCamelCase__ : Optional[Any] = self.initializer_range lowerCamelCase__ : List[str] = is_vqa @classmethod def A_ ( cls : Dict , UpperCAmelCase : PixaStructTextConfig , UpperCAmelCase : PixaStructVisionConfig , **UpperCAmelCase : Union[str, Any] ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase ) def A_ ( self : int ) -> Optional[int]: lowerCamelCase__ : Dict = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : List[Any] = self.text_config.to_dict() lowerCamelCase__ : Any = self.vision_config.to_dict() lowerCamelCase__ : List[Any] = self.__class__.model_type return output
50
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
1
def snake_case__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) - pat_len + 1 ): lowercase__ : List[Any] = True for j in range(SCREAMING_SNAKE_CASE_ ): if s[i + j] != pattern[j]: lowercase__ : List[str] = False break if match_found: position.append(SCREAMING_SNAKE_CASE_ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
365
import math import sys def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 lowercase__ : Tuple = [-1] * (number + 1) lowercase__ : Tuple = 0 for i in range(1 , number + 1 ): lowercase__ : Tuple = sys.maxsize lowercase__ : str = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): lowercase__ : List[Any] = 1 + answers[i - (j**2)] lowercase__ : str = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
216
0
"""simple docstring""" def lowercase ( __snake_case : Optional[Any] , __snake_case : Tuple ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowercase_ : str = str(bin(snake_case__ ) )[2:] # remove the leading "0b" lowercase_ : Union[str, Any] = str(bin(snake_case__ ) )[2:] # remove the leading "0b" lowercase_ : str = max(len(snake_case__ ) , len(snake_case__ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(snake_case__ ) , b_binary.zfill(snake_case__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
33
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging A_ : str = logging.get_logger(__name__) # TODO: upload to AWS A_ : Optional[int] = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class lowerCamelCase (A__ ): lowerCamelCase__ : Any = 'retribert' def __init__( self : Tuple , __UpperCAmelCase : Optional[Any]=3_0_5_2_2 , __UpperCAmelCase : Union[str, Any]=7_6_8 , __UpperCAmelCase : List[str]=8 , __UpperCAmelCase : Dict=1_2 , __UpperCAmelCase : List[Any]=3_0_7_2 , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : List[Any]=5_1_2 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : Any=1e-12 , __UpperCAmelCase : str=True , __UpperCAmelCase : List[Any]=1_2_8 , __UpperCAmelCase : Tuple=0 , **__UpperCAmelCase : Optional[int] , ) -> List[str]: super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = share_encoders SCREAMING_SNAKE_CASE__ = projection_dim
165
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowercase : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') __lowercase : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def lowerCamelCase (): __a : Optional[int] = cn.convert_to_negative(_SCREAMING_SNAKE_CASE ) # assert negative_img array for at least one True assert negative_img.any() def lowerCamelCase (): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(_SCREAMING_SNAKE_CASE , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCamelCase (): __a : Dict = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCamelCase (): __a : Any = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() __a : Optional[Any] = canny.canny(_SCREAMING_SNAKE_CASE ) # assert canny array for at least one True assert canny_array.any() def lowerCamelCase (): assert gg.gaussian_filter(_SCREAMING_SNAKE_CASE , 5 , sigma=0.9 ).all() def lowerCamelCase (): # laplace diagonals __a : List[Any] = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) __a : int = conv.img_convolve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).astype(_SCREAMING_SNAKE_CASE ) assert res.any() def lowerCamelCase (): assert med.median_filter(_SCREAMING_SNAKE_CASE , 3 ).any() def lowerCamelCase (): __a , __a : Optional[int] = sob.sobel_filter(_SCREAMING_SNAKE_CASE ) assert grad.any() and theta.any() def lowerCamelCase (): __a : Union[str, Any] = sp.make_sepia(_SCREAMING_SNAKE_CASE , 20 ) assert sepia.all() def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "digital_image_processing/image_data/lena_small.jpg" ): __a : str = bs.Burkes(imread(_SCREAMING_SNAKE_CASE , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "digital_image_processing/image_data/lena_small.jpg" , ): __a : str = rs.NearestNeighbour(imread(_SCREAMING_SNAKE_CASE , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCamelCase (): __a : Optional[int] = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __a : List[str] = imread(_SCREAMING_SNAKE_CASE , 0 ) # Test for get_neighbors_pixel function() return not None __a : Any = 0 __a : List[Any] = 0 __a : List[str] = image[x_coordinate][y_coordinate] __a : Union[str, Any] = lbp.get_neighbors_pixel( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __a : Any = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __a : Optional[int] = lbp.local_binary_value(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert lbp_image.any()
294
'''simple docstring''' import os def lowerCamelCase (): with open(os.path.dirname(_SCREAMING_SNAKE_CASE ) + '/p022_names.txt' ) as file: __a : List[Any] = str(file.readlines()[0] ) __a : str = names.replace('"' , '' ).split(',' ) names.sort() __a : Union[str, Any] = 0 __a : Tuple = 0 for i, name in enumerate(_SCREAMING_SNAKE_CASE ): for letter in name: name_score += ord(_SCREAMING_SNAKE_CASE ) - 64 total_score += (i + 1) * name_score __a : Any = 0 return total_score if __name__ == "__main__": print(solution())
294
1
"""simple docstring""" from functools import lru_cache @lru_cache def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
177
"""simple docstring""" from __future__ import annotations from fractions import Fraction def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> bool: return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> list[str]: lowercase__: str = [] lowercase__: str = 1_1 lowercase__: str = int('''1''' + '''0''' * digit_len ) for num in range(__UpperCAmelCase , __UpperCAmelCase ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(__UpperCAmelCase , __UpperCAmelCase ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 lowercase__: Dict = 1_0 return solutions def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 2 ) -> int: lowercase__: List[str] = 1.0 for fraction in fraction_list(__UpperCAmelCase ): lowercase__: List[str] = Fraction(__UpperCAmelCase ) result *= frac.denominator / frac.numerator return int(__UpperCAmelCase ) if __name__ == "__main__": print(solution())
177
1
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase="pt" ): lowercase__ : str = {'''add_prefix_space''': True} if isinstance(UpperCAmelCase , UpperCAmelCase ) and not line.startswith(''' ''' ) else {} lowercase__ : Any = padding_side return tokenizer( [line] , max_length=UpperCAmelCase , padding='''max_length''' if pad_to_max_length else None , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase , add_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , ): lowercase__ : List[str] = input_ids.ne(UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="train" , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="" , ) -> List[str]: super().__init__() lowercase__ : Optional[int] = Path(__lowerCAmelCase ).joinpath(type_path + '''.source''' ) lowercase__ : List[Any] = Path(__lowerCAmelCase ).joinpath(type_path + '''.target''' ) lowercase__ : str = self.get_char_lens(self.src_file ) lowercase__ : List[str] = max_source_length lowercase__ : Optional[Any] = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" lowercase__ : Any = tokenizer lowercase__ : Union[str, Any] = prefix if n_obs is not None: lowercase__ : Any = self.src_lens[:n_obs] lowercase__ : int = src_lang lowercase__ : Tuple = tgt_lang def __len__( self ) -> Optional[int]: return len(self.src_lens ) def __getitem__( self , __lowerCAmelCase ) -> Dict[str, torch.Tensor]: lowercase__ : Dict = index + 1 # linecache starts at 1 lowercase__ : int = self.prefix + linecache.getline(str(self.src_file ) , __lowerCAmelCase ).rstrip('''\n''' ) lowercase__ : List[str] = linecache.getline(str(self.tgt_file ) , __lowerCAmelCase ).rstrip('''\n''' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowerCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase__ : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer ) lowercase__ : Dict = self.tokenizer.generator if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer lowercase__ : Union[str, Any] = encode_line(__lowerCAmelCase , __lowerCAmelCase , self.max_source_length , '''right''' ) lowercase__ : Dict = encode_line(__lowerCAmelCase , __lowerCAmelCase , self.max_target_length , '''right''' ) lowercase__ : Optional[int] = source_inputs['''input_ids'''].squeeze() lowercase__ : int = target_inputs['''input_ids'''].squeeze() lowercase__ : str = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCAmelCase( __lowerCAmelCase ) -> str: return [len(__lowerCAmelCase ) for x in Path(__lowerCAmelCase ).open().readlines()] def _lowerCAmelCase( self , __lowerCAmelCase ) -> Dict[str, torch.Tensor]: lowercase__ : Union[str, Any] = torch.stack([x['''input_ids'''] for x in batch] ) lowercase__ : Optional[Any] = torch.stack([x['''attention_mask'''] for x in batch] ) lowercase__ : Dict = torch.stack([x['''decoder_input_ids'''] for x in batch] ) lowercase__ : str = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer.pad_token_id ) lowercase__ : Dict = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer.pad_token_id ) lowercase__ : Optional[Any] = trim_batch(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ , lowercase__ : Dict = trim_batch(__lowerCAmelCase , __lowerCAmelCase , attention_mask=__lowerCAmelCase ) lowercase__ : str = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch __a: str = getLogger(__name__) def __UpperCamelCase ( UpperCAmelCase ): return list(itertools.chain.from_iterable(UpperCAmelCase ) ) def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : str = get_git_info() save_json(UpperCAmelCase , os.path.join(UpperCAmelCase , '''git_log.json''' ) ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=4 , **UpperCAmelCase ): with open(UpperCAmelCase , '''w''' ) as f: json.dump(UpperCAmelCase , UpperCAmelCase , indent=UpperCAmelCase , **UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): with open(UpperCAmelCase ) as f: return json.load(UpperCAmelCase ) def __UpperCamelCase ( ): lowercase__ : List[Any] = git.Repo(search_parent_directories=UpperCAmelCase ) lowercase__ : Union[str, Any] = { '''repo_id''': str(UpperCAmelCase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): return list(map(UpperCAmelCase , UpperCAmelCase ) ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): with open(UpperCAmelCase , '''wb''' ) as f: return pickle.dump(UpperCAmelCase , UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): def remove_articles(UpperCAmelCase ): return re.sub(r'''\b(a|an|the)\b''' , ''' ''' , UpperCAmelCase ) def white_space_fix(UpperCAmelCase ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase ): lowercase__ : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase ) ) ) ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Optional[int] = normalize_answer(UpperCAmelCase ).split() lowercase__ : Optional[Any] = normalize_answer(UpperCAmelCase ).split() lowercase__ : Tuple = Counter(UpperCAmelCase ) & Counter(UpperCAmelCase ) lowercase__ : Optional[Any] = sum(common.values() ) if num_same == 0: return 0 lowercase__ : Any = 1.0 * num_same / len(UpperCAmelCase ) lowercase__ : Optional[Any] = 1.0 * num_same / len(UpperCAmelCase ) lowercase__ : Union[str, Any] = (2 * precision * recall) / (precision + recall) return fa def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): return normalize_answer(UpperCAmelCase ) == normalize_answer(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): assert len(UpperCAmelCase ) == len(UpperCAmelCase ) lowercase__ : Tuple = 0 for hypo, pred in zip(UpperCAmelCase , UpperCAmelCase ): em += exact_match_score(UpperCAmelCase , UpperCAmelCase ) if len(UpperCAmelCase ) > 0: em /= len(UpperCAmelCase ) return {"em": em} def __UpperCamelCase ( UpperCAmelCase ): return model_prefix.startswith('''rag''' ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Tuple = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase__ : Union[str, Any] = '''dropout_rate''' for p in extra_params: if getattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if not hasattr(UpperCAmelCase , UpperCAmelCase ) and not hasattr(UpperCAmelCase , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(UpperCAmelCase ) ) delattr(UpperCAmelCase , UpperCAmelCase ) continue lowercase__ : Dict = p if hasattr(UpperCAmelCase , UpperCAmelCase ) else equivalent_param[p] setattr(UpperCAmelCase , UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) delattr(UpperCAmelCase , UpperCAmelCase ) return hparams, config
214
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = None def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=0.9_9_9 , UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowercase__ : str = [] for i in range(UpperCAmelCase ): lowercase__ : int = i / num_diffusion_timesteps lowercase__ : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase ) / alpha_bar_fn(UpperCAmelCase ) , UpperCAmelCase ) ) return torch.tensor(UpperCAmelCase , dtype=torch.floataa ) class UpperCAmelCase ( a__ , a__ ): '''simple docstring''' @register_to_config def __init__( self , __lowerCAmelCase = 1000 , __lowerCAmelCase = "fixed_small_log" , __lowerCAmelCase = True , __lowerCAmelCase = 1.0 , __lowerCAmelCase = "epsilon" , __lowerCAmelCase = "squaredcos_cap_v2" , ) -> Optional[int]: if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) lowercase__ : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase ) lowercase__ : List[Any] = 1.0 - self.betas lowercase__ : int = torch.cumprod(self.alphas , dim=0 ) lowercase__ : str = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowercase__ : Optional[Any] = 1.0 # setable values lowercase__ : Optional[Any] = None lowercase__ : List[Any] = torch.from_numpy(np.arange(0 , __lowerCAmelCase )[::-1].copy() ) lowercase__ : Tuple = variance_type def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> torch.FloatTensor: return sample def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Optional[int]: lowercase__ : List[str] = num_inference_steps lowercase__ : List[str] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowercase__ : List[str] = (np.arange(0 , __lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowercase__ : str = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> Tuple: if prev_timestep is None: lowercase__ : Any = t - 1 lowercase__ : Any = self.alphas_cumprod[t] lowercase__ : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ : str = 1 - alpha_prod_t lowercase__ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ : Tuple = self.betas[t] else: lowercase__ : Dict = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ : Any = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowercase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowercase__ : int = torch.log(torch.clamp(__lowerCAmelCase , min=1E-20 ) ) lowercase__ : Dict = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowercase__ : Union[str, Any] = variance.log() lowercase__ : Optional[int] = beta.log() lowercase__ : Tuple = (predicted_variance + 1) / 2 lowercase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase=None , __lowerCAmelCase = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: lowercase__ : Tuple = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowercase__ , lowercase__ : str = torch.split(__lowerCAmelCase , sample.shape[1] , dim=1 ) else: lowercase__ : Dict = None # 1. compute alphas, betas if prev_timestep is None: lowercase__ : int = t - 1 lowercase__ : Optional[int] = self.alphas_cumprod[t] lowercase__ : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ : Optional[int] = 1 - alpha_prod_t lowercase__ : List[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ : Optional[int] = self.betas[t] lowercase__ : Optional[Any] = self.alphas[t] else: lowercase__ : Any = 1 - alpha_prod_t / alpha_prod_t_prev lowercase__ : Optional[int] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ : Dict = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ : List[Any] = torch.clamp( __lowerCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : Optional[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowercase__ : Tuple = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase__ : List[Any] = 0 if t > 0: lowercase__ : Dict = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__lowerCAmelCase , device=model_output.device ) lowercase__ : Union[str, Any] = self._get_variance( __lowerCAmelCase , predicted_variance=__lowerCAmelCase , prev_timestep=__lowerCAmelCase , ) if self.variance_type == "fixed_small_log": lowercase__ : List[Any] = variance elif self.variance_type == "learned_range": lowercase__ : int = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ''' for the UnCLIPScheduler.''' ) lowercase__ : List[str] = variance * variance_noise lowercase__ : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowercase__ : Tuple = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowercase__ : str = timesteps.to(original_samples.device ) lowercase__ : Union[str, Any] = alphas_cumprod[timesteps] ** 0.5 lowercase__ : List[str] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowercase__ : List[str] = sqrt_alpha_prod.unsqueeze(-1 ) lowercase__ : int = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase__ : List[Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowercase__ : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowercase__ : Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
214
1
"""simple docstring""" def lowercase ( A_ )-> int: '''simple docstring''' if not isinstance(A_ , A_ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
40
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ = logging.get_logger(__name__) a__ = '''▁''' a__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } a__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } a__ = { '''facebook/s2t-small-librispeech-asr''': 1024, } a__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] a__ = {'''mustc''': MUSTC_LANGS} class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[Any] = MAX_MODEL_INPUT_SIZES UpperCAmelCase__ : List[str] = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] def __init__( self , _a , _a , _a="<s>" , _a="</s>" , _a="<pad>" , _a="<unk>" , _a=False , _a=False , _a=None , _a=None , _a = None , **_a , ) -> None: _a : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , pad_token=_a , do_upper_case=_a , do_lower_case=_a , tgt_lang=_a , lang_codes=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _a : Any = do_upper_case _a : Tuple = do_lower_case _a : Union[str, Any] = load_json(_a ) _a : List[Any] = {v: k for k, v in self.encoder.items()} _a : List[str] = spm_file _a : Union[str, Any] = load_spm(_a , self.sp_model_kwargs ) if lang_codes is not None: _a : Optional[Any] = lang_codes _a : str = LANGUAGES[lang_codes] _a : str = [F"""<lang:{lang}>""" for lang in self.langs] _a : str = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} _a : Tuple = self.lang_tokens _a : Any = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _a : Union[str, Any] = {} @property def __lowercase ( self ) -> int: return len(self.encoder ) @property def __lowercase ( self ) -> str: return self._tgt_lang @tgt_lang.setter def __lowercase ( self , _a ) -> None: _a : Tuple = new_tgt_lang self.set_tgt_lang_special_tokens(_a ) def __lowercase ( self , _a ) -> None: _a : Tuple = self.lang_code_to_id[tgt_lang] _a : str = [lang_code_id] def __lowercase ( self , _a ) -> List[str]: return self.sp_model.encode(_a , out_type=_a ) def __lowercase ( self , _a ) -> int: return self.encoder.get(_a , self.encoder[self.unk_token] ) def __lowercase ( self , _a ) -> str: return self.decoder.get(_a , self.unk_token ) def __lowercase ( self , _a ) -> str: _a : Any = [] _a : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _a : Tuple = self.sp_model.decode(_a ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _a : Optional[int] = [] else: current_sub_tokens.append(_a ) _a : Union[str, Any] = self.sp_model.decode(_a ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __lowercase ( self , _a , _a=None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __lowercase ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) _a : Any = [1] * len(self.prefix_tokens ) _a : Any = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: _a : str = self.__dict__.copy() _a : List[Any] = None return state def __setstate__( self , _a ) -> None: _a : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a : Optional[int] = {} _a : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def __lowercase ( self , _a , _a = None ) -> Tuple[str]: _a : Any = Path(_a ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" _a : Any = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _a : Tuple = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _a ) if os.path.abspath(self.spm_file ) != os.path.abspath(_a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _a ) elif not os.path.isfile(self.spm_file ): with open(_a , '''wb''' ) as fi: _a : Tuple = self.sp_model.serialized_model_proto() fi.write(_a ) return (str(_a ), str(_a )) def __UpperCAmelCase ( __a : str ,__a : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" _a : List[Any] = sentencepiece.SentencePieceProcessor(**__a ) spm.Load(str(__a ) ) return spm def __UpperCAmelCase ( __a : str ) -> Union[Dict, List]: """simple docstring""" with open(__a ,'''r''' ) as f: return json.load(__a ) def __UpperCAmelCase ( __a : Dict ,__a : str ) -> None: """simple docstring""" with open(__a ,'''w''' ) as f: json.dump(__a ,__a ,indent=2 )
367
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a__ = ['''small''', '''medium''', '''large'''] a__ = '''lm_head.decoder.weight''' a__ = '''lm_head.weight''' def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]: """simple docstring""" _a : Any = torch.load(__a ) _a : List[str] = d.pop(__a ) os.makedirs(__a ,exist_ok=__a ) torch.save(__a ,os.path.join(__a ,__a ) ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) a__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') a__ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" if "img_encoder.pos_embed" in name: _UpperCamelCase = name.replace('''img_encoder.pos_embed''', '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: _UpperCamelCase = name.replace('''img_encoder.patch_embed.proj''', '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: _UpperCamelCase = name.replace('''img_encoder.patch_embed.norm''', '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: _UpperCamelCase = name.replace('''img_encoder.layers''', '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: _UpperCamelCase = name.replace('''blocks''', '''layers''' ) if "attn" in name and "pre_assign" not in name: _UpperCamelCase = name.replace('''attn''', '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: _UpperCamelCase = name.replace('''proj''', '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: _UpperCamelCase = name.replace('''pre_assign_attn.attn.proj''', '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: _UpperCamelCase = name.replace('''norm1''', '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: _UpperCamelCase = name.replace('''norm2''', '''layer_norm2''' ) if "img_encoder.norm" in name: _UpperCamelCase = name.replace('''img_encoder.norm''', '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: _UpperCamelCase = name.replace('''text_encoder.token_embedding''', '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: _UpperCamelCase = name.replace('''text_encoder.positional_embedding''', '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: _UpperCamelCase = name.replace('''text_encoder.transformer.resblocks.''', '''text_model.encoder.layers.''' ) if "ln_1" in name: _UpperCamelCase = name.replace('''ln_1''', '''layer_norm1''' ) if "ln_2" in name: _UpperCamelCase = name.replace('''ln_2''', '''layer_norm2''' ) if "c_fc" in name: _UpperCamelCase = name.replace('''c_fc''', '''fc1''' ) if "c_proj" in name: _UpperCamelCase = name.replace('''c_proj''', '''fc2''' ) if "text_encoder" in name: _UpperCamelCase = name.replace('''text_encoder''', '''text_model''' ) if "ln_final" in name: _UpperCamelCase = name.replace('''ln_final''', '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: _UpperCamelCase = name.replace('''img_projector.linear_hidden.''', '''visual_projection.''' ) if "img_projector.linear_out." in name: _UpperCamelCase = name.replace('''img_projector.linear_out.''', '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: _UpperCamelCase = name.replace('''text_projector.linear_hidden''', '''text_projection''' ) if "text_projector.linear_out" in name: _UpperCamelCase = name.replace('''text_projector.linear_out''', '''text_projection.3''' ) return name def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): _UpperCamelCase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_split[2] ), int(key_split[4] ) _UpperCamelCase = config.vision_config.hidden_size if "weight" in key: _UpperCamelCase = val[:dim, :] _UpperCamelCase = val[dim : dim * 2, :] _UpperCamelCase = val[-dim:, :] else: _UpperCamelCase = val[:dim] _UpperCamelCase = val[dim : dim * 2] _UpperCamelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_split[3] ) _UpperCamelCase = config.text_config.hidden_size if "weight" in key: _UpperCamelCase = val[:dim, :] _UpperCamelCase = val[ dim : dim * 2, : ] _UpperCamelCase = val[-dim:, :] else: _UpperCamelCase = val[:dim] _UpperCamelCase = val[dim : dim * 2] _UpperCamelCase = val[-dim:] else: _UpperCamelCase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _UpperCamelCase = val.squeeze_() else: _UpperCamelCase = val return orig_state_dict def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(lowerCAmelCase__, stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case="groupvit-gcc-yfcc", __snake_case=False ) -> List[Any]: """simple docstring""" _UpperCamelCase = GroupViTConfig() _UpperCamelCase = GroupViTModel(lowerCAmelCase__ ).eval() _UpperCamelCase = torch.load(lowerCAmelCase__, map_location='''cpu''' )['''model'''] _UpperCamelCase = convert_state_dict(lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase = model.load_state_dict(lowerCAmelCase__, strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result _UpperCamelCase = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(text=['''a photo of a cat''', '''a photo of a dog'''], images=lowerCAmelCase__, padding=lowerCAmelCase__, return_tensors='''pt''' ) with torch.no_grad(): _UpperCamelCase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": _UpperCamelCase = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": _UpperCamelCase = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(F'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image, lowerCAmelCase__, atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print('''Successfully saved processor and model to''', lowerCAmelCase__ ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__, organization='''nielsr''' ) model.push_to_hub(lowerCAmelCase__, organization='''nielsr''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
194
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ ={ 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } lowercase__ ='ETAOINSHRDLCUMWFGYPBVKJXQZ' lowercase__ ='ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : List[Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __UpperCamelCase ( lowerCAmelCase__ : tuple ): return x[0] def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : Optional[Any] = get_letter_count(lowerCAmelCase__ ) __a : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowerCAmelCase__ ) __a : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowerCAmelCase__ ) __a : int = ''''''.join(freq_to_letter[freq] ) __a : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowerCAmelCase__ , reverse=lowerCAmelCase__ ) __a : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : int = get_frequency_order(lowerCAmelCase__ ) __a : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
216
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowercase__ :Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,): super().__init__() if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''') self.register_modules( speech_model=A__ ,speech_processor=A__ ,vae=A__ ,text_encoder=A__ ,tokenizer=A__ ,unet=A__ ,scheduler=A__ ,feature_extractor=A__ ,) def A__ ( self ,A__ = "auto"): if slice_size == "auto": lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A__) def A__ ( self): self.enable_attention_slicing(A__) @torch.no_grad() def __call__( self ,A__ ,A__=1_6_0_0_0 ,A__ = 5_1_2 ,A__ = 5_1_2 ,A__ = 5_0 ,A__ = 7.5 ,A__ = None ,A__ = 1 ,A__ = 0.0 ,A__ = None ,A__ = None ,A__ = "pil" ,A__ = True ,A__ = None ,A__ = 1 ,**A__ ,): lowercase = self.speech_processor.feature_extractor( A__ ,return_tensors='''pt''' ,sampling_rate=A__).input_features.to(self.device) lowercase = self.speech_model.generate(A__ ,max_length=4_8_0_0_0_0) lowercase = self.speech_processor.tokenizer.batch_decode(A__ ,skip_special_tokens=A__ ,normalize=A__)[ 0 ] if isinstance(A__ ,A__): lowercase = 1 elif isinstance(A__ ,A__): lowercase = len(A__) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(A__)}') if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A__ ,A__) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(A__)}.') # get prompt text embeddings lowercase = self.tokenizer( A__ ,padding='''max_length''' ,max_length=self.tokenizer.model_max_length ,return_tensors='''pt''' ,) lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f' {self.tokenizer.model_max_length} tokens: {removed_text}') lowercase = text_input_ids[:, : self.tokenizer.model_max_length] lowercase = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase , lowercase , lowercase = text_embeddings.shape lowercase = text_embeddings.repeat(1 ,A__ ,1) lowercase = text_embeddings.view(bs_embed * num_images_per_prompt ,A__ ,-1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase = 4_2 if negative_prompt is None: lowercase = [''''''] * batch_size elif type(A__) is not type(A__): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(A__)} !=' f' {type(A__)}.') elif isinstance(A__ ,A__): lowercase = [negative_prompt] elif batch_size != len(A__): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(A__)}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ''' the batch size of `prompt`.''') else: lowercase = negative_prompt lowercase = text_input_ids.shape[-1] lowercase = self.tokenizer( A__ ,padding='''max_length''' ,max_length=A__ ,truncation=A__ ,return_tensors='''pt''' ,) lowercase = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase = uncond_embeddings.shape[1] lowercase = uncond_embeddings.repeat(1 ,A__ ,1) lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt ,A__ ,-1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase = torch.randn(A__ ,generator=A__ ,device='''cpu''' ,dtype=A__).to( self.device) else: lowercase = torch.randn(A__ ,generator=A__ ,device=self.device ,dtype=A__) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') lowercase = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(A__) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) lowercase = {} if accepts_eta: lowercase = eta for i, t in enumerate(self.progress_bar(A__)): # expand the latents if we are doing classifier free guidance lowercase = torch.cat([latents] * 2) if do_classifier_free_guidance else latents lowercase = self.scheduler.scale_model_input(A__ ,A__) # predict the noise residual lowercase = self.unet(A__ ,A__ ,encoder_hidden_states=A__).sample # perform guidance if do_classifier_free_guidance: lowercase , lowercase = noise_pred.chunk(2) lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase = self.scheduler.step(A__ ,A__ ,A__ ,**A__).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A__ ,A__ ,A__) lowercase = 1 / 0.18215 * latents lowercase = self.vae.decode(A__).sample lowercase = (image / 2 + 0.5).clamp(0 ,1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase = image.cpu().permute(0 ,2 ,3 ,1).float().numpy() if output_type == "pil": lowercase = self.numpy_to_pil(A__) if not return_dict: return image return StableDiffusionPipelineOutput(images=A__ ,nsfw_content_detected=A__)
351
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowercase__ :Union[str, Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :List[Any] = ["DPTFeatureExtractor"] lowercase__ :List[Any] = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Optional[int] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowercase__ :List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
97
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = FileLock(str(tmpdir / """foo.lock""" ) ) _a : List[str] = FileLock(str(tmpdir / """foo.lock""" ) ) _a : Optional[Any] = 0.01 with locka.acquire(): with pytest.raises(UpperCamelCase__ ): _a : List[str] = time.time() locka.acquire(UpperCamelCase__ ) assert time.time() - _start > timeout def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = """a""" * 1_0_0_0 + """.lock""" _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCamelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : List[Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCamelCase__ ): locka.acquire(0 )
294
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' _a : Optional[Any] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: _a : Tuple = 1 - (matter_density + radiation_density + dark_energy) _a : int = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _a : List[str] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _snake_case = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
294
1
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging a_ = logging.get_logger(__name__) def __lowercase ( snake_case_ : int ,snake_case_ : int ) ->Dict: '''simple docstring''' try: with open(snake_case_ ,'''rb''' ) as flax_state_f: __A : Optional[Any] = from_bytes(snake_case_ ,flax_state_f.read() ) except UnpicklingError as e: try: with open(snake_case_ ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(snake_case_ ,snake_case_ ) def __lowercase ( snake_case_ : Any ,snake_case_ : Dict ) ->Any: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights __A : int = flatten_dict(jax.tree_util.tree_map(lambda snake_case_ : x.dtype == jnp.bfloataa ,snake_case_ ) ).values() if any(snake_case_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) __A : Tuple = jax.tree_util.tree_map( lambda snake_case_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,snake_case_ ) __A : Union[str, Any] = '''''' __A : Optional[int] = flatten_dict(snake_case_ ,sep='''.''' ) __A : List[str] = pt_model.state_dict() # keep track of unexpected & missing keys __A : Any = [] __A : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __A : Optional[Any] = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __A : Any = flax_key_tuple_array[:-1] + ['''weight'''] __A : int = jnp.transpose(snake_case_ ,(3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __A : Optional[int] = flax_key_tuple_array[:-1] + ['''weight'''] __A : Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __A : List[Any] = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(snake_case_ ): __A : int = ( flax_key_tuple_string.replace('''_0''' ,'''.0''' ) .replace('''_1''' ,'''.1''' ) .replace('''_2''' ,'''.2''' ) .replace('''_3''' ,'''.3''' ) .replace('''_4''' ,'''.4''' ) .replace('''_5''' ,'''.5''' ) .replace('''_6''' ,'''.6''' ) .replace('''_7''' ,'''.7''' ) .replace('''_8''' ,'''.8''' ) .replace('''_9''' ,'''.9''' ) ) __A : str = '''.'''.join(snake_case_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict __A : List[Any] = np.asarray(snake_case_ ) if not isinstance(snake_case_ ,np.ndarray ) else flax_tensor __A : Optional[Any] = torch.from_numpy(snake_case_ ) # remove from missing keys missing_keys.remove(snake_case_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case_ ) pt_model.load_state_dict(snake_case_ ) # re-transform missing_keys to list __A : Any = list(snake_case_ ) if len(snake_case_ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(snake_case_ ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) return pt_model
291
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency a_ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } a_ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" a_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowercase ( snake_case_ : str ) ->dict[str, int]: '''simple docstring''' __A : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __lowercase ( snake_case_ : tuple ) ->str: '''simple docstring''' return x[0] def __lowercase ( snake_case_ : str ) ->str: '''simple docstring''' __A : Union[str, Any] = get_letter_count(snake_case_ ) __A : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(snake_case_ ) __A : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find ,reverse=snake_case_ ) __A : Optional[int] = ''''''.join(freq_to_letter[freq] ) __A : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=snake_case_ ,reverse=snake_case_ ) __A : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(snake_case_ ) def __lowercase ( snake_case_ : str ) ->int: '''simple docstring''' __A : Any = get_frequency_order(snake_case_ ) __A : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
291
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ (__snake_case ): def __init__( self , *a , **a): warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , a , ) super().__init__(*a , **a)
214
import unittest from transformers import DonutProcessor snake_case_ = '''naver-clova-ix/donut-base''' class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): def snake_case_ ( self): lowercase__ : Dict = DonutProcessor.from_pretrained(a) def snake_case_ ( self): lowercase__ : Tuple = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } lowercase__ : Tuple = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) lowercase__ : str = self.processor.tokenajson(a) self.assertDictEqual(a , a)
214
1
import string from math import logaa def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = document.translate( str.maketrans('''''', '''''', string.punctuation ) ).replace('''\n''', '''''' ) UpperCamelCase__ = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = corpus.lower().translate( str.maketrans('''''', '''''', string.punctuation ) ) # strip all punctuation and replace it with '' UpperCamelCase__ = corpus_without_punctuation.split('''\n''' ) UpperCamelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCamelCase__ )) def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : List[str]=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ), 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ), 3 ) def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' return round(tf * idf, 3 )
370
from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self : List[Any] , _a : int ): UpperCamelCase__ = data UpperCamelCase__ = None UpperCamelCase__ = None def lowerCamelCase_ ( UpperCamelCase__ : Node | None ): # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCamelCase_ ( UpperCamelCase__ : Node | None ): '''simple docstring''' return 1 + max(depth_of_tree(tree.left ), depth_of_tree(tree.right ) ) if tree else 0 def lowerCamelCase_ ( UpperCamelCase__ : Node ): '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCamelCase_ ( ): # Main function for testing. '''simple docstring''' UpperCamelCase__ = Node(1 ) UpperCamelCase__ = Node(2 ) UpperCamelCase__ = Node(3 ) UpperCamelCase__ = Node(4 ) UpperCamelCase__ = Node(5 ) UpperCamelCase__ = Node(6 ) UpperCamelCase__ = Node(7 ) UpperCamelCase__ = Node(8 ) UpperCamelCase__ = Node(9 ) print(is_full_binary_tree(UpperCamelCase__ ) ) print(depth_of_tree(UpperCamelCase__ ) ) print('''Tree is: ''' ) display(UpperCamelCase__ ) if __name__ == "__main__": main()
35
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
43
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel SCREAMING_SNAKE_CASE :Union[str, Any] = False SCREAMING_SNAKE_CASE :Any = True SCREAMING_SNAKE_CASE :Tuple = False if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE :Dict = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } SCREAMING_SNAKE_CASE :Optional[int] = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } SCREAMING_SNAKE_CASE :int = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: SCREAMING_SNAKE_CASE :Dict = reader.read() SCREAMING_SNAKE_CASE :List[str] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel(**config) else: SCREAMING_SNAKE_CASE :Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel SCREAMING_SNAKE_CASE :List[str] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) SCREAMING_SNAKE_CASE :List[str] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: SCREAMING_SNAKE_CASE :Optional[Any] = config[key] del config[key] SCREAMING_SNAKE_CASE :Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']] SCREAMING_SNAKE_CASE :List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: SCREAMING_SNAKE_CASE :Tuple = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) SCREAMING_SNAKE_CASE :Any = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue SCREAMING_SNAKE_CASE :List[str] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: SCREAMING_SNAKE_CASE :List[Any] = param_value SCREAMING_SNAKE_CASE :str = True if not has_changed: SCREAMING_SNAKE_CASE :List[str] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
15
0
from datetime import datetime import requests def A__ ( lowerCamelCase ) -> bytes: UpperCamelCase_: Any = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" UpperCamelCase_: int = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCamelCase ).content if __name__ == "__main__": lowerCamelCase_ : int = input("""Enter Video/IGTV url: """).strip() lowerCamelCase_ : Any = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
223
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCamelCase_ : str = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any]=None , snake_case_ : str=1 ): UpperCamelCase_: List[str] = tokenizer UpperCamelCase_: str = dataset UpperCamelCase_: List[str] = len(snake_case_ ) if n_tasks is None else n_tasks UpperCamelCase_: str = n_copies def __iter__( self : Tuple ): UpperCamelCase_: Optional[int] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) UpperCamelCase_: List[str] = self.tokenizer(snake_case_ , padding=snake_case_ , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Any , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = start_length UpperCamelCase_: Dict = eof_strings UpperCamelCase_: List[str] = tokenizer def __call__( self : Tuple , snake_case_ : List[str] , snake_case_ : Optional[Any] , **snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCamelCase_: Dict = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(snake_case_ ) def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: str = re.split("""(%s)""" % """|""".join(lowerCamelCase ) , lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=20 , **lowerCamelCase ) -> int: UpperCamelCase_: str = defaultdict(lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(lowerCamelCase ) ): with torch.no_grad(): UpperCamelCase_: Optional[int] = batch["""ids"""].shape[-1] UpperCamelCase_: Dict = accelerator.unwrap_model(lowerCamelCase ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]] , num_return_sequences=lowerCamelCase , **lowerCamelCase ) # each task is generated batch_size times UpperCamelCase_: Optional[int] = batch["""task_id"""].repeat(lowerCamelCase ) UpperCamelCase_: int = accelerator.pad_across_processes( lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCamelCase_, UpperCamelCase_: Tuple = accelerator.gather((generated_tokens, generated_tasks) ) UpperCamelCase_: Tuple = generated_tokens.cpu().numpy() UpperCamelCase_: Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(lowerCamelCase , lowerCamelCase ): gen_token_dict[task].append(lowerCamelCase ) UpperCamelCase_: Dict = [[] for _ in range(lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCamelCase_: Any = tokenizer.decode(lowerCamelCase , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) code_gens[task].append(remove_last_block(lowerCamelCase ) ) return code_gens def A__ ( ) -> Union[str, Any]: # Setup configuration UpperCamelCase_: Optional[Any] = HfArgumentParser(lowerCamelCase ) UpperCamelCase_: str = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCamelCase_: List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCamelCase_: Union[str, Any] = """false""" if args.num_workers is None: UpperCamelCase_: Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCamelCase_: List[Any] = Accelerator() set_seed(args.seed , device_specific=lowerCamelCase ) # Load model and tokenizer UpperCamelCase_: Any = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCamelCase_: Union[str, Any] = tokenizer.eos_token UpperCamelCase_: Optional[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCamelCase_: Union[str, Any] = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0 , lowerCamelCase , lowerCamelCase )] ), } # Load evaluation dataset and metric UpperCamelCase_: Any = load_dataset("""openai_humaneval""" ) UpperCamelCase_: Union[str, Any] = load_metric("""code_eval""" ) UpperCamelCase_: Union[str, Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) UpperCamelCase_: List[Any] = args.n_samples // args.batch_size UpperCamelCase_: Any = TokenizedDataset(lowerCamelCase , human_eval["""test"""] , n_copies=lowerCamelCase , n_tasks=lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCamelCase_: Optional[int] = DataLoader(lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCamelCase_: List[str] = code_eval_metric.compute(references=[""""""] , predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception UpperCamelCase_, UpperCamelCase_: Dict = accelerator.prepare(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = complete_code( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , n_tasks=lowerCamelCase , batch_size=args.batch_size , **lowerCamelCase , ) if accelerator.is_main_process: UpperCamelCase_: List[Any] = [] for task in tqdm(range(lowerCamelCase ) ): UpperCamelCase_: Optional[Any] = human_eval["""test"""][task]["""test"""] UpperCamelCase_: Optional[int] = F'''check({human_eval["test"][task]["entry_point"]})''' references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric UpperCamelCase_, UpperCamelCase_: str = code_eval_metric.compute( references=lowerCamelCase , predictions=lowerCamelCase , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , """w""" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
223
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
139
'''simple docstring''' import csv import tweepy # Twitter API credentials __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' def a ( __a ) -> None: '''simple docstring''' UpperCamelCase__ :List[Any] = tweepy.OAuthHandler(__a , __a ) auth.set_access_token(__a , __a ) UpperCamelCase__ :List[str] = tweepy.API(__a ) # initialize a list to hold all the tweepy Tweets UpperCamelCase__ :Dict = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCamelCase__ :Tuple = api.user_timeline(screen_name=__a , count=200 ) # save most recent tweets alltweets.extend(__a ) # save the id of the oldest tweet less one UpperCamelCase__ :Union[str, Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__a ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates UpperCamelCase__ :Union[str, Any] = api.user_timeline( screen_name=__a , count=200 , max_id=__a ) # save most recent tweets alltweets.extend(__a ) # update the id of the oldest tweet less one UpperCamelCase__ :Tuple = alltweets[-1].id - 1 print(f'''...{len(__a )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCamelCase__ :int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' , '''w''' ) as f: UpperCamelCase__ :Tuple = csv.writer(__a ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(__a ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
97
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = str(lowerCAmelCase ) return n == n[::-1] def UpperCamelCase__ ( lowerCAmelCase = 1_00_00_00 ): """simple docstring""" _lowerCAmelCase = 0 for i in range(1 , lowerCAmelCase ): if is_palindrome(lowerCAmelCase ) and is_palindrome(bin(lowerCAmelCase ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
220
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] _lowerCAmelCase = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } _lowerCAmelCase = f"{src_lang}-{tgt_lang}" _lowerCAmelCase = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) _lowerCAmelCase = os.path.join(lowerCAmelCase , """README.md""" ) print(f"Generating {path}" ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(lowerCAmelCase ) # make sure we are under the root of the project A__ : Optional[int] =Path(__file__).resolve().parent.parent.parent A__ : Union[str, Any] =repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A__ , A__ , A__ : Optional[Any] =model_name.split('''-''') A__ : List[str] =model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
220
1
"""simple docstring""" import numpy as np def a__ ( snake_case__ ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def a__ ( snake_case__ ) -> np.ndarray: return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
291
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = image_size lowerCamelCase = patch_size lowerCamelCase = num_channels lowerCamelCase = is_training lowerCamelCase = use_labels lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase = (image_size // patch_size) ** 2 lowerCamelCase = num_patches + 1 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ): """simple docstring""" return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = ViTMSNModel(config=_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = self.type_sequence_label_size lowerCamelCase = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase = 1 lowerCamelCase = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ViTMSNModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(_a ) lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def _lowerCAmelCase ( self ): """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def a__ ( ) -> Any: lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase ( self ): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def _lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(2 ) lowerCamelCase = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) lowerCamelCase = self.default_image_processor lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): lowerCamelCase = model(**_a ) # verify the logits lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) lowerCamelCase = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
291
1
from collections.abc import Iterable from typing import Generic, TypeVar snake_case = TypeVar("""_T""") class SCREAMING_SNAKE_CASE ( Generic[_T] ): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : Iterable[_T] | None = None ): SCREAMING_SNAKE_CASE : list[_T] = list(iterable or [] ) SCREAMING_SNAKE_CASE : list[_T] = [] def __len__( self : Dict ): return len(self._stacka ) + len(self._stacka ) def __repr__( self : str ): return f'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def _A ( self : List[Any] , UpperCAmelCase_ : _T ): self._stacka.append(UpperCAmelCase_ ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : str = self._stacka.pop SCREAMING_SNAKE_CASE : Tuple = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
353
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Optional[Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : str = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[int] = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[Any] = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Union[str, Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : Any = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Tuple = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Union[str, Any] = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : Union[str, Any] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : Union[str, Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A : Dict = logging.get_logger(__name__) def lowercase_ ( _A : Dict , _A : List[Any]=False ): """simple docstring""" lowerCamelCase__ : str = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase__ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def lowercase_ ( _A : Tuple , _A : Optional[int] , _A : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase__ : Any = """""" else: lowerCamelCase__ : str = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : List[str] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) lowerCamelCase__ : int = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowerCamelCase__ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : List[str] = in_proj_bias[-config.hidden_size :] def lowercase_ ( _A : Optional[Any] ): """simple docstring""" lowerCamelCase__ : int = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def lowercase_ ( _A : Optional[Any] , _A : Union[str, Any] , _A : List[Any] ): """simple docstring""" lowerCamelCase__ : List[Any] = dct.pop(_lowerCAmelCase ) lowerCamelCase__ : List[str] = val def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def lowercase_ ( _A : Dict , _A : str , _A : str=False ): """simple docstring""" lowerCamelCase__ : List[str] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_lowerCAmelCase , ) lowerCamelCase__ : Optional[Any] = ViTHybridConfig(backbone_config=_lowerCAmelCase , image_size=384 , num_labels=1000 ) lowerCamelCase__ : Union[str, Any] = False # load original model from timm lowerCamelCase__ : Union[str, Any] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase__ : Optional[int] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) lowerCamelCase__ : Any = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase__ : str = """huggingface/label-files""" lowerCamelCase__ : str = """imagenet-1k-id2label.json""" lowerCamelCase__ : List[str] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) lowerCamelCase__ : Dict = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Tuple = idalabel lowerCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase__ : Tuple = ViTHybridModel(_lowerCAmelCase ).eval() else: lowerCamelCase__ : str = ViTHybridForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # create image processor lowerCamelCase__ : int = create_transform(**resolve_data_config({} , model=_lowerCAmelCase ) ) lowerCamelCase__ : List[str] = transform.transforms lowerCamelCase__ : List[str] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCamelCase__ : Optional[int] = ViTHybridImageProcessor( do_resize=_lowerCAmelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCAmelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_lowerCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Dict = transform(_lowerCAmelCase ).unsqueeze(0 ) lowerCamelCase__ : int = processor(_lowerCAmelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) # verify logits with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(_lowerCAmelCase ) lowerCamelCase__ : List[Any] = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: lowerCamelCase__ : List[str] = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: lowerCamelCase__ : Any = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(F"ybelkada/{vit_name}" ) processor.push_to_hub(F"ybelkada/{vit_name}" ) if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) A : Dict = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
184
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: snake_case__ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: snake_case__ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case__ : int = value elif weight_type == "weight_g": snake_case__ : List[str] = value elif weight_type == "weight_v": snake_case__ : List[str] = value elif weight_type == "bias": snake_case__ : Optional[Any] = value else: snake_case__ : str = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : Union[str, Any] = [] snake_case__ : Dict = fairseq_model.state_dict() snake_case__ : List[Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case__ : Optional[int] = None for name, value in fairseq_dict.items(): snake_case__ : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case__ : Union[str, Any] = True elif name.split(""".""" )[0] == "proj": snake_case__ : Tuple = fairseq_model.proj snake_case__ : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case__ : Optional[Any] = True if "*" in mapped_key: snake_case__ : Optional[int] = name.split(_lowerCAmelCase )[0].split(""".""" )[-2] snake_case__ : Tuple = mapped_key.replace("""*""" , _lowerCAmelCase ) if "weight_g" in name: snake_case__ : str = """weight_g""" elif "weight_v" in name: snake_case__ : int = """weight_v""" elif "bias" in name: snake_case__ : Dict = """bias""" elif "weight" in name: snake_case__ : Union[str, Any] = """weight""" else: snake_case__ : Union[str, Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : int = full_name.split("""conv_layers.""" )[-1] snake_case__ : Dict = name.split(""".""" ) snake_case__ : Any = int(items[0] ) snake_case__ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case__ : str = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) snake_case__ : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ , snake_case__ : str = emb.weight.shape snake_case__ : List[str] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) snake_case__ : List[str] = emb.weight.data return lin_layer def __snake_case( _lowerCAmelCase ) -> Optional[Any]: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: snake_case__ : int = f.readlines() snake_case__ : List[Any] = [line.split(""" """ )[0] for line in lines] snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) snake_case__ : Any = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> int: snake_case__ : Optional[Any] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) snake_case__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() # set weights for wav2vec2 encoder snake_case__ : Optional[Any] = WavaVecaModel(_lowerCAmelCase ) snake_case__ : Dict = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaForCausalLM(_lowerCAmelCase ) snake_case__ , snake_case__ : Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case__ : Tuple = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) snake_case__ : List[Any] = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) snake_case__ : Tuple = False # add projection layer snake_case__ : Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case__ : int = nn.Parameter(projection_layer.bias ) snake_case__ : Tuple = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , """vocab.json""" ) , """w""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Tuple = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , """vocab.json""" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = hf_wavavec.config.to_dict() snake_case__ : Tuple = tokenizer.pad_token_id snake_case__ : Optional[Any] = tokenizer.bos_token_id snake_case__ : int = tokenizer.eos_token_id snake_case__ : str = """speech_to_text_2""" snake_case__ : List[Any] = """wav2vec2""" snake_case__ : List[str] = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
35
0
"""simple docstring""" import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __lowerCAmelCase : List[Any] =yaml.safe_load( """\ name: \"\" allow_empty: false allow_empty_text: true subsections: - name: \"Dataset Card for X\" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: \"Table of Contents\" allow_empty: false allow_empty_text: false subsections: null - name: \"Dataset Description\" allow_empty: false allow_empty_text: false subsections: - name: \"Dataset Summary\" allow_empty: false allow_empty_text: false subsections: null - name: \"Supported Tasks and Leaderboards\" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null """ ) __lowerCAmelCase : Union[str, Any] ={ """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } __lowerCAmelCase : str ="""\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Dict ="""\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Optional[Any] ={ """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Extra Ignored Subsection""", """text""": """""", """is_empty_text""": True, """subsections""": [], } ], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } __lowerCAmelCase : List[str] ="""\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Optional[Any] =( """The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.""" ) __lowerCAmelCase : Optional[Any] ="""\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Dict =( """The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.""" ) __lowerCAmelCase : List[str] ="""\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Dict ="""The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.""" __lowerCAmelCase : str ="""\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : str ="""The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).""" __lowerCAmelCase : Tuple ="""\ --- language: - zh - en --- # Dataset Card for My Dataset """ __lowerCAmelCase : Optional[Any] ="""The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'.""" __lowerCAmelCase : Optional[Any] ="""\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text """ __lowerCAmelCase : Optional[Any] ="""The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.""" __lowerCAmelCase : Optional[Any] ="""\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages """ __lowerCAmelCase : Union[str, Any] ="""The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.""" __lowerCAmelCase : Optional[Any] ="""\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Dict ="""The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.""" __lowerCAmelCase : List[Any] ="""\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset """ __lowerCAmelCase : List[str] ="""The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.""" __lowerCAmelCase : Optional[Any] ="""\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Dict ="""The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.""" __lowerCAmelCase : Tuple ="""""" __lowerCAmelCase : Dict ="""The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.""" __lowerCAmelCase : str ="""\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Tuple ="""The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.""" @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int] ) -> int: '''simple docstring''' assert ReadMe.from_string(lowerCAmelCase__ , lowerCAmelCase__ ).to_dict() == expected_dict @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict ) -> Union[str, Any]: '''simple docstring''' with pytest.raises(lowerCAmelCase__ , match=re.escape(expected_error.format(path="""root""" ) ) ): lowercase = ReadMe.from_string(lowerCAmelCase__ , lowerCAmelCase__ ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' with pytest.raises(lowerCAmelCase__ , match=re.escape(expected_error.format(path="""root""" ) ) ): ReadMe.from_string(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Dict ) -> Optional[Any]: '''simple docstring''' ReadMe.from_string(lowerCAmelCase__ , lowerCAmelCase__ , suppress_parsing_errors=lowerCAmelCase__ ) @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase = Path(lowerCAmelCase__ ) / """README.md""" with open(lowerCAmelCase__ , """w+""" ) as readme_file: readme_file.write(lowerCAmelCase__ ) lowercase = ReadMe.from_readme(lowerCAmelCase__ , lowerCAmelCase__ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase = Path(lowerCAmelCase__ ) / """README.md""" with open(lowerCAmelCase__ , """w+""" ) as readme_file: readme_file.write(lowerCAmelCase__ ) lowercase = expected_error.format(path=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ , match=re.escape(lowerCAmelCase__ ) ): lowercase = ReadMe.from_readme(lowerCAmelCase__ , lowerCAmelCase__ ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase = Path(lowerCAmelCase__ ) / """README.md""" with open(lowerCAmelCase__ , """w+""" ) as readme_file: readme_file.write(lowerCAmelCase__ ) lowercase = expected_error.format(path=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ , match=re.escape(lowerCAmelCase__ ) ): ReadMe.from_readme(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Dict ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase = Path(lowerCAmelCase__ ) / """README.md""" with open(lowerCAmelCase__ , """w+""" ) as readme_file: readme_file.write(lowerCAmelCase__ ) ReadMe.from_readme(lowerCAmelCase__ , lowerCAmelCase__ , suppress_parsing_errors=lowerCAmelCase__ )
32
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
1
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class a_ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowercase : List[Any] , lowercase : int=7 , lowercase : List[str]=3 , lowercase : List[str]=18 , lowercase : str=30 , lowercase : Any=400 , lowercase : int=True , lowercase : str=None , lowercase : int=True , ): """simple docstring""" lowercase_ :Tuple = size if size is not None else {"height": 18, "width": 18} lowercase_ :Dict = parent lowercase_ :List[str] = batch_size lowercase_ :str = num_channels lowercase_ :str = image_size lowercase_ :str = min_resolution lowercase_ :List[Any] = max_resolution lowercase_ :int = do_resize lowercase_ :Optional[int] = size lowercase_ :Any = do_normalize def lowercase__ ( self : str ): """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class a_ ( _lowerCAmelCase , unittest.TestCase ): __A = ImageGPTImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :List[Any] = ImageGPTImageProcessingTester(self ) @property def lowercase__ ( self : Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , "clusters" ) ) self.assertTrue(hasattr(lowercase , "do_resize" ) ) self.assertTrue(hasattr(lowercase , "size" ) ) self.assertTrue(hasattr(lowercase , "do_normalize" ) ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) lowercase_ :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def lowercase__ ( self : str ): """simple docstring""" lowercase_ :Any = self.image_processing_class(**self.image_processor_dict ) lowercase_ :List[str] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ :List[str] = os.path.join(lowercase , "image_processor.json" ) image_processor_first.to_json_file(lowercase ) lowercase_ :Tuple = self.image_processing_class.from_json_file(lowercase ).to_dict() lowercase_ :Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :List[str] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase ) lowercase_ :Union[str, Any] = self.image_processing_class.from_pretrained(lowercase ).to_dict() lowercase_ :Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase ) @unittest.skip("ImageGPT requires clusters at initialization" ) def lowercase__ ( self : Any ): """simple docstring""" pass def UpperCAmelCase_ ( ): lowercase_ :Union[str, Any] = load_dataset("hf-internal-testing/fixtures_image_utils" ,split="test" ) lowercase_ :Tuple = Image.open(dataset[4]["file"] ) lowercase_ :Any = Image.open(dataset[5]["file"] ) lowercase_ :Optional[Any] = [imagea, imagea] return images @require_vision @require_torch class a_ ( unittest.TestCase ): @slow def lowercase__ ( self : int ): """simple docstring""" lowercase_ :int = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) lowercase_ :Tuple = prepare_images() # test non-batched lowercase_ :Tuple = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) lowercase_ :Optional[Any] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase ) # test batched lowercase_ :Union[str, Any] = image_processing(lowercase , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) lowercase_ :int = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase )
223
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : List[str] ,__lowerCamelCase : Dict=True ,__lowerCamelCase : List[Any]="pt" ): lowercase_ :Dict = {"add_prefix_space": True} if isinstance(__lowerCamelCase ,__lowerCamelCase ) and not line.startswith(" " ) else {} lowercase_ :str = padding_side return tokenizer( [line] ,max_length=__lowerCamelCase ,padding="max_length" if pad_to_max_length else None ,truncation=__lowerCamelCase ,return_tensors=__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,**__lowerCamelCase ,) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : Dict ,__lowerCamelCase : str=None ,): lowercase_ :Optional[int] = input_ids.ne(__lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class a_ ( _lowerCAmelCase ): def __init__( self : Optional[int] , lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : str="train" , lowercase : Dict=None , lowercase : Tuple=None , lowercase : List[str]=None , lowercase : int="" , ): """simple docstring""" super().__init__() lowercase_ :List[Any] = Path(lowercase ).joinpath(type_path + ".source" ) lowercase_ :Dict = Path(lowercase ).joinpath(type_path + ".target" ) lowercase_ :Optional[int] = self.get_char_lens(self.src_file ) lowercase_ :List[str] = max_source_length lowercase_ :str = max_target_length assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}' lowercase_ :int = tokenizer lowercase_ :Dict = prefix if n_obs is not None: lowercase_ :Union[str, Any] = self.src_lens[:n_obs] lowercase_ :Optional[int] = src_lang lowercase_ :str = tgt_lang def __len__( self : Tuple ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : str , lowercase : Dict ): """simple docstring""" lowercase_ :Tuple = index + 1 # linecache starts at 1 lowercase_ :Optional[Any] = self.prefix + linecache.getline(str(self.src_file ) , lowercase ).rstrip("\n" ) lowercase_ :List[str] = linecache.getline(str(self.tgt_file ) , lowercase ).rstrip("\n" ) assert source_line, F'empty source line for index {index}' assert tgt_line, F'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase_ :List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase ) else self.tokenizer ) lowercase_ :int = self.tokenizer.generator if isinstance(self.tokenizer , lowercase ) else self.tokenizer lowercase_ :List[str] = encode_line(lowercase , lowercase , self.max_source_length , "right" ) lowercase_ :Any = encode_line(lowercase , lowercase , self.max_target_length , "right" ) lowercase_ :Dict = source_inputs["input_ids"].squeeze() lowercase_ :Tuple = target_inputs["input_ids"].squeeze() lowercase_ :Optional[int] = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase__ ( lowercase : Union[str, Any] ): """simple docstring""" return [len(lowercase ) for x in Path(lowercase ).open().readlines()] def lowercase__ ( self : str , lowercase : List[Any] ): """simple docstring""" lowercase_ :Optional[int] = torch.stack([x["input_ids"] for x in batch] ) lowercase_ :Dict = torch.stack([x["attention_mask"] for x in batch] ) lowercase_ :List[str] = torch.stack([x["decoder_input_ids"] for x in batch] ) lowercase_ :Any = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) lowercase_ :str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) lowercase_ :Union[str, Any] = trim_batch(lowercase , lowercase ) lowercase_ , lowercase_ :Optional[Any] = trim_batch(lowercase , lowercase , attention_mask=lowercase ) lowercase_ :Tuple = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowerCAmelCase : List[str] =getLogger(__name__) def UpperCAmelCase_ ( __lowerCamelCase : List[List] ): return list(itertools.chain.from_iterable(__lowerCamelCase ) ) def UpperCAmelCase_ ( __lowerCamelCase : str ): lowercase_ :List[str] = get_git_info() save_json(__lowerCamelCase ,os.path.join(__lowerCamelCase ,"git_log.json" ) ) def UpperCAmelCase_ ( __lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : List[Any]=4 ,**__lowerCamelCase : List[str] ): with open(__lowerCamelCase ,"w" ) as f: json.dump(__lowerCamelCase ,__lowerCamelCase ,indent=__lowerCamelCase ,**__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : Tuple ): with open(__lowerCamelCase ) as f: return json.load(__lowerCamelCase ) def UpperCAmelCase_ ( ): lowercase_ :Dict = git.Repo(search_parent_directories=__lowerCamelCase ) lowercase_ :List[str] = { "repo_id": str(__lowerCamelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase_ ( __lowerCamelCase : Callable ,__lowerCamelCase : Iterable ): return list(map(__lowerCamelCase ,__lowerCamelCase ) ) def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] ,__lowerCamelCase : List[str] ): with open(__lowerCamelCase ,"wb" ) as f: return pickle.dump(__lowerCamelCase ,__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : str ): def remove_articles(__lowerCamelCase : Optional[int] ): return re.sub(r"\b(a|an|the)\b" ," " ,__lowerCamelCase ) def white_space_fix(__lowerCamelCase : Dict ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase : Optional[Any] ): lowercase_ :Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) ) def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[int] ): lowercase_ :Tuple = normalize_answer(__lowerCamelCase ).split() lowercase_ :Dict = normalize_answer(__lowerCamelCase ).split() lowercase_ :Tuple = Counter(__lowerCamelCase ) & Counter(__lowerCamelCase ) lowercase_ :Tuple = sum(common.values() ) if num_same == 0: return 0 lowercase_ :Union[str, Any] = 1.0 * num_same / len(__lowerCamelCase ) lowercase_ :List[Any] = 1.0 * num_same / len(__lowerCamelCase ) lowercase_ :Tuple = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Union[str, Any] ): return normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : List[str] ): assert len(__lowerCamelCase ) == len(__lowerCamelCase ) lowercase_ :Any = 0 for hypo, pred in zip(__lowerCamelCase ,__lowerCamelCase ): em += exact_match_score(__lowerCamelCase ,__lowerCamelCase ) if len(__lowerCamelCase ) > 0: em /= len(__lowerCamelCase ) return {"em": em} def UpperCAmelCase_ ( __lowerCamelCase : str ): return model_prefix.startswith("rag" ) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : int ): lowercase_ :Dict = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase_ :List[str] = "dropout_rate" for p in extra_params: if getattr(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ): if not hasattr(__lowerCamelCase ,__lowerCamelCase ) and not hasattr(__lowerCamelCase ,equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(__lowerCamelCase ) ) delattr(__lowerCamelCase ,__lowerCamelCase ) continue lowercase_ :List[Any] = p if hasattr(__lowerCamelCase ,__lowerCamelCase ) else equivalent_param[p] setattr(__lowerCamelCase ,__lowerCamelCase ,getattr(__lowerCamelCase ,__lowerCamelCase ) ) delattr(__lowerCamelCase ,__lowerCamelCase ) return hparams, config
223
1
import collections import os import re from pathlib import Path __lowercase = "src/transformers" # Matches is_xxx_available() __lowercase = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} __lowercase = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowercase = re.compile(r'''\s+\"\S*\":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available __lowercase = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") __lowercase = re.compile(r'''^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowercase = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", __lowercase = re.compile(r'''^\s+\"([^\"]+)\",''') # Catches a line with objects between brackets only: ["foo", "bar"], __lowercase = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo __lowercase = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: __lowercase = re.compile(r'''^\s*try:''') # Catches a line with else: __lowercase = re.compile(r'''^\s*else:''') def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None __UpperCamelCase :Union[str, Any] = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCamelCase :int = f.readlines() __UpperCamelCase :Dict = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure __UpperCamelCase :Optional[int] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: __UpperCamelCase :int = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[Any] = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] __UpperCamelCase :Dict = re.findall(R'''\[([^\]]+)\]''' , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue __UpperCamelCase :Any = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: __UpperCamelCase :Any = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(''' ''' * 8 + '''\"''' ): objects.append(line[9:-3] ) line_index += 1 __UpperCamelCase :Optional[int] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. __UpperCamelCase :int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCamelCase :Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCamelCase :Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): __UpperCamelCase :str = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: __UpperCamelCase :Optional[int] = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(''', ''' ) __UpperCamelCase :Optional[Any] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: __UpperCamelCase :Optional[int] = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(''', ''' ) __UpperCamelCase :str = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''\"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''\"''' ): objects.append(line[13:-3] ) line_index += 1 __UpperCamelCase :Dict = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __UpperCamelCase :List[Any] = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): __UpperCamelCase :List[Any] = lines[line_index] __UpperCamelCase :str = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 __UpperCamelCase :Optional[int] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. __UpperCamelCase :List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCamelCase :List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCamelCase :Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): __UpperCamelCase :Tuple = lines[line_index] __UpperCamelCase :Union[str, Any] = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 __UpperCamelCase :Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' def find_duplicates(SCREAMING_SNAKE_CASE ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __UpperCamelCase :Tuple = [] for key in import_dict_objects.keys(): __UpperCamelCase :Union[str, Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __UpperCamelCase :Union[str, Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __UpperCamelCase :Dict = """base imports""" if key == """none""" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Dict = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __UpperCamelCase :List[str] = os.path.join(SCREAMING_SNAKE_CASE , '''__init__.py''' ) __UpperCamelCase :Optional[Any] = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: __UpperCamelCase :str = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: __UpperCamelCase :str = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError('''\n\n'''.join(SCREAMING_SNAKE_CASE ) ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Tuple = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('''*.py''' ) ) ) == 0: continue __UpperCamelCase :Tuple = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) __UpperCamelCase :List[Any] = short_path.replace(os.path.sep , '''.''' ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue __UpperCamelCase :Optional[Any] = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) __UpperCamelCase :List[Any] = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules __lowercase = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", "models.esm.openfold_utils", ] def lowerCamelCase ( ): '''simple docstring''' from transformers.utils import direct_transformers_import __UpperCamelCase :List[str] = direct_transformers_import(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(SCREAMING_SNAKE_CASE , '''__init__.py''' ) , '''r''' ) as f: __UpperCamelCase :List[Any] = f.read() import_structure_keys.update(set(re.findall(R'''import_structure\[\"([^\"]*)\"\]''' , SCREAMING_SNAKE_CASE ) ) ) __UpperCamelCase :List[str] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(SCREAMING_SNAKE_CASE ) > 0: __UpperCamelCase :Union[str, Any] = """\n""".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' f"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
360
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[Any] = """gptj""" a__ : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __lowercase=50_400 , __lowercase=2_048 , __lowercase=4_096 , __lowercase=28 , __lowercase=16 , __lowercase=64 , __lowercase=None , __lowercase="gelu_new" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=1E-5 , __lowercase=0.02 , __lowercase=True , __lowercase=50_256 , __lowercase=50_256 , __lowercase=False , **__lowercase , ) -> Tuple: __UpperCamelCase :Any = vocab_size __UpperCamelCase :Optional[int] = n_positions __UpperCamelCase :Tuple = n_embd __UpperCamelCase :int = n_layer __UpperCamelCase :Any = n_head __UpperCamelCase :Any = n_inner __UpperCamelCase :Dict = rotary_dim __UpperCamelCase :Tuple = activation_function __UpperCamelCase :Optional[Any] = resid_pdrop __UpperCamelCase :Any = embd_pdrop __UpperCamelCase :List[str] = attn_pdrop __UpperCamelCase :str = layer_norm_epsilon __UpperCamelCase :List[Any] = initializer_range __UpperCamelCase :Dict = use_cache __UpperCamelCase :List[Any] = bos_token_id __UpperCamelCase :Tuple = eos_token_id super().__init__( bos_token_id=__lowercase , eos_token_id=__lowercase , tie_word_embeddings=__lowercase , **__lowercase) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase = "default" , __lowercase = None , __lowercase = False , ) -> Any: super().__init__(__lowercase , task=__lowercase , patching_specs=__lowercase , use_past=__lowercase) if not getattr(self._config , '''pad_token_id''' , __lowercase): # TODO: how to do that better? __UpperCamelCase :Tuple = 0 @property def UpperCamelCase__ ( self) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase :Tuple = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}}) if self.use_past: self.fill_with_past_key_values_(__lowercase , direction='''inputs''') __UpperCamelCase :str = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCamelCase :Any = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def UpperCamelCase__ ( self) -> int: return self._config.n_layer @property def UpperCamelCase__ ( self) -> int: return self._config.n_head def UpperCamelCase__ ( self , __lowercase , __lowercase = -1 , __lowercase = -1 , __lowercase = False , __lowercase = None , ) -> Mapping[str, Any]: __UpperCamelCase :Optional[int] = super(__lowercase , self).generate_dummy_inputs( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase) # We need to order the input in the way they appears in the forward() __UpperCamelCase :int = OrderedDict({'''input_ids''': common_inputs['''input_ids''']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch __UpperCamelCase , __UpperCamelCase :str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCamelCase :List[str] = seqlen + 2 __UpperCamelCase :Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase :Tuple = [ (torch.zeros(__lowercase), torch.zeros(__lowercase)) for _ in range(self.num_layers) ] __UpperCamelCase :Tuple = common_inputs['''attention_mask'''] if self.use_past: __UpperCamelCase :Tuple = ordered_inputs['''attention_mask'''].dtype __UpperCamelCase :Optional[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__lowercase , __lowercase , dtype=__lowercase)] , dim=1) return ordered_inputs @property def UpperCamelCase__ ( self) -> int: return 13
105
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase : Dict = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
220
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : int = 4_00_00_00 ): '''simple docstring''' lowercase = [] lowercase , lowercase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__snake_case ) lowercase , lowercase = b, a + b return sum(__snake_case ) if __name__ == "__main__": print(F'''{solution() = }''')
220
1
from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case ( ) -> Dict: _A = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=A__) _A = parser.add_subparsers(help="""accelerate command helpers""") # Register commands get_config_parser(subparsers=A__) env_command_parser(subparsers=A__) launch_command_parser(subparsers=A__) tpu_command_parser(subparsers=A__) test_command_parser(subparsers=A__) # Let's go _A = parser.parse_args() if not hasattr(A__ , """func"""): parser.print_help() exit(1) # Run args.func(A__) if __name__ == "__main__": main()
350
import requests from bsa import BeautifulSoup def snake_case ( snake_case__ :str = "AAPL") -> str: _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(snake_case__).text , """html.parser""") _A = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_).find("""span""").text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
81
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _SCREAMING_SNAKE_CASE ( ) ->Dict: '''simple docstring''' a : Any = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=_lowercase ) a : List[Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=_lowercase ) env_command_parser(subparsers=_lowercase ) launch_command_parser(subparsers=_lowercase ) tpu_command_parser(subparsers=_lowercase ) test_command_parser(subparsers=_lowercase ) # Let's go a : List[Any] = parser.parse_args() if not hasattr(_lowercase , "func" ): parser.print_help() exit(1 ) # Run args.func(_lowercase ) if __name__ == "__main__": main()
105
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _snake_case ( self : Tuple ) -> List[Any]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCamelCase_ : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase_ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' if self.train_file is not None: A: Tuple = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: A: str = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]: with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f: A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())] assert len(__lowercase ) == len(__lowercase ) A: Optional[int] = {c: dataset[c] for c in dataset.column_names} A: Union[str, Any] = refs return Dataset.from_dict(__lowercase ) def SCREAMING_SNAKE_CASE( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A: List[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A: Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): A: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) A: Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: A: Any = {} if data_args.train_file is not None: A: int = data_args.train_file if data_args.validation_file is not None: A: Optional[int] = data_args.validation_file A: List[str] = data_args.train_file.split('''.''' )[-1] if extension == "txt": A: int = '''text''' A: Any = load_dataset(__lowercase , data_files=__lowercase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A: Dict = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase ) elif model_args.model_name_or_path: A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: A: str = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) A: Tuple = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase ) elif model_args.model_name_or_path: A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: A: List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase ) model.resize_token_embeddings(len(__lowercase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: A: int = datasets['''train'''].column_names else: A: str = datasets['''validation'''].column_names A: Tuple = '''text''' if '''text''' in column_names else column_names[0] A: List[str] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__lowercase ): # Remove empty lines A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length ) A: str = datasets.map( __lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: A: Dict = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: A: List[Any] = False # Data collator # This one will take care of randomly masking the tokens. A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A: Optional[int] = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: if last_checkpoint is not None: A: Optional[int] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): A: str = model_args.model_name_or_path else: A: List[str] = None A: str = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation A: Optional[int] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A: Optional[Any] = trainer.evaluate() A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) A: Dict = perplexity A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
319
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any]=None )-> Any: '''simple docstring''' if subparsers is not None: UpperCAmelCase__ : Optional[int] = subparsers.add_parser("test" ) else: UpperCAmelCase__ : Any = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=snake_case , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=snake_case ) return parser def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> Tuple: '''simple docstring''' UpperCAmelCase__ : int = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: UpperCAmelCase__ : Optional[int] = script_name else: UpperCAmelCase__ : Optional[Any] = f'--config_file={args.config_file} {script_name}' UpperCAmelCase__ : Optional[Any] = ["accelerate-launch"] + test_args.split() UpperCAmelCase__ : str = execute_subprocess_async(snake_case , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' UpperCAmelCase__ : int = test_command_parser() UpperCAmelCase__ : List[Any] = parser.parse_args() test_command(snake_case ) if __name__ == "__main__": main()
298
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase__ : def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : List[str] = 1_0_0 UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : int = image_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = scope UpperCAmelCase__ : Optional[Any] = out_indices UpperCAmelCase__ : int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : Optional[int] = num_patches + 1 def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : str = None UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : int ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __a ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(snake_case__ ) UpperCAmelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : str = [*signature.parameters.keys()] UpperCAmelCase__ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss loss.backward() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss loss.backward() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ ) for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __a ( self : Any ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __a ( self : Union[str, Any] ): '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) UpperCAmelCase__ : str = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Any = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ ) UpperCAmelCase__ : Any = outputs.logits # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : List[str] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : Any = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : List[Any] = model.to(snake_case__ ) UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**snake_case__ ) UpperCAmelCase__ : Dict = outputs.logits # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase__ : Optional[Any] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=snake_case__ , ) else: UpperCAmelCase__ : int = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits.detach().cpu() UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] ) UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case__ ) UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , snake_case__ )
298
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : Optional[Any] = TextToVideoSDPipeline snake_case__ : Optional[int] = TEXT_TO_IMAGE_PARAMS snake_case__ : str = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. snake_case__ : Optional[Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: torch.manual_seed(0 ) a_ : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=3_2 , attention_head_dim=4 , ) a_ : int = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) a_ : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) a_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) a_ : Dict = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a_ : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> List[str]: if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): a_ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: a_ : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) a_ : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a_ : Dict = self.get_dummy_components() a_ : str = TextToVideoSDPipeline(**SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) a_ : Dict = 'np' a_ : Dict = sd_pipe(**SCREAMING_SNAKE_CASE__ ).frames a_ : int = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) a_ : Union[str, Any] = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: pass def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: return super().test_progress_bar() @slow @skip_mps class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: a_ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) a_ : Any = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) a_ : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) a_ : Optional[Any] = pipe.to('cuda' ) a_ : Any = 'Spiderman is surfing' a_ : List[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) a_ : Optional[Any] = pipe(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2_5 , output_type='pt' ).frames a_ : str = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: a_ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) a_ : Tuple = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) a_ : Tuple = pipe.to('cuda' ) a_ : Any = 'Spiderman is surfing' a_ : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) a_ : List[Any] = pipe(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='pt' ).frames a_ : List[str] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
32
import math import flax.linen as nn import jax.numpy as jnp def SCREAMING_SNAKE_CASE_ ( __A : jnp.ndarray , __A : int , __A : float = 1 , __A : float = 1 , __A : float = 1.0e4 , __A : bool = False , __A : float = 1.0 , ) -> jnp.ndarray: """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" a_ : int = float(embedding_dim // 2 ) a_ : str = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) a_ : Optional[int] = min_timescale * jnp.exp(jnp.arange(__A , dtype=jnp.floataa ) * -log_timescale_increment ) a_ : Optional[int] = jnp.expand_dims(__A , 1 ) * jnp.expand_dims(__A , 0 ) # scale embeddings a_ : str = scale * emb if flip_sin_to_cos: a_ : str = jnp.concatenate([jnp.cos(__A ), jnp.sin(__A )] , axis=1 ) else: a_ : Any = jnp.concatenate([jnp.sin(__A ), jnp.cos(__A )] , axis=1 ) a_ : Optional[int] = jnp.reshape(__A , [jnp.shape(__A )[0], embedding_dim] ) return signal class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int = 32 snake_case__ : jnp.dtype = jnp.floataa @nn.compact def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: a_ : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = nn.silu(SCREAMING_SNAKE_CASE__ ) a_ : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(SCREAMING_SNAKE_CASE__ ) return temb class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int = 32 snake_case__ : bool = False snake_case__ : float = 1 @nn.compact def __call__( self : str , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: return get_sinusoidal_embeddings( SCREAMING_SNAKE_CASE__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
32
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
282
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A : """simple docstring""" def __init__( self : Any,lowercase_ : Optional[int],lowercase_ : Optional[int]=1_3,lowercase_ : int=7,lowercase_ : List[str]=True,lowercase_ : str=True,lowercase_ : List[str]=True,lowercase_ : Optional[Any]=True,lowercase_ : Dict=9_9,lowercase_ : Dict=2_4,lowercase_ : Union[str, Any]=2,lowercase_ : str=6,lowercase_ : Dict=3_7,lowercase_ : Optional[Any]="gelu",lowercase_ : Any=0.1,lowercase_ : Any=0.1,lowercase_ : Any=5_1_2,lowercase_ : Dict=1_6,lowercase_ : List[str]=2,lowercase_ : Dict=0.02,lowercase_ : Any=3,lowercase_ : Dict=None,lowercase_ : List[str]=1_0_0_0,)-> Optional[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = scope A__ = range_bbox def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) A__ = ids_tensor([self.batch_size, self.seq_length, 4],self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ = bbox[i, j, 3] A__ = bbox[i, j, 1] A__ = t if bbox[i, j, 2] < bbox[i, j, 0]: A__ = bbox[i, j, 2] A__ = bbox[i, j, 0] A__ = t A__ = None if self.use_input_mask: A__ = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) A__ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self : Dict )-> int: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,) def snake_case__ ( self : Optional[Any],lowercase_ : Tuple,lowercase_ : str,lowercase_ : Optional[int],lowercase_ : Optional[Any],lowercase_ : str,lowercase_ : List[str],lowercase_ : Tuple,)-> Optional[Any]: '''simple docstring''' A__ = LiltModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,bbox=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,bbox=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.hidden_size) ) def snake_case__ ( self : Any,lowercase_ : Dict,lowercase_ : List[Any],lowercase_ : List[str],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : List[Any],)-> List[str]: '''simple docstring''' A__ = self.num_labels A__ = LiltForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : int,lowercase_ : Union[str, Any],lowercase_ : int,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : Optional[int],lowercase_ : Tuple,lowercase_ : List[str],)-> Any: '''simple docstring''' A__ = LiltForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,start_positions=lowercase_,end_positions=lowercase_,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def snake_case__ ( self : Optional[int] )-> Tuple: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : List[str],lowercase_ : str,lowercase_ : Optional[Any],lowercase_ : Optional[Any] )-> Any: '''simple docstring''' return True def snake_case__ ( self : int )-> Tuple: '''simple docstring''' A__ = LiltModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : List[Any] )-> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Dict )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def snake_case__ ( self : List[Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @slow def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = LiltModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @slow class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[Any] )-> Dict: '''simple docstring''' A__ = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(lowercase_ ) A__ = torch.tensor([[1, 2]],device=lowercase_ ) A__ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]],device=lowercase_ ) # forward pass with torch.no_grad(): A__ = model(input_ids=lowercase_,bbox=lowercase_ ) A__ = torch.Size([1, 2, 7_6_8] ) A__ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]],device=lowercase_,) self.assertTrue(outputs.last_hidden_state.shape,lowercase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3],lowercase_,atol=1E-3 ) )
282
1
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: while b: __lowerCamelCase , __lowerCamelCase : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def SCREAMING_SNAKE_CASE__ ( ) -> str: print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
73
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->str: '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) a : Tuple = precision a : str = ceil(precision / 14 ) a : List[Any] = 42_6880 * Decimal(1_0005 ).sqrt() a : Union[str, Any] = 1 a : Dict = 1359_1409 a : Optional[int] = Decimal(_lowercase ) for k in range(1 , _lowercase ): a : int = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowercase ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a : Optional[Any] = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
105
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : Any = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
1
import random from typing import Any def lowercase_ ( _lowerCamelCase : list): for _ in range(len(_lowerCamelCase)): lowercase__ : Dict = random.randint(0 , len(_lowerCamelCase) - 1) lowercase__ : Union[str, Any] = random.randint(0 , len(_lowerCamelCase) - 1) lowercase__ , lowercase__ : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
87
"""simple docstring""" from math import factorial def _A ( lowercase = 1_00 ): """simple docstring""" return sum(int(lowercase ) for x in str(factorial(lowercase ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
81
0
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __A ( ): _UpperCAmelCase : List[Any] = [randint(-1000 , 1000 ) for i in range(10 )] _UpperCAmelCase : Dict = randint(-5000 , 5000 ) return (arr, r) lowerCAmelCase_ : Tuple = make_dataset() def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): for triplet in permutations(lowerCAmelCase_ , 3 ): if sum(lowerCAmelCase_ ) == target: return tuple(sorted(lowerCAmelCase_ ) ) return (0, 0, 0) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): arr.sort() _UpperCAmelCase : str = len(lowerCAmelCase_ ) for i in range(n - 1 ): _UpperCAmelCase : Union[str, Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __A ( ): _UpperCAmelCase : Dict = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _UpperCAmelCase : List[str] = """ triplet_sum1(*dataset) """ _UpperCAmelCase : Dict = """ triplet_sum2(*dataset) """ _UpperCAmelCase : Tuple = repeat(setup=lowerCAmelCase_ , stmt=lowerCAmelCase_ , repeat=5 , number=1_0000 ) _UpperCAmelCase : Dict = repeat(setup=lowerCAmelCase_ , stmt=lowerCAmelCase_ , repeat=5 , number=1_0000 ) return (min(lowerCAmelCase_ ), min(lowerCAmelCase_ )) if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase_ : int = solution_times() print(F"The time for naive implementation is {times[0]}.") print(F"The time for optimized implementation is {times[1]}.")
353
'''simple docstring''' from __future__ import annotations def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
170
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class A : '''simple docstring''' def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: return None class A : '''simple docstring''' def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: return None class A ( unittest.TestCase ): '''simple docstring''' A = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a_ (self ) -> int: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_UpperCAmelCase , "tf" , 1_2 , **_UpperCAmelCase ) @require_torch @slow def a_ (self ) -> Tuple: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_UpperCAmelCase , "pt" , 1_2 , **_UpperCAmelCase ) @require_torch @slow def a_ (self ) -> Optional[int]: from transformers import BertModel __UpperCamelCase : List[str] = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(_UpperCAmelCase ) ) vocab_file.flush() __UpperCamelCase : int = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __UpperCamelCase : Optional[int] = BertModel(BertConfig(vocab_size=len(_UpperCAmelCase ) ) ) model.save_pretrained(_UpperCAmelCase ) self._test_export(_UpperCAmelCase , "pt" , 1_2 , _UpperCAmelCase ) @require_tf @slow def a_ (self ) -> Tuple: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __UpperCamelCase : Optional[Any] = self._test_export(_UpperCAmelCase , "tf" , 1_2 , **_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = quantize(Path(_UpperCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def a_ (self ) -> str: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __UpperCamelCase : List[str] = self._test_export(_UpperCAmelCase , "pt" , 1_2 , **_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] = quantize(_UpperCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ) -> Tuple: try: # Compute path with TemporaryDirectory() as tempdir: __UpperCamelCase : Tuple = Path(_UpperCAmelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) return path except Exception as e: self.fail(_UpperCAmelCase ) @require_torch @require_tokenizers @slow def a_ (self ) -> Union[str, Any]: from transformers import BertModel __UpperCamelCase : Tuple = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) __UpperCamelCase : int = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(_UpperCAmelCase , _UpperCAmelCase , "pt" ) @require_tf @require_tokenizers @slow def a_ (self ) -> str: from transformers import TFBertModel __UpperCamelCase : int = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) __UpperCamelCase : Tuple = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(_UpperCAmelCase , _UpperCAmelCase , "tf" ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: __UpperCamelCase : List[str] = FeatureExtractionPipeline(_UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : Any = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = infer_shapes(_UpperCAmelCase , _UpperCAmelCase ) # Assert all variables are present self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _UpperCAmelCase ) self.assertSequenceEqual(variable_names[3:] , _UpperCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def a_ (self ) -> List[Any]: __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask", "token_type_ids"] __UpperCamelCase : List[str] = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} __UpperCamelCase , __UpperCamelCase : Tuple = ensure_valid_input(FuncContiguousArgs() , _UpperCAmelCase , _UpperCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_UpperCAmelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_UpperCAmelCase ) , set(_UpperCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_UpperCAmelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __UpperCamelCase , __UpperCamelCase : Union[str, Any] = ensure_valid_input(FuncNonContiguousArgs() , _UpperCAmelCase , _UpperCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_UpperCAmelCase ) , 1 ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def a_ (self ) -> Any: __UpperCamelCase : List[Any] = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
298
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
298
1
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowerCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __lowercase =float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements __lowercase =[[0.0, 0.0], [0.0, 0.0]] __lowercase , __lowercase =matrix[1][1], matrix[0][0] __lowercase , __lowercase =-matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowerCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowerCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __lowercase =float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix __lowercase =[ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __lowercase =(d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __lowercase =-( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __lowercase =(d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __lowercase =-( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __lowercase =(d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __lowercase =-( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __lowercase =(d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __lowercase =-( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __lowercase =(d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __lowercase =array(_lowerCAmelCase ) for i in range(3 ): for j in range(3 ): __lowercase =cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __lowercase =array(_lowerCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowerCAmelCase ) # Calculate the inverse of the matrix return [[float(d(_lowerCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
353
'''simple docstring''' from math import factorial def _A ( _lowerCAmelCase = 20 ): """simple docstring""" __lowercase =2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... __lowercase =n // 2 return int(factorial(_lowerCAmelCase ) / (factorial(_lowerCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: lowerCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
48
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Tuple ): '''simple docstring''' _snake_case = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _snake_case = Vector() def A ( self : Tuple ): '''simple docstring''' _snake_case = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(lowercase ) , '(0,0,0,0,0,1)' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = Vector([1, 2, 3, 4] ) self.assertEqual(len(lowercase ) , 4 ) def A ( self : Tuple ): '''simple docstring''' _snake_case = Vector([1, 2] ) _snake_case = Vector([1, 2, 3, 4, 5] ) _snake_case = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _snake_case = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = Vector([1, 2, 3] ) _snake_case = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Dict ): '''simple docstring''' _snake_case = Vector([1, 2, 3] ) _snake_case = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Tuple ): '''simple docstring''' _snake_case = Vector([1, 2, 3] ) _snake_case = Vector([2, -1, 4] ) # for test of dot product _snake_case = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def A ( self : Optional[int] ): '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def A ( self : List[str] ): '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def A ( self : List[str] ): '''simple docstring''' _snake_case = Vector([1, 2, 3] ) _snake_case = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , lowercase , lowercase ) ) , '(3,4,7)' ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = Vector([1, 0, 0, 0, 0, 0] ) _snake_case = x.copy() self.assertEqual(str(lowercase ) , str(lowercase ) ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(lowercase ) , '(0,1,0)' ) def A ( self : List[str] ): '''simple docstring''' _snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(lowercase ) ) def A ( self : Dict ): '''simple docstring''' _snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _snake_case = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(lowercase , lowercase ) ) def A ( self : Any ): '''simple docstring''' _snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _snake_case = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(lowercase , lowercase ) ) def A ( self : List[str] ): '''simple docstring''' _snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : int ): '''simple docstring''' _snake_case = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _snake_case = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def A ( self : Any ): '''simple docstring''' _snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(lowercase ) ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : int ): '''simple docstring''' _snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def A ( self : int ): '''simple docstring''' _snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def A ( self : str ): '''simple docstring''' self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
282
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Dict , lowercase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList(lowercase ) def A ( self : Optional[int] , lowercase : torch.FloatTensor , lowercase : Union[torch.Tensor, float, int] , lowercase : torch.Tensor , lowercase : List[torch.tensor] , lowercase : List[float] , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[Dict[str, Any]] = None , lowercase : bool = False , lowercase : bool = True , ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(lowercase , lowercase , self.nets ) ): _snake_case , _snake_case = controlnet( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) # merge samples if i == 0: _snake_case , _snake_case = down_samples, mid_sample else: _snake_case = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowercase , lowercase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A ( self : Dict , lowercase : Union[str, os.PathLike] , lowercase : bool = True , lowercase : Callable = None , lowercase : bool = False , lowercase : Optional[str] = None , ): '''simple docstring''' _snake_case = 0 _snake_case = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowercase , is_main_process=lowercase , save_function=lowercase , safe_serialization=lowercase , variant=lowercase , ) idx += 1 _snake_case = model_path_to_save + f'''_{idx}''' @classmethod def A ( cls : Any , lowercase : Optional[Union[str, os.PathLike]] , **lowercase : List[str] ): '''simple docstring''' _snake_case = 0 _snake_case = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _snake_case = pretrained_model_path while os.path.isdir(lowercase ): _snake_case = ControlNetModel.from_pretrained(lowercase , **lowercase ) controlnets.append(lowercase ) idx += 1 _snake_case = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(lowercase )} controlnets loaded from {pretrained_model_path}.''' ) if len(lowercase ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(lowercase )}. Expected at least {pretrained_model_path + '_0'}.''' ) return cls(lowercase )
282
1
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Tuple ) -> int: print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> Optional[int]: __lowerCAmelCase : Any = [[float("""inf""" ) for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): __lowerCAmelCase : Tuple = dist[i][k] + dist[k][j] _print_dist(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": _UpperCAmelCase = int(input('Enter number of vertices: ')) _UpperCAmelCase = int(input('Enter number of edges: ')) _UpperCAmelCase = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): _UpperCAmelCase = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) _UpperCAmelCase = int(input('Enter source:')) _UpperCAmelCase = int(input('Enter destination:')) _UpperCAmelCase = float(input('Enter weight:')) _UpperCAmelCase = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
232
from datetime import datetime import requests def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str ) -> bytes: __lowerCAmelCase : List[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __lowerCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(SCREAMING_SNAKE_CASE ).content if __name__ == "__main__": _UpperCAmelCase = input('Enter Video/IGTV url: ').strip() _UpperCAmelCase = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
232
1
'''simple docstring''' def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number | (1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number & ~(1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number ^ (1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return ((number >> position) & 1) == 1 def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
323
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git_vision_model''' def __init__( self : int , lowerCamelCase_ : Dict=7_68 , lowerCamelCase_ : Tuple=30_72 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Optional[Any]="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[Any]=0.02 , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = hidden_act @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git''' def __init__( self : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Any=6 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=1_01 , lowerCamelCase_ : Optional[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings SCREAMING_SNAKE_CASE : int = num_image_with_embedding SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id SCREAMING_SNAKE_CASE : str = eos_token_id def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
323
1
"""simple docstring""" from __future__ import annotations _A = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> tuple[list[list[int]], list[list[int]]]: lowerCAmelCase__ : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid lowerCAmelCase__ : Tuple = 1 lowerCAmelCase__ : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid lowerCAmelCase__ : Optional[Any] = init[0] lowerCAmelCase__ : Any = init[1] lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Dict = g + heuristic[x][y] # cost from starting cell to destination cell lowerCAmelCase__ : Dict = [[f, g, x, y]] lowerCAmelCase__ : List[Any] = False # flag that is set when search is complete lowerCAmelCase__ : List[str] = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCAmelCase__ : List[Any] = cell.pop() lowerCAmelCase__ : Optional[int] = next_cell[2] lowerCAmelCase__ : Tuple = next_cell[3] lowerCAmelCase__ : Optional[int] = next_cell[1] if x == goal[0] and y == goal[1]: lowerCAmelCase__ : Tuple = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions lowerCAmelCase__ : List[Any] = x + DIRECTIONS[i][0] lowerCAmelCase__ : List[str] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCAmelCase__ : str = g + cost lowerCAmelCase__ : List[str] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCAmelCase__ : Optional[int] = 1 lowerCAmelCase__ : Any = i lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : List[Any] = goal[0] lowerCAmelCase__ : str = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCAmelCase__ : Optional[Any] = x - DIRECTIONS[action[x][y]][0] lowerCAmelCase__ : Union[str, Any] = y - DIRECTIONS[action[x][y]][1] lowerCAmelCase__ : int = xa lowerCAmelCase__ : int = ya invpath.append([x, y] ) lowerCAmelCase__ : List[Any] = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": _A = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _A = [0, 0] # all coordinates are given in format [y,x] _A = [len(grid) - 1, len(grid[0]) - 1] _A = 1 # the cost map which pushes the path closer to the goal _A = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _A = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _A = 9_9 _A , _A = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
212
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: # Initialise PyTorch model lowerCAmelCase__ : int = TaConfig.from_json_file(__UpperCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ : Optional[int] = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
212
1
def __UpperCamelCase ( _lowerCAmelCase ) -> bool: """simple docstring""" return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __UpperCamelCase ( _lowerCAmelCase ) -> bool: """simple docstring""" A : str = credit_card_number A : Any = 0 A : List[Any] = len(_lowercase ) - 2 for i in range(_lowercase , -1 , -2 ): # double the value of every second digit A : int = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 A : int = cc_number[:i] + str(_lowercase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_lowercase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __UpperCamelCase ( _lowerCAmelCase ) -> bool: """simple docstring""" A : Dict = f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(_lowercase ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(_lowercase ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(_lowercase ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
116
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[int] =logging.get_logger(__name__) _lowercase : Tuple ={ "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :List[Any] = "swinv2" __lowerCAmelCase :List[str] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , __lowercase=2_2_4 , __lowercase=4 , __lowercase=3 , __lowercase=9_6 , __lowercase=[2, 2, 6, 2] , __lowercase=[3, 6, 1_2, 2_4] , __lowercase=7 , __lowercase=4.0 , __lowercase=True , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase="gelu" , __lowercase=False , __lowercase=0.0_2 , __lowercase=1E-5 , __lowercase=3_2 , **__lowercase , ) -> Any: """simple docstring""" super().__init__(**__lowercase ) a__ : Optional[Any] = image_size a__ : Union[str, Any] = patch_size a__ : List[Any] = num_channels a__ : Union[str, Any] = embed_dim a__ : Any = depths a__ : List[str] = len(__lowercase ) a__ : Optional[Any] = num_heads a__ : Union[str, Any] = window_size a__ : Optional[int] = mlp_ratio a__ : List[str] = qkv_bias a__ : Dict = hidden_dropout_prob a__ : str = attention_probs_dropout_prob a__ : List[Any] = drop_path_rate a__ : Tuple = hidden_act a__ : Dict = use_absolute_embeddings a__ : Tuple = layer_norm_eps a__ : Tuple = initializer_range a__ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a__ : int = int(embed_dim * 2 ** (len(__lowercase ) - 1) ) a__ : Dict = (0, 0, 0, 0)
170
0
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : str ) -> list[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [0 for i in range(len(SCREAMING_SNAKE_CASE__ ) )] # initialize interval's left pointer and right pointer _UpperCAmelCase , _UpperCAmelCase : Tuple = 0, 0 for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # case when current index is inside the interval if i <= right_pointer: _UpperCAmelCase : Tuple = min(right_pointer - i + 1 , z_result[i - left_pointer] ) _UpperCAmelCase : List[str] = min_edge while go_next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _UpperCAmelCase , _UpperCAmelCase : List[Any] = i, i + z_result[i] - 1 return z_result def __snake_case ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : str ) -> bool: '''simple docstring''' return i + z_result[i] < len(SCREAMING_SNAKE_CASE__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> int: '''simple docstring''' _UpperCAmelCase : Any = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _UpperCAmelCase : str = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(SCREAMING_SNAKE_CASE__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
202
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
202
1