code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __SCREAMING_SNAKE_CASE : Any = 16 __SCREAMING_SNAKE_CASE : Dict = 32 def UpperCAmelCase__ ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ): '''simple docstring''' lowerCAmelCase : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCAmelCase : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__magic_name__ : List[str] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase : Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase : Dict = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__magic_name__ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase : Tuple = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase : Union[str, Any] = 8 else: lowerCAmelCase : List[Any] = None return tokenizer.pad( __magic_name__ , padding='''longest''' , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCAmelCase : str = DataLoader( tokenized_datasets['''train'''] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowerCAmelCase : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __SCREAMING_SNAKE_CASE : Tuple = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ ( __magic_name__ : Dict , __magic_name__ : Dict ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __magic_name__ ) == "1": lowerCAmelCase : Optional[int] = 2 # Initialize accelerator lowerCAmelCase : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase : List[str] = config['''lr'''] lowerCAmelCase : Any = int(config['''num_epochs'''] ) lowerCAmelCase : int = int(config['''seed'''] ) lowerCAmelCase : str = int(config['''batch_size'''] ) lowerCAmelCase : Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase : Tuple = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase : Any = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(__magic_name__ ) lowerCAmelCase , lowerCAmelCase : Dict = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase : str = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowerCAmelCase : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=1_00 , num_training_steps=(len(__magic_name__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase : Any = model(**__magic_name__ ) lowerCAmelCase : Union[str, Any] = outputs.loss lowerCAmelCase : Dict = loss / gradient_accumulation_steps accelerator.backward(__magic_name__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowerCAmelCase : str = 0 for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase : List[str] = model(**__magic_name__ ) lowerCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase , lowerCAmelCase : List[str] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__magic_name__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowerCAmelCase : Optional[int] = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase : str = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowerCAmelCase : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase : Dict = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__magic_name__ , default=__magic_name__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowerCAmelCase : List[Any] = parser.parse_args() lowerCAmelCase : List[str] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
348
from math import factorial, pi def UpperCAmelCase__ ( __magic_name__ : float , __magic_name__ : int = 30 ): '''simple docstring''' if not isinstance(__magic_name__ , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(__magic_name__ , __magic_name__ ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) lowerCAmelCase : Optional[int] = float(__magic_name__ ) lowerCAmelCase : Any = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__magic_name__ ) ) def UpperCAmelCase__ ( __magic_name__ : float , __magic_name__ : int = 30 ): '''simple docstring''' if not isinstance(__magic_name__ , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(__magic_name__ , __magic_name__ ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) lowerCAmelCase : Dict = float(__magic_name__ ) lowerCAmelCase : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
348
1
def A ( SCREAMING_SNAKE_CASE = 600851475143 ): """simple docstring""" try: UpperCAmelCase__ :int = int(SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) UpperCAmelCase__ :Dict = 1 UpperCAmelCase__ :Any = 2 while i * i <= n: while n % i == 0: UpperCAmelCase__ :List[Any] = i n //= i i += 1 if n > 1: UpperCAmelCase__ :str = n return int(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"""{solution() = }""")
433
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __snake_case : Dict = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 48_000, 'sample_size': 131_072, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, } def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return torch.atana(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / math.pi * 2 def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :List[str] = torch.sin(t * math.pi / 2 ) ** 2 UpperCAmelCase__ :int = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' pass class UpperCamelCase__ ( nn.Module): '''simple docstring''' def __init__( self , A ) ->Union[str, Any]: super().__init__() UpperCAmelCase__ :Dict = DiffusionAttnUnetaD(A , n_attn_layers=4 ) UpperCAmelCase__ :Optional[Any] = deepcopy(self.diffusion ) UpperCAmelCase__ :str = torch.quasirandom.SobolEngine(1 , scramble=A ) def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Dict = MODELS_MAP[model_name]['url'] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" __snake_case : Union[str, Any] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } __snake_case : Tuple = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } __snake_case : Optional[int] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } __snake_case : str = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } __snake_case : Optional[int] = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } __snake_case : Union[str, Any] = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE ) and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif name.startswith(SCREAMING_SNAKE_CASE ): return [name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 ): """simple docstring""" UpperCAmelCase__ :Any = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) UpperCAmelCase__ :List[Any] = 0 if string.startswith('net.3.' ): depth += 1 UpperCAmelCase__ :int = string[6:] elif string.startswith('net.' ): UpperCAmelCase__ :Union[str, Any] = string[4:] while string.startswith('main.7.' ): depth += 1 UpperCAmelCase__ :List[str] = string[7:] if string.startswith('main.' ): UpperCAmelCase__ :Tuple = string[5:] # mid block if string[:2].isdigit(): UpperCAmelCase__ :int = string[:2] UpperCAmelCase__ :List[Any] = string[2:] else: UpperCAmelCase__ :Dict = string[0] UpperCAmelCase__ :Union[str, Any] = string[1:] if depth == max_depth: UpperCAmelCase__ :Dict = MID_NUM_TO_LAYER[layer_num] UpperCAmelCase__ :int = 'mid_block' elif depth > 0 and int(SCREAMING_SNAKE_CASE ) < 7: UpperCAmelCase__ :List[Any] = DOWN_NUM_TO_LAYER[layer_num] UpperCAmelCase__ :Any = f"""down_blocks.{depth}""" elif depth > 0 and int(SCREAMING_SNAKE_CASE ) > 7: UpperCAmelCase__ :Union[str, Any] = UP_NUM_TO_LAYER[layer_num] UpperCAmelCase__ :Union[str, Any] = f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: UpperCAmelCase__ :List[str] = DEPTH_0_TO_LAYER[layer_num] UpperCAmelCase__ :List[str] = f"""up_blocks.{max_depth - 1}""" if int(SCREAMING_SNAKE_CASE ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) UpperCAmelCase__ :int = string_left[1:] if "resnets" in new_layer: UpperCAmelCase__ :Optional[Any] = convert_resconv_naming(SCREAMING_SNAKE_CASE ) elif "attentions" in new_layer: UpperCAmelCase__ :Any = convert_attn_naming(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Any = new_string_left if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCAmelCase__ :Tuple = prefix + '.' + new_layer + '.' + string_left else: UpperCAmelCase__ :int = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :str = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue UpperCAmelCase__ :Tuple = rename(SCREAMING_SNAKE_CASE ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCAmelCase__ :Tuple = transform_conv_attns(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: UpperCAmelCase__ :Union[str, Any] = v return new_state_dict def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 1: if len(v.shape ) == 3: # weight UpperCAmelCase__ :List[str] = v[:, :, 0] else: # bias UpperCAmelCase__ :Union[str, Any] = v else: # qkv matrices UpperCAmelCase__ :Optional[int] = v.shape[0] UpperCAmelCase__ :str = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCAmelCase__ :Optional[int] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCAmelCase__ :Optional[Any] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Union[str, Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) UpperCAmelCase__ :List[Any] = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" UpperCAmelCase__ :List[str] = download(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[int] = MODELS_MAP[model_name]['sample_rate'] UpperCAmelCase__ :Tuple = MODELS_MAP[model_name]['sample_size'] UpperCAmelCase__ :Optional[Any] = Object() UpperCAmelCase__ :int = sample_size UpperCAmelCase__ :Any = sample_rate UpperCAmelCase__ :List[str] = 0 UpperCAmelCase__ :Union[str, Any] = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE , sample_rate=SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Dict = diffusers_model.state_dict() UpperCAmelCase__ :Dict = DiffusionUncond(SCREAMING_SNAKE_CASE ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE )['state_dict'] ) UpperCAmelCase__ :Dict = orig_model.diffusion_ema.eval() UpperCAmelCase__ :Optional[Any] = orig_model.state_dict() UpperCAmelCase__ :Tuple = rename_orig_weights(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Dict = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCAmelCase__ :Dict = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(SCREAMING_SNAKE_CASE ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": UpperCAmelCase__ :List[Any] = value.squeeze() UpperCAmelCase__ :List[Any] = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[int] = 100 UpperCAmelCase__ :Any = 33 UpperCAmelCase__ :int = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :int = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[int] = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE )[:-1] UpperCAmelCase__ :List[Any] = get_crash_schedule(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Tuple = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[Any] = torch.manual_seed(33 ) UpperCAmelCase__ :List[str] = pipe(num_inference_steps=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).audios UpperCAmelCase__ :Any = sampling.iplms_sample(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {} ) UpperCAmelCase__ :List[Any] = generated.clamp(-1 , 1 ) UpperCAmelCase__ :int = (generated - audio).abs().sum() UpperCAmelCase__ :Optional[Any] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , SCREAMING_SNAKE_CASE ) print('Diff max' , SCREAMING_SNAKE_CASE ) assert diff_max < 1E-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') __snake_case : Union[str, Any] = parser.parse_args() main(args)
433
1
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __UpperCamelCase = '''src/diffusers''' # Matches is_xxx_available() __UpperCamelCase = re.compile(R'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla __UpperCamelCase = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') __UpperCamelCase = ''' {0} = None ''' __UpperCamelCase = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' __UpperCamelCase = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = _re_backend.findall(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE_ ) def lowercase () -> Tuple: with open(os.path.join(SCREAMING_SNAKE_CASE_ , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE = f.readlines() # Get to the point we do the actual imports for type checking SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block SCREAMING_SNAKE_CASE = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE_ ) and len(lines[line_index] ) > 1: SCREAMING_SNAKE_CASE = lines[line_index] SCREAMING_SNAKE_CASE = _re_single_line_import.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE_ ) > 0: SCREAMING_SNAKE_CASE = objects else: line_index += 1 return backend_specific_objects def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE_ ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ) -> Tuple: if backend_specific_objects is None: SCREAMING_SNAKE_CASE = read_init() # For special correspondence backend to module name as used in the function requires_modulename SCREAMING_SNAKE_CASE = {} for backend, objects in backend_specific_objects.items(): SCREAMING_SNAKE_CASE = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' SCREAMING_SNAKE_CASE = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for o in objects] ) SCREAMING_SNAKE_CASE = dummy_file return dummy_files def lowercase (SCREAMING_SNAKE_CASE_ : Any=False ) -> List[Any]: SCREAMING_SNAKE_CASE = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py SCREAMING_SNAKE_CASE = {'torch': 'pt'} # Locate actual dummy modules and read their content. SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , 'utils' ) SCREAMING_SNAKE_CASE = { backend: os.path.join(SCREAMING_SNAKE_CASE_ , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}_objects.py' ) for backend in dummy_files.keys() } SCREAMING_SNAKE_CASE = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE = f.read() else: SCREAMING_SNAKE_CASE = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __UpperCamelCase = parser.parse_args() check_dummies(args.fix_and_overwrite)
247
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = LongformerTokenizer SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = LongformerTokenizerFast SCREAMING_SNAKE_CASE_ : Optional[int] = True def __A ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) SCREAMING_SNAKE_CASE = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase__ ) ) def __A ( self , **lowerCAmelCase__ ) -> str: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __A ( self , **lowerCAmelCase__ ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> Dict: SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = 'lower newer' return input_text, output_text def __A ( self ) -> str: SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__ ) # , add_prefix_space=True) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowerCAmelCase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowerCAmelCase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode( 'sequence builders' , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = 'Encode this sequence.' SCREAMING_SNAKE_CASE = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ )} ) # mask token has a left space SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = encoded.index(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = encoded.index(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> Dict: pass def __A ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def __A ( self ) -> Union[str, Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowerCAmelCase__ ) self.assertEqual(post_processor_state['add_prefix_space'] , lowerCAmelCase__ ) self.assertEqual(post_processor_state['trim_offsets'] , lowerCAmelCase__ ) def __A ( self ) -> Dict: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ) + 1, 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ), 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ), 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , )
247
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=7, lowerCamelCase__=3, lowerCamelCase__=18, lowerCamelCase__=30, lowerCamelCase__=400, lowerCamelCase__=True, lowerCamelCase__=None, lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=[0.5, 0.5, 0.5], lowerCamelCase__=[0.5, 0.5, 0.5], ): A : Dict = parent A : Tuple = batch_size A : List[str] = num_channels A : Dict = image_size A : str = min_resolution A : Optional[int] = max_resolution A : Optional[int] = do_resize A : Optional[int] = size if size is not None else {"""height""": 18, """width""": 20} A : Union[str, Any] = do_thumbnail A : Dict = do_align_axis A : List[str] = do_pad A : Optional[Any] = do_normalize A : List[str] = image_mean A : Union[str, Any] = image_std def _lowerCAmelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = DonutImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self ): A : Dict = DonutImageProcessingTester(self ) @property def _lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self ): A : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__, """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__, """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__, """do_thumbnail""" ) ) self.assertTrue(hasattr(UpperCamelCase__, """do_align_long_axis""" ) ) self.assertTrue(hasattr(UpperCamelCase__, """do_pad""" ) ) self.assertTrue(hasattr(UpperCamelCase__, """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase__, """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase__, """image_std""" ) ) def _lowerCAmelCase ( self ): A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"""height""": 18, """width""": 20} ) A : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order A : int = self.image_processing_class.from_dict(self.image_processor_dict, size=(42, 84) ) self.assertEqual(image_processor.size, {"""height""": 84, """width""": 42} ) def _lowerCAmelCase ( self ): pass @is_flaky() def _lowerCAmelCase ( self ): A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, Image.Image ) # Test not batched input A : List[str] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) # Test batched A : Optional[Any] = image_processing(UpperCamelCase__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) @is_flaky() def _lowerCAmelCase ( self ): A : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, np.ndarray ) # Test not batched input A : Optional[int] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) # Test batched A : List[Any] = image_processing(UpperCamelCase__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) @is_flaky() def _lowerCAmelCase ( self ): A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : Union[str, Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, torch.Tensor ) # Test not batched input A : List[Any] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) # Test batched A : Optional[int] = image_processing(UpperCamelCase__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), )
700
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: """simple docstring""" A : Dict = [0 for i in range(r + 1 )] # nc0 = 1 A : Dict = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. A : Any = min(_lowerCAmelCase , _lowerCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
520
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase : Any = logging.get_logger(__name__) @add_end_docstrings(__magic_name__) class _A ( __magic_name__): def __init__( self , **_SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE_ : int = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE_ : Any = kwargs['hypothesis_template'] return preprocess_params, {}, {} def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="This is a photo of {}." ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = load_image(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor(images=[image] , return_tensors=self.framework ) SCREAMING_SNAKE_CASE_ : Optional[int] = candidate_labels SCREAMING_SNAKE_CASE_ : List[Any] = [hypothesis_template.format(_SCREAMING_SNAKE_CASE ) for x in candidate_labels] SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = model_inputs.pop('candidate_labels' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : int = text_inputs[0] else: # Batching case. SCREAMING_SNAKE_CASE_ : str = text_inputs[0][0] SCREAMING_SNAKE_CASE_ : List[str] = self.model(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = model_outputs.pop('candidate_labels' ) SCREAMING_SNAKE_CASE_ : int = model_outputs['logits'][0] if self.framework == "pt": SCREAMING_SNAKE_CASE_ : Dict = logits.softmax(dim=-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = probs.tolist() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Tuple = [scores] elif self.framework == "tf": SCREAMING_SNAKE_CASE_ : List[str] = stable_softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) SCREAMING_SNAKE_CASE_ : Any = probs.numpy().tolist() else: raise ValueError(f"Unsupported framework: {self.framework}" ) SCREAMING_SNAKE_CASE_ : int = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , key=lambda _SCREAMING_SNAKE_CASE : -x[0] ) ] return result
511
from __future__ import annotations import os from typing import Any import requests lowerCAmelCase : str = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCAmelCase : Optional[Any] = BASE_URL + '/user' # https://github.com/settings/tokens lowerCAmelCase : Optional[int] = os.environ.get('USER_TOKEN', '') def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = { 'Authorization': f"token {auth_token}", 'Accept': 'application/vnd.github.v3+json', } return requests.get(a , headers=a ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'{key}: {value}') else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
511
1
def _SCREAMING_SNAKE_CASE ( a ) -> int: __A : List[str] = [] __A : Tuple = [] __A : Union[str, Any] = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator __A : List[str] = len(a ) if (len(a ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(a ) , 'Postfix'.center(a ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(a ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(a ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(a ) == 0: stack.append(a ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(a ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(a ) # push x to stack print( x.center(8 ) , (''.join(a )).ljust(a ) , (''.join(a )).ljust(a ) , sep=' | ' , ) # Output in tabular format while len(a ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(a )).ljust(a ) , (''.join(a )).ljust(a ) , sep=' | ' , ) # Output in tabular format return "".join(a ) # return Postfix as str def _SCREAMING_SNAKE_CASE ( a ) -> List[str]: __A : List[Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(a ) ): if infix[i] == "(": __A : List[str] = ')' # change "(" to ")" elif infix[i] == ")": __A : Any = '(' # change ")" to "(" return (infix_2_postfix(''.join(a ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": UpperCAmelCase : List[str] = input('''\nEnter an Infix Equation = ''') # Input an Infix equation UpperCAmelCase : Union[str, Any] = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
77
import glob import os import random from string import ascii_lowercase, digits import cva UpperCAmelCase : Dict = '''''' UpperCAmelCase : Union[str, Any] = '''''' UpperCAmelCase : Optional[int] = '''''' UpperCAmelCase : Union[str, Any] = 1 # (0 is vertical, 1 is horizontal) def _SCREAMING_SNAKE_CASE ( ) -> None: __A , __A : List[Any] = get_dataset(a , a ) print('Processing...' ) __A , __A , __A : Optional[Any] = update_image_and_anno(a , a , a ) for index, image in enumerate(a ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __A : Optional[int] = random_chars(32 ) __A : Dict = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] __A : Dict = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(F"""/{file_root}.jpg""" , a , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Success {index+1}/{len(a )} with {file_name}""" ) __A : int = [] for anno in new_annos[index]: __A : Any = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(a ) with open(F"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def _SCREAMING_SNAKE_CASE ( a , a ) -> tuple[list, list]: __A : int = [] __A : List[Any] = [] for label_file in glob.glob(os.path.join(a , '*.txt' ) ): __A : List[str] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(a ) as in_file: __A : Tuple = in_file.readlines() __A : Dict = os.path.join(a , F"""{label_name}.jpg""" ) __A : Dict = [] for obj_list in obj_lists: __A : int = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(a ) labels.append(a ) return img_paths, labels def _SCREAMING_SNAKE_CASE ( a , a , a = 1 ) -> tuple[list, list, list]: __A : int = [] __A : Optional[Any] = [] __A : Dict = [] for idx in range(len(a ) ): __A : Dict = [] __A : Optional[Any] = img_list[idx] path_list.append(a ) __A : Union[str, Any] = anno_list[idx] __A : Optional[Any] = cva.imread(a ) if flip_type == 1: __A : Any = cva.flip(a , a ) for bbox in img_annos: __A : Dict = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __A : Union[str, Any] = cva.flip(a , a ) for bbox in img_annos: __A : Optional[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(a ) new_imgs_list.append(a ) return new_imgs_list, new_annos_lists, path_list def _SCREAMING_SNAKE_CASE ( a = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __A : List[Any] = ascii_lowercase + digits return "".join(random.choice(a ) for _ in range(a ) ) if __name__ == "__main__": main() print('''DONE ✅''')
77
1
import random from typing import Any def __lowercase ( a__ ) -> Dict: for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): __SCREAMING_SNAKE_CASE = random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) __SCREAMING_SNAKE_CASE = random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = data[b], data[a] return data if __name__ == "__main__": lowerCAmelCase__ : Tuple =[0, 1, 2, 3, 4, 5, 6, 7] lowerCAmelCase__ : Optional[int] =['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
148
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :] _lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Dict: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _lowerCAmelCase = AutoTokenizer.from_pretrained("distilgpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCAmelCase = cs.out[:-1] # Remove the final "\n" _lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text
18
0
"""simple docstring""" def lowercase__(A = 1_000 ) ->int: """simple docstring""" lowercase__ : Union[str, Any]= 2**power lowercase__ : Dict= str(A ) lowercase__ : List[str]= list(A ) lowercase__ : Union[str, Any]= 0 for i in list_num: sum_of_num += int(A ) return sum_of_num if __name__ == "__main__": a : Any = int(input("""Enter the power of 2: """).strip()) print("""2 ^ """, power, """ = """, 2**power) a : Union[str, Any] = solution(power) print("""Sum of the digits is: """, result)
85
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = 42 __lowerCamelCase = 42 def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' super().__init__() self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ = 1 , snake_case__ = 2000 , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , **snake_case__ , ): '''simple docstring''' lowercase__ : Optional[Any]= self.unet.config.sample_size lowercase__ : Dict= (batch_size, 3, img_size, img_size) lowercase__ : List[Any]= self.unet lowercase__ : Tuple= randn_tensor(snake_case__ , generator=snake_case__ ) * self.scheduler.init_noise_sigma lowercase__ : Tuple= sample.to(self.device ) self.scheduler.set_timesteps(snake_case__ ) self.scheduler.set_sigmas(snake_case__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Optional[Any]= self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[Any]= self.unet(snake_case__ , snake_case__ ).sample lowercase__ : List[Any]= self.scheduler.step_correct(snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample # prediction step lowercase__ : List[str]= model(snake_case__ , snake_case__ ).sample lowercase__ : Tuple= self.scheduler.step_pred(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ) lowercase__, lowercase__ : Tuple= output.prev_sample, output.prev_sample_mean lowercase__ : List[str]= sample_mean.clamp(0 , 1 ) lowercase__ : Union[str, Any]= sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ : str= self.numpy_to_pil(snake_case__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=snake_case__ )
85
1
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : @staticmethod def UpperCamelCase_ ( *__lowercase : str , **__lowercase : List[Any] ): '''simple docstring''' pass def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Image ): """simple docstring""" __a = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Image ): """simple docstring""" __a = np.array(_SCREAMING_SNAKE_CASE ) __a = npimg.shape return {"hash": hashimage(_SCREAMING_SNAKE_CASE ), "shape": shape} @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): __lowerCamelCase : List[str] =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __lowerCamelCase : Any =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : int , __lowercase : int , __lowercase : Union[str, Any] ): '''simple docstring''' __a = MaskGenerationPipeline(model=__lowercase , image_processor=__lowercase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase_ ( self : int , __lowercase : Dict , __lowercase : Any ): '''simple docstring''' pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @slow @require_torch def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' __a = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __a = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing __a = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(__lowercase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = """facebook/sam-vit-huge""" __a = pipeline("""mask-generation""" , model=__lowercase ) __a = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __a = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(__lowercase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
225
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
1
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def A(__a: Any , __a: str , __a: List[Any]=1024 , __a: Optional[int]=1024 , __a: List[str]=False , **__a: Optional[Any] ): lowerCAmelCase_ = AutoTokenizer.from_pretrained(__a ) lowerCAmelCase_ = SeqaSeqDataset(__a , __a , __a , __a , type_path="train" , **__a ) lowerCAmelCase_ = tok.pad_token_id def get_lens(__a: List[str] ): lowerCAmelCase_ = tqdm( DataLoader(__a , batch_size=512 , num_workers=8 , shuffle=__a , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase_ = [] for batch in dl: lowerCAmelCase_ = batch["input_ids"].ne(__a ).sum(1 ).tolist() lowerCAmelCase_ = batch["labels"].ne(__a ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__a , __a ): max_lens.append(max(__a , __a ) ) else: max_lens.extend(__a ) return max_lens lowerCAmelCase_ = get_lens(__a ) lowerCAmelCase_ = SeqaSeqDataset(__a , __a , __a , __a , type_path="val" , **__a ) lowerCAmelCase_ = get_lens(__a ) pickle_save(__a , train_ds.len_file ) pickle_save(__a , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
226
def A(__a: int ): lowerCAmelCase_ = abs(__a ) lowerCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def A(__a: int ): lowerCAmelCase_ = abs(__a ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def A(__a: int ): return sum(int(__a ) for c in str(abs(__a ) ) ) def A(): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__a: Callable , __a: int ) -> None: lowerCAmelCase_ = F"{func.__name__}({value})" lowerCAmelCase_ = timeit(F"__main__.{call}" , setup="import __main__" ) print(F"{call:56} = {func(__a )} -- {timing:.4f} seconds" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__a , __a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
226
1
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class A_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , **lowercase__ , ) -> Optional[int]: __UpperCAmelCase = path_or_paths __UpperCAmelCase = split if split or isinstance(_snake_case , _snake_case ) else "train" __UpperCAmelCase = features __UpperCAmelCase = cache_dir __UpperCAmelCase = keep_in_memory __UpperCAmelCase = streaming __UpperCAmelCase = num_proc __UpperCAmelCase = kwargs @abstractmethod def lowerCAmelCase_ (self ) -> Optional[Any]: pass class A_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , **lowercase__ , ) -> List[str]: __UpperCAmelCase = features __UpperCAmelCase = cache_dir __UpperCAmelCase = keep_in_memory __UpperCAmelCase = streaming __UpperCAmelCase = num_proc __UpperCAmelCase = kwargs @abstractmethod def lowerCAmelCase_ (self ) -> int: pass
303
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Any =AudioLDMPipeline __A : Dict =TEXT_TO_AUDIO_PARAMS __A : Any =TEXT_TO_AUDIO_BATCH_PARAMS __A : Tuple =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ]) def UpperCamelCase__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=(32, 64) ,class_embed_type="simple_projection" ,projection_class_embeddings_input_dim=32 ,class_embeddings_concat=_snake_case ,) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=1 ,out_channels=1 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = ClapTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,projection_dim=32 ,) UpperCAmelCase_ : Optional[Any] = ClapTextModelWithProjection(_snake_case ) UpperCAmelCase_ : List[Any] = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" ,model_max_length=77 ) UpperCAmelCase_ : Optional[int] = SpeechTaHifiGanConfig( model_in_dim=8 ,sampling_rate=1_60_00 ,upsample_initial_channel=16 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=_snake_case ,) UpperCAmelCase_ : Union[str, Any] = SpeechTaHifiGan(_snake_case ) UpperCAmelCase_ : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def UpperCamelCase__ ( self ,_snake_case ,_snake_case=0 ): if str(_snake_case ).startswith("mps" ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_snake_case ) else: UpperCAmelCase_ : List[str] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) UpperCAmelCase_ : Any = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Optional[Any] = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : List[Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Any = audioldm_pipe(**_snake_case ) UpperCAmelCase_ : Dict = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 2_56 UpperCAmelCase_ : Any = audio[:10] UpperCAmelCase_ : Any = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.get_dummy_components() UpperCAmelCase_ : int = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : Dict = audioldm_pipe.to(_snake_case ) UpperCAmelCase_ : Tuple = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Tuple = 3 * [inputs["prompt"]] # forward UpperCAmelCase_ : Any = audioldm_pipe(**_snake_case ) UpperCAmelCase_ : List[str] = output.audios[0] UpperCAmelCase_ : Optional[Any] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : str = 3 * [inputs.pop("prompt" )] UpperCAmelCase_ : str = audioldm_pipe.tokenizer( _snake_case ,padding="max_length" ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=_snake_case ,return_tensors="pt" ,) UpperCAmelCase_ : Dict = text_inputs["input_ids"].to(_snake_case ) UpperCAmelCase_ : str = audioldm_pipe.text_encoder( _snake_case ,) UpperCAmelCase_ : Optional[Any] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCAmelCase_ : Tuple = F.normalize(_snake_case ,dim=-1 ) UpperCAmelCase_ : int = prompt_embeds # forward UpperCAmelCase_ : int = audioldm_pipe(**_snake_case ) UpperCAmelCase_ : List[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = self.get_dummy_components() UpperCAmelCase_ : Tuple = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : List[Any] = audioldm_pipe.to(_snake_case ) UpperCAmelCase_ : List[Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Optional[int] = 3 * ["this is a negative prompt"] UpperCAmelCase_ : Any = negative_prompt UpperCAmelCase_ : Union[str, Any] = 3 * [inputs["prompt"]] # forward UpperCAmelCase_ : Dict = audioldm_pipe(**_snake_case ) UpperCAmelCase_ : Dict = output.audios[0] UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Optional[Any] = 3 * [inputs.pop("prompt" )] UpperCAmelCase_ : List[Any] = [] for p in [prompt, negative_prompt]: UpperCAmelCase_ : Any = audioldm_pipe.tokenizer( _snake_case ,padding="max_length" ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=_snake_case ,return_tensors="pt" ,) UpperCAmelCase_ : List[Any] = text_inputs["input_ids"].to(_snake_case ) UpperCAmelCase_ : str = audioldm_pipe.text_encoder( _snake_case ,) UpperCAmelCase_ : List[Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCAmelCase_ : Any = F.normalize(_snake_case ,dim=-1 ) embeds.append(_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = embeds # forward UpperCAmelCase_ : Tuple = audioldm_pipe(**_snake_case ) UpperCAmelCase_ : Any = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Optional[Any] = self.get_dummy_components() UpperCAmelCase_ : Any = PNDMScheduler(skip_prk_steps=_snake_case ) UpperCAmelCase_ : Optional[Any] = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : List[Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Any = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : int = "egg cracking" UpperCAmelCase_ : Optional[Any] = audioldm_pipe(**_snake_case ,negative_prompt=_snake_case ) UpperCAmelCase_ : int = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 2_56 UpperCAmelCase_ : List[Any] = audio[:10] UpperCAmelCase_ : Any = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[str] = self.get_dummy_components() UpperCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=_snake_case ) UpperCAmelCase_ : Any = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : Any = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Dict = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) UpperCAmelCase_ : Any = audioldm_pipe(_snake_case ,num_inference_steps=2 ).audios assert audios.shape == (1, 2_56) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : Dict = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_56) # test num_waveforms_per_prompt for single prompt UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : List[Any] = audioldm_pipe(_snake_case ,num_inference_steps=2 ,num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 2_56) # test num_waveforms_per_prompt for batch of prompts UpperCAmelCase_ : Union[str, Any] = 2 UpperCAmelCase_ : Optional[int] = audioldm_pipe( [prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_56) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Optional[Any] = self.get_dummy_components() UpperCAmelCase_ : Union[str, Any] = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : List[Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Optional[Any] = audioldm_pipe.vocoder.config.sampling_rate UpperCAmelCase_ : Any = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Optional[int] = audioldm_pipe(audio_length_in_s=0.016 ,**_snake_case ) UpperCAmelCase_ : str = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.016 UpperCAmelCase_ : List[Any] = audioldm_pipe(audio_length_in_s=0.032 ,**_snake_case ) UpperCAmelCase_ : Any = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.032 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.get_dummy_components() UpperCAmelCase_ : str = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : int = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : int = ["hey"] UpperCAmelCase_ : Dict = audioldm_pipe(_snake_case ,num_inference_steps=1 ) UpperCAmelCase_ : Any = output.audios.shape assert audio_shape == (1, 2_56) UpperCAmelCase_ : Tuple = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCAmelCase_ : List[Any] = SpeechTaHifiGan(_snake_case ).to(_snake_case ) UpperCAmelCase_ : Tuple = audioldm_pipe(_snake_case ,num_inference_steps=1 ) UpperCAmelCase_ : int = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_56) def UpperCamelCase__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_snake_case ) def UpperCamelCase__ ( self ): self._test_inference_batch_single_identical(test_mean_pixel_difference=_snake_case ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() ,reason="XFormers attention is only available with CUDA and `xformers` installed" ,) def UpperCamelCase__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case ) @slow class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ,_snake_case ,_snake_case="cpu" ,_snake_case=torch.floataa ,_snake_case=0 ): UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) UpperCAmelCase_ : str = np.random.RandomState(_snake_case ).standard_normal((1, 8, 1_28, 16) ) UpperCAmelCase_ : Optional[Any] = torch.from_numpy(_snake_case ).to(device=_snake_case ,dtype=_snake_case ) UpperCAmelCase_ : List[str] = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) UpperCAmelCase_ : Optional[int] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : List[Any] = self.get_inputs(_snake_case ) UpperCAmelCase_ : List[Any] = 25 UpperCAmelCase_ : Union[str, Any] = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 8_19_20 UpperCAmelCase_ : Union[str, Any] = audio[7_72_30:7_72_40] UpperCAmelCase_ : Any = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) UpperCAmelCase_ : Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) UpperCAmelCase_ : List[Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCAmelCase_ : int = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Tuple = self.get_inputs(_snake_case ) UpperCAmelCase_ : Optional[Any] = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 8_19_20 UpperCAmelCase_ : Any = audio[2_77_80:2_77_90] UpperCAmelCase_ : List[str] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) UpperCAmelCase_ : Union[str, Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
71
0
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) __lowerCAmelCase : str = None __lowerCAmelCase : Union[str, Any] = { '7B': 1_1008, '13B': 1_3824, '30B': 1_7920, '65B': 2_2016, '70B': 2_8672, } __lowerCAmelCase : List[str] = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def a_ (_lowerCAmelCase : Any , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : str=256 )-> int: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def a_ (_lowerCAmelCase : List[str] )-> List[Any]: with open(_lowerCAmelCase , """r""" ) as f: return json.load(_lowerCAmelCase ) def a_ (_lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] )-> str: with open(_lowerCAmelCase , """w""" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ (_lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=True )-> int: os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) snake_case: Optional[Any] = os.path.join(_lowerCAmelCase , """tmp""" ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) snake_case: List[str] = read_json(os.path.join(_lowerCAmelCase , """params.json""" ) ) snake_case: List[Any] = NUM_SHARDS[model_size] snake_case: List[Any] = params["""n_layers"""] snake_case: int = params["""n_heads"""] snake_case: Optional[Any] = n_heads // num_shards snake_case: Union[str, Any] = params["""dim"""] snake_case: Union[str, Any] = dim // n_heads snake_case: Dict = 10000.0 snake_case: Any = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case: int = params["""n_kv_heads"""] # for GQA / MQA snake_case: Any = n_heads_per_shard // num_key_value_heads snake_case: Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case: int = n_heads snake_case: int = n_heads_per_shard snake_case: Optional[int] = dim # permute for sliced rotary def permute(_lowerCAmelCase : Tuple , _lowerCAmelCase : Any=n_heads , _lowerCAmelCase : Union[str, Any]=dim , _lowerCAmelCase : List[str]=dim ): return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase ) print(F"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case: Tuple = torch.load(os.path.join(_lowerCAmelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded snake_case: str = [ torch.load(os.path.join(_lowerCAmelCase , F"consolidated.{i:02d}.pth" ) , map_location="""cpu""" ) for i in range(_lowerCAmelCase ) ] snake_case: Optional[int] = 0 snake_case: str = {"""weight_map""": {}} for layer_i in range(_lowerCAmelCase ): snake_case: List[Any] = F"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded snake_case: List[Any] = { F"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wq.weight"] ), F"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wk.weight"] ), F"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[F"layers.{layer_i}.attention.wv.weight"], F"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[F"layers.{layer_i}.attention.wo.weight"], F"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w1.weight"], F"model.layers.{layer_i}.mlp.down_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w2.weight"], F"model.layers.{layer_i}.mlp.up_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w3.weight"], F"model.layers.{layer_i}.input_layernorm.weight": loaded[F"layers.{layer_i}.attention_norm.weight"], F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[F"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case: List[str] = { F"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ F"layers.{layer_i}.attention_norm.weight" ].clone(), F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ F"layers.{layer_i}.ffn_norm.weight" ].clone(), } snake_case: Any = permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wq.weight"].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) ) snake_case: Dict = permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wk.weight"].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) snake_case: str = torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wv.weight"].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) snake_case: int = torch.cat( [loaded[i][F"layers.{layer_i}.attention.wo.weight"] for i in range(_lowerCAmelCase )] , dim=1 ) snake_case: List[str] = torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w1.weight"] for i in range(_lowerCAmelCase )] , dim=0 ) snake_case: List[Any] = torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w2.weight"] for i in range(_lowerCAmelCase )] , dim=1 ) snake_case: Optional[int] = torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w3.weight"] for i in range(_lowerCAmelCase )] , dim=0 ) snake_case: List[Any] = inv_freq for k, v in state_dict.items(): snake_case: List[Any] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) snake_case: Tuple = F"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded snake_case: str = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: snake_case: List[str] = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ), } for k, v in state_dict.items(): snake_case: List[Any] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) # Write configs snake_case: int = {"""total_size""": param_count * 2} write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , """pytorch_model.bin.index.json""" ) ) snake_case: int = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 snake_case: Dict = params["""multiple_of"""] if """multiple_of""" in params else 256 snake_case: List[Any] = LlamaConfig( hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=_lowerCAmelCase , ) config.save_pretrained(_lowerCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) snake_case: Dict = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) def a_ (_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] )-> Tuple: # Initialize the tokenizer based on the `spm` model snake_case: Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) snake_case: Any = tokenizer_class(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) def a_ ()-> int: snake_case: List[Any] = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=_lowerCAmelCase , help="""Whether or not to save using `safetensors`.""" ) snake_case: Tuple = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case: Dict = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , _lowerCAmelCase ) if __name__ == "__main__": main()
704
import collections import os import re from pathlib import Path __lowerCAmelCase : Tuple = 'src/transformers' # Matches is_xxx_available() __lowerCAmelCase : Union[str, Any] = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __lowerCAmelCase : Dict = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowerCAmelCase : Union[str, Any] = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __lowerCAmelCase : Optional[Any] = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __lowerCAmelCase : str = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowerCAmelCase : List[str] = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __lowerCAmelCase : Optional[int] = re.compile(R'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __lowerCAmelCase : Optional[int] = re.compile(R'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __lowerCAmelCase : Dict = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __lowerCAmelCase : Optional[int] = re.compile(R'^\s*try:') # Catches a line with else: __lowerCAmelCase : Optional[int] = re.compile(R'^\s*else:') def a_ (_lowerCAmelCase : str )-> Optional[int]: if _re_test_backend.search(_lowerCAmelCase ) is None: return None snake_case: Optional[Any] = [b[0] for b in _re_backend.findall(_lowerCAmelCase )] backends.sort() return "_and_".join(_lowerCAmelCase ) def a_ (_lowerCAmelCase : Union[str, Any] )-> Union[str, Any]: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case: Dict = f.readlines() snake_case: Optional[int] = 0 while line_index < len(_lowerCAmelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure snake_case: Optional[Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: snake_case: Any = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_lowerCAmelCase ): snake_case: int = _re_one_line_import_struct.search(_lowerCAmelCase ).groups()[0] snake_case: Any = re.findall(R"""\[([^\]]+)\]""" , _lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue snake_case: Union[str, Any] = _re_import_struct_key_value.search(_lowerCAmelCase ) if single_line_import_search is not None: snake_case: Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 snake_case: int = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case: Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case: str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case: List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): snake_case: Union[str, Any] = lines[line_index] if _re_import_struct_add_one.search(_lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(_lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_lowerCAmelCase ) is not None: snake_case: Optional[int] = _re_import_struct_add_many.search(_lowerCAmelCase ).groups()[0].split(""", """ ) snake_case: str = [obj[1:-1] for obj in imports if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif _re_between_brackets.search(_lowerCAmelCase ) is not None: snake_case: Union[str, Any] = _re_between_brackets.search(_lowerCAmelCase ).groups()[0].split(""", """ ) snake_case: int = [obj[1:-1] for obj in imports if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif _re_quote_object.search(_lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(_lowerCAmelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 snake_case: List[str] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case: Optional[Any] = [] while ( line_index < len(_lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): snake_case: int = lines[line_index] snake_case: str = _re_import.search(_lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case: Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(_lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. snake_case: Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case: List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case: Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): snake_case: List[str] = lines[line_index] snake_case: str = _re_import.search(_lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case: Tuple = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a_ (_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] )-> Optional[int]: def find_duplicates(_lowerCAmelCase : Union[str, Any] ): return [k for k, v in collections.Counter(_lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case: Optional[Any] = [] for key in import_dict_objects.keys(): snake_case: List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) snake_case: Optional[int] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case: Optional[Any] = """base imports""" if key == """none""" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def a_ ()-> int: snake_case: Optional[int] = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: snake_case: Optional[int] = os.path.join(_lowerCAmelCase , """__init__.py""" ) snake_case: Any = parse_init(_lowerCAmelCase ) if objects is not None: snake_case: List[str] = analyze_results(*_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: snake_case: Optional[int] = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("""\n""".join(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) > 0: raise ValueError("""\n\n""".join(_lowerCAmelCase ) ) def a_ ()-> Dict: snake_case: Any = [] for path, directories, files in os.walk(_lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(_lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_lowerCAmelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue snake_case: Optional[int] = str((Path(_lowerCAmelCase ) / folder).relative_to(_lowerCAmelCase ) ) snake_case: str = short_path.replace(os.path.sep , """.""" ) submodules.append(_lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue snake_case: Union[str, Any] = str((Path(_lowerCAmelCase ) / fname).relative_to(_lowerCAmelCase ) ) snake_case: List[Any] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(_lowerCAmelCase ) return submodules __lowerCAmelCase : Optional[int] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def a_ ()-> Dict: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import snake_case: Union[str, Any] = direct_transformers_import(_lowerCAmelCase ) snake_case: str = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_lowerCAmelCase , """__init__.py""" ) , """r""" ) as f: snake_case: Optional[int] = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , _lowerCAmelCase ) ) ) snake_case: Any = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_lowerCAmelCase ) > 0: snake_case: Any = """\n""".join(F"- {module}" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F"{list_of_modules}\n" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
164
0
def _snake_case ( __snake_case , __snake_case ): return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
10
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase ( __magic_name__ ): _a = """segformer""" def __init__( self , UpperCamelCase=3 , UpperCamelCase=4 , UpperCamelCase=[2, 2, 2, 2] , UpperCamelCase=[8, 4, 2, 1] , UpperCamelCase=[32, 64, 160, 256] , UpperCamelCase=[7, 3, 3, 3] , UpperCamelCase=[4, 2, 2, 2] , UpperCamelCase=[1, 2, 5, 8] , UpperCamelCase=[4, 4, 4, 4] , UpperCamelCase="gelu" , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.1 , UpperCamelCase=0.02 , UpperCamelCase=0.1 , UpperCamelCase=1e-6 , UpperCamelCase=256 , UpperCamelCase=255 , **UpperCamelCase , ) -> int: super().__init__(**UpperCamelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCamelCase , ) __a = num_channels __a = num_encoder_blocks __a = depths __a = sr_ratios __a = hidden_sizes __a = patch_sizes __a = strides __a = mlp_ratios __a = num_attention_heads __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = classifier_dropout_prob __a = initializer_range __a = drop_path_rate __a = layer_norm_eps __a = decoder_hidden_size __a = kwargs.get('reshape_last_stage' , UpperCamelCase ) __a = semantic_loss_ignore_index class __lowercase ( __magic_name__ ): _a = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase__ ( self ) -> float: return 1e-4 @property def UpperCamelCase__ ( self ) -> int: return 12
539
0
"""simple docstring""" from __future__ import annotations UpperCAmelCase : Dict = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCAmelCase : Optional[Any] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : Tuple = [] lowerCamelCase__ : Tuple = len(_lowercase ) for i in range(_lowercase ): lowerCamelCase__ : float = -1 for j in range(i + 1 , _lowercase ): if arr[i] < arr[j]: lowerCamelCase__ : int = arr[j] break result.append(_lowercase ) return result def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : Optional[int] = [] for i, outer in enumerate(_lowercase ): lowerCamelCase__ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowerCamelCase__ : List[str] = inner break result.append(_lowercase ) return result def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : Tuple = len(_lowercase ) lowerCamelCase__ : list[float] = [] lowerCamelCase__ : list[float] = [-1] * arr_size for index in reversed(range(_lowercase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowerCamelCase__ : List[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCAmelCase : Union[str, Any] = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : str = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
121
0
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask a : Tuple = logging.getLogger(__name__) class _a ( _lowerCAmelCase ): A = '''token-classification''' def __init__(self, SCREAMING_SNAKE_CASE_ ) -> List[str]: if type(SCREAMING_SNAKE_CASE_ ) == dict: UpperCAmelCase_: Optional[Any] = Namespace(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = import_module("""tasks""" ) try: UpperCAmelCase_: Any = getattr(SCREAMING_SNAKE_CASE_, hparams.task_type ) UpperCAmelCase_: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' f'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) UpperCAmelCase_: Union[str, Any] = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_: Optional[int] = CrossEntropyLoss().ignore_index super().__init__(SCREAMING_SNAKE_CASE_, len(self.labels ), self.mode ) def __snake_case (self, **SCREAMING_SNAKE_CASE_ ) -> List[Any]: return self.model(**SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: int = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_: Optional[Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_: int = self(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __snake_case (self ) -> Dict: UpperCAmelCase_: Optional[int] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_: Tuple = self._feature_file(SCREAMING_SNAKE_CASE_ ) if os.path.exists(SCREAMING_SNAKE_CASE_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""", SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = torch.load(SCREAMING_SNAKE_CASE_ ) else: logger.info("""Creating features from dataset file at %s""", args.data_dir ) UpperCAmelCase_: str = self.token_classification_task.read_examples_from_file(args.data_dir, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = self.token_classification_task.convert_examples_to_features( SCREAMING_SNAKE_CASE_, self.labels, args.max_seq_length, self.tokenizer, cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ), cls_token=self.tokenizer.cls_token, cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0, sep_token=self.tokenizer.sep_token, sep_token_extra=SCREAMING_SNAKE_CASE_, pad_on_left=bool(self.config.model_type in ["""xlnet"""] ), pad_token=self.tokenizer.pad_token_id, pad_token_segment_id=self.tokenizer.pad_token_type_id, pad_token_label_id=self.pad_token_label_id, ) logger.info("""Saving features into cached file %s""", SCREAMING_SNAKE_CASE_ ) torch.save(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = False ) -> DataLoader: UpperCAmelCase_: List[Any] = self._feature_file(SCREAMING_SNAKE_CASE_ ) logger.info("""Loading features from cached file %s""", SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = torch.load(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = torch.tensor([f.input_ids for f in features], dtype=torch.long ) UpperCAmelCase_: Union[str, Any] = torch.tensor([f.attention_mask for f in features], dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_: List[Any] = torch.tensor([f.token_type_ids for f in features], dtype=torch.long ) else: UpperCAmelCase_: List[str] = torch.tensor([0 for f in features], dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_: Union[str, Any] = torch.tensor([f.label_ids for f in features], dtype=torch.long ) return DataLoader( TensorDataset(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), batch_size=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: """Compute validation""" "" UpperCAmelCase_: Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_: Tuple = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_: int = self(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ , UpperCAmelCase_: List[str] = outputs[:2] UpperCAmelCase_: Any = logits.detach().cpu().numpy() UpperCAmelCase_: int = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: Any = torch.stack([x["""val_loss"""] for x in outputs] ).mean() UpperCAmelCase_: Union[str, Any] = np.concatenate([x["""pred"""] for x in outputs], axis=0 ) UpperCAmelCase_: Any = np.argmax(SCREAMING_SNAKE_CASE_, axis=2 ) UpperCAmelCase_: Optional[Any] = np.concatenate([x["""target"""] for x in outputs], axis=0 ) UpperCAmelCase_: Optional[Any] = dict(enumerate(self.labels ) ) UpperCAmelCase_: Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_: List[Any] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_: Optional[int] = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), """precision""": precision_score(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), """recall""": recall_score(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), """f1""": fa_score(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), } UpperCAmelCase_: Optional[int] = dict(results.items() ) UpperCAmelCase_: str = results return ret, preds_list, out_label_list def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Dict: # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: List[str] = self._eval_end(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Optional[Any] = self._eval_end(SCREAMING_SNAKE_CASE_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_: Optional[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __snake_case (SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # Add NER specific options BaseTransformer.add_model_specific_args(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) parser.add_argument( """--task_type""", default="""NER""", type=SCREAMING_SNAKE_CASE_, help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""", default=128, type=SCREAMING_SNAKE_CASE_, help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ), ) parser.add_argument( """--labels""", default="""""", type=SCREAMING_SNAKE_CASE_, help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""", ) parser.add_argument( """--gpus""", default=0, type=SCREAMING_SNAKE_CASE_, help="""The number of GPUs allocated for this, it is by default 0 meaning none""", ) parser.add_argument( """--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) a : List[Any] = NERTransformer.add_model_specific_args(parser, os.getcwd()) a : List[str] = parser.parse_args() a : Tuple = NERTransformer(args) a : Any = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 a : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) a : str = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
556
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) a : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=_lowerCAmelCase ) class _a : A = 42 A = 42 A = None A = None A = None @dataclass(frozen=_lowerCAmelCase ) class _a : A = 42 A = None A = None A = None A = None if is_torch_available(): import torch from torch.utils.data import Dataset class _a ( _lowerCAmelCase ): A = 42 def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_ = False, ) -> Union[str, Any]: UpperCAmelCase_: Optional[Any] = hans_processors[task]() UpperCAmelCase_: Dict = os.path.join( SCREAMING_SNAKE_CASE_, """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""", tokenizer.__class__.__name__, str(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, ), ) UpperCAmelCase_: Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_: Tuple = label_list[2], label_list[1] UpperCAmelCase_: str = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_: int = cached_features_file + """.lock""" with FileLock(SCREAMING_SNAKE_CASE_ ): if os.path.exists(SCREAMING_SNAKE_CASE_ ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) UpperCAmelCase_: Dict = torch.load(SCREAMING_SNAKE_CASE_ ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) UpperCAmelCase_: Union[str, Any] = ( processor.get_dev_examples(SCREAMING_SNAKE_CASE_ ) if evaluate else processor.get_train_examples(SCREAMING_SNAKE_CASE_ ) ) logger.info("""Training examples: %s""", len(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: List[Any] = hans_convert_examples_to_features(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) logger.info("""Saving features into cached file %s""", SCREAMING_SNAKE_CASE_ ) torch.save(self.features, SCREAMING_SNAKE_CASE_ ) def __len__(self ) -> Optional[int]: return len(self.features ) def __getitem__(self, SCREAMING_SNAKE_CASE_ ) -> InputFeatures: return self.features[i] def __snake_case (self ) -> List[str]: return self.label_list if is_tf_available(): import tensorflow as tf class _a : A = 42 def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 128, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_ = False, ) -> Optional[int]: UpperCAmelCase_: Union[str, Any] = hans_processors[task]() UpperCAmelCase_: List[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_: List[str] = label_list[2], label_list[1] UpperCAmelCase_: Dict = label_list UpperCAmelCase_: List[str] = processor.get_dev_examples(SCREAMING_SNAKE_CASE_ ) if evaluate else processor.get_train_examples(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = hans_convert_examples_to_features(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ), desc="""convert examples to features""" ): if ex_index % 10000 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(SCREAMING_SNAKE_CASE_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_: List[str] = tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE_, ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ), ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ), ) def __snake_case (self ) -> Optional[Any]: return self.dataset def __len__(self ) -> Optional[int]: return len(self.features ) def __getitem__(self, SCREAMING_SNAKE_CASE_ ) -> InputFeatures: return self.features[i] def __snake_case (self ) -> Union[str, Any]: return self.label_list class _a ( _lowerCAmelCase ): def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Dict: return self._create_examples(self._read_tsv(os.path.join(SCREAMING_SNAKE_CASE_, """heuristics_train_set.txt""" ) ), """train""" ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Dict: return self._create_examples(self._read_tsv(os.path.join(SCREAMING_SNAKE_CASE_, """heuristics_evaluation_set.txt""" ) ), """dev""" ) def __snake_case (self ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCAmelCase_: Optional[Any] = [] for i, line in enumerate(SCREAMING_SNAKE_CASE_ ): if i == 0: continue UpperCAmelCase_: Tuple = """%s-%s""" % (set_type, line[0]) UpperCAmelCase_: int = line[5] UpperCAmelCase_: int = line[6] UpperCAmelCase_: List[str] = line[7][2:] if line[7].startswith("""ex""" ) else line[7] UpperCAmelCase_: Any = line[0] examples.append(InputExample(guid=SCREAMING_SNAKE_CASE_, text_a=SCREAMING_SNAKE_CASE_, text_b=SCREAMING_SNAKE_CASE_, label=SCREAMING_SNAKE_CASE_, pairID=SCREAMING_SNAKE_CASE_ ) ) return examples def lowerCAmelCase_ (lowerCAmelCase__: List[InputExample] , lowerCAmelCase__: List[str] , lowerCAmelCase__: int , lowerCAmelCase__: PreTrainedTokenizer , ): """simple docstring""" UpperCAmelCase_: List[str] = {label: i for i, label in enumerate(lowerCAmelCase__ )} UpperCAmelCase_: Optional[int] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCAmelCase__ ) , desc="""convert examples to features""" ): if ex_index % 1_0_0_0_0 == 0: logger.info("""Writing example %d""" % (ex_index) ) UpperCAmelCase_: Tuple = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" , truncation=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , ) UpperCAmelCase_: Optional[Any] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_: Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCAmelCase__ , label=lowerCAmelCase__ , pairID=lowerCAmelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features a : Optional[int] = { 'hans': 3, } a : Dict = { 'hans': HansProcessor, }
556
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _A ( UpperCAmelCase_): SCREAMING_SNAKE_CASE : int = (DDPMScheduler,) def UpperCAmelCase ( self , **_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_snake_case ) return config def UpperCAmelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_snake_case ) def UpperCAmelCase ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case ) def UpperCAmelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_snake_case ) def UpperCAmelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_snake_case ) def UpperCAmelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_snake_case ) def UpperCAmelCase ( self ): self.check_over_configs(thresholding=_snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , ) def UpperCAmelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def UpperCAmelCase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_snake_case ) def UpperCAmelCase ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : int = scheduler_class(**_snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def UpperCAmelCase ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**_snake_case ) SCREAMING_SNAKE_CASE_ : Tuple = len(_snake_case ) SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(_snake_case ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ : List[str] = model(_snake_case , _snake_case ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ : Dict = scheduler.step(_snake_case , _snake_case , _snake_case , generator=_snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance SCREAMING_SNAKE_CASE_ : str = pred_prev_sample SCREAMING_SNAKE_CASE_ : int = torch.sum(torch.abs(_snake_case ) ) SCREAMING_SNAKE_CASE_ : int = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def UpperCAmelCase ( self ): SCREAMING_SNAKE_CASE_ : Any = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_scheduler_config(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE_ : Any = scheduler_class(**_snake_case ) SCREAMING_SNAKE_CASE_ : List[str] = len(_snake_case ) SCREAMING_SNAKE_CASE_ : str = self.dummy_model() SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ : Any = torch.manual_seed(0 ) for t in reversed(range(_snake_case ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ : Tuple = model(_snake_case , _snake_case ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ : int = scheduler.step(_snake_case , _snake_case , _snake_case , generator=_snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance SCREAMING_SNAKE_CASE_ : List[str] = pred_prev_sample SCREAMING_SNAKE_CASE_ : Tuple = torch.sum(torch.abs(_snake_case ) ) SCREAMING_SNAKE_CASE_ : int = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def UpperCAmelCase ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[str] = scheduler_class(**_snake_case ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_snake_case ) SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.timesteps for i, timestep in enumerate(_snake_case ): if i == len(_snake_case ) - 1: SCREAMING_SNAKE_CASE_ : Optional[Any] = -1 else: SCREAMING_SNAKE_CASE_ : int = timesteps[i + 1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler.previous_timestep(_snake_case ) SCREAMING_SNAKE_CASE_ : List[str] = prev_t.item() self.assertEqual(_snake_case , _snake_case ) def UpperCAmelCase ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler_class(**_snake_case ) SCREAMING_SNAKE_CASE_ : List[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_snake_case , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_snake_case ) def UpperCAmelCase ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : int = scheduler_class(**_snake_case ) SCREAMING_SNAKE_CASE_ : Any = [100, 87, 50, 1, 0] SCREAMING_SNAKE_CASE_ : Any = len(_snake_case ) with self.assertRaises(_snake_case , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_snake_case , timesteps=_snake_case ) def UpperCAmelCase ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Dict = scheduler_class(**_snake_case ) SCREAMING_SNAKE_CASE_ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( _snake_case , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_snake_case )
708
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A_ ( a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = TaConfig.from_json_file(a ) print(f"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE_ : Tuple = TaForConditionalGeneration(a ) # Load weights from tf checkpoint load_tf_weights_in_ta(a , a , a ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(a ) if __name__ == "__main__": lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
353
0
"""simple docstring""" import numpy as np a_ : Optional[int] = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class __lowercase: '''simple docstring''' def __init__( self ): __lowerCamelCase : Optional[Any] = np.array(__a ) def snake_case_ ( self , __a ): __lowerCamelCase , __lowerCamelCase : List[Any] = np.where(letter == self.SQUARE ) __lowerCamelCase : Tuple = np.concatenate([indexa + 1, indexa + 1] ) return indexes def snake_case_ ( self , __a , __a ): __lowerCamelCase : Optional[Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def snake_case_ ( self , __a ): __lowerCamelCase : Optional[int] = message.lower() __lowerCamelCase : Optional[int] = message.replace(' ' , '' ) __lowerCamelCase : Tuple = message.replace('j' , 'i' ) __lowerCamelCase : Optional[int] = np.empty((2, len(__a )) ) for letter_index in range(len(__a ) ): __lowerCamelCase : Tuple = self.letter_to_numbers(message[letter_index] ) __lowerCamelCase : List[str] = numbers[0] __lowerCamelCase : Union[str, Any] = numbers[1] __lowerCamelCase : Any = first_step.reshape(2 * len(__a ) ) __lowerCamelCase : str = '' for numbers_index in range(len(__a ) ): __lowerCamelCase : List[Any] = int(second_step[numbers_index * 2] ) __lowerCamelCase : List[Any] = int(second_step[(numbers_index * 2) + 1] ) __lowerCamelCase : Union[str, Any] = self.numbers_to_letter(__a , __a ) __lowerCamelCase : Dict = encoded_message + letter return encoded_message def snake_case_ ( self , __a ): __lowerCamelCase : str = message.lower() message.replace(' ' , '' ) __lowerCamelCase : str = np.empty(2 * len(__a ) ) for letter_index in range(len(__a ) ): __lowerCamelCase : Optional[int] = self.letter_to_numbers(message[letter_index] ) __lowerCamelCase : Optional[int] = numbers[0] __lowerCamelCase : Any = numbers[1] __lowerCamelCase : List[Any] = first_step.reshape((2, len(__a )) ) __lowerCamelCase : Optional[Any] = '' for numbers_index in range(len(__a ) ): __lowerCamelCase : List[Any] = int(second_step[0, numbers_index] ) __lowerCamelCase : Dict = int(second_step[1, numbers_index] ) __lowerCamelCase : Optional[int] = self.numbers_to_letter(__a , __a ) __lowerCamelCase : Dict = decoded_message + letter return decoded_message
594
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __lowercase( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): __lowerCamelCase : int = get_activation('swish' ) self.assertIsInstance(__a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def snake_case_ ( self ): __lowerCamelCase : Tuple = get_activation('silu' ) self.assertIsInstance(__a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def snake_case_ ( self ): __lowerCamelCase : Dict = get_activation('mish' ) self.assertIsInstance(__a , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def snake_case_ ( self ): __lowerCamelCase : Tuple = get_activation('gelu' ) self.assertIsInstance(__a , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
594
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE_ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Dict = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class _A ( __a ): __a = 'layoutlmv3' def __init__( self , SCREAMING_SNAKE_CASE__=50265 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1e-5 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=128 , SCREAMING_SNAKE_CASE__=128 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=128 , SCREAMING_SNAKE_CASE__=64 , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=224 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: super().__init__( vocab_size=SCREAMING_SNAKE_CASE__ , hidden_size=SCREAMING_SNAKE_CASE__ , num_hidden_layers=SCREAMING_SNAKE_CASE__ , num_attention_heads=SCREAMING_SNAKE_CASE__ , intermediate_size=SCREAMING_SNAKE_CASE__ , hidden_act=SCREAMING_SNAKE_CASE__ , hidden_dropout_prob=SCREAMING_SNAKE_CASE__ , attention_probs_dropout_prob=SCREAMING_SNAKE_CASE__ , max_position_embeddings=SCREAMING_SNAKE_CASE__ , type_vocab_size=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , layer_norm_eps=SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = max_ad_position_embeddings lowerCamelCase__ = coordinate_size lowerCamelCase__ = shape_size lowerCamelCase__ = has_relative_attention_bias lowerCamelCase__ = rel_pos_bins lowerCamelCase__ = max_rel_pos lowerCamelCase__ = has_spatial_attention_bias lowerCamelCase__ = rel_ad_pos_bins lowerCamelCase__ = max_rel_ad_pos lowerCamelCase__ = text_embed lowerCamelCase__ = visual_embed lowerCamelCase__ = input_size lowerCamelCase__ = num_channels lowerCamelCase__ = patch_size lowerCamelCase__ = classifier_dropout class _A ( __a ): __a = version.parse('1.12' ) @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def _lowerCamelCase ( self ) -> float: return 1e-5 @property def _lowerCamelCase ( self ) -> int: return 12 def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 3 , SCREAMING_SNAKE_CASE__ = 40 , SCREAMING_SNAKE_CASE__ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , "apply_ocr" , SCREAMING_SNAKE_CASE__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase__ = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ = processor.tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE__ ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes lowerCamelCase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) lowerCamelCase__ = self._generate_dummy_images(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = dict( processor( SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ , boxes=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , ) ) return inputs
274
"""simple docstring""" import operator as op def UpperCAmelCase__ ( A__ ) -> Dict: """simple docstring""" lowerCamelCase__ = [] lowerCamelCase__ = lambda A__ , A__ : int(x / y ) # noqa: E731 integer division operation lowerCamelCase__ = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(A__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(A__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(A__ ) , sep=" | " ) else: lowerCamelCase__ = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(A__ ) , sep=" | " ) lowerCamelCase__ = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(A__ ) , sep=" | " ) stack.append( str(opr[x](int(A__ ) , int(A__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(A__ ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Tuple = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
274
1
from datetime import datetime as dt import os from github import Github __lowercase : Optional[int] =[ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Github(os.environ["GITHUB_TOKEN"] ) UpperCAmelCase_ =g.get_repo("huggingface/transformers" ) UpperCAmelCase_ =repo.get_issues(state="open" ) for issue in open_issues: UpperCAmelCase_ =sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) UpperCAmelCase_ =comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
54
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor SCREAMING_SNAKE_CASE__:int = logging.get_logger(__name__) class snake_case__ ( snake_case_ ): def __init__( self , *lowerCamelCase , **lowerCamelCase ): warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
528
0
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase_ ( __lowercase : List[Any] ) -> Optional[int]: '''simple docstring''' return EnvironmentCommand() def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class A_ ( lowerCAmelCase_ ): @staticmethod def lowercase ( snake_case_ : ArgumentParser ): _UpperCAmelCase = parser.add_parser("env" ) download_parser.set_defaults(func=snake_case_ ) download_parser.add_argument( "--accelerate-config_file" , default=snake_case_ , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=snake_case_ ) def __init__( self : List[Any] , snake_case_ : List[Any] , *snake_case_ : Optional[Any] ): _UpperCAmelCase = accelerate_config_file def lowercase ( self : Tuple ): _UpperCAmelCase = "not installed" if is_safetensors_available(): import safetensors _UpperCAmelCase = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors _UpperCAmelCase = f'{safetensors.__version__} but is ignored because of PyTorch version too old.' _UpperCAmelCase = "not installed" _UpperCAmelCase = _UpperCAmelCase = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _UpperCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(snake_case_ ): _UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() _UpperCAmelCase = ( "\n".join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(snake_case_ , snake_case_ ) else f'\t{accelerate_config}' ) _UpperCAmelCase = "not installed" _UpperCAmelCase = "NA" if is_torch_available(): import torch _UpperCAmelCase = torch.__version__ _UpperCAmelCase = torch.cuda.is_available() _UpperCAmelCase = "not installed" _UpperCAmelCase = "NA" if is_tf_available(): import tensorflow as tf _UpperCAmelCase = tf.__version__ try: # deprecated in v2.1 _UpperCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _UpperCAmelCase = bool(tf.config.list_physical_devices("GPU" ) ) _UpperCAmelCase = "not installed" _UpperCAmelCase = "not installed" _UpperCAmelCase = "not installed" _UpperCAmelCase = "NA" if is_flax_available(): import flax import jax import jaxlib _UpperCAmelCase = flax.__version__ _UpperCAmelCase = jax.__version__ _UpperCAmelCase = jaxlib.__version__ _UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform _UpperCAmelCase = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f'{safetensors_version}', "Accelerate version": f'{accelerate_version}', "Accelerate config": f'{accelerate_config_str}', "PyTorch version (GPU?)": f'{pt_version} ({pt_cuda_available})', "Tensorflow version (GPU?)": f'{tf_version} ({tf_cuda_available})', "Flax version (CPU?/GPU?/TPU?)": f'{flax_version} ({jax_backend})', "Jax version": f'{jax_version}', "JaxLib version": f'{jaxlib_version}', "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(snake_case_ ) ) return info @staticmethod def lowercase ( snake_case_ : List[str] ): return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
119
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __SCREAMING_SNAKE_CASE :List[str] = datasets.utils.logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Union[str, Any] = ['''names''', '''prefix'''] __SCREAMING_SNAKE_CASE :Dict = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __SCREAMING_SNAKE_CASE :Union[str, Any] = ['''encoding_errors''', '''on_bad_lines'''] __SCREAMING_SNAKE_CASE :int = ['''date_format'''] @dataclass class A_ ( datasets.BuilderConfig ): _lowerCamelCase : str = "," _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[Union[int, List[int], str]] = "infer" _lowerCamelCase : Optional[List[str]] = None _lowerCamelCase : Optional[List[str]] = None _lowerCamelCase : Optional[Union[int, str, List[int], List[str]]] = None _lowerCamelCase : Optional[Union[List[int], List[str]]] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : bool = True _lowerCamelCase : Optional[Literal["c", "python", "pyarrow"]] = None _lowerCamelCase : Dict[Union[int, str], Callable[[Any], Any]] = None _lowerCamelCase : Optional[list] = None _lowerCamelCase : Optional[list] = None _lowerCamelCase : bool = False _lowerCamelCase : Optional[Union[int, List[int]]] = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : Optional[Union[str, List[str]]] = None _lowerCamelCase : bool = True _lowerCamelCase : bool = True _lowerCamelCase : bool = False _lowerCamelCase : bool = True _lowerCamelCase : Optional[str] = None _lowerCamelCase : str = "." _lowerCamelCase : Optional[str] = None _lowerCamelCase : str = '"' _lowerCamelCase : int = 0 _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : bool = True _lowerCamelCase : bool = True _lowerCamelCase : int = 0 _lowerCamelCase : bool = True _lowerCamelCase : bool = False _lowerCamelCase : Optional[str] = None _lowerCamelCase : int = 1_00_00 _lowerCamelCase : Optional[datasets.Features] = None _lowerCamelCase : Optional[str] = "strict" _lowerCamelCase : Literal["error", "warn", "skip"] = "error" _lowerCamelCase : Optional[str] = None def lowercase ( self : int ): if self.delimiter is not None: _UpperCAmelCase = self.delimiter if self.column_names is not None: _UpperCAmelCase = self.column_names @property def lowercase ( self : List[Any] ): _UpperCAmelCase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , snake_case_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A_ ( datasets.ArrowBasedBuilder ): _lowerCamelCase : Any = CsvConfig def lowercase ( self : Tuple ): return datasets.DatasetInfo(features=self.config.features ) def lowercase ( self : Any , snake_case_ : int ): if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) _UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case_ , (str, list, tuple) ): _UpperCAmelCase = data_files if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = [files] _UpperCAmelCase = [dl_manager.iter_files(snake_case_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase = [] for split_name, files in data_files.items(): if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = [files] _UpperCAmelCase = [dl_manager.iter_files(snake_case_ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case_ , gen_kwargs={"files": files} ) ) return splits def lowercase ( self : List[str] , snake_case_ : pa.Table ): if self.config.features is not None: _UpperCAmelCase = self.config.features.arrow_schema if all(not require_storage_cast(snake_case_ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=snake_case_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase = table_cast(snake_case_ , snake_case_ ) return pa_table def lowercase ( self : Union[str, Any] , snake_case_ : Any ): _UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(snake_case_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case_ ) ): _UpperCAmelCase = pd.read_csv(snake_case_ , iterator=snake_case_ , dtype=snake_case_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(snake_case_ ): _UpperCAmelCase = pa.Table.from_pandas(snake_case_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case_ ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}' ) raise
119
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A( snake_case__ ): """simple docstring""" UpperCamelCase : Union[str, Any] = ['''image_processor''', '''tokenizer'''] UpperCamelCase : List[Any] = '''ViTImageProcessor''' UpperCamelCase : Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _A=None , _A=None , **_A ): __A : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _A , ) __A : int = kwargs.pop('feature_extractor' ) __A : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_A , _A ) def __call__( self , _A=None , _A=None , _A=None , _A=None , **_A ): if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: __A : Any = self.tokenizer(_A , return_tensors=_A , **_A ) if visual_prompt is not None: __A : Optional[int] = self.image_processor(_A , return_tensors=_A , **_A ) if images is not None: __A : List[str] = self.image_processor(_A , return_tensors=_A , **_A ) if visual_prompt is not None and images is not None: __A : List[Any] = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: __A : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: __A : Tuple = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_A ) , tensor_type=_A ) def UpperCAmelCase_ ( self , *_A , **_A ): return self.tokenizer.batch_decode(*_A , **_A ) def UpperCAmelCase_ ( self , *_A , **_A ): return self.tokenizer.decode(*_A , **_A ) @property def UpperCAmelCase_ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _A , ) return self.image_processor_class @property def UpperCAmelCase_ ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _A , ) return self.image_processor
239
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _A( yaml.SafeLoader ): """simple docstring""" def UpperCAmelCase_ ( self , _A ): __A : Optional[int] = [self.constructed_objects[key_node] for key_node, _ in node.value] __A : Dict = [tuple(_A ) if isinstance(_A , _A ) else key for key in keys] __A : Tuple = Counter(_A ) __A : Optional[int] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def UpperCAmelCase_ ( self , _A , _A=False ): __A : Union[str, Any] = super().construct_mapping(_A , deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _SCREAMING_SNAKE_CASE ( a ) -> Tuple[Optional[str], str]: __A : List[str] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: __A : List[Any] = full_content[1:].index('---' ) + 1 __A : Dict = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(a ) class _A( snake_case__ ): """simple docstring""" UpperCamelCase : Union[str, Any] = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def UpperCAmelCase_ ( cls , _A ): with open(_A , encoding='utf-8' ) as readme_file: __A , __A : Any = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def UpperCAmelCase_ ( self , _A ): if path.exists(): with open(_A , encoding='utf-8' ) as readme_file: __A : Union[str, Any] = readme_file.read() else: __A : List[Any] = None __A : Any = self._to_readme(_A ) with open(_A , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(_A ) def UpperCAmelCase_ ( self , _A = None ): if readme_content is not None: __A , __A : str = _split_yaml_from_readme(_A ) __A : Any = '---\n' + self.to_yaml_string() + '---\n' + content else: __A : List[Any] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def UpperCAmelCase_ ( cls , _A ): __A : Optional[int] = yaml.load(_A , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields __A : int = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def UpperCAmelCase_ ( self ): return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_A , allow_unicode=_A , encoding='utf-8' , ).decode('utf-8' ) UpperCAmelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser UpperCAmelCase : Any = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') UpperCAmelCase : Any = ap.parse_args() UpperCAmelCase : Any = Path(args.readme_filepath) UpperCAmelCase : int = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
239
1
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: """simple docstring""" while a != 0: snake_case__ , snake_case__ : str = b % a, a return b def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: """simple docstring""" if gcd(__lowerCAmelCase , __lowerCAmelCase ) != 1: snake_case__ : Dict = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(__lowerCAmelCase ) snake_case__ , snake_case__ , snake_case__ : Optional[int] = 1, 0, a snake_case__ , snake_case__ , snake_case__ : Dict = 0, 1, m while va != 0: snake_case__ : str = ua // va snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
219
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def _lowerCAmelCase ( __lowerCAmelCase=None ) -> Optional[Any]: """simple docstring""" if subparsers is not None: snake_case__ : Any = subparsers.add_parser('''tpu-config''' , description=_description ) else: snake_case__ : int = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments snake_case__ : Tuple = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=__lowerCAmelCase , default=__lowerCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=__lowerCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=__lowerCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) snake_case__ : str = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=__lowerCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=__lowerCAmelCase ) return parser def _lowerCAmelCase ( __lowerCAmelCase ) -> Dict: """simple docstring""" snake_case__ : Optional[int] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__lowerCAmelCase ): snake_case__ : Optional[int] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: snake_case__ : Optional[int] = defaults.command_file if not args.command and defaults.commands is not None: snake_case__ : int = defaults.commands if not args.tpu_name: snake_case__ : List[Any] = defaults.tpu_name if not args.tpu_zone: snake_case__ : Optional[Any] = defaults.tpu_zone if args.accelerate_version == "dev": snake_case__ : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": snake_case__ : Union[str, Any] = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , __lowerCAmelCase ): snake_case__ : List[str] = f"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: snake_case__ : Any = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __lowerCAmelCase ): snake_case__ : Union[str, Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate snake_case__ : List[str] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f"""pip install {args.accelerate_version}"""] new_cmd += args.command snake_case__ : Dict = '''; '''.join(__lowerCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess snake_case__ : Optional[int] = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"""Running {' '.join(__lowerCAmelCase )}""" ) return subprocess.run(__lowerCAmelCase ) print('''Successfully setup pod.''' ) def _lowerCAmelCase ( ) -> int: """simple docstring""" snake_case__ : Optional[Any] = tpu_command_parser() snake_case__ : int = parser.parse_args() tpu_command_launcher(__lowerCAmelCase )
219
1
"""simple docstring""" from datetime import datetime import requests def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' _lowerCAmelCase = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(__lowerCamelCase ).content if __name__ == "__main__": a__ : Optional[Any] = input("""Enter Video/IGTV url: """).strip() a__ : List[Any] = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f'Done. Video saved to disk as {file_name}.')
589
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : Tuple = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class __magic_name__ ( _UpperCamelCase ): UpperCamelCase : Tuple = "encodec" def __init__( self , __magic_name__=[1.5, 3.0, 6.0, 12.0, 24.0] , __magic_name__=2_4_0_0_0 , __magic_name__=1 , __magic_name__=False , __magic_name__=None , __magic_name__=None , __magic_name__=1_2_8 , __magic_name__=3_2 , __magic_name__=1 , __magic_name__=[8, 5, 4, 2] , __magic_name__="weight_norm" , __magic_name__=7 , __magic_name__=7 , __magic_name__=3 , __magic_name__=2 , __magic_name__=True , __magic_name__="reflect" , __magic_name__=2 , __magic_name__=2 , __magic_name__=1.0 , __magic_name__=1_0_2_4 , __magic_name__=None , __magic_name__=True , **__magic_name__ , ): """simple docstring""" _lowerCAmelCase = target_bandwidths _lowerCAmelCase = sampling_rate _lowerCAmelCase = audio_channels _lowerCAmelCase = normalize _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap _lowerCAmelCase = hidden_size _lowerCAmelCase = num_filters _lowerCAmelCase = num_residual_layers _lowerCAmelCase = upsampling_ratios _lowerCAmelCase = norm_type _lowerCAmelCase = kernel_size _lowerCAmelCase = last_kernel_size _lowerCAmelCase = residual_kernel_size _lowerCAmelCase = dilation_growth_rate _lowerCAmelCase = use_causal_conv _lowerCAmelCase = pad_mode _lowerCAmelCase = compress _lowerCAmelCase = num_lstm_layers _lowerCAmelCase = trim_right_ratio _lowerCAmelCase = codebook_size _lowerCAmelCase = codebook_dim if codebook_dim is not None else hidden_size _lowerCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**__magic_name__ ) @property def _lowerCamelCase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowerCamelCase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _lowerCamelCase ( self ): """simple docstring""" return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0) )
589
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename a_ = "http://www.mocksite.com/file1.txt" a_ = "\"text\": [\"foo\", \"foo\"]" a_ = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _lowerCamelCase : """simple docstring""" lowerCAmelCase__ : Optional[Any] = 2_00 lowerCAmelCase__ : Dict = {"Content-Length": "100"} lowerCAmelCase__ : Any = {} def snake_case ( self : Any , **snake_case : List[str] ): return [bytes(snake_case , '''utf-8''' )] def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> Union[str, Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: """simple docstring""" import requests monkeypatch.setattr(lowercase_ , '''request''' , lowercase_ ) __UpperCamelCase = URL if issubclass(lowercase_ , lowercase_ ): __UpperCamelCase = url elif issubclass(lowercase_ , lowercase_ ): __UpperCamelCase = [url] elif issubclass(lowercase_ , lowercase_ ): __UpperCamelCase = {'''train''': url} __UpperCamelCase = '''dummy''' __UpperCamelCase = '''downloads''' __UpperCamelCase = tmp_path __UpperCamelCase = DownloadConfig( cache_dir=os.path.join(lowercase_ , lowercase_ ) , use_etag=lowercase_ , ) __UpperCamelCase = DownloadManager(dataset_name=lowercase_ , download_config=lowercase_ ) __UpperCamelCase = dl_manager.download(lowercase_ ) __UpperCamelCase = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowercase_ , lowercase_ ): __UpperCamelCase = [downloaded_paths] __UpperCamelCase = [urls] elif isinstance(lowercase_ , lowercase_ ): assert "train" in downloaded_paths.keys() __UpperCamelCase = downloaded_paths.values() __UpperCamelCase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowercase_ , lowercase_ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __UpperCamelCase = Path(lowercase_ ) __UpperCamelCase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __UpperCamelCase = downloaded_path.read_text() assert content == CONTENT __UpperCamelCase = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() __UpperCamelCase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: """simple docstring""" __UpperCamelCase = str(lowercase_ ) if issubclass(lowercase_ , lowercase_ ): __UpperCamelCase = filename elif issubclass(lowercase_ , lowercase_ ): __UpperCamelCase = [filename] elif issubclass(lowercase_ , lowercase_ ): __UpperCamelCase = {'''train''': filename} __UpperCamelCase = '''dummy''' __UpperCamelCase = xz_file.parent __UpperCamelCase = '''extracted''' __UpperCamelCase = DownloadConfig( cache_dir=lowercase_ , use_etag=lowercase_ , ) __UpperCamelCase = DownloadManager(dataset_name=lowercase_ , download_config=lowercase_ ) __UpperCamelCase = dl_manager.extract(lowercase_ ) __UpperCamelCase = paths for extracted_paths in [extracted_paths]: if isinstance(lowercase_ , lowercase_ ): __UpperCamelCase = [extracted_paths] __UpperCamelCase = [paths] elif isinstance(lowercase_ , lowercase_ ): assert "train" in extracted_paths.keys() __UpperCamelCase = extracted_paths.values() __UpperCamelCase = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowercase_ , lowercase_ ): assert extracted_path == dl_manager.extracted_paths[input_path] __UpperCamelCase = Path(lowercase_ ) __UpperCamelCase = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowercase_ , etag=lowercase_ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __UpperCamelCase = extracted_path.read_text() __UpperCamelCase = text_file.read_text() assert extracted_file_content == expected_file_content def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(lowercase_ , start=1 ): __UpperCamelCase = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: """simple docstring""" __UpperCamelCase = request.getfixturevalue(lowercase_ ) __UpperCamelCase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowercase_ ) , start=1 ): _test_jsonl(lowercase_ , lowercase_ ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" __UpperCamelCase = request.getfixturevalue(lowercase_ ) __UpperCamelCase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowercase_ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowercase_ ) , start=1 ): _test_jsonl(lowercase_ , lowercase_ ) assert num_tar == 1 assert num_jsonl == 2 def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" __UpperCamelCase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowercase_ ) , start=1 ): assert os.path.basename(lowercase_ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
375
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: """simple docstring""" __UpperCamelCase = model.config __UpperCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) __UpperCamelCase = MBartConfig( is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase_ , add_final_layer_norm=lowercase_ , ) return encoder_config, decoder_config def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" if "encoder.model" in name: __UpperCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: __UpperCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: __UpperCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __UpperCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: __UpperCamelCase = '''encoder.''' + name if "attn.proj" in name: __UpperCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: __UpperCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __UpperCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __UpperCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __UpperCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": __UpperCamelCase = '''encoder.layernorm.bias''' return name def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCamelCase = orig_state_dict.pop(lowercase_ ) if "qkv" in key: __UpperCamelCase = key.split('''.''' ) __UpperCamelCase = int(key_split[3] ) __UpperCamelCase = int(key_split[5] ) __UpperCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCamelCase = val[:dim, :] __UpperCamelCase = val[dim : dim * 2, :] __UpperCamelCase = val[-dim:, :] else: __UpperCamelCase = val[:dim] __UpperCamelCase = val[dim : dim * 2] __UpperCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __UpperCamelCase = val return orig_state_dict def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False ) -> Dict: """simple docstring""" __UpperCamelCase = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model __UpperCamelCase , __UpperCamelCase = get_configs(lowercase_ ) __UpperCamelCase = DonutSwinModel(lowercase_ ) __UpperCamelCase = MBartForCausalLM(lowercase_ ) __UpperCamelCase = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() __UpperCamelCase = original_model.state_dict() __UpperCamelCase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document __UpperCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) __UpperCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained(lowercase_ , from_slow=lowercase_ ) __UpperCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __UpperCamelCase = DonutProcessor(lowercase_ , lowercase_ ) __UpperCamelCase = processor(lowercase_ , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __UpperCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __UpperCamelCase = '''When is the coffee break?''' __UpperCamelCase = task_prompt.replace('''{user_input}''' , lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __UpperCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __UpperCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __UpperCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __UpperCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __UpperCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) __UpperCamelCase = original_model.decoder.tokenizer(lowercase_ , add_special_tokens=lowercase_ , return_tensors='''pt''' )[ '''input_ids''' ] __UpperCamelCase = original_model.encoder.model.patch_embed(lowercase_ ) __UpperCamelCase , __UpperCamelCase = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) # verify encoder hidden states __UpperCamelCase = original_model.encoder(lowercase_ ) __UpperCamelCase = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) # verify decoder hidden states __UpperCamelCase = original_model(lowercase_ , lowercase_ , lowercase_ ).logits __UpperCamelCase = model(lowercase_ , decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) a_ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
375
1
import heapq as hq import math from collections.abc import Iterator class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : List[str] = str(id_ ) _lowercase : Tuple = None _lowercase : Optional[Any] = None _lowercase : List[Any] = [] _lowercase : List[str] = {} # {vertex:distance} def __lt__( self , _lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def __a ( self , _lowerCAmelCase ): self.neighbors.append(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = weight def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: _lowercase : str = [] for u in graph: _lowercase : Optional[Any] = math.inf _lowercase : List[str] = None _lowercase : str = 0 _lowercase : Any = graph[:] while q: _lowercase : str = min(SCREAMING_SNAKE_CASE ) q.remove(SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase : Any = u _lowercase : Dict = u.edges[v.id] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: _lowercase : Optional[Any] = math.inf _lowercase : Optional[int] = None _lowercase : Tuple = 0 _lowercase : Optional[int] = list(SCREAMING_SNAKE_CASE ) hq.heapify(SCREAMING_SNAKE_CASE ) while h: _lowercase : List[Any] = hq.heappop(SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase : Any = u _lowercase : List[Any] = u.edges[v.id] hq.heapify(SCREAMING_SNAKE_CASE ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
66
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A : Dict = logging.get_logger(__name__) __A : List[Any] = TypeVar('''DatasetType''', Dataset, IterableDataset) def A_ ( snake_case_ : List[DatasetType] ,snake_case_ : Optional[List[float]] = None ,snake_case_ : Optional[int] = None ,snake_case_ : Optional[DatasetInfo] = None ,snake_case_ : Optional[NamedSplit] = None ,snake_case_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ ,(Dataset, IterableDataset) ): if isinstance(snake_case_ ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' """is an empty dataset dictionary.""" ) raise ValueError( f'Dataset at position {i} has at least one split: {list(snake_case_ )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.' ) if i == 0: UpperCamelCase , UpperCamelCase : Dict = ( (Dataset, IterableDataset) if isinstance(snake_case_ ,snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ ,snake_case_ ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( snake_case_ ,snake_case_ ,snake_case_ ,info=snake_case_ ,split=snake_case_ ,stopping_strategy=snake_case_ ) else: return _interleave_iterable_datasets( snake_case_ ,snake_case_ ,snake_case_ ,info=snake_case_ ,split=snake_case_ ,stopping_strategy=snake_case_ ) def A_ ( snake_case_ : List[DatasetType] ,snake_case_ : Optional[DatasetInfo] = None ,snake_case_ : Optional[NamedSplit] = None ,snake_case_ : int = 0 ,): '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ ,(Dataset, IterableDataset) ): if isinstance(snake_case_ ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' """is an empty dataset dictionary.""" ) raise ValueError( f'Dataset at position {i} has at least one split: {list(snake_case_ )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.' ) if i == 0: UpperCamelCase , UpperCamelCase : List[str] = ( (Dataset, IterableDataset) if isinstance(snake_case_ ,snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ ,snake_case_ ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(snake_case_ ,info=snake_case_ ,split=snake_case_ ,axis=snake_case_ ) else: return _concatenate_iterable_datasets(snake_case_ ,info=snake_case_ ,split=snake_case_ ,axis=snake_case_ )
499
0
"""simple docstring""" import numpy as np from transformers import Pipeline def __A (_SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = np.max(_SCREAMING_SNAKE_CASE , axis=-1 , keepdims=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( a ): """simple docstring""" def snake_case ( self , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = {} if "second_text" in kwargs: lowerCAmelCase__ :str = kwargs['second_text'] return preprocess_kwargs, {}, {} def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' return self.tokenizer(__UpperCAmelCase , text_pair=__UpperCAmelCase , return_tensors=self.framework ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' return self.model(**__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = model_outputs.logits[0].numpy() lowerCAmelCase__ :Optional[int] = softmax(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = np.argmax(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = self.model.config.idalabel[best_class] lowerCAmelCase__ :Optional[Any] = probabilities[best_class].item() lowerCAmelCase__ :Optional[int] = logits.tolist() return {"label": label, "score": score, "logits": logits}
560
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = tempfile.mkdtemp() lowerCAmelCase__ :Optional[Any] = BlipImageProcessor() lowerCAmelCase__ :Union[str, Any] = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowerCAmelCase__ :Any = BlipaProcessor(__UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case ( self , **__UpperCAmelCase ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def snake_case ( self , **__UpperCAmelCase ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def snake_case ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCAmelCase__ :int = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ :int = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase__ :Any = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) lowerCAmelCase__ :int = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = self.get_image_processor() lowerCAmelCase__ :Union[str, Any] = self.get_tokenizer() lowerCAmelCase__ :Dict = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = self.prepare_image_inputs() lowerCAmelCase__ :int = image_processor(__UpperCAmelCase , return_tensors='np' ) lowerCAmelCase__ :Optional[int] = processor(images=__UpperCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.get_image_processor() lowerCAmelCase__ :Any = self.get_tokenizer() lowerCAmelCase__ :Any = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ :str = 'lower newer' lowerCAmelCase__ :Optional[int] = processor(text=__UpperCAmelCase ) lowerCAmelCase__ :str = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.get_image_processor() lowerCAmelCase__ :List[str] = self.get_tokenizer() lowerCAmelCase__ :Optional[int] = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = 'lower newer' lowerCAmelCase__ :Tuple = self.prepare_image_inputs() lowerCAmelCase__ :Dict = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.get_image_processor() lowerCAmelCase__ :Dict = self.get_tokenizer() lowerCAmelCase__ :Any = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ :Tuple = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.get_image_processor() lowerCAmelCase__ :int = self.get_tokenizer() lowerCAmelCase__ :Tuple = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = 'lower newer' lowerCAmelCase__ :Tuple = self.prepare_image_inputs() lowerCAmelCase__ :Optional[int] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
560
1
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _a : Any = logging.get_logger(__name__) # General docstring _a : Dict = 'MobileNetV1Config' # Base docstring _a : Dict = 'google/mobilenet_v1_1.0_224' _a : Dict = [1, 1_024, 7, 7] # Image classification docstring _a : Dict = 'google/mobilenet_v1_1.0_224' _a : Any = 'tabby, tabby cat' _a : int = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : str ,_lowerCamelCase : Dict=None ) -> List[Any]: _lowerCAmelCase : Any = {} if isinstance(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : Tuple = model.mobilenet_va else: _lowerCAmelCase : int = model _lowerCAmelCase : Union[str, Any] = """MobilenetV1/Conv2d_0/""" _lowerCAmelCase : List[Any] = backbone.conv_stem.convolution.weight _lowerCAmelCase : Dict = backbone.conv_stem.normalization.bias _lowerCAmelCase : int = backbone.conv_stem.normalization.weight _lowerCAmelCase : List[str] = backbone.conv_stem.normalization.running_mean _lowerCAmelCase : Optional[Any] = backbone.conv_stem.normalization.running_var for i in range(13 ): _lowerCAmelCase : int = i + 1 _lowerCAmelCase : Union[str, Any] = i * 2 _lowerCAmelCase : Union[str, Any] = backbone.layer[pt_index] _lowerCAmelCase : Optional[int] = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" _lowerCAmelCase : Optional[Any] = pointer.convolution.weight _lowerCAmelCase : Optional[Any] = pointer.normalization.bias _lowerCAmelCase : Optional[int] = pointer.normalization.weight _lowerCAmelCase : Optional[int] = pointer.normalization.running_mean _lowerCAmelCase : int = pointer.normalization.running_var _lowerCAmelCase : int = backbone.layer[pt_index + 1] _lowerCAmelCase : Tuple = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" _lowerCAmelCase : Dict = pointer.convolution.weight _lowerCAmelCase : Dict = pointer.normalization.bias _lowerCAmelCase : Tuple = pointer.normalization.weight _lowerCAmelCase : str = pointer.normalization.running_mean _lowerCAmelCase : str = pointer.normalization.running_var if isinstance(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : Dict = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _lowerCAmelCase : Tuple = model.classifier.weight _lowerCAmelCase : Any = model.classifier.bias return tf_to_pt_map def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : int ,_lowerCamelCase : int ) -> Union[str, Any]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _lowerCAmelCase : Any = tf.train.list_variables(_lowerCamelCase ) _lowerCAmelCase : Any = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) _lowerCAmelCase : Any = tf.train.load_variable(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = array # Build TF to PyTorch weights loading map _lowerCAmelCase : int = _build_tf_to_pytorch_map(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue _lowerCAmelCase : Optional[int] = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _lowerCAmelCase : Dict = np.transpose(_lowerCamelCase ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _lowerCAmelCase : List[str] = array.squeeze().transpose() else: _lowerCAmelCase : str = np.transpose(_lowerCamelCase ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ) tf_weights.pop(_lowerCamelCase ,_lowerCamelCase ) tf_weights.pop(name + """/RMSProp""" ,_lowerCamelCase ) tf_weights.pop(name + """/RMSProp_1""" ,_lowerCamelCase ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,_lowerCamelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def SCREAMING_SNAKE_CASE ( _lowerCamelCase : torch.Tensor ,_lowerCamelCase : nn.Convad ) -> torch.Tensor: _lowerCAmelCase , _lowerCAmelCase : Any = features.shape[-2:] _lowerCAmelCase , _lowerCAmelCase : Dict = conv_layer.stride _lowerCAmelCase , _lowerCAmelCase : int = conv_layer.kernel_size if in_height % stride_height == 0: _lowerCAmelCase : Optional[int] = max(kernel_height - stride_height ,0 ) else: _lowerCAmelCase : int = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _lowerCAmelCase : List[str] = max(kernel_width - stride_width ,0 ) else: _lowerCAmelCase : Union[str, Any] = max(kernel_width - (in_width % stride_width) ,0 ) _lowerCAmelCase : Union[str, Any] = pad_along_width // 2 _lowerCAmelCase : Tuple = pad_along_width - pad_left _lowerCAmelCase : Tuple = pad_along_height // 2 _lowerCAmelCase : str = pad_along_height - pad_top _lowerCAmelCase : Tuple = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_lowerCamelCase ,_lowerCamelCase ,"""constant""" ,0.0 ) class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ , a__ = 1 , a__ = 1 , a__ = False , a__ = True , a__ = True , ): super().__init__() _lowerCAmelCase : Dict = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups." ) _lowerCAmelCase : int = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _lowerCAmelCase : int = nn.Convad( in_channels=a__ , out_channels=a__ , kernel_size=a__ , stride=a__ , padding=a__ , groups=a__ , bias=a__ , padding_mode="""zeros""" , ) if use_normalization: _lowerCAmelCase : Dict = nn.BatchNormad( num_features=a__ , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=a__ , track_running_stats=a__ , ) else: _lowerCAmelCase : Any = None if use_activation: if isinstance(a__ , a__ ): _lowerCAmelCase : Tuple = ACTaFN[use_activation] elif isinstance(config.hidden_act , a__ ): _lowerCAmelCase : int = ACTaFN[config.hidden_act] else: _lowerCAmelCase : List[Any] = config.hidden_act else: _lowerCAmelCase : int = None def __A ( self , a__ ): if self.config.tf_padding: _lowerCAmelCase : Dict = apply_tf_padding(a__ , self.convolution ) _lowerCAmelCase : Optional[int] = self.convolution(a__ ) if self.normalization is not None: _lowerCAmelCase : Tuple = self.normalization(a__ ) if self.activation is not None: _lowerCAmelCase : List[str] = self.activation(a__ ) return features class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = MobileNetVaConfig _UpperCamelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCamelCase : List[Any] = "mobilenet_v1" _UpperCamelCase : Union[str, Any] = "pixel_values" _UpperCamelCase : Any = False def __A ( self , a__ ): if isinstance(a__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(a__ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _a : str = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _a : List[Any] = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , SCREAMING_SNAKE_CASE_ , ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ = True ): super().__init__(a__ ) _lowerCAmelCase : Any = config _lowerCAmelCase : str = 32 _lowerCAmelCase : List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth ) _lowerCAmelCase : Dict = MobileNetVaConvLayer( a__ , in_channels=config.num_channels , out_channels=a__ , kernel_size=3 , stride=2 , ) _lowerCAmelCase : Dict = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _lowerCAmelCase : Dict = nn.ModuleList() for i in range(13 ): _lowerCAmelCase : str = out_channels if strides[i] == 2 or i == 0: depth *= 2 _lowerCAmelCase : List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( a__ , in_channels=a__ , out_channels=a__ , kernel_size=3 , stride=strides[i] , groups=a__ , ) ) self.layer.append( MobileNetVaConvLayer( a__ , in_channels=a__ , out_channels=a__ , kernel_size=1 , ) ) _lowerCAmelCase : str = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __A ( self , a__ ): raise NotImplementedError @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __A ( self , a__ = None , a__ = None , a__ = None , ): _lowerCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _lowerCAmelCase : Optional[int] = self.conv_stem(a__ ) _lowerCAmelCase : Dict = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _lowerCAmelCase : List[str] = layer_module(a__ ) if output_hidden_states: _lowerCAmelCase : List[str] = all_hidden_states + (hidden_states,) _lowerCAmelCase : int = hidden_states if self.pooler is not None: _lowerCAmelCase : str = torch.flatten(self.pooler(a__ ) , start_dim=1 ) else: _lowerCAmelCase : Optional[int] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a__ , pooler_output=a__ , hidden_states=a__ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , SCREAMING_SNAKE_CASE_ , ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCAmelCase : Union[str, Any] = config.num_labels _lowerCAmelCase : Dict = MobileNetVaModel(a__ ) _lowerCAmelCase : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _lowerCAmelCase : Tuple = nn.Dropout(config.classifier_dropout_prob , inplace=a__ ) _lowerCAmelCase : Any = nn.Linear(a__ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __A ( self , a__ = None , a__ = None , a__ = None , a__ = None , ): _lowerCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : List[str] = self.mobilenet_va(a__ , output_hidden_states=a__ , return_dict=a__ ) _lowerCAmelCase : str = outputs.pooler_output if return_dict else outputs[1] _lowerCAmelCase : Union[str, Any] = self.classifier(self.dropout(a__ ) ) _lowerCAmelCase : List[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCAmelCase : Dict = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCAmelCase : Dict = """single_label_classification""" else: _lowerCAmelCase : Dict = """multi_label_classification""" if self.config.problem_type == "regression": _lowerCAmelCase : Tuple = MSELoss() if self.num_labels == 1: _lowerCAmelCase : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: _lowerCAmelCase : str = loss_fct(a__ , a__ ) elif self.config.problem_type == "single_label_classification": _lowerCAmelCase : List[Any] = CrossEntropyLoss() _lowerCAmelCase : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCAmelCase : Any = BCEWithLogitsLoss() _lowerCAmelCase : Optional[Any] = loss_fct(a__ , a__ ) if not return_dict: _lowerCAmelCase : Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=a__ , logits=a__ , hidden_states=outputs.hidden_states , )
213
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): # TODO: is there an appropriate internal test set? _UpperCamelCase : int = "ssube/stable-diffusion-x4-upscaler-onnx" def __A ( self , a__=0 ): _lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) _lowerCAmelCase : List[Any] = torch.manual_seed(a__ ) _lowerCAmelCase : Any = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Dict = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = self.get_dummy_inputs() _lowerCAmelCase : str = pipe(**a__ ).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Any = self.get_dummy_inputs() _lowerCAmelCase : str = pipe(**a__ ).images _lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[str] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Tuple = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __A ( unittest.TestCase ): @property def __A ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __A ( self ): _lowerCAmelCase : str = ort.SessionOptions() _lowerCAmelCase : Tuple = False return options def __A ( self ): _lowerCAmelCase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase : Any = init_image.resize((128, 128) ) # using the PNDM scheduler by default _lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = """A fantasy landscape, trending on artstation""" _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : Dict = pipe( prompt=a__ , image=a__ , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : List[str] = output.images _lowerCAmelCase : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __A ( self ): _lowerCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase : Union[str, Any] = init_image.resize((128, 128) ) _lowerCAmelCase : int = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) _lowerCAmelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[Any] = """A fantasy landscape, trending on artstation""" _lowerCAmelCase : List[Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe( prompt=a__ , image=a__ , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : Optional[Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
213
1
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class SCREAMING_SNAKE_CASE( tf.keras.layers.Layer ): def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1 , lowerCamelCase__=False , **lowerCamelCase__ ) -> List[Any]: """simple docstring""" super().__init__(**lowerCamelCase__ ) __lowercase = vocab_size __lowercase = d_embed __lowercase = d_proj __lowercase = cutoffs + [vocab_size] __lowercase = [0] + self.cutoffs __lowercase = div_val __lowercase = self.cutoffs[0] __lowercase = len(self.cutoffs ) - 1 __lowercase = self.shortlist_size + self.n_clusters __lowercase = keep_order __lowercase = [] __lowercase = [] def snake_case__ ( self , lowerCamelCase__ ) -> Tuple: """simple docstring""" if self.n_clusters > 0: __lowercase = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=lowerCamelCase__ , name="""cluster_weight""" ) __lowercase = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=lowerCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: __lowercase = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=lowerCamelCase__ , name=F'out_projs_._{i}' , ) self.out_projs.append(lowerCamelCase__ ) else: self.out_projs.append(lowerCamelCase__ ) __lowercase = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=lowerCamelCase__ , name=F'out_layers_._{i}_._weight' , ) __lowercase = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=lowerCamelCase__ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): __lowercase ,__lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = self.d_embed // (self.div_val**i) __lowercase = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=lowerCamelCase__ , name=F'out_projs_._{i}' ) self.out_projs.append(lowerCamelCase__ ) __lowercase = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=lowerCamelCase__ , name=F'out_layers_._{i}_._weight' , ) __lowercase = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=lowerCamelCase__ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(lowerCamelCase__ ) @staticmethod def snake_case__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[int]: """simple docstring""" __lowercase = x if proj is not None: __lowercase = tf.einsum("""ibd,ed->ibe""" , lowerCamelCase__ , lowerCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , lowerCamelCase__ , lowerCamelCase__ ) + b @staticmethod def snake_case__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" __lowercase = shape_list(lowerCamelCase__ ) __lowercase = tf.range(lp_size[0] , dtype=target.dtype ) __lowercase = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__=False ) -> Optional[Any]: """simple docstring""" __lowercase = 0 if self.n_clusters == 0: __lowercase = self._logit(lowerCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: __lowercase = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) __lowercase = tf.nn.log_softmax(lowerCamelCase__ , axis=-1 ) else: __lowercase = shape_list(lowerCamelCase__ ) __lowercase = [] __lowercase = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): __lowercase ,__lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: __lowercase = (target >= l_idx) & (target < r_idx) __lowercase = tf.where(lowerCamelCase__ ) __lowercase = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) - l_idx if self.div_val == 1: __lowercase = self.out_layers[0][0][l_idx:r_idx] __lowercase = self.out_layers[0][1][l_idx:r_idx] else: __lowercase = self.out_layers[i][0] __lowercase = self.out_layers[i][1] if i == 0: __lowercase = tf.concat([cur_W, self.cluster_weight] , 0 ) __lowercase = tf.concat([cur_b, self.cluster_bias] , 0 ) __lowercase = self._logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.out_projs[0] ) __lowercase = tf.nn.log_softmax(lowerCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: __lowercase = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = self._gather_logprob(lowerCamelCase__ , lowerCamelCase__ ) else: __lowercase = self._logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.out_projs[i] ) __lowercase = tf.nn.log_softmax(lowerCamelCase__ ) __lowercase = self.cutoffs[0] + i - 1 # No probability for the head cluster __lowercase = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCamelCase__ ) if target is not None: __lowercase = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = self._gather_logprob(lowerCamelCase__ , lowerCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCamelCase__ , -cur_logprob , shape_list(lowerCamelCase__ ) ) __lowercase = tf.concat(lowerCamelCase__ , axis=-1 ) if target is not None: if return_mean: __lowercase = tf.reduce_mean(lowerCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
163
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class SCREAMING_SNAKE_CASE: def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , lowerCamelCase__=1000 , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = range_bbox def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __lowercase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowercase = bbox[i, j, 3] __lowercase = bbox[i, j, 1] __lowercase = t if bbox[i, j, 2] < bbox[i, j, 0]: __lowercase = bbox[i, j, 2] __lowercase = bbox[i, j, 0] __lowercase = t __lowercase = tf.convert_to_tensor(lowerCamelCase__ ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __lowercase = TFLayoutLMModel(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" __lowercase = TFLayoutLMForMaskedLM(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = TFLayoutLMForSequenceClassification(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = self.num_labels __lowercase = TFLayoutLMForTokenClassification(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = TFLayoutLMForQuestionAnswering(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE( __A , __A , unittest.TestCase ): snake_case_ : Union[str, Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case_ : Tuple = ( { """feature-extraction""": TFLayoutLMModel, """fill-mask""": TFLayoutLMForMaskedLM, """text-classification""": TFLayoutLMForSequenceClassification, """token-classification""": TFLayoutLMForTokenClassification, """zero-shot""": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case_ : Optional[int] = False snake_case_ : Optional[int] = True snake_case_ : Tuple = 10 def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = TFLayoutLMModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) @slow def snake_case__ ( self ) -> Dict: """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFLayoutLMModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip("""Onnx compliancy broke with TF 2.10""" ) def snake_case__ ( self ) -> str: """simple docstring""" pass def snake_case_ ( ): """simple docstring""" __lowercase = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 __lowercase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __lowercase = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 __lowercase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __lowercase = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = TFLayoutLMModel.from_pretrained("""microsoft/layoutlm-base-uncased""" ) __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = prepare_layoutlm_batch_inputs() # forward pass __lowercase = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) # test the sequence output on [0, :3, :3] __lowercase = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1E-3 ) ) # test the pooled output on [1, :3] __lowercase = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , lowerCamelCase__ , atol=1E-3 ) ) @slow def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = TFLayoutLMForSequenceClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=2 ) __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = prepare_layoutlm_batch_inputs() # forward pass __lowercase = model( input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar __lowercase = outputs.loss __lowercase = (2,) self.assertEqual(loss.shape , lowerCamelCase__ ) # test the shape of the logits __lowercase = outputs.logits __lowercase = (2, 2) self.assertEqual(logits.shape , lowerCamelCase__ ) @slow def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = TFLayoutLMForTokenClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=13 ) __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = prepare_layoutlm_batch_inputs() # forward pass __lowercase = model( input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) # test the shape of the logits __lowercase = outputs.logits __lowercase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , lowerCamelCase__ ) @slow def snake_case__ ( self ) -> str: """simple docstring""" __lowercase = TFLayoutLMForQuestionAnswering.from_pretrained("""microsoft/layoutlm-base-uncased""" ) __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = prepare_layoutlm_batch_inputs() # forward pass __lowercase = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) # test the shape of the logits __lowercase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , lowerCamelCase__ ) self.assertEqual(outputs.end_logits.shape , lowerCamelCase__ )
163
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class a ( unittest.TestCase ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : Any=3 , __SCREAMING_SNAKE_CASE : Dict=30 , __SCREAMING_SNAKE_CASE : Optional[Any]=400 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Optional[int]=1 / 255 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[int]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Union[str, Any]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : List[Any]=True , ) -> str: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCamelCase_ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std lowerCamelCase_ = do_pad def UpperCamelCase ( self : Any ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> Optional[Any]: if not batched: lowerCamelCase_ = image_inputs[0] if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ): lowerCamelCase_ = image.size else: lowerCamelCase_ = image.shape[1], image.shape[2] if w < h: lowerCamelCase_ = int(self.size['shortest_edge'] * h / w ) lowerCamelCase_ = self.size["""shortest_edge"""] elif w > h: lowerCamelCase_ = self.size["""shortest_edge"""] lowerCamelCase_ = int(self.size['shortest_edge'] * w / h ) else: lowerCamelCase_ = self.size["""shortest_edge"""] lowerCamelCase_ = self.size["""shortest_edge"""] else: lowerCamelCase_ = [] for image in image_inputs: lowerCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0] lowerCamelCase_ = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = DetrImageProcessor if is_vision_available() else None def UpperCamelCase ( self : Tuple ) -> Any: lowerCamelCase_ = DetrImageProcessingTester(self ) @property def UpperCamelCase ( self : str ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self : Dict ) -> Optional[int]: lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_rescale' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'rescale_factor' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_pad' ) ) def UpperCamelCase ( self : str ) -> List[str]: lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[Any] ) -> str: pass def UpperCamelCase ( self : int ) -> Tuple: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCamelCase_ = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self : List[str] ) -> int: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCamelCase_ = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values lowerCamelCase_ = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCamelCase_ = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values lowerCamelCase_ = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase ( self : Optional[int] ) -> List[str]: # prepare image and target lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {"""image_id""": 39769, """annotations""": target} # encode them lowerCamelCase_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) lowerCamelCase_ = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area lowerCamelCase_ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __SCREAMING_SNAKE_CASE ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __SCREAMING_SNAKE_CASE ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __SCREAMING_SNAKE_CASE ) ) # verify class_labels lowerCamelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __SCREAMING_SNAKE_CASE ) ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __SCREAMING_SNAKE_CASE ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __SCREAMING_SNAKE_CASE ) ) @slow def UpperCamelCase ( self : Tuple ) -> str: # prepare image, target and masks_path lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCamelCase_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowerCamelCase_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) lowerCamelCase_ = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , masks_path=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area lowerCamelCase_ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __SCREAMING_SNAKE_CASE ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __SCREAMING_SNAKE_CASE ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __SCREAMING_SNAKE_CASE ) ) # verify class_labels lowerCamelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __SCREAMING_SNAKE_CASE ) ) # verify masks lowerCamelCase_ = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __SCREAMING_SNAKE_CASE ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __SCREAMING_SNAKE_CASE ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __SCREAMING_SNAKE_CASE ) )
549
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): _lowerCamelCase ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: _lowerCamelCase ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def _a ( lowerCamelCase ): lowerCamelCase : Optional[Any] = (images / 2 + 0.5).clamp(0, 1 ) lowerCamelCase : Optional[Any] = images.cpu().permute(0, 2, 3, 1 ).float().numpy() lowerCamelCase : Any = numpy_to_pil(lowerCamelCase ) return images def _a ( lowerCamelCase ): if images.ndim == 3: lowerCamelCase : Optional[Any] = images[None, ...] lowerCamelCase : List[Any] = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowerCamelCase : Optional[int] = [Image.fromarray(image.squeeze(), mode="""L""" ) for image in images] else: lowerCamelCase : int = [Image.fromarray(lowerCamelCase ) for image in images] return pil_images
681
0
'''simple docstring''' import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : str ): super().__init__() UpperCAmelCase = nn.Linear(3 , 4 ) UpperCAmelCase = nn.BatchNormad(4 ) UpperCAmelCase = nn.Linear(4 , 5 ) def __snake_case ( self : Dict , a__ : int ): return self.lineara(self.batchnorm(self.lineara(a_ ) ) ) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : List[Any] ): UpperCAmelCase = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(a_ , model.state_dict() ) UpperCAmelCase = os.path.join(a_ , '''index.json''' ) self.assertTrue(os.path.isfile(a_ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: UpperCAmelCase = os.path.join(a_ , f"{key}.dat" ) self.assertTrue(os.path.isfile(a_ ) ) # TODO: add tests on the fact weights are properly loaded def __snake_case ( self : Tuple ): UpperCAmelCase = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: UpperCAmelCase = torch.randn(2 , 3 , dtype=a_ ) with TemporaryDirectory() as tmp_dir: UpperCAmelCase = offload_weight(a_ , '''weight''' , a_ , {} ) UpperCAmelCase = os.path.join(a_ , '''weight.dat''' ) self.assertTrue(os.path.isfile(a_ ) ) self.assertDictEqual(a_ , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(a_ ).split('''.''' )[1]}} ) UpperCAmelCase = load_offloaded_weight(a_ , index['''weight'''] ) self.assertTrue(torch.equal(a_ , a_ ) ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = ModelForTest() UpperCAmelCase = model.state_dict() UpperCAmelCase = {k: v for k, v in state_dict.items() if """linear2""" not in k} UpperCAmelCase = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a_ , a_ ) UpperCAmelCase = OffloadedWeightsLoader(state_dict=a_ , save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_ , weight_map[key] ) ) UpperCAmelCase = {k: v for k, v in state_dict.items() if """weight""" in k} UpperCAmelCase = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a_ , a_ ) UpperCAmelCase = OffloadedWeightsLoader(state_dict=a_ , save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_ , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(a_ , a_ ) # Duplicates are removed UpperCAmelCase = OffloadedWeightsLoader(state_dict=a_ , save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_ , weight_map[key] ) ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} UpperCAmelCase = extract_submodules_state_dict(a_ , ['''a.1''', '''a.2'''] ) self.assertDictEqual(a_ , {'''a.1''': 0, '''a.2''': 2} ) UpperCAmelCase = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} UpperCAmelCase = extract_submodules_state_dict(a_ , ['''a.1''', '''a.2'''] ) self.assertDictEqual(a_ , {'''a.1.a''': 0, '''a.2.a''': 2} )
706
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC a__ : Any = parse(importlib.metadata.version('torch')) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Version] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}" ) UpperCAmelCase = STR_OPERATION_TO_FUNC[operation] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = parse(importlib.metadata.version(SCREAMING_SNAKE_CASE_ ) ) return operation(SCREAMING_SNAKE_CASE_ , parse(SCREAMING_SNAKE_CASE_ ) ) def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return compare_versions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
570
0
from typing import Dict, Optional import numpy as np import datasets _lowerCamelCase : Optional[int] = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' _lowerCamelCase : Optional[Any] = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' _lowerCamelCase : Optional[int] = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE__ : bool = False , ) -> Tuple: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): SCREAMING_SNAKE_CASE__ : List[Any] = new_id # turn into Numpy arrays SCREAMING_SNAKE_CASE__ : Dict = np.array(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = np.array(SCREAMING_SNAKE_CASE__ ) if reduce_labels: SCREAMING_SNAKE_CASE__ : Optional[int] = 2_55 SCREAMING_SNAKE_CASE__ : Union[str, Any] = label - 1 SCREAMING_SNAKE_CASE__ : str = 2_55 SCREAMING_SNAKE_CASE__ : Union[str, Any] = label != ignore_index SCREAMING_SNAKE_CASE__ : Any = np.not_equal(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pred_label[mask] SCREAMING_SNAKE_CASE__ : Dict = np.array(SCREAMING_SNAKE_CASE__ )[mask] SCREAMING_SNAKE_CASE__ : List[Any] = pred_label[pred_label == label] SCREAMING_SNAKE_CASE__ : Tuple = np.histogram(SCREAMING_SNAKE_CASE__ , bins=SCREAMING_SNAKE_CASE__ , range=(0, num_labels - 1) )[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = np.histogram(SCREAMING_SNAKE_CASE__ , bins=SCREAMING_SNAKE_CASE__ , range=(0, num_labels - 1) )[0] SCREAMING_SNAKE_CASE__ : Any = np.histogram(SCREAMING_SNAKE_CASE__ , bins=SCREAMING_SNAKE_CASE__ , range=(0, num_labels - 1) )[0] SCREAMING_SNAKE_CASE__ : int = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE__ : bool = False , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = np.zeros((num_labels,) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : int = np.zeros((num_labels,) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.zeros((num_labels,) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = intersect_and_union( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE__ : bool = False , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = total_intersect_and_union( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # compute metrics SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} SCREAMING_SNAKE_CASE__ : Dict = total_area_intersect.sum() / total_area_label.sum() SCREAMING_SNAKE_CASE__ : int = total_area_intersect / total_area_union SCREAMING_SNAKE_CASE__ : Tuple = total_area_intersect / total_area_label SCREAMING_SNAKE_CASE__ : Optional[Any] = np.nanmean(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = np.nanmean(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = all_acc SCREAMING_SNAKE_CASE__ : Any = iou SCREAMING_SNAKE_CASE__ : str = acc if nan_to_num is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = {metric: np.nan_to_num(SCREAMING_SNAKE_CASE__ , nan=SCREAMING_SNAKE_CASE__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): """simple docstring""" def A_ ( self : Any ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ), reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ], ) def A_ ( self : Optional[Any], _UpperCAmelCase : Optional[int], _UpperCAmelCase : Dict, _UpperCAmelCase : int, _UpperCAmelCase : bool, _UpperCAmelCase : Optional[int] = None, _UpperCAmelCase : Optional[Dict[int, int]] = None, _UpperCAmelCase : bool = False, ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = mean_iou( results=_UpperCAmelCase, gt_seg_maps=_UpperCAmelCase, num_labels=_UpperCAmelCase, ignore_index=_UpperCAmelCase, nan_to_num=_UpperCAmelCase, label_map=_UpperCAmelCase, reduce_labels=_UpperCAmelCase, ) return iou_result
663
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) _lowerCamelCase : List[str] = None _lowerCamelCase : Union[str, Any] = { '''7B''': 1_1_0_0_8, '''13B''': 1_3_8_2_4, '''30B''': 1_7_9_2_0, '''65B''': 2_2_0_1_6, '''70B''': 2_8_6_7_2, } _lowerCamelCase : Optional[Any] = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : str=2_56 ) -> int: '''simple docstring''' return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _a ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str=True ) -> int: '''simple docstring''' os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , "tmp" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = read_json(os.path.join(SCREAMING_SNAKE_CASE__ , "params.json" ) ) SCREAMING_SNAKE_CASE__ : int = NUM_SHARDS[model_size] SCREAMING_SNAKE_CASE__ : Union[str, Any] = params["n_layers"] SCREAMING_SNAKE_CASE__ : List[str] = params["n_heads"] SCREAMING_SNAKE_CASE__ : Optional[Any] = n_heads // num_shards SCREAMING_SNAKE_CASE__ : str = params["dim"] SCREAMING_SNAKE_CASE__ : List[str] = dim // n_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = 1_0_0_0_0.0 SCREAMING_SNAKE_CASE__ : Tuple = 1.0 / (base ** (torch.arange(0 , SCREAMING_SNAKE_CASE__ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: SCREAMING_SNAKE_CASE__ : int = params["n_kv_heads"] # for GQA / MQA SCREAMING_SNAKE_CASE__ : Optional[int] = n_heads_per_shard // num_key_value_heads SCREAMING_SNAKE_CASE__ : int = dim // num_key_value_heads else: # compatibility with other checkpoints SCREAMING_SNAKE_CASE__ : Dict = n_heads SCREAMING_SNAKE_CASE__ : str = n_heads_per_shard SCREAMING_SNAKE_CASE__ : Dict = dim # permute for sliced rotary def permute(SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=n_heads , SCREAMING_SNAKE_CASE__ : List[str]=dim , SCREAMING_SNAKE_CASE__ : Dict=dim ): return w.view(SCREAMING_SNAKE_CASE__ , dima // n_heads // 2 , 2 , SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) SCREAMING_SNAKE_CASE__ : Dict = torch.load(os.path.join(SCREAMING_SNAKE_CASE__ , "consolidated.00.pth" ) , map_location="cpu" ) else: # Sharded SCREAMING_SNAKE_CASE__ : List[Any] = [ torch.load(os.path.join(SCREAMING_SNAKE_CASE__ , f'''consolidated.{i:02d}.pth''' ) , map_location="cpu" ) for i in range(SCREAMING_SNAKE_CASE__ ) ] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : List[str] = {"weight_map": {}} for layer_i in range(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : int = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded SCREAMING_SNAKE_CASE__ : List[Any] = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. SCREAMING_SNAKE_CASE__ : Any = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } SCREAMING_SNAKE_CASE__ : int = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Tuple = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : List[str] = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(SCREAMING_SNAKE_CASE__ )] , dim=1 ) SCREAMING_SNAKE_CASE__ : List[str] = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(SCREAMING_SNAKE_CASE__ )] , dim=0 ) SCREAMING_SNAKE_CASE__ : Tuple = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(SCREAMING_SNAKE_CASE__ )] , dim=1 ) SCREAMING_SNAKE_CASE__ : int = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(SCREAMING_SNAKE_CASE__ )] , dim=0 ) SCREAMING_SNAKE_CASE__ : List[str] = inv_freq for k, v in state_dict.items(): SCREAMING_SNAKE_CASE__ : str = filename param_count += v.numel() torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : int = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded SCREAMING_SNAKE_CASE__ : List[str] = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: SCREAMING_SNAKE_CASE__ : Optional[Any] = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(SCREAMING_SNAKE_CASE__ )] , dim=1 ), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(SCREAMING_SNAKE_CASE__ )] , dim=0 ), } for k, v in state_dict.items(): SCREAMING_SNAKE_CASE__ : Optional[int] = filename param_count += v.numel() torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # Write configs SCREAMING_SNAKE_CASE__ : Optional[Any] = {"total_size": param_count * 2} write_json(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , "pytorch_model.bin.index.json" ) ) SCREAMING_SNAKE_CASE__ : List[str] = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 SCREAMING_SNAKE_CASE__ : Dict = params["multiple_of"] if "multiple_of" in params else 2_56 SCREAMING_SNAKE_CASE__ : Dict = LlamaConfig( hidden_size=SCREAMING_SNAKE_CASE__ , intermediate_size=compute_intermediate_size(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , num_attention_heads=params["n_heads"] , num_hidden_layers=params["n_layers"] , rms_norm_eps=params["norm_eps"] , num_key_value_heads=SCREAMING_SNAKE_CASE__ , ) config.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Llama model." ) SCREAMING_SNAKE_CASE__ : int = LlamaForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa , low_cpu_mem_usage=SCREAMING_SNAKE_CASE__ ) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format." ) model.save_pretrained(SCREAMING_SNAKE_CASE__ , safe_serialization=SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _a ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer_class(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) def _a ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser() parser.add_argument( "--input_dir" , help="Location of LLaMA weights, which contains tokenizer.model and model folders" , ) parser.add_argument( "--model_size" , choices=["7B", "7Bf", "13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"] , ) parser.add_argument( "--output_dir" , help="Location to write HF model and tokenizer" , ) parser.add_argument("--safe_serialization" , type=SCREAMING_SNAKE_CASE__ , help="Whether or not to save using `safetensors`." ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(args.input_dir , "tokenizer.model" ) write_tokenizer(args.output_dir , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
663
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase ): lowerCamelCase_ : Tuple = ['pixel_values'] def __init__(self : str , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BICUBIC , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : bool = True , _snake_case : Union[int, float] = 1 / 255 , _snake_case : bool = True , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : bool = True , **_snake_case : int , ) -> None: """simple docstring""" super().__init__(**_snake_case ) lowerCamelCase_ : Optional[Any] = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ : str = get_size_dict(_snake_case , default_to_square=_snake_case ) lowerCamelCase_ : Dict = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ : Any = get_size_dict(_snake_case , default_to_square=_snake_case , param_name='crop_size' ) lowerCamelCase_ : List[Any] = do_resize lowerCamelCase_ : Union[str, Any] = size lowerCamelCase_ : Optional[Any] = resample lowerCamelCase_ : Any = do_center_crop lowerCamelCase_ : str = crop_size lowerCamelCase_ : Optional[int] = do_rescale lowerCamelCase_ : Optional[Any] = rescale_factor lowerCamelCase_ : Dict = do_normalize lowerCamelCase_ : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase_ : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase_ : List[Any] = do_convert_rgb def UpperCAmelCase_ (self : List[Any] , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BICUBIC , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : List[Any] , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ : List[Any] = get_size_dict(_snake_case , default_to_square=_snake_case ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCamelCase_ : int = get_resize_output_image_size(_snake_case , size=size['shortest_edge'] , default_to_square=_snake_case ) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCAmelCase_ (self : Union[str, Any] , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Optional[Any] , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ : Any = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_snake_case , size=(size['height'], size['width']) , data_format=_snake_case , **_snake_case ) def UpperCAmelCase_ (self : Union[str, Any] , _snake_case : np.ndarray , _snake_case : Union[int, float] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Dict , ) -> int: """simple docstring""" return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCAmelCase_ (self : Optional[int] , _snake_case : np.ndarray , _snake_case : Union[float, List[float]] , _snake_case : Union[float, List[float]] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCAmelCase_ (self : int , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : int = None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : bool = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , **_snake_case : str , ) -> PIL.Image.Image: """simple docstring""" lowerCamelCase_ : str = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ : List[Any] = size if size is not None else self.size lowerCamelCase_ : int = get_size_dict(_snake_case , param_name='size' , default_to_square=_snake_case ) lowerCamelCase_ : int = resample if resample is not None else self.resample lowerCamelCase_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ : Any = get_size_dict(_snake_case , param_name='crop_size' , default_to_square=_snake_case ) lowerCamelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ : Any = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ : List[str] = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ : Optional[int] = image_std if image_std is not None else self.image_std lowerCamelCase_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase_ : List[Any] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase_ : List[str] = [convert_to_rgb(_snake_case ) for image in images] # All transformations expect numpy arrays. lowerCamelCase_ : Optional[int] = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowerCamelCase_ : Optional[Any] = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_center_crop: lowerCamelCase_ : Optional[Any] = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images] if do_rescale: lowerCamelCase_ : Optional[int] = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images] if do_normalize: lowerCamelCase_ : Tuple = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images] lowerCamelCase_ : Any = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] lowerCamelCase_ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
144
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase__ : lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) }, ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(UpperCAmelCase )}, ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) }, ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) lowerCamelCase_ : bool = field( default=UpperCAmelCase, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) lowerCamelCase_ : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) lowerCamelCase_ : bool = field( default=UpperCAmelCase, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) def UpperCAmelCase_ (self : Any ) -> List[str]: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class lowerCamelCase__ : lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase_ : Optional[str] = field(default=UpperCAmelCase, metadata={'help': 'The input training data file (a text file).'} ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'}, ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'}, ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'}, ) lowerCamelCase_ : bool = field( default=UpperCAmelCase, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCamelCase_ : Optional[int] = field( default=5, metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' }, ) lowerCamelCase_ : Optional[int] = field( default=UpperCAmelCase, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) }, ) lowerCamelCase_ : Optional[int] = field( default=UpperCAmelCase, metadata={'help': 'The number of processes to use for the preprocessing.'}, ) lowerCamelCase_ : float = field( default=0.1_5, metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) lowerCamelCase_ : bool = field( default=UpperCAmelCase, metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) }, ) def UpperCAmelCase_ (self : List[str] ) -> Optional[int]: """simple docstring""" if self.train_file is not None: lowerCamelCase_ : List[str] = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: with open(lowerCamelCase__ , 'r' , encoding='utf-8' ) as f: lowerCamelCase_ : Any = [json.loads(lowerCamelCase__ ) for line in f.read().splitlines() if (len(lowerCamelCase__ ) > 0 and not line.isspace())] assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) lowerCamelCase_ : str = {c: dataset[c] for c in dataset.column_names} lowerCamelCase_ : List[Any] = refs return Dataset.from_dict(lowerCamelCase__ ) def _a ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Tuple = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCamelCase_ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowerCamelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ : Optional[int] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowerCamelCase_ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[:{data_args.validation_split_percentage}%]' , ) lowerCamelCase_ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[{data_args.validation_split_percentage}%:]' , ) else: lowerCamelCase_ : List[str] = {} if data_args.train_file is not None: lowerCamelCase_ : int = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : str = data_args.validation_file lowerCamelCase_ : str = data_args.train_file.split('.' )[-1] if extension == "txt": lowerCamelCase_ : Optional[int] = 'text' lowerCamelCase_ : List[str] = load_dataset(lowerCamelCase__ , data_files=lowerCamelCase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : Optional[Any] = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase_ : Tuple = AutoConfig.from_pretrained(model_args.config_name , **lowerCamelCase__ ) elif model_args.model_name_or_path: lowerCamelCase_ : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase__ ) else: lowerCamelCase_ : Any = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) lowerCamelCase_ : Optional[int] = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCamelCase__ ) elif model_args.model_name_or_path: lowerCamelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCamelCase__ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: lowerCamelCase_ : List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) lowerCamelCase_ : Union[str, Any] = AutoModelForMaskedLM.from_config(lowerCamelCase__ ) model.resize_token_embeddings(len(lowerCamelCase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCamelCase_ : Dict = datasets['train'].column_names else: lowerCamelCase_ : List[str] = datasets['validation'].column_names lowerCamelCase_ : Any = 'text' if 'text' in column_names else column_names[0] lowerCamelCase_ : List[Any] = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCamelCase__ ): # Remove empty lines lowerCamelCase_ : List[str] = [line for line in examples['text'] if len(lowerCamelCase__ ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=data_args.max_seq_length ) lowerCamelCase_ : Any = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCamelCase_ : Dict = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowerCamelCase_ : Tuple = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowerCamelCase_ : Optional[int] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCamelCase_ : int = False # Data collator # This one will take care of randomly masking the tokens. lowerCamelCase_ : Tuple = DataCollatorForWholeWordMask(tokenizer=lowerCamelCase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCamelCase_ : Optional[Any] = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCamelCase_ : List[str] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowerCamelCase_ : int = model_args.model_name_or_path else: lowerCamelCase_ : Union[str, Any] = None lowerCamelCase_ : Tuple = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Union[str, Any] = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation lowerCamelCase_ : Dict = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCamelCase_ : Optional[Any] = trainer.evaluate() lowerCamelCase_ : Optional[int] = math.exp(eval_output['eval_loss'] ) lowerCamelCase_ : Dict = perplexity lowerCamelCase_ : Dict = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) return results def _a ( lowerCamelCase__ ) -> Any: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
144
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _snake_case ( lowerCamelCase__ : Tuple ) -> str: if is_torch_version("<" , "2.0.0" ) or not hasattr(__UpperCamelCase , "_dynamo" ): return False return isinstance(__UpperCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] = True ) -> Optional[int]: lowerCamelCase_ : Optional[Any] =(torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCamelCase_ : int =is_compiled_module(__UpperCamelCase ) if is_compiled: lowerCamelCase_ : List[str] =model lowerCamelCase_ : str =model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase_ : Dict =model.module if not keep_fpaa_wrapper: lowerCamelCase_ : Union[str, Any] =getattr(__UpperCamelCase , "forward" ) lowerCamelCase_ : List[str] =model.__dict__.pop("_original_forward" , __UpperCamelCase ) if original_forward is not None: while hasattr(__UpperCamelCase , "__wrapped__" ): lowerCamelCase_ : Optional[Any] =forward.__wrapped__ if forward == original_forward: break lowerCamelCase_ : List[str] =forward if getattr(__UpperCamelCase , "_converted_to_transformer_engine" , __UpperCamelCase ): convert_model(__UpperCamelCase , to_transformer_engine=__UpperCamelCase ) if is_compiled: lowerCamelCase_ : List[str] =model lowerCamelCase_ : int =compiled_model return model def _snake_case ( ) -> Optional[Any]: PartialState().wait_for_everyone() def _snake_case ( lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] ) -> int: if PartialState().distributed_type == DistributedType.TPU: xm.save(__UpperCamelCase , __UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(__UpperCamelCase , __UpperCamelCase ) @contextmanager def _snake_case ( **lowerCamelCase__ : Union[str, Any] ) -> List[str]: for key, value in kwargs.items(): lowerCamelCase_ : str =str(__UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _snake_case ( lowerCamelCase__ : Any ) -> Optional[Any]: if not hasattr(__UpperCamelCase , "__qualname__" ) and not hasattr(__UpperCamelCase , "__name__" ): lowerCamelCase_ : Dict =getattr(__UpperCamelCase , "__class__" , __UpperCamelCase ) if hasattr(__UpperCamelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__UpperCamelCase , "__name__" ): return obj.__name__ return str(__UpperCamelCase ) def _snake_case ( lowerCamelCase__ : Dict , lowerCamelCase__ : Dict ) -> Dict: for key, value in source.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase_ : int =destination.setdefault(__UpperCamelCase , {} ) merge_dicts(__UpperCamelCase , __UpperCamelCase ) else: lowerCamelCase_ : Dict =value return destination def _snake_case ( lowerCamelCase__ : int = None ) -> bool: if port is None: lowerCamelCase_ : int =29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
153
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowercase ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None ): super().__init__() __magic_name__ = pad_token_id __magic_name__ = max_length __magic_name__ = vocab __magic_name__ = merges __magic_name__ = BytePairTokenizer(UpperCamelCase_ , UpperCamelCase_ , sequence_length=UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ): __magic_name__ = [''' '''.join(UpperCamelCase_ ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ = tokenizer.get_vocab() return cls(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ): __magic_name__ = GPTaTokenizer.from_pretrained(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) return cls.from_tokenizer(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls , UpperCamelCase_ ): return cls(**UpperCamelCase_ ) def lowerCAmelCase__ ( self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __magic_name__ = self.tf_tokenizer(UpperCamelCase_ ) __magic_name__ = tf.ones_like(UpperCamelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ = max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ = pad_model_inputs( UpperCamelCase_ , max_seq_length=UpperCamelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
490
0
def UpperCAmelCase_ ( _UpperCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") lowercase : List[Any] = int(input("""Enter number: """).strip()) print(F"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
584
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase : Dict = 1_6 lowercase : Optional[int] = 3_2 def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase = 1_6 ): lowerCamelCase_: List[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase_: List[str] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_: Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_: List[Any] = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_: Optional[int] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_: Optional[int] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_: int = 1_6 elif accelerator.mixed_precision != "no": lowerCamelCase_: List[str] = 8 else: lowerCamelCase_: List[Any] = None return tokenizer.pad( _UpperCAmelCase , padding="""longest""" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase_: int = DataLoader( tokenized_datasets["""train"""] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) lowerCamelCase_: Optional[int] = DataLoader( tokenized_datasets["""validation"""] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase : Any = mocked_dataloaders # noqa: F811 def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _UpperCAmelCase ) == "1": lowerCamelCase_: List[str] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCamelCase_: int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: lowerCamelCase_: Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_: Tuple = config["""lr"""] lowerCamelCase_: Optional[Any] = int(config["""num_epochs"""] ) lowerCamelCase_: int = int(config["""seed"""] ) lowerCamelCase_: Any = int(config["""batch_size"""] ) set_seed(_UpperCAmelCase ) lowerCamelCase_ , lowerCamelCase_: Tuple = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase_: List[Any] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCamelCase_: Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase_: Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase_: Optional[Any] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_: Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_: Dict = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_: str = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler lowerCamelCase_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_: Dict = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCamelCase_: int = os.path.split(_UpperCAmelCase )[-1].split(""".""" )[0] accelerator.init_trackers(_UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCamelCase_: Tuple = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_: Tuple = model(**_UpperCAmelCase ) lowerCamelCase_: Any = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCamelCase_: Dict = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_: Dict = model(**_UpperCAmelCase ) lowerCamelCase_: Tuple = outputs.logits.argmax(dim=-1 ) lowerCamelCase_ , lowerCamelCase_: List[str] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) lowerCamelCase_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _UpperCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(_UpperCAmelCase ), """epoch""": epoch, } , step=_UpperCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def UpperCAmelCase_ ( ): lowerCamelCase_: Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=_UpperCAmelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) lowerCamelCase_: Union[str, Any] = parser.parse_args() lowerCamelCase_: Optional[Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
584
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def a ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=A__ ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=A__ ) env_command_parser(subparsers=A__ ) launch_command_parser(subparsers=A__ ) tpu_command_parser(subparsers=A__ ) test_command_parser(subparsers=A__ ) # Let's go SCREAMING_SNAKE_CASE__ : str = parser.parse_args() if not hasattr(A__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(A__ ) if __name__ == "__main__": main()
35
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowercase__ : int = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : str = ["""input_features""", """attention_mask"""] def __init__( self : Optional[int] , lowercase_ : str=80 , lowercase_ : Optional[int]=16000 , lowercase_ : List[Any]=0.0 , lowercase_ : int=10 , lowercase_ : Optional[int]=25 , lowercase_ : List[Any]="hamming_window" , lowercase_ : Tuple=3_27_68.0 , lowercase_ : Any=0.97 , lowercase_ : Dict=1.0 , lowercase_ : Union[str, Any]=True , lowercase_ : Any=True , lowercase_ : Optional[Any]=False , **lowercase_ : str , ): super().__init__(feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , **lowercase_ ) snake_case_ : List[Any] = feature_size snake_case_ : List[Any] = sampling_rate snake_case_ : str = padding_value snake_case_ : List[Any] = hop_length snake_case_ : Dict = win_length snake_case_ : Optional[int] = frame_signal_scale snake_case_ : int = preemphasis_coeff snake_case_ : Optional[int] = mel_floor snake_case_ : List[str] = normalize_means snake_case_ : Union[str, Any] = normalize_vars snake_case_ : Optional[int] = win_function snake_case_ : List[Any] = return_attention_mask snake_case_ : Any = win_length * sampling_rate // 1000 snake_case_ : Union[str, Any] = hop_length * sampling_rate // 1000 snake_case_ : Dict = optimal_fft_length(self.sample_size ) snake_case_ : List[str] = (self.n_fft // 2) + 1 def _snake_case ( self : Union[str, Any] , lowercase_ : np.array ): if self.win_function == "hamming_window": snake_case_ : List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowercase_ ) else: snake_case_ : Optional[Any] = window_function(window_length=self.sample_size , name=self.win_function ) snake_case_ : List[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) snake_case_ : str = spectrogram( one_waveform * self.frame_signal_scale , window=lowercase_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowercase_ , preemphasis=self.preemphasis_coeff , mel_filters=lowercase_ , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def _snake_case ( self : Optional[int] , lowercase_ : Any , lowercase_ : int , lowercase_ : List[Any] ): # make sure we normalize float32 arrays if self.normalize_means: snake_case_ : int = x[:input_length].mean(axis=0 ) snake_case_ : int = np.subtract(lowercase_ , lowercase_ ) if self.normalize_vars: snake_case_ : Tuple = x[:input_length].std(axis=0 ) snake_case_ : Union[str, Any] = np.divide(lowercase_ , lowercase_ ) if input_length < x.shape[0]: snake_case_ : Tuple = padding_value # make sure array is in float32 snake_case_ : List[Any] = x.astype(np.floataa ) return x def _snake_case ( self : Union[str, Any] , lowercase_ : List[np.ndarray] , lowercase_ : Optional[np.ndarray] = None ): snake_case_ : List[str] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowercase_ , lowercase_ , self.padding_value ) for x, n in zip(lowercase_ , lowercase_ )] def __call__( self : Tuple , lowercase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Optional[int] = None , lowercase_ : bool = False , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[int] = None , **lowercase_ : Union[str, Any] , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) snake_case_ : Dict = isinstance(lowercase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) snake_case_ : List[Any] = is_batched_numpy or ( isinstance(lowercase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : int = [np.asarray(lowercase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowercase_ , np.ndarray ): snake_case_ : int = np.asarray(lowercase_ , dtype=np.floataa ) elif isinstance(lowercase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Dict = [raw_speech] # extract fbank features snake_case_ : Optional[int] = [self._extract_mfsc_features(lowercase_ ) for one_waveform in raw_speech] # convert into correct format for padding snake_case_ : int = BatchFeature({'''input_features''': features} ) snake_case_ : Tuple = self.pad( lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) # make sure list is in array format snake_case_ : Dict = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , lowercase_ ): snake_case_ : Tuple = [np.asarray(lowercase_ , dtype=np.floataa ) for feature in input_features] snake_case_ : List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: snake_case_ : Tuple = [np.asarray(lowercase_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: snake_case_ : str = ( np.array(lowercase_ , dtype=np.intaa ) if self._get_padding_strategies(lowercase_ , max_length=lowercase_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) snake_case_ : Any = self.normalize( padded_inputs['''input_features'''] , attention_mask=lowercase_ ) if return_tensors is not None: snake_case_ : Any = padded_inputs.convert_to_tensors(lowercase_ ) return padded_inputs
123
0
"""simple docstring""" import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class _UpperCAmelCase ( lowercase_ ): def __init__( self :Optional[Any] , __UpperCamelCase :Optional[int] ): A = data def __iter__( self :List[Any] ): for element in self.data: yield element def A__ ( UpperCamelCase=True ): A = Accelerator(even_batches=_lowerCamelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = False ): if iterable: A = DummyIterableDataset(torch.as_tensor(range(_lowerCamelCase ) ) ) else: A = TensorDataset(torch.as_tensor(range(_lowerCamelCase ) ) ) A = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase ) A = accelerator.prepare(_lowerCamelCase ) return dl def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): A = create_dataloader(accelerator=_lowerCamelCase , dataset_size=_lowerCamelCase , batch_size=_lowerCamelCase ) A = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def A__ ( ): A = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def A__ ( ): A = create_accelerator(even_batches=_lowerCamelCase ) verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def A__ ( ): A = create_accelerator(even_batches=_lowerCamelCase ) A = torch.nn.Linear(1 , 1 ) A = accelerator.prepare(_lowerCamelCase ) A = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 ) A = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(_lowerCamelCase ): A = ddp_model(batch[0].float() ) A = output.sum() loss.backward() batch_idxs.append(_lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def A__ ( UpperCamelCase ): with warnings.catch_warnings(record=_lowerCamelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , _lowerCamelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def A__ ( ): A = True A = False A = create_accelerator(even_batches=_lowerCamelCase ) A = torch.nn.Linear(1 , 1 ) A = accelerator.prepare(_lowerCamelCase ) A = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 ) A = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCamelCase ): A = train_dl.batch_sampler.even_batches A = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def A__ ( ): A = True A = False A = create_accelerator(even_batches=_lowerCamelCase ) A = torch.nn.Linear(1 , 1 ) A = accelerator.prepare(_lowerCamelCase ) create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCamelCase ) A = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCamelCase ): A = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def A__ ( ): A = create_accelerator() A = torch.nn.Linear(1 , 1 ) A = accelerator.prepare(_lowerCamelCase ) create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCamelCase ) with warnings.catch_warnings(record=_lowerCamelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCamelCase ): pass assert issubclass(w[-1].category , _lowerCamelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def A__ ( ): A = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) A = accelerator.state.distributed_type A = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_lowerCamelCase ) A = original_state if __name__ == "__main__": main()
700
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = 42 UpperCamelCase = jnp.floataa UpperCamelCase = True def lowerCamelCase ( self :Optional[int] ): super().setup() A = nn.Dense(5 , dtype=self.dtype ) def __call__( self :Tuple , *__UpperCamelCase :str , **__UpperCamelCase :List[Any] ): A = super().__call__(*__UpperCamelCase , **__UpperCamelCase ) A = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = FlaxBigBirdForNaturalQuestionsModule def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): def cross_entropy(UpperCamelCase , UpperCamelCase , UpperCamelCase=None ): A = logits.shape[-1] A = (labels[..., None] == jnp.arange(UpperCamelCase )[None]).astype("f4" ) A = jax.nn.log_softmax(UpperCamelCase , axis=-1 ) A = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: A = reduction(UpperCamelCase ) return loss A = partial(UpperCamelCase , reduction=jnp.mean ) A = cross_entropy(UpperCamelCase , UpperCamelCase ) A = cross_entropy(UpperCamelCase , UpperCamelCase ) A = cross_entropy(UpperCamelCase , UpperCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _UpperCAmelCase : UpperCamelCase = "google/bigbird-roberta-base" UpperCamelCase = 3_0_0_0 UpperCamelCase = 1_0_5_0_0 UpperCamelCase = 1_2_8 UpperCamelCase = 3 UpperCamelCase = 1 UpperCamelCase = 5 # tx_args UpperCamelCase = 3e-5 UpperCamelCase = 0.0 UpperCamelCase = 2_0_0_0_0 UpperCamelCase = 0.0095 UpperCamelCase = "bigbird-roberta-natural-questions" UpperCamelCase = "training-expt" UpperCamelCase = "data/nq-training.jsonl" UpperCamelCase = "data/nq-validation.jsonl" def lowerCamelCase ( self :Optional[Any] ): os.makedirs(self.base_dir , exist_ok=__UpperCamelCase ) A = os.path.join(self.base_dir , self.save_dir ) A = self.batch_size_per_device * jax.device_count() @dataclass class _UpperCAmelCase : UpperCamelCase = 42 UpperCamelCase = 4_0_9_6 # no dynamic padding on TPUs def __call__( self :List[Any] , __UpperCamelCase :Union[str, Any] ): A = self.collate_fn(__UpperCamelCase ) A = jax.tree_util.tree_map(__UpperCamelCase , __UpperCamelCase ) return batch def lowerCamelCase ( self :Tuple , __UpperCamelCase :Tuple ): A, A = self.fetch_inputs(features["input_ids"] ) A = { "input_ids": jnp.array(__UpperCamelCase , dtype=jnp.intaa ), "attention_mask": jnp.array(__UpperCamelCase , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def lowerCamelCase ( self :int , __UpperCamelCase :list ): A = [self._fetch_inputs(__UpperCamelCase ) for ids in input_ids] return zip(*__UpperCamelCase ) def lowerCamelCase ( self :Union[str, Any] , __UpperCamelCase :list ): A = [1 for _ in range(len(__UpperCamelCase ) )] while len(__UpperCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase=None ): if seed is not None: A = dataset.shuffle(seed=UpperCamelCase ) for i in range(len(UpperCamelCase ) // batch_size ): A = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase ) @partial(jax.pmap , axis_name="batch" ) def A__ ( UpperCamelCase , UpperCamelCase , **UpperCamelCase ): def loss_fn(UpperCamelCase ): A = model_inputs.pop("start_labels" ) A = model_inputs.pop("end_labels" ) A = model_inputs.pop("pooled_labels" ) A = state.apply_fn(**UpperCamelCase , params=UpperCamelCase , dropout_rng=UpperCamelCase , train=UpperCamelCase ) A, A, A = outputs return state.loss_fn( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) A, A = jax.random.split(UpperCamelCase ) A = jax.value_and_grad(UpperCamelCase ) A, A = grad_fn(state.params ) A = jax.lax.pmean({"loss": loss} , axis_name="batch" ) A = jax.lax.pmean(UpperCamelCase , "batch" ) A = state.apply_gradients(grads=UpperCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def A__ ( UpperCamelCase , **UpperCamelCase ): A = model_inputs.pop("start_labels" ) A = model_inputs.pop("end_labels" ) A = model_inputs.pop("pooled_labels" ) A = state.apply_fn(**UpperCamelCase , params=state.params , train=UpperCamelCase ) A, A, A = outputs A = state.loss_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) A = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class _UpperCAmelCase ( train_state.TrainState ): UpperCamelCase = struct.field(pytree_node=lowercase_ ) @dataclass class _UpperCAmelCase : UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = None def lowerCamelCase ( self :List[Any] , __UpperCamelCase :Optional[int] , __UpperCamelCase :List[str] , __UpperCamelCase :Any , __UpperCamelCase :int=None ): A = model.params A = TrainState.create( apply_fn=model.__call__ , params=__UpperCamelCase , tx=__UpperCamelCase , loss_fn=__UpperCamelCase , ) if ckpt_dir is not None: A, A, A, A, A = restore_checkpoint(__UpperCamelCase , __UpperCamelCase ) A = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } A, A = build_tx(**__UpperCamelCase ) A = train_state.TrainState( step=__UpperCamelCase , apply_fn=model.__call__ , params=__UpperCamelCase , tx=__UpperCamelCase , opt_state=__UpperCamelCase , ) A = args A = data_collator A = lr A = params A = jax_utils.replicate(__UpperCamelCase ) return state def lowerCamelCase ( self :List[str] , __UpperCamelCase :List[Any] , __UpperCamelCase :List[Any] , __UpperCamelCase :Optional[int] ): A = self.args A = len(__UpperCamelCase ) // args.batch_size A = jax.random.PRNGKey(0 ) A = jax.random.split(__UpperCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): A = jnp.array(0 , dtype=jnp.floataa ) A = get_batched_dataset(__UpperCamelCase , args.batch_size , seed=__UpperCamelCase ) A = 0 for batch in tqdm(__UpperCamelCase , total=__UpperCamelCase , desc=f"Running EPOCH-{epoch}" ): A = self.data_collator(__UpperCamelCase ) A, A, A = self.train_step_fn(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: A = jax_utils.unreplicate(state.step ) A = running_loss.item() / i A = self.scheduler_fn(state_step - 1 ) A = self.evaluate(__UpperCamelCase , __UpperCamelCase ) A = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(__UpperCamelCase ) ) self.logger.log(__UpperCamelCase , commit=__UpperCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}" , state=__UpperCamelCase ) def lowerCamelCase ( self :int , __UpperCamelCase :Optional[Any] , __UpperCamelCase :List[Any] ): A = get_batched_dataset(__UpperCamelCase , self.args.batch_size ) A = len(__UpperCamelCase ) // self.args.batch_size A = jnp.array(0 , dtype=jnp.floataa ) A = 0 for batch in tqdm(__UpperCamelCase , total=__UpperCamelCase , desc="Evaluating ... " ): A = self.data_collator(__UpperCamelCase ) A = self.val_step_fn(__UpperCamelCase , **__UpperCamelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def lowerCamelCase ( self :List[str] , __UpperCamelCase :List[str] , __UpperCamelCase :Optional[int] ): A = jax_utils.unreplicate(__UpperCamelCase ) print(f"SAVING CHECKPOINT IN {save_dir}" , end=" ... " ) self.model_save_fn(__UpperCamelCase , params=state.params ) with open(os.path.join(__UpperCamelCase , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__UpperCamelCase , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(__UpperCamelCase , "data_collator.joblib" ) ) with open(os.path.join(__UpperCamelCase , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , __UpperCamelCase ) print("DONE" ) def A__ ( UpperCamelCase , UpperCamelCase ): print(F"RESTORING CHECKPOINT FROM {save_dir}" , end=" ... " ) with open(os.path.join(UpperCamelCase , "flax_model.msgpack" ) , "rb" ) as f: A = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase , "opt_state.msgpack" ) , "rb" ) as f: A = from_bytes(state.opt_state , f.read() ) A = joblib.load(os.path.join(UpperCamelCase , "args.joblib" ) ) A = joblib.load(os.path.join(UpperCamelCase , "data_collator.joblib" ) ) with open(os.path.join(UpperCamelCase , "training_state.json" ) , "r" ) as f: A = json.load(UpperCamelCase ) A = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = num_train_steps - warmup_steps A = optax.linear_schedule(init_value=UpperCamelCase , end_value=UpperCamelCase , transition_steps=UpperCamelCase ) A = optax.linear_schedule(init_value=UpperCamelCase , end_value=1E-7 , transition_steps=UpperCamelCase ) A = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): def weight_decay_mask(UpperCamelCase ): A = traverse_util.flatten_dict(UpperCamelCase ) A = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase ) A = scheduler_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) A = optax.adamw(learning_rate=UpperCamelCase , weight_decay=UpperCamelCase , mask=UpperCamelCase ) return tx, lr
524
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore UpperCamelCase_ = '\nHuman: <<task>>\n\nAssistant: ' UpperCamelCase_ = 'huggingface-tools/default-prompts' UpperCamelCase_ = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def _lowerCamelCase ( lowerCamelCase_: Optional[Any] , lowerCamelCase_: Any , lowerCamelCase_: Optional[Any]="run" ): '''simple docstring''' if prompt_or_repo_id is None: A : Union[str, Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , lowerCamelCase_ ) is not None: return prompt_or_repo_id A : Any = cached_file( lowerCamelCase_ , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: return f.read()
256
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Optional[Any] = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ['MobileViTFeatureExtractor'] _lowerCamelCase : Union[str, Any] = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _lowerCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
0
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple="attention" ): __snake_case : List[str] = params[F"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] __snake_case : Optional[int] = params[F"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] __snake_case : Dict = params[F"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] __snake_case : List[str] = params[F"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int]=False ): if split_mlp_wi: __snake_case : int = params[F"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] __snake_case : List[str] = params[F"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] __snake_case : Tuple = (wi_a, wi_a) else: __snake_case : List[Any] = params[F"""{prefix}/layers_{i}/mlp/wi/kernel"""] __snake_case : Tuple = params[F"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] ): return params[F"""{prefix}/layers_{i}/{layer_name}/scale"""] def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , *, __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ): __snake_case : int = traverse_util.flatten_dict(variables['target'] ) __snake_case : List[str] = {'/'.join(__UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __snake_case : List[Any] = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , __UpperCAmelCase ) __snake_case : str = collections.OrderedDict() # Shared embeddings. __snake_case : Optional[int] = old['token_embedder/embedding'] # Encoder. for i in range(__UpperCAmelCase ): # Block i, layer 0 (Self Attention). __snake_case : Union[str, Any] = tax_layer_norm_lookup(__UpperCAmelCase , __UpperCAmelCase , 'encoder' , 'pre_attention_layer_norm' ) __snake_case , __snake_case , __snake_case , __snake_case : List[str] = tax_attention_lookup(__UpperCAmelCase , __UpperCAmelCase , 'encoder' , 'attention' ) __snake_case : Any = layer_norm __snake_case : Union[str, Any] = k.T __snake_case : Tuple = o.T __snake_case : Optional[int] = q.T __snake_case : List[Any] = v.T # Block i, layer 1 (MLP). __snake_case : Optional[Any] = tax_layer_norm_lookup(__UpperCAmelCase , __UpperCAmelCase , 'encoder' , 'pre_mlp_layer_norm' ) __snake_case , __snake_case : Any = tax_mlp_lookup(__UpperCAmelCase , __UpperCAmelCase , 'encoder' , __UpperCAmelCase ) __snake_case : int = layer_norm if split_mlp_wi: __snake_case : int = wi[0].T __snake_case : Optional[int] = wi[1].T else: __snake_case : List[str] = wi.T __snake_case : Dict = wo.T __snake_case : List[Any] = old[ 'encoder/relpos_bias/rel_embedding' ].T __snake_case : str = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(__UpperCAmelCase ): # Block i, layer 0 (Self Attention). __snake_case : Dict = tax_layer_norm_lookup(__UpperCAmelCase , __UpperCAmelCase , 'decoder' , 'pre_self_attention_layer_norm' ) __snake_case , __snake_case , __snake_case , __snake_case : int = tax_attention_lookup(__UpperCAmelCase , __UpperCAmelCase , 'decoder' , 'self_attention' ) __snake_case : List[Any] = layer_norm __snake_case : Tuple = k.T __snake_case : int = o.T __snake_case : List[str] = q.T __snake_case : Optional[Any] = v.T # Block i, layer 1 (Cross Attention). __snake_case : Optional[Any] = tax_layer_norm_lookup(__UpperCAmelCase , __UpperCAmelCase , 'decoder' , 'pre_cross_attention_layer_norm' ) __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = tax_attention_lookup(__UpperCAmelCase , __UpperCAmelCase , 'decoder' , 'encoder_decoder_attention' ) __snake_case : Tuple = layer_norm __snake_case : List[Any] = k.T __snake_case : List[Any] = o.T __snake_case : Dict = q.T __snake_case : List[str] = v.T # Block i, layer 2 (MLP). __snake_case : Union[str, Any] = tax_layer_norm_lookup(__UpperCAmelCase , __UpperCAmelCase , 'decoder' , 'pre_mlp_layer_norm' ) __snake_case , __snake_case : Tuple = tax_mlp_lookup(__UpperCAmelCase , __UpperCAmelCase , 'decoder' , __UpperCAmelCase ) __snake_case : Optional[int] = layer_norm if split_mlp_wi: __snake_case : Tuple = wi[0].T __snake_case : Dict = wi[1].T else: __snake_case : List[Any] = wi.T __snake_case : List[str] = wo.T __snake_case : List[str] = old['decoder/decoder_norm/scale'] __snake_case : Any = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __snake_case : List[Any] = old['decoder/logits_dense/kernel'].T return new def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : Any ): __snake_case : List[Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __snake_case : List[str] = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __snake_case : Dict = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) __snake_case : List[Any] = state_dict['shared.weight'] return state_dict def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] ): __snake_case : Union[str, Any] = checkpoints.load_tax_checkpoint(__UpperCAmelCase ) __snake_case : Union[str, Any] = convert_tax_to_pytorch(__UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=__UpperCAmelCase ) __snake_case : List[str] = make_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] = False ): __snake_case : Dict = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __snake_case : List[str] = TaEncoderModel(__UpperCAmelCase ) else: __snake_case : Tuple = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__UpperCAmelCase ) print('Done' ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) __magic_name__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
717
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Tuple = StableDiffusionPanoramaPipeline __lowercase : int = TEXT_TO_IMAGE_PARAMS __lowercase : Any = TEXT_TO_IMAGE_BATCH_PARAMS __lowercase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __lowercase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE__ ( self:Tuple ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) snake_case__ = DDIMScheduler() torch.manual_seed(0 ) snake_case__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:str , _a:Optional[Any]=0 ): snake_case__ = torch.manual_seed(_a ) snake_case__ = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.get_dummy_components() snake_case__ = StableDiffusionPanoramaPipeline(**_a ) snake_case__ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = sd_pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.get_dummy_components() snake_case__ = StableDiffusionPanoramaPipeline(**_a ) snake_case__ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = '''french fries''' snake_case__ = sd_pipe(**_a , negative_prompt=_a ) snake_case__ = output.images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.get_dummy_components() snake_case__ = StableDiffusionPanoramaPipeline(**_a ) snake_case__ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = sd_pipe(**_a , view_batch_size=2 ) snake_case__ = output.images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.get_dummy_components() snake_case__ = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) snake_case__ = StableDiffusionPanoramaPipeline(**_a ) snake_case__ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = sd_pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.get_dummy_components() snake_case__ = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_a ) snake_case__ = StableDiffusionPanoramaPipeline(**_a ) snake_case__ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = sd_pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Any=0 ): snake_case__ = torch.manual_seed(_a ) snake_case__ = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''stabilityai/stable-diffusion-2-base''' snake_case__ = DDIMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) snake_case__ = StableDiffusionPanoramaPipeline.from_pretrained(_a , scheduler=_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() snake_case__ = self.get_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case__ = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_a ) snake_case__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() snake_case__ = self.get_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case__ = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = 0 def callback_fn(_a:int , _a:int , _a:torch.FloatTensor ) -> None: snake_case__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case__ = latents[0, -3:, -3:, -1] snake_case__ = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case__ = latents[0, -3:, -3:, -1] snake_case__ = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case__ = False snake_case__ = '''stabilityai/stable-diffusion-2-base''' snake_case__ = DDIMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) snake_case__ = StableDiffusionPanoramaPipeline.from_pretrained(_a , scheduler=_a , safety_checker=_a ) snake_case__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() snake_case__ = self.get_inputs() pipe(**_a , callback=_a , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ = '''stabilityai/stable-diffusion-2-base''' snake_case__ = DDIMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) snake_case__ = StableDiffusionPanoramaPipeline.from_pretrained(_a , scheduler=_a , safety_checker=_a ) snake_case__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ = self.get_inputs() snake_case__ = pipe(**_a ) snake_case__ = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
33
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case : Dict = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
615
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __snake_case : Union[str, Any] = random.Random() def _lowercase ( __snake_case ,__snake_case=1.0 ,__snake_case=None ,__snake_case=None ) -> List[Any]: if rng is None: __lowerCAmelCase : Dict = global_rng __lowerCAmelCase : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A__ ( unittest.TestCase ): '''simple docstring''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any]=7 , _SCREAMING_SNAKE_CASE: int=400 , _SCREAMING_SNAKE_CASE: List[str]=2000 , _SCREAMING_SNAKE_CASE: Optional[Any]=24 , _SCREAMING_SNAKE_CASE: Dict=24 , _SCREAMING_SNAKE_CASE: Optional[int]=0.0 , _SCREAMING_SNAKE_CASE: Any=1_6000 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = parent __lowerCAmelCase : str = batch_size __lowerCAmelCase : List[str] = min_seq_length __lowerCAmelCase : Any = max_seq_length __lowerCAmelCase : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowerCAmelCase : Union[str, Any] = feature_size __lowerCAmelCase : int = num_mel_bins __lowerCAmelCase : Optional[Any] = padding_value __lowerCAmelCase : List[Any] = sampling_rate __lowerCAmelCase : Dict = return_attention_mask __lowerCAmelCase : int = do_normalize def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[int]: """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: int=False) -> Optional[int]: """simple docstring""" def _flatten(_SCREAMING_SNAKE_CASE: Optional[Any]): return list(itertools.chain(*_SCREAMING_SNAKE_CASE)) if equal_length: __lowerCAmelCase : Tuple = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size __lowerCAmelCase : List[Any] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __lowerCAmelCase : Any = [np.asarray(_SCREAMING_SNAKE_CASE) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = SpeechaTextFeatureExtractor if is_speech_available() else None def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = SpeechaTextFeatureExtractionTester(self) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]) -> str: """simple docstring""" self.assertTrue(np.all(np.mean(_SCREAMING_SNAKE_CASE , axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(_SCREAMING_SNAKE_CASE , axis=0) - 1) < 1e-3)) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> int: """simple docstring""" __lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 __lowerCAmelCase : Tuple = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __lowerCAmelCase : Optional[int] = [np.asarray(_SCREAMING_SNAKE_CASE) for speech_input in speech_inputs] # Test feature size __lowerCAmelCase : Optional[int] = feature_extractor(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size) # Test not batched input __lowerCAmelCase : Optional[Any] = feature_extractor(speech_inputs[0] , return_tensors="np").input_features __lowerCAmelCase : Any = feature_extractor(np_speech_inputs[0] , return_tensors="np").input_features self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3)) # Test batched __lowerCAmelCase : Tuple = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors="np").input_features __lowerCAmelCase : Tuple = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3)) # Test 2-D numpy arrays are batched. __lowerCAmelCase : List[str] = [floats_list((1, x))[0] for x in (800, 800, 800)] __lowerCAmelCase : Dict = np.asarray(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors="np").input_features __lowerCAmelCase : Optional[Any] = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3)) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowerCAmelCase : Tuple = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __lowerCAmelCase : Optional[Any] = ["longest", "max_length", "do_not_pad"] __lowerCAmelCase : str = [None, 16, None] for max_length, padding in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : str = feature_extractor( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = inputs.input_features __lowerCAmelCase : Optional[Any] = inputs.attention_mask __lowerCAmelCase : Tuple = [np.sum(_SCREAMING_SNAKE_CASE) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowerCAmelCase : Any = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __lowerCAmelCase : Dict = ["longest", "max_length", "do_not_pad"] __lowerCAmelCase : List[Any] = [None, 16, None] for max_length, padding in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[str] = feature_extractor( _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="np" , return_attention_mask=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = inputs.input_features __lowerCAmelCase : Dict = inputs.attention_mask __lowerCAmelCase : Dict = [np.sum(_SCREAMING_SNAKE_CASE) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def _SCREAMING_SNAKE_CASE ( self: str) -> Any: """simple docstring""" __lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowerCAmelCase : str = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __lowerCAmelCase : str = feature_extractor( _SCREAMING_SNAKE_CASE , padding="max_length" , max_length=4 , truncation=_SCREAMING_SNAKE_CASE , return_tensors="np" , return_attention_mask=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = inputs.input_features __lowerCAmelCase : Dict = inputs.attention_mask __lowerCAmelCase : Any = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1]) self._check_zero_mean_unit_variance(input_features[2]) def _SCREAMING_SNAKE_CASE ( self: int) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowerCAmelCase : List[Any] = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __lowerCAmelCase : Any = feature_extractor( _SCREAMING_SNAKE_CASE , padding="longest" , max_length=4 , truncation=_SCREAMING_SNAKE_CASE , return_tensors="np" , return_attention_mask=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = inputs.input_features __lowerCAmelCase : Optional[Any] = inputs.attention_mask __lowerCAmelCase : Optional[Any] = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24)) __lowerCAmelCase : List[str] = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __lowerCAmelCase : List[str] = feature_extractor( _SCREAMING_SNAKE_CASE , padding="longest" , max_length=16 , truncation=_SCREAMING_SNAKE_CASE , return_tensors="np" , return_attention_mask=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[Any] = inputs.input_features __lowerCAmelCase : Optional[int] = inputs.attention_mask __lowerCAmelCase : str = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24)) def _SCREAMING_SNAKE_CASE ( self: Any) -> Dict: """simple docstring""" import torch __lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowerCAmelCase : List[str] = np.random.rand(100 , 32).astype(np.floataa) __lowerCAmelCase : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowerCAmelCase : Any = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.floataa) __lowerCAmelCase : List[Any] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: List[Any]) -> Optional[Any]: """simple docstring""" from datasets import load_dataset __lowerCAmelCase : Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation") # automatic decoding with librispeech __lowerCAmelCase : List[Any] = ds.sort("id").select(range(_SCREAMING_SNAKE_CASE))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Any: """simple docstring""" __lowerCAmelCase : str = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ]) # fmt: on __lowerCAmelCase : str = self._load_datasamples(1) __lowerCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowerCAmelCase : List[str] = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors="pt").input_features self.assertEquals(input_features.shape , (1, 584, 24)) self.assertTrue(np.allclose(input_features[0, 0, :30] , _SCREAMING_SNAKE_CASE , atol=1e-4))
615
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase__ =TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCAmelCase__ =AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase__ =tokenizer("Hello there", return_tensors="tf" ).input_ids UpperCAmelCase__ =tokenizer("Hi I am", return_tensors="tf" ).input_ids UpperCAmelCase__ =model(A_, labels=A_ ).loss UpperCAmelCase__ =-tf.math.reduce_mean(A_ ).numpy() UpperCAmelCase__ =-21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
625
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'EncodecFeatureExtractor' __UpperCamelCase = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self, A_, A_ ) -> Optional[int]: super().__init__(A_, A_ ) UpperCAmelCase__ =self.feature_extractor UpperCAmelCase__ =False def __UpperCAmelCase ( self, A_=None, A_=None, A_=True ) -> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=A_, language=A_, no_timestamps=A_ ) def __call__( self, *A_, **A_ ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A_, **A_ ) UpperCAmelCase__ =kwargs.pop("audio", A_ ) UpperCAmelCase__ =kwargs.pop("sampling_rate", A_ ) UpperCAmelCase__ =kwargs.pop("text", A_ ) if len(A_ ) > 0: UpperCAmelCase__ =args[0] UpperCAmelCase__ =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: UpperCAmelCase__ =self.tokenizer(A_, **A_ ) if audio is not None: UpperCAmelCase__ =self.feature_extractor(A_, *A_, sampling_rate=A_, **A_ ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCAmelCase__ =audio_inputs["input_values"] if "padding_mask" in audio_inputs: UpperCAmelCase__ =audio_inputs["padding_mask"] return inputs def __UpperCAmelCase ( self, *A_, **A_ ) -> Dict: UpperCAmelCase__ =kwargs.pop("audio", A_ ) UpperCAmelCase__ =kwargs.pop("padding_mask", A_ ) if len(A_ ) > 0: UpperCAmelCase__ =args[0] UpperCAmelCase__ =args[1:] if audio_values is not None: return self._decode_audio(A_, padding_mask=A_ ) else: return self.tokenizer.batch_decode(*A_, **A_ ) def __UpperCAmelCase ( self, *A_, **A_ ) -> int: return self.tokenizer.decode(*A_, **A_ ) def __UpperCAmelCase ( self, A_, A_ = None ) -> List[np.ndarray]: UpperCAmelCase__ =to_numpy(A_ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =audio_values.shape if padding_mask is None: return list(A_ ) UpperCAmelCase__ =to_numpy(A_ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCAmelCase__ =seq_len - padding_mask.shape[-1] UpperCAmelCase__ =1 - self.feature_extractor.padding_value UpperCAmelCase__ =np.pad(A_, ((0, 0), (0, difference)), "constant", constant_values=A_ ) UpperCAmelCase__ =audio_values.tolist() for i in range(A_ ): UpperCAmelCase__ =np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCAmelCase__ =sliced_audio.reshape(A_, -1 ) return audio_values
625
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : UNetaDModel _UpperCamelCase : ScoreSdeVeScheduler def __init__( self : Union[str, Any] , UpperCamelCase_ : UNetaDModel , UpperCamelCase_ : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 2000 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , **UpperCamelCase_ : Dict , ): lowerCAmelCase_ : Union[str, Any] =self.unet.config.sample_size lowerCAmelCase_ : Dict =(batch_size, 3, img_size, img_size) lowerCAmelCase_ : Dict =self.unet lowerCAmelCase_ : Optional[int] =randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ ) * self.scheduler.init_noise_sigma lowerCAmelCase_ : Any =sample.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase_ ) self.scheduler.set_sigmas(UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase_ : Optional[Any] =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase_ : int =self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample lowerCAmelCase_ : List[str] =self.scheduler.step_correct(UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # prediction step lowerCAmelCase_ : Any =model(UpperCamelCase_ , UpperCamelCase_ ).sample lowerCAmelCase_ : Tuple =self.scheduler.step_pred(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) lowerCAmelCase_ : Tuple =output.prev_sample, output.prev_sample_mean lowerCAmelCase_ : Tuple =sample_mean.clamp(0 , 1 ) lowerCAmelCase_ : int =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ : Optional[Any] =self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCamelCase_ )
708
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : UNetaDModel _UpperCamelCase : ScoreSdeVeScheduler def __init__( self : Union[str, Any] , UpperCamelCase_ : UNetaDModel , UpperCamelCase_ : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 2000 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , **UpperCamelCase_ : Dict , ): lowerCAmelCase_ : Union[str, Any] =self.unet.config.sample_size lowerCAmelCase_ : Dict =(batch_size, 3, img_size, img_size) lowerCAmelCase_ : Dict =self.unet lowerCAmelCase_ : Optional[int] =randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ ) * self.scheduler.init_noise_sigma lowerCAmelCase_ : Any =sample.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase_ ) self.scheduler.set_sigmas(UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase_ : Optional[Any] =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase_ : int =self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample lowerCAmelCase_ : List[str] =self.scheduler.step_correct(UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # prediction step lowerCAmelCase_ : Any =model(UpperCamelCase_ , UpperCamelCase_ ).sample lowerCAmelCase_ : Tuple =self.scheduler.step_pred(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple =output.prev_sample, output.prev_sample_mean lowerCAmelCase_ : Tuple =sample_mean.clamp(0 , 1 ) lowerCAmelCase_ : int =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ : Optional[Any] =self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCamelCase_ )
305
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowerCamelCase__ : """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=14 , __lowerCAmelCase : Union[str, Any]=7 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : int=True , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : str=True , __lowerCAmelCase : str=99 , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Optional[Any]=4 , __lowerCAmelCase : List[Any]=37 , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : List[Any]=5_12 , __lowerCAmelCase : Dict=0.02 , ) -> int: _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = rotary_dim _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = initializer_range _A = None _A = vocab_size - 1 _A = vocab_size - 1 _A = vocab_size - 1 def snake_case_ ( self : Optional[Any] ) -> List[str]: _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def snake_case_ ( self : List[str] ) -> str: _A = self.prepare_config_and_inputs() _A = config_and_inputs _A = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def snake_case_ ( self : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ) -> Optional[int]: _A = 20 _A = model_class_name(lowerCAmelCase__ ) _A = model.init_cache(input_ids.shape[0] , lowerCAmelCase__ ) _A = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _A = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _A = model( input_ids[:, :-1] , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) _A = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) _A = model( input_ids[:, -1:] , attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCAmelCase__ , ) _A = model(lowerCAmelCase__ ) _A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def snake_case_ ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ) -> List[Any]: _A = 20 _A = model_class_name(lowerCAmelCase__ ) _A = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) _A = model.init_cache(input_ids.shape[0] , lowerCAmelCase__ ) _A = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _A = model( input_ids[:, :-1] , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) _A = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) _A = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) _A = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) @require_flax class lowerCamelCase__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase): """simple docstring""" a__ : List[Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () a__ : List[str] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def snake_case_ ( self : int ) -> Union[str, Any]: _A = FlaxGPTJModelTester(self ) def snake_case_ ( self : Optional[int] ) -> List[str]: for model_class_name in self.all_model_classes: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ ( self : str ) -> Union[str, Any]: for model_class_name in self.all_model_classes: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @tooslow def snake_case_ ( self : Dict ) -> int: _A = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) _A = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) _A = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) _A = False _A = model.config.eos_token_id _A = jax.jit(model.generate ) _A = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences _A = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _A = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @is_pt_flax_cross_test def snake_case_ ( self : int ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _A = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _A = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _A = model_class.__name__[4:] # Skip the "Flax" at the beginning _A = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) _A = pt_inputs["""input_ids"""].shape _A = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCAmelCase__ ): _A = 0 _A = 1 _A = 0 _A = 1 _A = pt_model_class(lowerCAmelCase__ ).eval() _A = model_class(lowerCAmelCase__ , dtype=jnp.floataa ) _A = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ ) _A = fx_state with torch.no_grad(): _A = pt_model(**lowerCAmelCase__ ).to_tuple() _A = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) _A = model_class.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ ) _A = fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual( len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def snake_case_ ( self : Tuple ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _A = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _A = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _A = model_class.__name__[4:] # Skip the "Flax" at the beginning _A = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) _A = pt_model_class(lowerCAmelCase__ ).eval() _A = model_class(lowerCAmelCase__ , dtype=jnp.floataa ) _A = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params ) _A = pt_inputs["""input_ids"""].shape _A = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCAmelCase__ ): _A = 0 _A = 1 _A = 0 _A = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): _A = pt_model(**lowerCAmelCase__ ).to_tuple() _A = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) _A = pt_model_class.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ ) with torch.no_grad(): _A = pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual( len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def snake_case_ ( self : List[Any] ) -> int: for model_class_name in self.all_model_classes: _A = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) _A = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ )
2
import argparse import json import subprocess def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Union[str, Any] = [] __magic_name__ : Optional[int] = ( f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) __magic_name__ : Any = subprocess.run(_A, shell=_A, stdout=subprocess.PIPE ) __magic_name__ : int = output.stdout.decode("""utf-8""" ) __magic_name__ : Optional[int] = json.loads(_A ) __magic_name__ : Tuple = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_A ) # save the result so we can report them on Slack with open("""offline_runners.txt""", """w""" ) as fp: fp.write(json.dumps(_A ) ) if len(_A ) > 0: __magic_name__ : Optional[Any] = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def UpperCamelCase ( _A ): """simple docstring""" return values.split(""",""" ) __magic_name__: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __magic_name__: Dict = parser.parse_args() get_runner_status(args.target_runners, args.token)
324
0
print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
700
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCAmelCase ( _snake_case ): lowerCAmelCase = args.pruning_method lowerCAmelCase = args.threshold lowerCAmelCase = args.model_name_or_path.rstrip('''/''' ) lowerCAmelCase = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) lowerCAmelCase = torch.load(os.path.join(_snake_case , '''pytorch_model.bin''' ) ) lowerCAmelCase = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCAmelCase = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: lowerCAmelCase = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: lowerCAmelCase = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": lowerCAmelCase = MagnitudeBinarizer.apply(inputs=_snake_case , threshold=_snake_case ) lowerCAmelCase = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue lowerCAmelCase = name[:-6] lowerCAmelCase = model[F"""{prefix_}mask_scores"""] lowerCAmelCase = TopKBinarizer.apply(_snake_case , _snake_case ) lowerCAmelCase = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCAmelCase = name[:-6] lowerCAmelCase = model[F"""{prefix_}mask_scores"""] lowerCAmelCase = ThresholdBinarizer.apply(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue lowerCAmelCase = name[:-6] lowerCAmelCase = model[F"""{prefix_}mask_scores"""] lowerCAmelCase , lowerCAmelCase = -0.1, 1.1 lowerCAmelCase = torch.sigmoid(_snake_case ) lowerCAmelCase = s * (r - l) + l lowerCAmelCase = s_bar.clamp(min=0.0 , max=1.0 ) lowerCAmelCase = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: lowerCAmelCase = os.path.join( os.path.dirname(_snake_case ) , F"""bertarized_{os.path.basename(_snake_case )}""" ) if not os.path.isdir(_snake_case ): shutil.copytree(_snake_case , _snake_case ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(_snake_case , os.path.join(_snake_case , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": UpperCAmelCase_ =argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) UpperCAmelCase_ =parser.parse_args() main(args)
33
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer _UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast _UpperCamelCase = TaTokenizerFast _UpperCamelCase = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys _UpperCamelCase = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
459
import numpy as np def a_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase__ = int(np.ceil((x_end - xa) / h ) ) lowerCAmelCase__ = np.zeros((n + 1,) ) lowerCAmelCase__ = ya lowerCAmelCase__ = xa for k in range(__lowerCAmelCase ): lowerCAmelCase__ = f(__lowerCAmelCase , y[k] ) lowerCAmelCase__ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCAmelCase__ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCAmelCase__ = f(x + h , y[k] + h * ka ) lowerCAmelCase__ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
615
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __a , unittest.TestCase ): _lowercase =PhobertTokenizer _lowercase =False def __a ( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ = ["T@@", "i", "I", "R@@", "r", "e@@"] lowerCAmelCase_ = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) lowerCAmelCase_ = ["#version: 0.2", "l à</w>"] lowerCAmelCase_ = {"unk_token": "<unk>"} lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_UpperCamelCase ) ) def __a ( self , **_UpperCamelCase ) -> str: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __a ( self , _UpperCamelCase ) -> List[Any]: lowerCAmelCase_ = "Tôi là VinAI Research" lowerCAmelCase_ = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def __a ( self ) -> Any: lowerCAmelCase_ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase_ = "Tôi là VinAI Research" lowerCAmelCase_ = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() lowerCAmelCase_ = tokenizer.tokenize(_UpperCamelCase ) print(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = tokens + [tokenizer.unk_token] lowerCAmelCase_ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase )
279
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _A = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _A = 10 _A = 2_56 def lowerCamelCase__ ( __lowerCAmelCase : List[str] ): """simple docstring""" if len(__lowerCAmelCase ) < MIN_NUM_TOKENS: return None lowerCAmelCase_ = MinHash(num_perm=__lowerCAmelCase ) for token in set(__lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0} class _lowerCAmelCase : def __init__( self , *, _UpperCamelCase = 0.85 , ) -> Dict: lowerCAmelCase_ = duplication_jaccard_threshold lowerCAmelCase_ = NUM_PERM lowerCAmelCase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCAmelCase_ = defaultdict(_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> None: lowerCAmelCase_ = self._index.query(_UpperCamelCase ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_UpperCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_UpperCamelCase ) def __a ( self ) -> List[List[Dict]]: lowerCAmelCase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowerCAmelCase_ = [base] + list(_UpperCamelCase ) # reformat the cluster to be a list of dict lowerCAmelCase_ = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(_UpperCamelCase ) return duplicate_clusters def __a ( self , _UpperCamelCase ) -> None: lowerCAmelCase_ = self.get_duplicate_clusters() with open(_UpperCamelCase , "w" ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) def lowerCamelCase__ ( __lowerCAmelCase : Tuple ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = element lowerCAmelCase_ = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCamelCase__ ( __lowerCAmelCase : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def lowerCamelCase__ ( __lowerCAmelCase : Type[Dataset] , __lowerCAmelCase : float ): """simple docstring""" lowerCAmelCase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=100 ) ): di.add(__lowerCAmelCase , __lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = get_tokens(__lowerCAmelCase ) lowerCAmelCase_ = get_tokens(__lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _A = None def lowerCamelCase__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = [] for elementa in cluster: lowerCAmelCase_ = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: lowerCAmelCase_ = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCAmelCase_ = 1 extremes.append(__lowerCAmelCase ) return extremes def lowerCamelCase__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" global _shared_dataset lowerCAmelCase_ = dataset lowerCAmelCase_ = [] lowerCAmelCase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ): extremes_list.append(__lowerCAmelCase ) return extremes_list def lowerCamelCase__ ( __lowerCAmelCase : Type[Dataset] , __lowerCAmelCase : float = 0.85 ): """simple docstring""" lowerCAmelCase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ = {x["base_index"] for cluster in duplicate_clusters for x in cluster} lowerCAmelCase_ = {} lowerCAmelCase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowerCAmelCase_ = element lowerCAmelCase_ = duplicate_indices - set(extreme_dict.keys() ) lowerCAmelCase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCAmelCase_ = element["base_index"] in extreme_dict if element["is_extreme"]: lowerCAmelCase_ = extreme_dict[element["base_index"]]["copies"] print(F"""Original dataset size: {len(__lowerCAmelCase )}""" ) print(F"""Number of duplicate clusters: {len(__lowerCAmelCase )}""" ) print(F"""Files in duplicate cluster: {len(__lowerCAmelCase )}""" ) print(F"""Unique files in duplicate cluster: {len(__lowerCAmelCase )}""" ) print(F"""Filtered dataset size: {len(__lowerCAmelCase )}""" ) return ds_filter, duplicate_clusters
279
1
def snake_case ( lowerCamelCase ): '''simple docstring''' for i in range(len(lowerCamelCase ) - 1 , 0 , -1 ): __lowercase = False for j in range(lowerCamelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowercase , __lowercase = unsorted[j - 1], unsorted[j] __lowercase = True for j in range(lowerCamelCase ): if unsorted[j] > unsorted[j + 1]: __lowercase , __lowercase = unsorted[j + 1], unsorted[j] __lowercase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : List[Any] = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : int = [int(item) for item in user_input.split(""",""")] print(F'''{cocktail_shaker_sort(unsorted) = }''')
80
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int: _a : Optional[Any] =[] _a , _a : Union[str, Any] =0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCAmelCase ) _a , _a : Optional[Any] =b, a + b return sum(_UpperCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
694
0
'''simple docstring''' import numpy as np def __lowercase ( __SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" return 1 / (1 + np.exp(-vector )) def __lowercase ( __SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" return vector * sigmoid(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'sentencepiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } SCREAMING_SNAKE_CASE_ = { 'google/rembert': 2_56, } class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :Tuple =VOCAB_FILES_NAMES a_ :Tuple =PRETRAINED_VOCAB_FILES_MAP a_ :Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : int="[CLS]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Optional[Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Any="[SEP]" , SCREAMING_SNAKE_CASE__ : Dict="[PAD]" , SCREAMING_SNAKE_CASE__ : Dict="[CLS]" , SCREAMING_SNAKE_CASE__ : Dict="[MASK]" , **SCREAMING_SNAKE_CASE__ : List[str] , ): '''simple docstring''' super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = spm.SentencePieceProcessor() self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def __a ( self : List[str] ): '''simple docstring''' return len(self.sp_model ) def __a ( self : str ): '''simple docstring''' __a = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a = d __a = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=False ): '''simple docstring''' __a = self.sp_model.EncodeAsPieces(SCREAMING_SNAKE_CASE__ ) return pieces def __a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) def __a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) def __a ( self : List[str] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a = self.sp_model.decode_pieces(SCREAMING_SNAKE_CASE__ ) return out_string def __a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return __a = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
201
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def A ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A ( self ) -> int: _SCREAMING_SNAKE_CASE : Any = 1 _SCREAMING_SNAKE_CASE : str = 3 _SCREAMING_SNAKE_CASE : Optional[int] = (3_2, 3_2) _SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase_ ) return image @property def A ( self ) -> Optional[int]: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) return model @property def A ( self ) -> List[Any]: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : List[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def A ( self ) -> Any: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowerCAmelCase_ ) @property def A ( self ) -> Any: def extract(*lowerCAmelCase_ , **lowerCAmelCase_ ): class _lowerCAmelCase : def __init__( self ) -> Any: _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones([0] ) def A ( self , lowerCAmelCase_ ) -> int: self.pixel_values.to(lowerCAmelCase_ ) return self return Out() return extract def A ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE : str = self.dummy_cond_unet _SCREAMING_SNAKE_CASE : Dict = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_vae _SCREAMING_SNAKE_CASE : Tuple = self.dummy_text_encoder _SCREAMING_SNAKE_CASE : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPipeline( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=self.dummy_extractor , ) _SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 'A painting of a squirrel eating a burger' _SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _SCREAMING_SNAKE_CASE : List[Any] = output.images _SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE : Any = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCAmelCase_ , )[0] _SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _SCREAMING_SNAKE_CASE : str = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE : int = self.dummy_cond_unet _SCREAMING_SNAKE_CASE : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = self.dummy_vae _SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_text_encoder _SCREAMING_SNAKE_CASE : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=self.dummy_extractor , ) _SCREAMING_SNAKE_CASE : str = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[str] = 'A painting of a squirrel eating a burger' _SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE : str = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _SCREAMING_SNAKE_CASE : Any = output.images _SCREAMING_SNAKE_CASE : Any = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE : Any = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCAmelCase_ , )[0] _SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _SCREAMING_SNAKE_CASE : Dict = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self ) -> int: _SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCAmelCase_ ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert isinstance(pipe.scheduler , lowerCAmelCase_ ) assert pipe.safety_checker is None _SCREAMING_SNAKE_CASE : Optional[Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionPipeline.from_pretrained(lowerCAmelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _SCREAMING_SNAKE_CASE : Optional[Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def A ( self ) -> int: _SCREAMING_SNAKE_CASE : Any = self.dummy_cond_unet _SCREAMING_SNAKE_CASE : List[str] = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : str = self.dummy_vae _SCREAMING_SNAKE_CASE : Tuple = self.dummy_text_encoder _SCREAMING_SNAKE_CASE : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _SCREAMING_SNAKE_CASE : Optional[int] = unet.half() _SCREAMING_SNAKE_CASE : List[str] = vae.half() _SCREAMING_SNAKE_CASE : List[str] = bert.half() # make sure here that pndm scheduler skips prk _SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPipeline( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=self.dummy_extractor , ) _SCREAMING_SNAKE_CASE : Any = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 'A painting of a squirrel eating a burger' _SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def A ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _SCREAMING_SNAKE_CASE : List[str] = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _SCREAMING_SNAKE_CASE : List[Any] = 4_0_0_3_6_6_0_3_4_6 _SCREAMING_SNAKE_CASE : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _SCREAMING_SNAKE_CASE : str = torch.manual_seed(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = output.images _SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : str = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[str] = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _SCREAMING_SNAKE_CASE : List[str] = output.images _SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : Union[str, Any] = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : int = 'padme amidala taking a bath artwork, safe for work, no nudity' _SCREAMING_SNAKE_CASE : str = 2_7_3_4_9_7_1_7_5_5 _SCREAMING_SNAKE_CASE : Dict = 7 _SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) _SCREAMING_SNAKE_CASE : str = output.images _SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : Union[str, Any] = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _SCREAMING_SNAKE_CASE : Optional[Any] = output.images _SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : Optional[Any] = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _SCREAMING_SNAKE_CASE : List[Any] = 1_0_4_4_3_5_5_2_3_4 _SCREAMING_SNAKE_CASE : Optional[int] = 1_2 _SCREAMING_SNAKE_CASE : int = torch.manual_seed(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) _SCREAMING_SNAKE_CASE : Dict = output.images _SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _SCREAMING_SNAKE_CASE : Any = torch.manual_seed(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[Any] = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _SCREAMING_SNAKE_CASE : List[str] = output.images _SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
621
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): def A ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() def A ( self ) -> int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 'A painting of a squirrel eating a burger' _SCREAMING_SNAKE_CASE : Optional[Any] = jax.device_count() _SCREAMING_SNAKE_CASE : List[Any] = num_samples * [prompt] _SCREAMING_SNAKE_CASE : Any = sd_pipe.prepare_inputs(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[Any] = replicate(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = shard(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE : Optional[int] = jax.random.split(lowerCAmelCase_ , jax.device_count() ) _SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , num_inference_steps=2_5 , jit=lowerCAmelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) _SCREAMING_SNAKE_CASE : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _SCREAMING_SNAKE_CASE : Optional[Any] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _SCREAMING_SNAKE_CASE : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def A ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : str = 'stabilityai/stable-diffusion-2' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase_ , subfolder='scheduler' ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase_ , scheduler=lowerCAmelCase_ , revision='bf16' , dtype=jnp.bfloataa , ) _SCREAMING_SNAKE_CASE : Any = scheduler_params _SCREAMING_SNAKE_CASE : int = 'A painting of a squirrel eating a burger' _SCREAMING_SNAKE_CASE : Tuple = jax.device_count() _SCREAMING_SNAKE_CASE : Union[str, Any] = num_samples * [prompt] _SCREAMING_SNAKE_CASE : Any = sd_pipe.prepare_inputs(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = replicate(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = shard(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE : Optional[Any] = jax.random.split(lowerCAmelCase_ , jax.device_count() ) _SCREAMING_SNAKE_CASE : int = sd_pipe(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , num_inference_steps=2_5 , jit=lowerCAmelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) _SCREAMING_SNAKE_CASE : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _SCREAMING_SNAKE_CASE : str = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _SCREAMING_SNAKE_CASE : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _SCREAMING_SNAKE_CASE : Optional[int] = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
621
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCamelCase : int = 16 UpperCamelCase : Optional[int] = 32 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 , UpperCamelCase__ = "bert-base-cased" ) -> Optional[int]: """simple docstring""" A = AutoTokenizer.from_pretrained(UpperCamelCase__ ) A = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCamelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) A = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" A = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A = config['lr'] A = int(config['num_epochs'] ) A = int(config['seed'] ) A = int(config['batch_size'] ) A = args.model_name_or_path set_seed(UpperCamelCase__ ) A , A = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase__ , return_dict=UpperCamelCase__ ) # Instantiate optimizer A = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A = optimizer_cls(params=model.parameters() , lr=UpperCamelCase__ ) if accelerator.state.deepspeed_plugin is not None: A = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: A = 1 A = (len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=0 , num_training_steps=UpperCamelCase__ , ) else: A = DummyScheduler(UpperCamelCase__ , total_num_steps=UpperCamelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A , A , A , A , A = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # We need to keep track of how many total steps we have iterated over A = 0 # We also need to keep track of the stating epoch so files are named properly A = 0 # Now we train the model A = evaluate.load('glue' , 'mrpc' ) A = 0 A = {} for epoch in range(UpperCamelCase__ , UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): A = model(**UpperCamelCase__ ) A = outputs.loss A = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() A = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A = model(**UpperCamelCase__ ) A = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A , A = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCamelCase__ ) - 1: A = predictions[: len(eval_dataloader.dataset ) - samples_seen] A = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) A = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , UpperCamelCase__ ) A = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: A = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( ) -> Optional[int]: """simple docstring""" A = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCamelCase__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCamelCase__ , ) parser.add_argument( '--output_dir' , type=UpperCamelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=UpperCamelCase__ , default=3 , help='Number of train epochs.' , ) A = parser.parse_args() A = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
91
"""simple docstring""" from math import sqrt def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" A = 0 for i in range(1 , int(sqrt(UpperCamelCase__ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase__ ): total += i + n // i elif i == sqrt(UpperCamelCase__ ): total += i return total - n def __snake_case ( UpperCamelCase__ = 10000 ) -> int: """simple docstring""" A = sum( i for i in range(1 , UpperCamelCase__ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase__ ) ) == i and sum_of_divisors(UpperCamelCase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
91
1
from collections import deque from .hash_table import HashTable class UpperCAmelCase_ ( __lowerCamelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : List[Any] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_lowerCAmelCase ) UpperCAmelCase__ : List[str] = self.values[key] def __UpperCAmelCase ( self ): return ( sum(self.charge_factor - len(_lowerCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_lowerCAmelCase ) == 0 ): return key return super()._collision_resolution(_lowerCAmelCase , _lowerCAmelCase )
79
'''simple docstring''' from __future__ import annotations def a_ ( __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =[True] * limit lowerCamelCase_ =False lowerCamelCase_ =False lowerCamelCase_ =True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowerCamelCase_ =i * 2 while index < limit: lowerCamelCase_ =False lowerCamelCase_ =index + i lowerCamelCase_ =[2] for i in range(3 , __snake_case , 2 ): if is_prime[i]: primes.append(__snake_case ) return primes def a_ ( __snake_case : int = 100_0000 ) -> int: """simple docstring""" lowerCamelCase_ =prime_sieve(__snake_case ) lowerCamelCase_ =0 lowerCamelCase_ =0 for i in range(len(__snake_case ) ): for j in range(i + length , len(__snake_case ) ): lowerCamelCase_ =sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCamelCase_ =j - i lowerCamelCase_ =sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
676
0
'''simple docstring''' def __UpperCAmelCase ( a_: str = 1_000_000 ): _UpperCAmelCase : Optional[int] = limit + 1 _UpperCAmelCase : List[Any] = [0] * limit for first_term in range(1, SCREAMING_SNAKE_CASE_ ): for n in range(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase : str = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _UpperCAmelCase : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'{solution() = }')
715
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any=sys.maxsize ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = "bilinear" _UpperCAmelCase : Union[str, Any] = max_size _UpperCAmelCase : Tuple = short_edge_length def __call__( self : List[str] , lowerCAmelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = [] for img in imgs: _UpperCAmelCase , _UpperCAmelCase : List[Any] = img.shape[:2] # later: provide list and randomly choose index for resize _UpperCAmelCase : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img _UpperCAmelCase : List[Any] = size * 1.0 / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: _UpperCAmelCase , _UpperCAmelCase : str = size, scale * w else: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = scale * h, size if max(lowerCAmelCase__ , lowerCAmelCase__ ) > self.max_size: _UpperCAmelCase : List[Any] = self.max_size * 1.0 / max(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = newh * scale _UpperCAmelCase : str = neww * scale _UpperCAmelCase : Union[str, Any] = int(neww + 0.5 ) _UpperCAmelCase : Optional[int] = int(newh + 0.5 ) if img.dtype == np.uinta: _UpperCAmelCase : Optional[Any] = Image.fromarray(lowerCAmelCase__ ) _UpperCAmelCase : Any = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) _UpperCAmelCase : Optional[Any] = np.asarray(lowerCAmelCase__ ) else: _UpperCAmelCase : Tuple = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw _UpperCAmelCase : str = nn.functional.interpolate( lowerCAmelCase__ , (newh, neww) , mode=self.interp_method , align_corners=lowerCAmelCase__ ).squeeze(0 ) img_augs.append(lowerCAmelCase__ ) return img_augs class A__ : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Optional[int] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) _UpperCAmelCase : str = cfg.INPUT.FORMAT _UpperCAmelCase : List[Any] = cfg.SIZE_DIVISIBILITY _UpperCAmelCase : int = cfg.PAD_VALUE _UpperCAmelCase : Optional[int] = cfg.INPUT.MAX_SIZE_TEST _UpperCAmelCase : Tuple = cfg.MODEL.DEVICE _UpperCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _UpperCAmelCase : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _UpperCAmelCase : Any = lambda lowerCAmelCase__ : (x - self.pixel_mean) / self.pixel_std def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = tuple(max(lowerCAmelCase__ ) for s in zip(*[img.shape for img in images] ) ) _UpperCAmelCase : str = [im.shape[-2:] for im in images] _UpperCAmelCase : Any = [ nn.functional.pad( lowerCAmelCase__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] return torch.stack(lowerCAmelCase__ ), torch.tensor(lowerCAmelCase__ ) def __call__( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=False ) -> str: """simple docstring""" with torch.no_grad(): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [images] if single_image: assert len(lowerCAmelCase__ ) == 1 for i in range(len(lowerCAmelCase__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(lowerCAmelCase__ , images.pop(lowerCAmelCase__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( lowerCAmelCase__ , torch.as_tensor(img_tensorize(images.pop(lowerCAmelCase__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge _UpperCAmelCase : Any = torch.tensor([im.shape[:2] for im in images] ) _UpperCAmelCase : str = self.aug(lowerCAmelCase__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic _UpperCAmelCase : int = [self.normalizer(lowerCAmelCase__ ) for x in images] # now pad them to do the following operations _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.pad(lowerCAmelCase__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad _UpperCAmelCase : int = torch.true_divide(lowerCAmelCase__ , lowerCAmelCase__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __UpperCAmelCase ( a_: Tuple, a_: Tuple[int, int] ): assert torch.isfinite(a_ ).all(), "Box tensor contains infinite or NaN!" _UpperCAmelCase , _UpperCAmelCase : Tuple = box_size tensor[:, 0].clamp_(min=0, max=a_ ) tensor[:, 1].clamp_(min=0, max=a_ ) tensor[:, 2].clamp_(min=0, max=a_ ) tensor[:, 3].clamp_(min=0, max=a_ )
257
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def snake_case__ ( lowercase ): lowerCAmelCase_: List[str] = SwinConfig() lowerCAmelCase_: Optional[Any] = swin_name.split("_" ) lowerCAmelCase_: Optional[int] = name_split[1] lowerCAmelCase_: List[Any] = int(name_split[4] ) lowerCAmelCase_: Any = int(name_split[3][-1] ) if model_size == "tiny": lowerCAmelCase_: Optional[Any] = 96 lowerCAmelCase_: List[Any] = (2, 2, 6, 2) lowerCAmelCase_: str = (3, 6, 12, 24) elif model_size == "small": lowerCAmelCase_: Dict = 96 lowerCAmelCase_: Any = (2, 2, 18, 2) lowerCAmelCase_: str = (3, 6, 12, 24) elif model_size == "base": lowerCAmelCase_: List[str] = 128 lowerCAmelCase_: Dict = (2, 2, 18, 2) lowerCAmelCase_: Optional[Any] = (4, 8, 16, 32) else: lowerCAmelCase_: Union[str, Any] = 192 lowerCAmelCase_: Tuple = (2, 2, 18, 2) lowerCAmelCase_: Union[str, Any] = (6, 12, 24, 48) if "in22k" in swin_name: lowerCAmelCase_: int = 21841 else: lowerCAmelCase_: Optional[Any] = 1000 lowerCAmelCase_: Dict = "huggingface/label-files" lowerCAmelCase_: Optional[Any] = "imagenet-1k-id2label.json" lowerCAmelCase_: Union[str, Any] = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type="dataset" ) , "r" ) ) lowerCAmelCase_: Union[str, Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} lowerCAmelCase_: Optional[Any] = idalabel lowerCAmelCase_: Optional[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase_: Union[str, Any] = img_size lowerCAmelCase_: Any = num_classes lowerCAmelCase_: Optional[int] = embed_dim lowerCAmelCase_: Any = depths lowerCAmelCase_: Tuple = num_heads lowerCAmelCase_: Any = window_size return config def snake_case__ ( lowercase ): if "patch_embed.proj" in name: lowerCAmelCase_: Union[str, Any] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCAmelCase_: str = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: lowerCAmelCase_: Any = "encoder." + name if "attn.proj" in name: lowerCAmelCase_: int = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCAmelCase_: int = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCAmelCase_: Union[str, Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCAmelCase_: List[str] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCAmelCase_: Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCAmelCase_: Optional[Any] = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": lowerCAmelCase_: str = "layernorm.weight" if name == "norm.bias": lowerCAmelCase_: Optional[int] = "layernorm.bias" if "head" in name: lowerCAmelCase_: List[Any] = name.replace("head" , "classifier" ) else: lowerCAmelCase_: Optional[int] = "swin." + name return name def snake_case__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): lowerCAmelCase_: Any = orig_state_dict.pop(UpperCAmelCase__ ) if "mask" in key: continue elif "qkv" in key: lowerCAmelCase_: Optional[Any] = key.split("." ) lowerCAmelCase_: Union[str, Any] = int(key_split[1] ) lowerCAmelCase_: List[str] = int(key_split[3] ) lowerCAmelCase_: int = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase_: Any = val[:dim, :] lowerCAmelCase_: Union[str, Any] = val[ dim : dim * 2, : ] lowerCAmelCase_: Any = val[-dim:, :] else: lowerCAmelCase_: str = val[ :dim ] lowerCAmelCase_: List[str] = val[ dim : dim * 2 ] lowerCAmelCase_: Dict = val[ -dim: ] else: lowerCAmelCase_: Optional[Any] = val return orig_state_dict def snake_case__ ( lowercase , lowercase ): lowerCAmelCase_: Any = timm.create_model(UpperCAmelCase__ , pretrained=UpperCAmelCase__ ) timm_model.eval() lowerCAmelCase_: Optional[Any] = get_swin_config(UpperCAmelCase__ ) lowerCAmelCase_: str = SwinForImageClassification(UpperCAmelCase__ ) model.eval() lowerCAmelCase_: str = convert_state_dict(timm_model.state_dict() , UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) lowerCAmelCase_: Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase_: int = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) lowerCAmelCase_: str = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) lowerCAmelCase_: int = image_processor(images=UpperCAmelCase__ , return_tensors="pt" ) lowerCAmelCase_: List[str] = timm_model(inputs["pixel_values"] ) lowerCAmelCase_: Dict = model(**UpperCAmelCase__ ).logits assert torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) a : List[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
613
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline A_ : List[Any] =argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False) parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""") parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""") A_ : List[Any] =parser.parse_args() A_ : Tuple ="""cpu""" A_ : List[Any] ="""a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings""" A_ : Union[str, Any] ="""path-to-your-trained-model""" A_ : str =StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: A_ : Dict =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) A_ : List[Any] =pipe.to(device) # to channels last A_ : Optional[int] =pipe.unet.to(memory_format=torch.channels_last) A_ : Optional[int] =pipe.vae.to(memory_format=torch.channels_last) A_ : Optional[Any] =pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: A_ : Union[str, Any] =pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex A_ : Any =torch.randn(2, 4, 64, 64) A_ : List[Any] =torch.rand(1) * 999 A_ : str =torch.randn(2, 77, 768) A_ : Optional[int] =(sample, timestep, encoder_hidden_status) try: A_ : Dict =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: A_ : List[Any] =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) A_ : int =ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) A_ : Tuple =ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: A_ : Any =ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute A_ : Any =666 A_ : int =torch.Generator(device).manual_seed(seed) A_ : Any ={"""generator""": generator} if args.steps is not None: A_ : List[str] =args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): A_ : Any =pipe(prompt, **generate_kwargs).images[0] # save image image.save("""generated.png""")
483
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : str = logging.get_logger(__name__) __snake_case : Dict = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A ( UpperCAmelCase__ ): __UpperCAmelCase : List[str] = "unispeech" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="mean" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=8_0 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=0.5 , **snake_case_ , ) -> Any: super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(lowerCamelCase__ ) _a = list(lowerCamelCase__ ) _a = list(lowerCamelCase__ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = num_ctc_classes _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum _a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # pretraining loss _a = replace_prob @property def __lowerCAmelCase ( self ) -> Union[str, Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
718
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
0
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCAmelCase_ : Any = _symbol_database.Default() UpperCAmelCase_ : Dict = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) UpperCAmelCase_ : int = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[Any] = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCAmelCase_ : Optional[int] = 45 UpperCAmelCase_ : Any = 1581 UpperCAmelCase_ : List[Any] = 1517 UpperCAmelCase_ : str = 1570 UpperCAmelCase_ : str = 1584 UpperCAmelCase_ : Dict = 1793 UpperCAmelCase_ : List[str] = 1795 UpperCAmelCase_ : Tuple = 1916 UpperCAmelCase_ : str = 1864 UpperCAmelCase_ : Any = 1905 UpperCAmelCase_ : Any = 1919 UpperCAmelCase_ : Tuple = 2429 UpperCAmelCase_ : Union[str, Any] = 2208 UpperCAmelCase_ : Any = 2418 UpperCAmelCase_ : Optional[Any] = 2323 UpperCAmelCase_ : Any = 2407 # @@protoc_insertion_point(module_scope)
533
'''simple docstring''' from __future__ import annotations def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) <= 1 or n <= 1: return insert_next(SCREAMING_SNAKE_CASE__ , n - 1 ) rec_insertion_sort(SCREAMING_SNAKE_CASE__ , n - 1 ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if index >= len(SCREAMING_SNAKE_CASE__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = ( collection[index], collection[index - 1], ) insert_next(SCREAMING_SNAKE_CASE__ , index + 1 ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = input('Enter integers separated by spaces: ') UpperCAmelCase_ : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
533
1
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ : Union[str, Any] = logging.get_logger() def A_ ( snake_case , snake_case , snake_case , snake_case , snake_case = True ): print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": SCREAMING_SNAKE_CASE:Optional[int] = timm.create_model("levit_128s" , pretrained=snake_case ) else: SCREAMING_SNAKE_CASE:List[str] = timm.create_model("levit_128" , pretrained=snake_case ) if hidden_sizes == 192: SCREAMING_SNAKE_CASE:int = timm.create_model("levit_192" , pretrained=snake_case ) if hidden_sizes == 256: SCREAMING_SNAKE_CASE:Dict = timm.create_model("levit_256" , pretrained=snake_case ) if hidden_sizes == 384: SCREAMING_SNAKE_CASE:List[Any] = timm.create_model("levit_384" , pretrained=snake_case ) from_model.eval() SCREAMING_SNAKE_CASE:int = LevitForImageClassificationWithTeacher(snake_case ).eval() SCREAMING_SNAKE_CASE:str = OrderedDict() SCREAMING_SNAKE_CASE:Dict = from_model.state_dict() SCREAMING_SNAKE_CASE:Optional[int] = list(from_model.state_dict().keys() ) SCREAMING_SNAKE_CASE:List[str] = list(our_model.state_dict().keys() ) print(len(snake_case ) , len(snake_case ) ) for i in range(len(snake_case ) ): SCREAMING_SNAKE_CASE:Dict = weights[og_keys[i]] our_model.load_state_dict(snake_case ) SCREAMING_SNAKE_CASE:int = torch.randn((2, 3, 224, 224) ) SCREAMING_SNAKE_CASE:Tuple = from_model(snake_case ) SCREAMING_SNAKE_CASE:str = our_model(snake_case ).logits assert torch.allclose(snake_case , snake_case ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE:int = name print(snake_case ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) SCREAMING_SNAKE_CASE:Optional[Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def A_ ( snake_case , snake_case = None , snake_case = True ): SCREAMING_SNAKE_CASE:List[Any] = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE:str = 1000 SCREAMING_SNAKE_CASE:int = (1, num_labels) SCREAMING_SNAKE_CASE:Tuple = """huggingface/label-files""" SCREAMING_SNAKE_CASE:Dict = num_labels SCREAMING_SNAKE_CASE:Dict = json.load(open(hf_hub_download(snake_case , snake_case , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE:List[Any] = {int(snake_case ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE:Union[str, Any] = idalabel SCREAMING_SNAKE_CASE:Any = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE:Union[str, Any] = partial(snake_case , num_labels=snake_case , idalabel=snake_case , labelaid=snake_case ) SCREAMING_SNAKE_CASE:int = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } SCREAMING_SNAKE_CASE:Tuple = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , snake_case , names_to_config[model_name] , snake_case , snake_case ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , snake_case , snake_case , snake_case , snake_case ) return config, expected_shape if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) A_ : Optional[int] = parser.parse_args() A_ : str = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
708
'''simple docstring''' import warnings from functools import wraps from typing import Callable def A_ ( snake_case ): @wraps(snake_case ) def _inner_fn(*snake_case , **snake_case ): warnings.warn( (F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , snake_case , ) return fn(*snake_case , **snake_case ) return _inner_fn
465
0
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __lowercase () -> str: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowerCamelCase : List[Any] = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching, """os.path.join""", _lowercase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __lowercase () -> str: """simple docstring""" assert _test_patching.open is open __lowerCamelCase : List[str] = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, """open""", _lowercase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __lowercase () -> Dict: """simple docstring""" # pandas.read_csv is not present in _test_patching __lowerCamelCase : List[str] = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching, """pandas.read_csv""", _lowercase ): pass def __lowercase () -> Union[str, Any]: """simple docstring""" # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __lowerCamelCase : Tuple = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, """len""", _lowercase ) is None with patch_submodule(_test_patching, """len""", _lowercase ): assert _test_patching.len is mock assert _test_patching.len is len def __lowercase () -> List[str]: """simple docstring""" __lowerCamelCase : Union[str, Any] = """__test_patch_submodule_start_and_stop_mock__""" __lowerCamelCase : Dict = patch_submodule(_test_patching, """open""", _lowercase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __lowercase () -> List[Any]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowerCamelCase : Dict = """__test_patch_submodule_successive_join__""" __lowerCamelCase : List[str] = """__test_patch_submodule_successive_dirname__""" __lowerCamelCase : Dict = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, """os.path.join""", _lowercase ): with patch_submodule(_test_patching, """os.rename""", _lowercase ): with patch_submodule(_test_patching, """os.path.dirname""", _lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, """os.rename""", _lowercase ): with patch_submodule(_test_patching, """os.path.join""", _lowercase ): with patch_submodule(_test_patching, """os.path.dirname""", _lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __lowercase () -> List[Any]: """simple docstring""" __lowerCamelCase : List[Any] = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching, """__module_that_doesn_exist__.__attribute_that_doesn_exist__""", _lowercase ): pass with patch_submodule(_test_patching, """os.__attribute_that_doesn_exist__""", _lowercase ): pass
150
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ :List[str] = logging.get_logger(__name__) UpperCAmelCase__ :Union[str, Any] = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : str = 'altclip_text_model' def __init__( self : List[Any] , A__ : Optional[int]=250002 , A__ : Any=1024 , A__ : List[Any]=24 , A__ : Dict=16 , A__ : Union[str, Any]=4096 , A__ : Union[str, Any]="gelu" , A__ : str=0.1 , A__ : int=0.1 , A__ : str=514 , A__ : Optional[int]=1 , A__ : Optional[Any]=0.02 , A__ : int=0.02 , A__ : Optional[Any]=1e-0_5 , A__ : int=1 , A__ : Optional[Any]=0 , A__ : Dict=2 , A__ : Optional[int]="absolute" , A__ : Optional[int]=True , A__ : List[str]=768 , **A__ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : Optional[Any] = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : Dict = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : List[str] = max_position_embeddings __lowerCamelCase : Optional[Any] = type_vocab_size __lowerCamelCase : int = initializer_range __lowerCamelCase : Optional[int] = initializer_factor __lowerCamelCase : List[Any] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : str = use_cache __lowerCamelCase : Optional[Any] = project_dim class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : List[Any] = 'altclip_vision_model' def __init__( self : Optional[int] , A__ : str=768 , A__ : str=3072 , A__ : str=512 , A__ : Optional[int]=12 , A__ : List[Any]=12 , A__ : Union[str, Any]=3 , A__ : Dict=224 , A__ : List[Any]=32 , A__ : List[Any]="quick_gelu" , A__ : Dict=1e-5 , A__ : List[str]=0.0 , A__ : Dict=0.02 , A__ : List[str]=1.0 , **A__ : Union[str, Any] , ): """simple docstring""" super().__init__(**A__ ) __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : Optional[int] = intermediate_size __lowerCamelCase : Optional[Any] = projection_dim __lowerCamelCase : Union[str, Any] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : str = num_channels __lowerCamelCase : Any = patch_size __lowerCamelCase : Any = image_size __lowerCamelCase : Any = initializer_range __lowerCamelCase : List[str] = initializer_factor __lowerCamelCase : List[str] = attention_dropout __lowerCamelCase : Any = layer_norm_eps __lowerCamelCase : Any = hidden_act @classmethod def a_ ( cls : str , A__ : Union[str, os.PathLike] , **A__ : List[str] ): """simple docstring""" cls._set_token_in_kwargs(A__ ) __lowerCamelCase , __lowerCamelCase : str = cls.get_config_dict(A__ , **A__ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": __lowerCamelCase : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(A__ , **A__ ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : int = 'altclip' snake_case__ : Dict = True def __init__( self : Optional[Any] , A__ : Optional[Any]=None , A__ : Union[str, Any]=None , A__ : Union[str, Any]=768 , A__ : Tuple=2.6592 , **A__ : List[Any] ): """simple docstring""" __lowerCamelCase : str = kwargs.pop("""text_config_dict""" , A__ ) __lowerCamelCase : Dict = kwargs.pop("""vision_config_dict""" , A__ ) super().__init__(**A__ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __lowerCamelCase : Any = {} # This is the complete result when using `text_config_dict`. __lowerCamelCase : Tuple = AltCLIPTextConfig(**A__ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __lowerCamelCase : Optional[Any] = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowerCamelCase : int = ( f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " f"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(A__ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __lowerCamelCase : Dict = {} # This is the complete result when using `vision_config_dict`. __lowerCamelCase : List[str] = AltCLIPVisionConfig(**A__ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __lowerCamelCase : str = { str(A__ ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __lowerCamelCase : List[Any] = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowerCamelCase : Optional[Any] = ( f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " f"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(A__ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __lowerCamelCase : List[Any] = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: __lowerCamelCase : List[str] = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) __lowerCamelCase : Union[str, Any] = AltCLIPTextConfig(**A__ ) __lowerCamelCase : Optional[int] = AltCLIPVisionConfig(**A__ ) __lowerCamelCase : Optional[Any] = projection_dim __lowerCamelCase : List[str] = logit_scale_init_value __lowerCamelCase : Union[str, Any] = 1.0 @classmethod def a_ ( cls : Optional[Any] , A__ : AltCLIPTextConfig , A__ : AltCLIPVisionConfig , **A__ : List[str] ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A__ ) def a_ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) __lowerCamelCase : Optional[Any] = self.text_config.to_dict() __lowerCamelCase : Tuple = self.vision_config.to_dict() __lowerCamelCase : Tuple = self.__class__.model_type return output
150
1
import numpy as np class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] ): SCREAMING_SNAKE_CASE = (0, 0) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 def __eq__( self : List[str] , __lowerCamelCase : str ): return self.position == cell.position def _snake_case ( self : Optional[int] ): print(self.position ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : Tuple=(5, 5) ): SCREAMING_SNAKE_CASE = np.zeros(__lowerCamelCase ) SCREAMING_SNAKE_CASE = world_size[0] SCREAMING_SNAKE_CASE = world_size[1] def _snake_case ( self : Optional[int] ): print(self.w ) def _snake_case ( self : int , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] SCREAMING_SNAKE_CASE = cell.position[0] SCREAMING_SNAKE_CASE = cell.position[1] SCREAMING_SNAKE_CASE = [] for n in neughbour_cord: SCREAMING_SNAKE_CASE = current_x + n[0] SCREAMING_SNAKE_CASE = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: SCREAMING_SNAKE_CASE = Cell() SCREAMING_SNAKE_CASE = (x, y) SCREAMING_SNAKE_CASE = cell neighbours.append(__lowerCamelCase ) return neighbours def __a ( A__ : Optional[int] , A__ : Union[str, Any] , A__ : int ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] _open.append(A__ ) while _open: SCREAMING_SNAKE_CASE = np.argmin([n.f for n in _open] ) SCREAMING_SNAKE_CASE = _open[min_f] _closed.append(_open.pop(A__ ) ) if current == goal: break for n in world.get_neigbours(A__ ): for c in _closed: if c == n: continue SCREAMING_SNAKE_CASE = current.g + 1 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = n.position SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = goal.position SCREAMING_SNAKE_CASE = (ya - ya) ** 2 + (xa - xa) ** 2 SCREAMING_SNAKE_CASE = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(A__ ) SCREAMING_SNAKE_CASE = [] while current.parent is not None: path.append(current.position ) SCREAMING_SNAKE_CASE = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __A : int = Gridworld() # Start position and goal __A : List[Any] = Cell() __A : Optional[int] = (0, 0) __A : List[Any] = Cell() __A : Optional[Any] = (4, 4) print(f'path from {start.position} to {goal.position}') __A : Optional[int] = astar(world, start, goal) # Just for visual reasons. for i in s: __A : Optional[int] = 1 print(world.w)
715
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : Any = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
0
from __future__ import annotations import math _lowerCAmelCase = "2020.9.26" _lowerCAmelCase = "xcodz-dot, cclaus, dhruvmanila" def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): if not all(isinstance(__snake_case , (float, int) ) for val in locals().values() ): _UpperCamelCase = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(__snake_case ) _UpperCamelCase = ((x * distance) / (z + distance)) * scale _UpperCamelCase = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): if not isinstance(__snake_case , __snake_case ): raise TypeError('''Axis must be a str''' ) _UpperCamelCase = locals() del input_variables["axis"] if not all(isinstance(__snake_case , (float, int) ) for val in input_variables.values() ): _UpperCamelCase = ( '''Input values except axis must either be float or int: ''' f"""{list(input_variables.values() )}""" ) raise TypeError(__snake_case ) _UpperCamelCase = (angle % 360) / 450 * 180 / math.pi if axis == "z": _UpperCamelCase = x * math.cos(__snake_case ) - y * math.sin(__snake_case ) _UpperCamelCase = y * math.cos(__snake_case ) + x * math.sin(__snake_case ) _UpperCamelCase = z elif axis == "x": _UpperCamelCase = y * math.cos(__snake_case ) - z * math.sin(__snake_case ) _UpperCamelCase = z * math.cos(__snake_case ) + y * math.sin(__snake_case ) _UpperCamelCase = x elif axis == "y": _UpperCamelCase = x * math.cos(__snake_case ) - z * math.sin(__snake_case ) _UpperCamelCase = z * math.cos(__snake_case ) + x * math.sin(__snake_case ) _UpperCamelCase = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f'{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }') print(f'{rotate(1.0, 2.0, 3.0, "y", 90.0) = }')
10
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Collection[float] | None = None ): if components is None: A = [] A = list(UpperCamelCase__ ) def __len__( self : List[Any] ): return len(self.__components ) def __str__( self : str ): return "(" + ",".join(map(UpperCamelCase__ , self.__components ) ) + ")" def __add__( self : str , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] + other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: raise Exception('must have the same size' ) def __sub__( self : Dict , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] - other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Tuple , UpperCamelCase__ : float ): ... @overload def __mul__( self : Dict , UpperCamelCase__ : Vector ): ... def __mul__( self : Union[str, Any] , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , (float, int) ): A = [c * other for c in self.__components] return Vector(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(self ) == len(UpperCamelCase__ ): A = len(self ) A = [self.__components[i] * other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return sum(UpperCamelCase__ ) else: # error case raise Exception('invalid operand!' ) def UpperCamelCase ( self : Union[str, Any] ): return Vector(self.__components ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : float ): assert -len(self.__components ) <= pos < len(self.__components ) A = value def UpperCamelCase ( self : str ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) A = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase__ ) ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Vector , UpperCamelCase__ : bool = False ): A = self * other A = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase (lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) return Vector([0] * dimension ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, lowerCAmelCase )) A = [0] * dimension A = 1 return Vector(lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : float, lowerCAmelCase : Vector, lowerCAmelCase : Vector ) -> Vector: assert ( isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, (int, float) )) ) return x * scalar + y def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: random.seed(lowerCAmelCase ) A = [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : list[list[float]] , UpperCamelCase__ : int , UpperCamelCase__ : int ): A = matrix A = w A = h def __str__( self : int ): A = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] + other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : Dict , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] - other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : int , UpperCamelCase__ : float ): ... @overload def __mul__( self : Union[str, Any] , UpperCamelCase__ : Vector ): ... def __mul__( self : Tuple , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # matrix-vector if len(UpperCamelCase__ ) == self.__width: A = zero_vector(self.__height ) for i in range(self.__height ): A = [ self.__matrix[i][j] * other.component(UpperCamelCase__ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase__ , sum(UpperCamelCase__ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(UpperCamelCase__ , (int, float) ): # matrix-scalar A = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase__ , self.__width , self.__height ) return None def UpperCamelCase ( self : Optional[int] ): return self.__height def UpperCamelCase ( self : List[Any] ): return self.__width def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float ): if 0 <= x < self.__height and 0 <= y < self.__width: A = value else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) A = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase__ ) ): A = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase__ , UpperCamelCase__ ) else: raise Exception('Indices out of bounds' ) def UpperCamelCase ( self : Tuple ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase__ ) for y in range(self.__width ) ] return sum(UpperCamelCase__ ) def __UpperCamelCase (lowerCAmelCase : int ) -> Matrix: A = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Matrix: random.seed(lowerCAmelCase ) A = [ [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
699
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_A ) class _lowercase ( _A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _a : str = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _a : ClassVar[Features] = Features({'text': Value('string' )} ) _a : ClassVar[Features] = Features({'labels': ClassLabel} ) _a : str = "text" _a : str = "labels" def lowercase__ ( self , a ): if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , a ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) snake_case__ : List[str] =copy.deepcopy(self ) snake_case__ : Any =self.label_schema.copy() snake_case__ : Dict =features[self.label_column] snake_case__ : str =label_schema return task_template @property def lowercase__ ( self ): return { self.text_column: "text", self.label_column: "labels", }
448
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A__ ( _a : int , _a : Any , _a : Union[str, Any] , _a : Tuple ): '''simple docstring''' snake_case__ : Any =BigBirdConfig.from_json_file(_a ) print(f"Building PyTorch model from configuration: {config}" ) if is_trivia_qa: snake_case__ : str =BigBirdForQuestionAnswering(_a ) else: snake_case__ : Optional[int] =BigBirdForPreTraining(_a ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_a , _a , is_trivia_qa=_a ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_a ) if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) __lowerCamelCase : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
448
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __a : Any = logging.get_logger(__name__) __a : str = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart __a : List[Any] = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } __a : Any = { """facebook/bart-base""": 1_0_2_4, """facebook/bart-large""": 1_0_2_4, """facebook/bart-large-mnli""": 1_0_2_4, """facebook/bart-large-cnn""": 1_0_2_4, """facebook/bart-large-xsum""": 1_0_2_4, """yjernite/bart_eli5""": 1_0_2_4, } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] lowercase = BartTokenizer def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="replace" , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="<mask>" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , errors=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase = getattr(SCREAMING_SNAKE_CASE , pre_tok_state.pop("type" ) ) UpperCamelCase = add_prefix_space UpperCamelCase = pre_tok_class(**SCREAMING_SNAKE_CASE ) UpperCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase = "post_processor" UpperCamelCase = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase = tuple(state["sep"] ) if "cls" in state: UpperCamelCase = tuple(state["cls"] ) UpperCamelCase = False if state.get("add_prefix_space" , SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase = add_prefix_space UpperCamelCase = True if state.get("trim_offsets" , SCREAMING_SNAKE_CASE ) != trim_offsets: UpperCamelCase = trim_offsets UpperCamelCase = True if changes_to_apply: UpperCamelCase = getattr(SCREAMING_SNAKE_CASE , state.pop("type" ) ) UpperCamelCase = component_class(**SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property def __lowerCAmelCase ( self ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else value UpperCamelCase = value def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> BatchEncoding: """simple docstring""" UpperCamelCase = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> BatchEncoding: """simple docstring""" UpperCamelCase = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> List[Any]: """simple docstring""" UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
606
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = ["""image_processor"""] lowercase = """SamImageProcessor""" def __init__( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE ) UpperCamelCase = self.image_processor UpperCamelCase = -10 UpperCamelCase = self.image_processor.size["longest_edge"] def __call__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> BatchEncoding: """simple docstring""" UpperCamelCase = self.image_processor( SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) # pop arguments that are not used in the foward but used nevertheless UpperCamelCase = encoding_image_processor["original_sizes"] if hasattr(SCREAMING_SNAKE_CASE , "numpy" ): # Checks if Torch or TF tensor UpperCamelCase = original_sizes.numpy() UpperCamelCase , UpperCamelCase , UpperCamelCase = self._check_and_preprocess_points( input_points=SCREAMING_SNAKE_CASE , input_labels=SCREAMING_SNAKE_CASE , input_boxes=SCREAMING_SNAKE_CASE , ) UpperCamelCase = self._normalize_and_convert( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , input_points=SCREAMING_SNAKE_CASE , input_labels=SCREAMING_SNAKE_CASE , input_boxes=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , ) return encoding_image_processor def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="pt" , ) -> int: """simple docstring""" if input_points is not None: if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): UpperCamelCase = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE , original_sizes[0] ) for point in input_points ] else: UpperCamelCase = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for point, original_size in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: UpperCamelCase , UpperCamelCase = self._pad_points_and_labels(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase = np.array(SCREAMING_SNAKE_CASE ) if input_labels is not None: UpperCamelCase = np.array(SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): UpperCamelCase = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE , original_sizes[0] , is_bounding_box=SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: UpperCamelCase = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , is_bounding_box=SCREAMING_SNAKE_CASE ) for box, original_size in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] UpperCamelCase = np.array(SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": UpperCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default UpperCamelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": UpperCamelCase = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default UpperCamelCase = tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": UpperCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE ) # point batch size of 1 by default UpperCamelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": UpperCamelCase = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) # point batch size of 1 by default UpperCamelCase = tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": UpperCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE ) # point batch size of 1 by default UpperCamelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": UpperCamelCase = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) # point batch size of 1 by default UpperCamelCase = tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase = max([point.shape[0] for point in input_points] ) UpperCamelCase = [] for i, point in enumerate(SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: UpperCamelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) UpperCamelCase = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(SCREAMING_SNAKE_CASE ) UpperCamelCase = processed_input_points return input_points, input_labels def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> np.ndarray: """simple docstring""" UpperCamelCase , UpperCamelCase = original_size UpperCamelCase , UpperCamelCase = self.image_processor._get_preprocess_shape(SCREAMING_SNAKE_CASE , longest_edge=SCREAMING_SNAKE_CASE ) UpperCamelCase = deepcopy(SCREAMING_SNAKE_CASE ).astype(SCREAMING_SNAKE_CASE ) if is_bounding_box: UpperCamelCase = coords.reshape(-1 , 2 , 2 ) UpperCamelCase = coords[..., 0] * (new_w / old_w) UpperCamelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: UpperCamelCase = coords.reshape(-1 , 4 ) return coords def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Any: """simple docstring""" if input_points is not None: if hasattr(SCREAMING_SNAKE_CASE , "numpy" ): # Checks for TF or Torch tensor UpperCamelCase = input_points.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0] , SCREAMING_SNAKE_CASE ): raise ValueError("Input points must be a list of list of floating points." ) UpperCamelCase = [np.array(SCREAMING_SNAKE_CASE ) for input_point in input_points] else: UpperCamelCase = None if input_labels is not None: if hasattr(SCREAMING_SNAKE_CASE , "numpy" ): UpperCamelCase = input_labels.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0] , SCREAMING_SNAKE_CASE ): raise ValueError("Input labels must be a list of list integers." ) UpperCamelCase = [np.array(SCREAMING_SNAKE_CASE ) for label in input_labels] else: UpperCamelCase = None if input_boxes is not None: if hasattr(SCREAMING_SNAKE_CASE , "numpy" ): UpperCamelCase = input_boxes.numpy().tolist() if ( not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0] , SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0] , SCREAMING_SNAKE_CASE ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) UpperCamelCase = [np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: UpperCamelCase = None return input_points, input_labels, input_boxes @property def __lowerCAmelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process_masks(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
606
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ ( _snake_case ): def __init__( self : int , lowercase__ : List[str] , lowercase__ : Optional[int]=13 , lowercase__ : Optional[Any]=7 , lowercase__ : List[Any]=True , lowercase__ : int=True , lowercase__ : Dict=True , lowercase__ : Optional[int]=True , lowercase__ : Optional[int]=99 , lowercase__ : Tuple=32 , lowercase__ : List[str]=5 , lowercase__ : int=4 , lowercase__ : Optional[Any]=37 , lowercase__ : List[Any]="gelu" , lowercase__ : Any=0.1 , lowercase__ : int=0.1 , lowercase__ : Optional[Any]=5_12 , lowercase__ : Optional[int]=16 , lowercase__ : str=2 , lowercase__ : Union[str, Any]=0.0_2 , lowercase__ : int=False , lowercase__ : Dict=True , lowercase__ : Any="None" , lowercase__ : Optional[int]=3 , lowercase__ : List[str]=4 , lowercase__ : Union[str, Any]=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = relative_attention _lowerCAmelCase = position_biased_input _lowerCAmelCase = pos_att_type _lowerCAmelCase = scope def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : List[str] ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self : str , lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] ): _lowerCAmelCase = DebertaVaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ )[0] _lowerCAmelCase = model(lowercase__ , token_type_ids=lowercase__ )[0] _lowerCAmelCase = model(lowercase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Optional[Any] ): _lowerCAmelCase = DebertaVaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : Optional[Any] , lowercase__ : List[Any] ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = DebertaVaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : Optional[Any] ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = DebertaVaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : int , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Tuple ): _lowerCAmelCase = DebertaVaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : int , lowercase__ : int , lowercase__ : Dict , lowercase__ : str ): _lowerCAmelCase = DebertaVaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( _snake_case ,_snake_case ,unittest.TestCase ): UpperCamelCase__ =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase__ =( { 'feature-extraction': DebertaVaModel, 'fill-mask': DebertaVaForMaskedLM, 'question-answering': DebertaVaForQuestionAnswering, 'text-classification': DebertaVaForSequenceClassification, 'token-classification': DebertaVaForTokenClassification, 'zero-shot': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ =True UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): _lowerCAmelCase = DebertaVaModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = DebertaVaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): pass @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) _lowerCAmelCase = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ )[0] # compare the actual values for a slice. _lowerCAmelCase = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase__ , atol=1e-4 ) , f'{output[:, 1:4, 1:4]}' )
713
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ : def __init__( self : int , lowercase__ : Tuple , lowercase__ : Union[str, Any]=13 , lowercase__ : Optional[Any]=7 , lowercase__ : List[str]=True , lowercase__ : Any=True , lowercase__ : int=True , lowercase__ : Tuple=True , lowercase__ : str=99 , lowercase__ : Optional[Any]=32 , lowercase__ : Dict=5 , lowercase__ : Tuple=4 , lowercase__ : Optional[Any]=37 , lowercase__ : Tuple="gelu" , lowercase__ : List[str]=0.1 , lowercase__ : Union[str, Any]=0.1 , lowercase__ : Union[str, Any]=5_12 , lowercase__ : Optional[Any]=16 , lowercase__ : int=2 , lowercase__ : Union[str, Any]=0.0_2 , lowercase__ : Optional[int]=3 , lowercase__ : List[str]=4 , lowercase__ : Any=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : str ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : List[str] , lowercase__ : str , lowercase__ : Tuple , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : str , lowercase__ : Dict ): _lowerCAmelCase = NystromformerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) _lowerCAmelCase = model(lowercase__ , token_type_ids=lowercase__ ) _lowerCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Any ): _lowerCAmelCase = NystromformerForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : Optional[Any] , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Optional[int] ): _lowerCAmelCase = NystromformerForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : List[str] , lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : Tuple ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = NystromformerForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : str , lowercase__ : Any , lowercase__ : Optional[int] ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = NystromformerForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str , lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : List[str] ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = NystromformerForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase__ =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ =False UpperCamelCase__ =False def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = NystromformerModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = NystromformerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _lowerCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _lowerCAmelCase = model(lowercase__ )[0] _lowerCAmelCase = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , lowercase__ ) _lowerCAmelCase = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): _lowerCAmelCase = 'the [MASK] of Belgium is Brussels' _lowerCAmelCase = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _lowerCAmelCase = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _lowerCAmelCase = tokenizer(lowercase__ , return_tensors='pt' ) with torch.no_grad(): _lowerCAmelCase = model(encoding.input_ids ).logits _lowerCAmelCase = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(lowercase__ ) , 'capital' )
225
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE_: Tuple ={ 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[Any] =[ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: List[str] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
78
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowercase ( snake_case_ ): lowercase = ['image_processor', 'tokenizer'] lowercase = 'LayoutLMv3ImageProcessor' lowercase = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : List[Any] , snake_case : int=None , snake_case : str=None , **snake_case : int ) -> Tuple: """simple docstring""" UpperCamelCase_ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case , ) UpperCamelCase_ : Optional[Any] = kwargs.pop('feature_extractor' ) UpperCamelCase_ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case , snake_case ) def __call__( self : Optional[Any] , snake_case : List[Any] , snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , snake_case : Union[List[List[int]], List[List[List[int]]]] = None , snake_case : Optional[Union[List[int], List[List[int]]]] = None , snake_case : bool = True , snake_case : Union[bool, str, PaddingStrategy] = False , snake_case : Union[bool, str, TruncationStrategy] = None , snake_case : Optional[int] = None , snake_case : int = 0 , snake_case : Optional[int] = None , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : bool = False , snake_case : bool = False , snake_case : bool = False , snake_case : bool = False , snake_case : bool = True , snake_case : Optional[Union[str, TensorType]] = None , **snake_case : Optional[int] , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor UpperCamelCase_ : Optional[int] = self.image_processor(images=snake_case , return_tensors=snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(snake_case , snake_case ): UpperCamelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase_ : str = features['words'] UpperCamelCase_ : int = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=snake_case , add_special_tokens=snake_case , padding=snake_case , truncation=snake_case , max_length=snake_case , stride=snake_case , pad_to_multiple_of=snake_case , return_token_type_ids=snake_case , return_attention_mask=snake_case , return_overflowing_tokens=snake_case , return_special_tokens_mask=snake_case , return_offsets_mapping=snake_case , return_length=snake_case , verbose=snake_case , return_tensors=snake_case , **snake_case , ) # add pixel values UpperCamelCase_ : int = features.pop('pixel_values' ) if return_overflowing_tokens is True: UpperCamelCase_ : Optional[Any] = self.get_overflowing_images(snake_case , encoded_inputs['overflow_to_sample_mapping'] ) UpperCamelCase_ : List[str] = images return encoded_inputs def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Any , snake_case : Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(snake_case ) != len(snake_case ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f" {len(snake_case )} and {len(snake_case )}" ) return images_with_overflow def SCREAMING_SNAKE_CASE__ ( self : List[str] , *snake_case : Dict , **snake_case : List[Any] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , *snake_case : Optional[int] , **snake_case : int ) -> Any: """simple docstring""" return self.tokenizer.decode(*snake_case , **snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case , ) return self.image_processor
417
0
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a__ ( UpperCamelCase_ , unittest.TestCase ): snake_case__ = XLMProphetNetTokenizer snake_case__ = False snake_case__ = True def __UpperCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase:Union[str, Any] = XLMProphetNetTokenizer(a__ ,keep_accents=a__) tokenizer.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self : str) -> List[Any]: """simple docstring""" _lowerCAmelCase:Union[str, Any] = '''[PAD]''' _lowerCAmelCase:List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__) ,a__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__) ,a__) def __UpperCamelCase ( self : int) -> Optional[int]: """simple docstring""" _lowerCAmelCase:Any = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] ,'''[PAD]''') self.assertEqual(vocab_keys[1] ,'''[CLS]''') self.assertEqual(vocab_keys[-1] ,'''j''') self.assertEqual(len(a__) ,1012) def __UpperCamelCase ( self : str) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,1012) def __UpperCamelCase ( self : Optional[int]) -> str: """simple docstring""" _lowerCAmelCase:Tuple = XLMProphetNetTokenizer(a__ ,keep_accents=a__) _lowerCAmelCase:Any = tokenizer.tokenize('''This is a test''') self.assertListEqual(a__ ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) _lowerCAmelCase:Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( a__ ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) _lowerCAmelCase:int = tokenizer.convert_tokens_to_ids(a__) self.assertListEqual( a__ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] ,) _lowerCAmelCase:List[Any] = tokenizer.convert_ids_to_tokens(a__) self.assertListEqual( a__ ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] ,) @cached_property def __UpperCamelCase ( self : str) -> Optional[int]: """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''') @slow def __UpperCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _lowerCAmelCase:Optional[int] = '''Hello World!''' _lowerCAmelCase:Union[str, Any] = [3_5389, 6672, 49, 2] self.assertListEqual(a__ ,self.big_tokenizer.encode(a__)) @slow def __UpperCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" _lowerCAmelCase:Optional[int] = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ ,model_name='''microsoft/xprophetnet-large-wiki100-cased''' ,revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' ,)
439
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def UpperCAmelCase ( ): _lowerCAmelCase:List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _lowerCAmelCase:Union[str, Any] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(snake_case ) DownloadCommand.register_subcommand(snake_case ) EnvironmentCommand.register_subcommand(snake_case ) RunCommand.register_subcommand(snake_case ) ServeCommand.register_subcommand(snake_case ) UserCommands.register_subcommand(snake_case ) AddNewModelCommand.register_subcommand(snake_case ) AddNewModelLikeCommand.register_subcommand(snake_case ) LfsCommands.register_subcommand(snake_case ) PTtoTFCommand.register_subcommand(snake_case ) # Let's go _lowerCAmelCase:Union[str, Any] = parser.parse_args() if not hasattr(snake_case , '''func''' ): parser.print_help() exit(1 ) # Run _lowerCAmelCase:Any = args.func(snake_case ) service.run() if __name__ == "__main__": main()
439
1
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def A__ ( __A : Optional[int] ) ->Optional[Any]: if "cls_token" in name: __A =name.replace('''cls_token''' , '''vit.embeddings.cls_token''' ) if "mask_token" in name: __A =name.replace('''mask_token''' , '''decoder.mask_token''' ) if "decoder_pos_embed" in name: __A =name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: __A =name.replace('''pos_embed''' , '''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: __A =name.replace('''patch_embed.proj''' , '''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __A =name.replace('''patch_embed.norm''' , '''vit.embeddings.norm''' ) if "decoder_blocks" in name: __A =name.replace('''decoder_blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: __A =name.replace('''blocks''' , '''vit.encoder.layer''' ) if "attn.proj" in name: __A =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __A =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __A =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __A =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __A =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __A =name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: __A =name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: __A =name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: __A =name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: __A =name.replace('''norm.weight''' , '''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: __A =name.replace('''norm.bias''' , '''vit.layernorm.bias''' ) return name def A__ ( __A : Any , __A : Optional[int] ) ->Dict: for key in orig_state_dict.copy().keys(): __A =orig_state_dict.pop(snake_case__ ) if "qkv" in key: __A =key.split('''.''' ) __A =int(key_split[1] ) if "decoder_blocks" in key: __A =config.decoder_hidden_size __A ="""decoder.decoder_layers.""" if "weight" in key: __A =val[:dim, :] __A =val[dim : dim * 2, :] __A =val[-dim:, :] elif "bias" in key: __A =val[:dim] __A =val[dim : dim * 2] __A =val[-dim:] else: __A =config.hidden_size __A ="""vit.encoder.layer.""" if "weight" in key: __A =val[:dim, :] __A =val[dim : dim * 2, :] __A =val[-dim:, :] elif "bias" in key: __A =val[:dim] __A =val[dim : dim * 2] __A =val[-dim:] else: __A =val return orig_state_dict def A__ ( __A : Dict , __A : Any ) ->Dict: __A =ViTMAEConfig() if "large" in checkpoint_url: __A =10_24 __A =40_96 __A =24 __A =16 elif "huge" in checkpoint_url: __A =14 __A =12_80 __A =51_20 __A =32 __A =16 __A =ViTMAEForPreTraining(snake_case__ ) __A =torch.hub.load_state_dict_from_url(snake_case__ , map_location='''cpu''' )["""model"""] __A =ViTMAEImageProcessor(size=config.image_size ) __A =convert_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() __A ="""https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" __A =Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) __A =ViTMAEImageProcessor(size=config.image_size ) __A =image_processor(images=snake_case__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) __A =model(**snake_case__ ) __A =outputs.logits if "large" in checkpoint_url: __A =torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: __A =torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: __A =torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCamelCase : int = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
184
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def lowerCamelCase(self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): if tokenize_kwargs is None: A_ : Dict = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) A_ : Optional[Any] = truncation A_ : Optional[int] = tokenize_kwargs A_ : Optional[Any] = {} if return_tensors is not None: A_ : Optional[Any] = return_tensors return preprocess_params, {}, postprocess_params def lowerCamelCase(self , lowerCAmelCase_ , **lowerCAmelCase_ ): A_ : List[Any] = self.framework A_ : Optional[int] = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) return model_inputs def lowerCamelCase(self , lowerCAmelCase_ ): A_ : List[Any] = self.model(**lowerCAmelCase_ ) return model_outputs def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__(self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ )
180
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowercase : Tuple ={ "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple =[ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple =[ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _lowercase : Optional[int] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
708
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _lowercase : List[Any] =TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) _lowercase : List[Any] =[] _lowercase : List[str] =[] _lowercase : Tuple ={"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} _lowercase : Union[str, Any] =[ { "type": "header", "text": { "type": "plain_text", "text": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", "emoji": True, }, } ] _lowercase : int =0 for log in Path().glob("*.log"): _lowercase : Tuple =0 with open(log, "r") as f: for line in f: _lowercase : str =json.loads(line) if line.get("nodeid", "") != "": _lowercase : List[Any] =line["nodeid"] if line.get("duration", None) is not None: _lowercase : Optional[int] =F"{line['duration']:.4f}" if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _lowercase : Optional[int] =[] log.unlink() _lowercase : Optional[int] ="" _lowercase : List[Any] =[] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" _lowercase : Dict =[] _lowercase : Dict ={} for test in failed_tests: _lowercase : Union[str, Any] =test[0].split("::") _lowercase : Dict =data[0].split("/")[-1] if data[0] not in filesafailed: _lowercase : Union[str, Any] =[data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _lowercase : Dict =[test[0] for test in failed_table] _lowercase : Dict =list(set(files)) # Count number of instances in failed_tests _lowercase : Tuple =[] for file in individual_files: table.append([file, len(filesafailed[file])]) _lowercase : Dict =tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: _lowercase : Tuple ="Too many failed tests, please see the full report in the Action results." _lowercase : Optional[int] =len(err) + 10 _lowercase : str =message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: _lowercase : Union[str, Any] ="No failed tests! 🤗" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient _lowercase : List[str] =WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": _lowercase : Optional[Any] ={ "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) _lowercase : Union[str, Any] ={ "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) _lowercase : Tuple ={ "type": "context", "elements": [ { "type": "plain_text", "text": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) _lowercase : List[str] =client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) _lowercase : int =response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _lowercase : Tuple ="" for i, row in enumerate(test_failures): if row[0] != test_class: _lowercase : List[str] =row[0] else: _lowercase : int ="" _lowercase : Tuple ={ "type": "section", "text": { "type": "mrkdwn", "text": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
574
0
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : str=2 , __a : int=32 , __a : Optional[int]=16 , __a : List[str]=3 , __a : Dict=True , __a : List[str]=True , __a : Union[str, Any]=32 , __a : Optional[int]=4 , __a : int=[0, 1, 2, 3] , __a : Union[str, Any]=4 , __a : List[Any]=37 , __a : Optional[Any]="gelu" , __a : Dict=0.1 , __a : Any=0.1 , __a : Optional[Any]=0.02 , __a : Optional[int]=3 , __a : int=[1, 384, 24, 24] , __a : Optional[Any]=True , __a : int=None , ) -> Tuple: _UpperCamelCase : int = parent _UpperCamelCase : Optional[int] = batch_size _UpperCamelCase : Union[str, Any] = image_size _UpperCamelCase : Dict = patch_size _UpperCamelCase : Optional[Any] = num_channels _UpperCamelCase : int = is_training _UpperCamelCase : int = use_labels _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Dict = backbone_out_indices _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : List[Any] = hidden_dropout_prob _UpperCamelCase : Optional[Any] = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = initializer_range _UpperCamelCase : int = num_labels _UpperCamelCase : List[str] = backbone_featmap_shape _UpperCamelCase : str = scope _UpperCamelCase : Any = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : List[str] = (image_size // patch_size) ** 2 _UpperCamelCase : List[Any] = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Any = None if self.use_labels: _UpperCamelCase : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCamelCase : List[Any] = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: _UpperCamelCase : List[str] = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__a , backbone_featmap_shape=self.backbone_featmap_shape , ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : Dict , __a : str , __a : Tuple ) -> Union[str, Any]: _UpperCamelCase : Optional[int] = DPTModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Optional[int]: _UpperCamelCase : int = self.num_labels _UpperCamelCase : int = DPTForDepthEstimation(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = model(__a ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int , __a : str , __a : Dict ) -> int: _UpperCamelCase : List[Any] = self.num_labels _UpperCamelCase : Dict = DPTForSemanticSegmentation(__a ) model.to(__a ) model.eval() _UpperCamelCase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : Tuple = self.prepare_config_and_inputs() _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = config_and_inputs _UpperCamelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE__ :str = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :List[str] = False SCREAMING_SNAKE_CASE__ :Any = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : str = DPTModelTester(self ) _UpperCamelCase : Optional[int] = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: _UpperCamelCase, _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[str] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : str = model_class(__a ) _UpperCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[Any] = [*signature.parameters.keys()] _UpperCamelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCamelCase, _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : int = True if model_class in get_values(__a ): continue _UpperCamelCase : Union[str, Any] = model_class(__a ) model.to(__a ) model.train() _UpperCamelCase : int = self._prepare_for_class(__a , __a , return_labels=__a ) _UpperCamelCase : Optional[int] = model(**__a ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCamelCase, _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Dict = False _UpperCamelCase : Dict = True if model_class in get_values(__a ) or not model_class.supports_gradient_checkpointing: continue _UpperCamelCase : Optional[int] = model_class(__a ) model.to(__a ) model.gradient_checkpointing_enable() model.train() _UpperCamelCase : Tuple = self._prepare_for_class(__a , __a , return_labels=__a ) _UpperCamelCase : Optional[Any] = model(**__a ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: _UpperCamelCase, _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Tuple = _config_zero_init(__a ) for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(config=__a ) # Skip the check for the backbone _UpperCamelCase : int = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _UpperCamelCase : Optional[Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: pass @slow def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _UpperCamelCase : Optional[Any] = DPTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _UpperCamelCase, _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[Any] = "add" with self.assertRaises(__a ): _UpperCamelCase : str = DPTForDepthEstimation(__a ) def lowercase__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : List[Any] = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) _UpperCamelCase : Optional[int] = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(__a ) _UpperCamelCase : List[Any] = prepare_img() _UpperCamelCase : Dict = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Optional[Any] = model(**__a ) _UpperCamelCase : int = outputs.predicted_depth # verify the predicted depth _UpperCamelCase : Tuple = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __a ) _UpperCamelCase : Optional[int] = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(__a ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __a , atol=1e-4 ) )
624
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase__ = "CompVis/stable-diffusion-v1-1" lowerCamelCase__ = "CompVis/stable-diffusion-v1-2" lowerCamelCase__ = "CompVis/stable-diffusion-v1-3" lowerCamelCase__ = "CompVis/stable-diffusion-v1-4" class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : AutoencoderKL , __a : CLIPTextModel , __a : CLIPTokenizer , __a : UNetaDConditionModel , __a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __a : StableDiffusionSafetyChecker , __a : CLIPImageProcessor , __a : bool = True , ) -> List[str]: super()._init_() _UpperCamelCase : Optional[int] = StableDiffusionPipeline.from_pretrained(__a ) _UpperCamelCase : int = StableDiffusionPipeline.from_pretrained(__a ) _UpperCamelCase : List[Any] = StableDiffusionPipeline.from_pretrained(__a ) _UpperCamelCase : int = StableDiffusionPipeline( vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , safety_checker=__a , feature_extractor=__a , requires_safety_checker=__a , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict[str, Any]: return {k: getattr(self , __a ) for k in self.config.keys() if not k.startswith("_" )} def __SCREAMING_SNAKE_CASE ( self : Any , __a : Optional[Union[str, int]] = "auto" ) -> Optional[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCamelCase : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: self.enable_attention_slicing(__a ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Any , ) -> Optional[int]: return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Tuple , ) -> str: return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Tuple , ) -> Any: return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : List[Any] , ) -> Union[str, Any]: return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : str , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : int , ) -> List[Any]: _UpperCamelCase : Tuple = "cuda" if torch.cuda.is_available() else "cpu" self.to(__a ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 _UpperCamelCase : List[str] = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.2 _UpperCamelCase : Optional[Any] = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.3 _UpperCamelCase : str = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.4 _UpperCamelCase : str = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
624
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class a ( __lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization SCREAMING_SNAKE_CASE__ : str = field(default='''question-answering-extractive''' ,metadata={'''include_in_asdict_even_if_is_default''': True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) SCREAMING_SNAKE_CASE__ : str = "question" SCREAMING_SNAKE_CASE__ : str = "context" SCREAMING_SNAKE_CASE__ : str = "answers" @property def snake_case_ ( self ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
146
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCAmelCase ( UpperCamelCase__ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(UpperCamelCase__ ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) __SCREAMING_SNAKE_CASE: Dict = QuantumRegister(UpperCamelCase__ , '''qr''' ) __SCREAMING_SNAKE_CASE: Optional[Any] = ClassicalRegister(UpperCamelCase__ , '''cr''' ) __SCREAMING_SNAKE_CASE: List[str] = QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) __SCREAMING_SNAKE_CASE: Optional[Any] = number_of_qubits for i in range(UpperCamelCase__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCamelCase__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase__ , UpperCamelCase__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCamelCase__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCamelCase__ , UpperCamelCase__ ) # simulate with 10000 shots __SCREAMING_SNAKE_CASE: Dict = Aer.get_backend('''qasm_simulator''' ) __SCREAMING_SNAKE_CASE: Tuple = execute(UpperCamelCase__ , UpperCamelCase__ , shots=10_000 ) return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
146
1
'''simple docstring''' import numpy as np class _UpperCAmelCase : def __init__( self ): '''simple docstring''' __lowerCAmelCase = (0, 0) __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 def __eq__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.position == cell.position def lowerCamelCase__ ( self ): '''simple docstring''' print(self.position ) class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE=(5, 5) ): '''simple docstring''' __lowerCAmelCase = np.zeros(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = world_size[0] __lowerCAmelCase = world_size[1] def lowerCamelCase__ ( self ): '''simple docstring''' print(self.w ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __lowerCAmelCase = cell.position[0] __lowerCAmelCase = cell.position[1] __lowerCAmelCase = [] for n in neughbour_cord: __lowerCAmelCase = current_x + n[0] __lowerCAmelCase = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __lowerCAmelCase = Cell() __lowerCAmelCase = (x, y) __lowerCAmelCase = cell neighbours.append(__SCREAMING_SNAKE_CASE ) return neighbours def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> str: __lowerCAmelCase = [] __lowerCAmelCase = [] _open.append(lowercase ) while _open: __lowerCAmelCase = np.argmin([n.f for n in _open] ) __lowerCAmelCase = _open[min_f] _closed.append(_open.pop(lowercase ) ) if current == goal: break for n in world.get_neigbours(lowercase ): for c in _closed: if c == n: continue __lowerCAmelCase = current.g + 1 __lowerCAmelCase , __lowerCAmelCase = n.position __lowerCAmelCase , __lowerCAmelCase = goal.position __lowerCAmelCase = (ya - ya) ** 2 + (xa - xa) ** 2 __lowerCAmelCase = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowercase ) __lowerCAmelCase = [] while current.parent is not None: path.append(current.position ) __lowerCAmelCase = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": _a : int = Gridworld() # Start position and goal _a : Optional[int] = Cell() _a : int = (0, 0) _a : Dict = Cell() _a : Optional[int] = (4, 4) print(f'path from {start.position} to {goal.position}') _a : Dict = astar(world, start, goal) # Just for visual reasons. for i in s: _a : Tuple = 1 print(world.w)
689
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
from collections import deque def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" snake_case_ = len(SCREAMING_SNAKE_CASE ) snake_case_ = deque() snake_case_ = [False for _ in range(SCREAMING_SNAKE_CASE )] snake_case_ = [-1 for _ in range(SCREAMING_SNAKE_CASE )] snake_case_ = index_of[:] def strong_connect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case_ = index # the number when this node is seen snake_case_ = index # lowest rank node reachable from here index += 1 stack.append(SCREAMING_SNAKE_CASE ) snake_case_ = True for w in g[v]: if index_of[w] == -1: snake_case_ = strong_connect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: snake_case_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: snake_case_ = [] snake_case_ = stack.pop() snake_case_ = False component.append(SCREAMING_SNAKE_CASE ) while w != v: snake_case_ = stack.pop() snake_case_ = False component.append(SCREAMING_SNAKE_CASE ) components.append(SCREAMING_SNAKE_CASE ) return index snake_case_ = [] for v in range(SCREAMING_SNAKE_CASE ): if index_of[v] == -1: strong_connect(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return components def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" snake_case_ = [[] for _ in range(SCREAMING_SNAKE_CASE )] for u, v in edges: g[u].append(SCREAMING_SNAKE_CASE ) return g if __name__ == "__main__": # Test UpperCAmelCase = 7 UpperCAmelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] UpperCAmelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] UpperCAmelCase = [(u, v) for u, v in zip(source, target)] UpperCAmelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
531
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase__ ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase__ ( self ): snake_case_ = ort.SessionOptions() snake_case_ = False return options def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) snake_case_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = '''A red cat sitting on a park bench''' snake_case_ = np.random.RandomState(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images snake_case_ = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) snake_case_ = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) snake_case_ = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) snake_case_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = '''A red cat sitting on a park bench''' snake_case_ = np.random.RandomState(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images snake_case_ = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) snake_case_ = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
531
1
"""simple docstring""" def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' lowerCAmelCase :Tuple = len(a__ ) print('The following activities are selected:' ) # The first activity is always selected lowerCAmelCase :Dict = 0 print(a__ , end=',' ) # Consider rest of the activities for j in range(a__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(a__ , end=',' ) lowerCAmelCase :List[str] = j if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE = [1, 3, 0, 5, 8, 5] __SCREAMING_SNAKE_CASE = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
553
"""simple docstring""" import qiskit def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' lowerCAmelCase :List[Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register lowerCAmelCase :Optional[int] = qiskit.QuantumCircuit(a__ , a__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator lowerCAmelCase :Dict = qiskit.execute(a__ , a__ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
553
1
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __lowercase = trt.Logger(trt.Logger.WARNING) __lowercase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __lowercase = logging.getLogger(__name__) __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=384, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=128, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=20, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=30, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) __lowercase = parser.parse_args() if args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) __lowercase = args.per_device_eval_batch_size __lowercase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __lowercase = True __lowercase = """temp_engine/bert-fp32.engine""" if args.fpaa: __lowercase = """temp_engine/bert-fp16.engine""" if args.inta: __lowercase = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") __lowercase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __lowercase = [network.get_input(i) for i in range(network.num_inputs)] __lowercase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __lowercase = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __lowercase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __lowercase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) A_ = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) A_ = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , SCREAMING_SNAKE_CASE ) # start time A_ = time.time() # Run inference context.execute_async( bindings=[int(SCREAMING_SNAKE_CASE ) for d_inp in d_inputs] + [int(SCREAMING_SNAKE_CASE ), int(SCREAMING_SNAKE_CASE )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Synchronize the stream and take time stream.synchronize() # end time A_ = time.time() A_ = end_time - start_time A_ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __lowercase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowercase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __lowercase = raw_datasets["""validation"""].column_names __lowercase = """question""" if """question""" in column_names else column_names[0] __lowercase = """context""" if """context""" in column_names else column_names[1] __lowercase = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __lowercase = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowercase = min(args.max_seq_length, tokenizer.model_max_length) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A_ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=SCREAMING_SNAKE_CASE , stride=args.doc_stride , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A_ = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A_ = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A_ = tokenized_examples.sequence_ids(SCREAMING_SNAKE_CASE ) A_ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A_ = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A_ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples __lowercase = raw_datasets["""validation"""] # Validation Feature Creation __lowercase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) __lowercase = default_data_collator __lowercase = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) __lowercase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="eval" ): '''simple docstring''' A_ = postprocess_qa_predictions( examples=SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , predictions=SCREAMING_SNAKE_CASE , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=SCREAMING_SNAKE_CASE , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A_ = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: A_ = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] A_ = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=SCREAMING_SNAKE_CASE , label_ids=SCREAMING_SNAKE_CASE ) __lowercase = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return trt.volume(engine.get_binding_shape(SCREAMING_SNAKE_CASE ) ) * engine.get_binding_dtype(SCREAMING_SNAKE_CASE ).itemsize # Allocate device memory for inputs and outputs. __lowercase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __lowercase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __lowercase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __lowercase = cuda.mem_alloc(h_outputa.nbytes) __lowercase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __lowercase = cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(f' Num examples = {len(eval_dataset)}') logger.info(f' Batch size = {args.per_device_eval_batch_size}') __lowercase = 0.0 __lowercase = 0 __lowercase = timeit.default_timer() __lowercase = None for step, batch in enumerate(eval_dataloader): __lowercase , __lowercase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __lowercase , __lowercase = outputs __lowercase = torch.tensor(start_logits) __lowercase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __lowercase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __lowercase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __lowercase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __lowercase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __lowercase = nested_truncate(all_preds, len(eval_dataset)) __lowercase = timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1000 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1000)) logger.info("""Total Number of Inference = %d""", niter) __lowercase = post_processing_function(eval_examples, eval_dataset, all_preds) __lowercase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'Evaluation metrics: {eval_metric}')
563
def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = 0 while b > 0: if b & 1: A_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
563
1
def SCREAMING_SNAKE_CASE__ ( ): return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] _lowerCamelCase = generate_large_matrix() _lowerCamelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[list[int]] ): assert all(row == sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ) for row in grid ) assert all(list(UpperCamelCase__ ) == sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ) for col in zip(*UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int] ): SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE__ = (left + right) // 2 SCREAMING_SNAKE_CASE__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE__ = mid + 1 else: SCREAMING_SNAKE_CASE__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[list[int]] ): SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = len(grid[0] ) for i in range(len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE__ = find_negative_index(grid[i][:bound] ) total += bound return (len(UpperCamelCase__ ) * len(grid[0] )) - total def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[list[int]] ): SCREAMING_SNAKE_CASE__ = 0 for row in grid: for i, number in enumerate(UpperCamelCase__ ): if number < 0: total += len(UpperCamelCase__ ) - i break return total def SCREAMING_SNAKE_CASE__ ( ): from timeit import timeit print("""Running benchmarks""" ) SCREAMING_SNAKE_CASE__ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE__ = timeit(f'''{func}(grid=grid)''' , setup=UpperCamelCase__ , number=500 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
6
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = jnp.floataa lowerCamelCase_ = True def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" super().setup() SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype ) def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A ) SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ): def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ): SCREAMING_SNAKE_CASE__ = logits.shape[-1] SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" ) SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 ) SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ ) return loss SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase_ : lowerCamelCase_ = "google/bigbird-roberta-base" lowerCamelCase_ = 30_00 lowerCamelCase_ = 1_05_00 lowerCamelCase_ = 1_28 lowerCamelCase_ = 3 lowerCamelCase_ = 1 lowerCamelCase_ = 5 # tx_args lowerCamelCase_ = 3e-5 lowerCamelCase_ = 0.0 lowerCamelCase_ = 2_00_00 lowerCamelCase_ = 0.0095 lowerCamelCase_ = "bigbird-roberta-natural-questions" lowerCamelCase_ = "training-expt" lowerCamelCase_ = "data/nq-training.jsonl" lowerCamelCase_ = "data/nq-validation.jsonl" def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=__A ) SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir ) SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 40_96 # no dynamic padding on TPUs def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.collate_fn(__A ) SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A ) return batch def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] ) SCREAMING_SNAKE_CASE__ = { """input_ids""": jnp.array(__A , dtype=jnp.intaa ), """attention_mask""": jnp.array(__A , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def _snake_case ( self :Tuple , __A :list ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids] return zip(*__A ) def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )] while len(__A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ): if seed is not None: SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) // batch_size ): SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase__ ) @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ): def loss_fn(UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs return state.loss_fn( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" ) SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class UpperCamelCase_ ( train_state.TrainState ): lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ ) @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = None def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = model.params SCREAMING_SNAKE_CASE__ = TrainState.create( apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , ) if ckpt_dir is not None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A ) SCREAMING_SNAKE_CASE__ = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A ) SCREAMING_SNAKE_CASE__ = train_state.TrainState( step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , ) SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = data_collator SCREAMING_SNAKE_CASE__ = lr SCREAMING_SNAKE_CASE__ = params SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A ) return state def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.args SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() ) for epoch in range(args.max_epochs ): SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step ) SCREAMING_SNAKE_CASE__ = running_loss.item() / i SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 ) SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A ) SCREAMING_SNAKE_CASE__ = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(__A ) ) self.logger.log(__A , commit=__A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A ) def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size ) SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ ) self.model_save_fn(__A , params=state.params ) with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) ) with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , __A ) print("""DONE""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ ) with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) ) with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ): def weight_decay_mask(UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ ) return tx, lr
6
1
'''simple docstring''' from __future__ import annotations def a__ ( _SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = 0.00 UpperCAmelCase_ : List[Any] = 0 for resistor in resistors: if resistor <= 0: UpperCAmelCase_ : Any = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(_SCREAMING_SNAKE_CASE ) first_sum += 1 / float(_SCREAMING_SNAKE_CASE ) index += 1 return 1 / first_sum def a__ ( _SCREAMING_SNAKE_CASE : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ : Tuple = 0.00 UpperCAmelCase_ : Union[str, Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCAmelCase_ : int = F'''Resistor at index {index} has a negative value!''' raise ValueError(_SCREAMING_SNAKE_CASE ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
323
0
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def lowerCamelCase_ ( __UpperCamelCase : Optional[int]="ro" , __UpperCamelCase : Dict="en" , __UpperCamelCase : Union[str, Any]="wmt16" , __UpperCamelCase : Optional[Any]=None ) -> None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) _A = F'{src_lang}-{tgt_lang}' print(F'Converting {dataset}-{pair}' ) _A = datasets.load_dataset(__UpperCamelCase , __UpperCamelCase ) if save_dir is None: _A = F'{dataset}-{pair}' _A = Path(__UpperCamelCase ) save_dir.mkdir(exist_ok=__UpperCamelCase ) for split in ds.keys(): print(F'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets _A = 'val' if split == 'validation' else split _A = save_dir.joinpath(F'{fn}.source' ) _A = save_dir.joinpath(F'{fn}.target' ) _A = src_path.open('w+' ) _A = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _A = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(F'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
292
'''simple docstring''' def lowerCamelCase_ ( __UpperCamelCase : int ) -> list: """simple docstring""" _A = int(__UpperCamelCase ) if n_element < 1: _A = ValueError('a should be a positive number' ) raise my_error _A = [1] _A , _A , _A = (0, 0, 0) _A = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
292
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'table-transformer' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=3 , __lowerCamelCase=1_0_0 , __lowerCamelCase=6 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=8 , __lowerCamelCase=6 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=8 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=True , __lowerCamelCase="relu" , __lowerCamelCase=2_5_6 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=1.0 , __lowerCamelCase=False , __lowerCamelCase="sine" , __lowerCamelCase="resnet50" , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=1 , __lowerCamelCase=5 , __lowerCamelCase=2 , __lowerCamelCase=1 , __lowerCamelCase=1 , __lowerCamelCase=5 , __lowerCamelCase=2 , __lowerCamelCase=0.1 , **__lowerCamelCase , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = backbone_config.get("model_type" ) _SCREAMING_SNAKE_CASE : str = CONFIG_MAPPING[backbone_model_type] _SCREAMING_SNAKE_CASE : Tuple = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = None, None, None _SCREAMING_SNAKE_CASE : List[str] = use_timm_backbone _SCREAMING_SNAKE_CASE : Tuple = backbone_config _SCREAMING_SNAKE_CASE : int = num_channels _SCREAMING_SNAKE_CASE : int = num_queries _SCREAMING_SNAKE_CASE : Optional[int] = d_model _SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim _SCREAMING_SNAKE_CASE : int = encoder_layers _SCREAMING_SNAKE_CASE : Optional[Any] = encoder_attention_heads _SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim _SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layers _SCREAMING_SNAKE_CASE : str = decoder_attention_heads _SCREAMING_SNAKE_CASE : Any = dropout _SCREAMING_SNAKE_CASE : str = attention_dropout _SCREAMING_SNAKE_CASE : str = activation_dropout _SCREAMING_SNAKE_CASE : Tuple = activation_function _SCREAMING_SNAKE_CASE : List[Any] = init_std _SCREAMING_SNAKE_CASE : Dict = init_xavier_std _SCREAMING_SNAKE_CASE : Dict = encoder_layerdrop _SCREAMING_SNAKE_CASE : Optional[Any] = decoder_layerdrop _SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers _SCREAMING_SNAKE_CASE : int = auxiliary_loss _SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type _SCREAMING_SNAKE_CASE : List[Any] = backbone _SCREAMING_SNAKE_CASE : str = use_pretrained_backbone _SCREAMING_SNAKE_CASE : Optional[Any] = dilation # Hungarian matcher _SCREAMING_SNAKE_CASE : Optional[Any] = class_cost _SCREAMING_SNAKE_CASE : str = bbox_cost _SCREAMING_SNAKE_CASE : int = giou_cost # Loss coefficients _SCREAMING_SNAKE_CASE : List[str] = mask_loss_coefficient _SCREAMING_SNAKE_CASE : Tuple = dice_loss_coefficient _SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_loss_coefficient _SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient _SCREAMING_SNAKE_CASE : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> int: return self.encoder_attention_heads @property def UpperCamelCase_ ( self ) -> int: return self.d_model class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase_ ( self ) -> float: return 1E-5 @property def UpperCamelCase_ ( self ) -> int: return 1_2
381
from PIL import Image def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = image.size _SCREAMING_SNAKE_CASE : Tuple = 0 _SCREAMING_SNAKE_CASE : Dict = image.load() for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = pixels[j, i] mean += pixel mean //= width * height for j in range(__lowerCamelCase ): for i in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": UpperCamelCase__ =mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
381
1
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE : str = 'OwlViTImageProcessor' SCREAMING_SNAKE_CASE : List[str] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Any ,lowercase__ : str=None ,lowercase__ : Any=None ,**lowercase__ : List[Any] ): __lowercase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,lowercase__ ,) __lowercase = kwargs.pop('''feature_extractor''' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ ,lowercase__ ) def __call__( self : str ,lowercase__ : Tuple=None ,lowercase__ : List[Any]=None ,lowercase__ : Dict=None ,lowercase__ : List[str]="max_length" ,lowercase__ : List[Any]="np" ,**lowercase__ : Dict ): if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(lowercase__ ,lowercase__ ) or (isinstance(lowercase__ ,lowercase__ ) and not isinstance(text[0] ,lowercase__ )): __lowercase = [self.tokenizer(lowercase__ ,padding=lowercase__ ,return_tensors=lowercase__ ,**lowercase__ )] elif isinstance(lowercase__ ,lowercase__ ) and isinstance(text[0] ,lowercase__ ): __lowercase = [] # Maximum number of queries across batch __lowercase = max([len(lowercase__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowercase__ ) != max_num_queries: __lowercase = t + [''' '''] * (max_num_queries - len(lowercase__ )) __lowercase = self.tokenizer(lowercase__ ,padding=lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) encodings.append(lowercase__ ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": __lowercase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] ,axis=0 ) __lowercase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] ,axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __lowercase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] ,axis=0 ) __lowercase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] ,axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __lowercase = torch.cat([encoding['''input_ids'''] for encoding in encodings] ,dim=0 ) __lowercase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] ,dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __lowercase = tf.stack([encoding['''input_ids'''] for encoding in encodings] ,axis=0 ) __lowercase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] ,axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) __lowercase = BatchEncoding() __lowercase = input_ids __lowercase = attention_mask if query_images is not None: __lowercase = BatchEncoding() __lowercase = self.image_processor( lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ).pixel_values __lowercase = query_pixel_values if images is not None: __lowercase = self.image_processor(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) ,tensor_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,*lowercase__ : Optional[int] ,**lowercase__ : Tuple ): return self.image_processor.post_process(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,*lowercase__ : List[Any] ,**lowercase__ : int ): return self.image_processor.post_process_object_detection(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,*lowercase__ : List[str] ,**lowercase__ : Union[str, Any] ): return self.image_processor.post_process_image_guided_detection(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,*lowercase__ : str ,**lowercase__ : Union[str, Any] ): return self.tokenizer.batch_decode(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,*lowercase__ : List[Any] ,**lowercase__ : Dict ): return self.tokenizer.decode(*lowercase__ ,**lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,lowercase__ ,) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Dict ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,lowercase__ ,) return self.image_processor
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _UpperCamelCase = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""ViTFeatureExtractor"""] _UpperCamelCase = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
111
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict ): # Initialise PyTorch model UpperCamelCase_ : List[Any] = TaConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_ : Tuple = TaForConditionalGeneration(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_ta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
702
import baseaa def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str ): return baseaa.baaencode(string.encode("""utf-8""" ) ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : bytes ): return baseaa.baadecode(_SCREAMING_SNAKE_CASE ).decode("""utf-8""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = "Hello World!" SCREAMING_SNAKE_CASE : int = baseaa_encode(test) print(encoded) SCREAMING_SNAKE_CASE : Union[str, Any] = baseaa_decode(encoded) print(decoded)
138
0
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Any , a_ : Union[str, Any]=13 , a_ : Any=7 , a_ : Any=True , a_ : Dict=True , a_ : Union[str, Any]=False , a_ : Tuple=True , a_ : str=99 , a_ : Tuple=64 , a_ : Tuple=5 , a_ : Union[str, Any]=4 , a_ : Dict=64 , a_ : Union[str, Any]="gelu" , a_ : Dict=0.1 , a_ : List[str]=0.1 , a_ : Dict=512 , a_ : Tuple=16 , a_ : str=2 , a_ : Any=0.02 , a_ : List[Any]=3 , a_ : Tuple=4 , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def A ( self : int ): """simple docstring""" return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def A ( self : str ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[str] ): """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A ( self : Tuple , a_ : int , a_ : str , a_ : Optional[int] , a_ : List[Any] , a_ : str , a_ : Optional[Any] ): """simple docstring""" __snake_case = MPNetModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , a_ ) __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : Any , a_ : int , a_ : Tuple , a_ : str , a_ : int , a_ : str , a_ : List[Any] ): """simple docstring""" __snake_case = MPNetForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Any , a_ : Any , a_ : int , a_ : Union[str, Any] , a_ : Dict , a_ : Optional[Any] , a_ : Any ): """simple docstring""" __snake_case = self.num_labels __snake_case = MPNetForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Optional[Any] , a_ : Any , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : List[Any] , a_ : List[Any] ): """simple docstring""" __snake_case = self.num_choices __snake_case = MPNetForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Dict , a_ : List[str] , a_ : str , a_ : Union[str, Any] , a_ : str , a_ : Optional[int] , a_ : Optional[Any] ): """simple docstring""" __snake_case = self.num_labels __snake_case = MPNetForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) = config_and_inputs __snake_case = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True def A ( self : List[Any] ): """simple docstring""" __snake_case = MPNetModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , hidden_size=37 ) def A ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*a_ ) def A ( self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*a_ ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*a_ ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : Optional[Any] ): """simple docstring""" __snake_case = MPNetModel.from_pretrained("microsoft/mpnet-base" ) __snake_case = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) __snake_case = model(a_ )[0] __snake_case = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a_ ) __snake_case = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , a_ , atol=1e-4 ) )
69
"""simple docstring""" from __future__ import annotations def __UpperCamelCase ( snake_case__ , snake_case__ = None , snake_case__ = None ): if start is None: A_ : Dict = 0 if end is None: A_ : Dict = len(snake_case__ ) - 1 if start >= end: return A_ : List[Any] = (start + end) // 2 slowsort(snake_case__ , snake_case__ , snake_case__ ) slowsort(snake_case__ , mid + 1 , snake_case__ ) if sequence[end] < sequence[mid]: A_ , A_ : Dict = sequence[mid], sequence[end] slowsort(snake_case__ , snake_case__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
180
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a : int = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
719
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = ["image_processor", "tokenizer"] __lowerCamelCase = "BridgeTowerImageProcessor" __lowerCamelCase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' super().__init__(snake_case__ , snake_case__ ) def __call__( self , snake_case__ , snake_case__ = None , snake_case__ = True , snake_case__ = False , snake_case__ = None , snake_case__ = None , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = True , snake_case__ = None , **snake_case__ , ): '''simple docstring''' lowercase__ : Optional[int]= self.tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_token_type_ids=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) # add pixel_values + pixel_mask lowercase__ : Optional[int]= self.image_processor( snake_case__ , return_tensors=snake_case__ , do_normalize=snake_case__ , do_center_crop=snake_case__ , **snake_case__ ) encoding.update(snake_case__ ) return encoding def UpperCAmelCase_ ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCAmelCase_ ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= self.tokenizer.model_input_names lowercase__ : List[Any]= self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
85
0
class __lowercase : def __init__( self ) ->int: '''simple docstring''' __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Union[str, Any] = {} def UpperCamelCase__ ( self , A_ ) ->Tuple: '''simple docstring''' if vertex not in self.adjacency: __lowerCAmelCase : Any = {} self.num_vertices += 1 def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->Any: '''simple docstring''' self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return __lowerCAmelCase : Optional[Any] = weight __lowerCAmelCase : Dict = weight def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.get_edges() for edge in edges: __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : int = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): __lowerCAmelCase : List[Any] = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Tuple = edge __lowerCAmelCase : Tuple = weight __lowerCAmelCase : Dict = weight def __str__( self ) ->int: '''simple docstring''' __lowerCAmelCase : List[Any] = '''''' for tail in self.adjacency: for head in self.adjacency[tail]: __lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('''\n''' ) def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Dict = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' return self.adjacency.keys() @staticmethod def UpperCamelCase__ ( A_=None , A_=None ) ->Any: '''simple docstring''' __lowerCAmelCase : str = Graph() if vertices is None: __lowerCAmelCase : Optional[Any] = [] if edges is None: __lowerCAmelCase : Union[str, Any] = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class __lowercase : def __init__( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = {} __lowerCAmelCase : Optional[int] = {} def __len__( self ) ->int: '''simple docstring''' return len(self.parent ) def UpperCamelCase__ ( self , A_ ) ->Optional[Any]: '''simple docstring''' if item in self.parent: return self.find(A_ ) __lowerCAmelCase : List[Any] = item __lowerCAmelCase : Union[str, Any] = 0 return item def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: __lowerCAmelCase : Tuple = self.find(self.parent[item] ) return self.parent[item] def UpperCamelCase__ ( self , A_ , A_ ) ->Dict: '''simple docstring''' __lowerCAmelCase : Any = self.find(A_ ) __lowerCAmelCase : Dict = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __lowerCAmelCase : Optional[int] = roota return roota if self.rank[roota] < self.rank[roota]: __lowerCAmelCase : Dict = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __lowerCAmelCase : int = roota return roota return None @staticmethod def UpperCamelCase__ ( A_ ) ->Any: '''simple docstring''' __lowerCAmelCase : str = graph.num_vertices __lowerCAmelCase : List[Any] = Graph.UnionFind() __lowerCAmelCase : Any = [] while num_components > 1: __lowerCAmelCase : Optional[int] = {} for vertex in graph.get_vertices(): __lowerCAmelCase : Any = -1 __lowerCAmelCase : Any = graph.get_edges() for edge in edges: __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Union[str, Any] = edge edges.remove((tail, head, weight) ) for edge in edges: __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Optional[Any] = edge __lowerCAmelCase : Union[str, Any] = union_find.find(A_ ) __lowerCAmelCase : List[Any] = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCAmelCase : List[Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCAmelCase : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Any = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) __lowerCAmelCase : Union[str, Any] = num_components - 1 __lowerCAmelCase : Tuple = Graph.build(edges=A_ ) return mst
492
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
492
1
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __snake_case ( UpperCamelCase , UpperCamelCase ) -> Tuple: """simple docstring""" a__ = XCLIPTextConfig() # derive patch size from model name a__ = model_name.find('''patch''' ) a__ = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) a__ = XCLIPVisionConfig(patch_size=UpperCamelCase , num_frames=UpperCamelCase ) if "large" in model_name: a__ = 768 a__ = 3_072 a__ = 12 a__ = 1_024 a__ = 4_096 a__ = 16 a__ = 24 a__ = 768 a__ = 3_072 if model_name == "xclip-large-patch14-16-frames": a__ = 336 a__ = XCLIPConfig.from_text_vision_configs(UpperCamelCase , UpperCamelCase ) if "large" in model_name: a__ = 768 return config def __snake_case ( UpperCamelCase ) -> Optional[int]: """simple docstring""" if name == "token_embedding.weight": a__ = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": a__ = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: a__ = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: a__ = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: a__ = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: a__ = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): a__ = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: a__ = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: a__ = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": a__ = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": a__ = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): a__ = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: a__ = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: a__ = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: a__ = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: a__ = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: a__ = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: a__ = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: a__ = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": a__ = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): a__ = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): a__ = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def __snake_case ( UpperCamelCase , UpperCamelCase ) -> List[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): a__ = orig_state_dict.pop(UpperCamelCase ) if "attn.in_proj" in key: a__ = key.split('''.''' ) if key.startswith('''visual''' ): a__ = key_split[3] a__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: a__ = val[ :dim, : ] a__ = val[ dim : dim * 2, : ] a__ = val[ -dim:, : ] else: a__ = val[ :dim ] a__ = val[ dim : dim * 2 ] a__ = val[ -dim: ] else: if "weight" in key: a__ = val[ :dim, : ] a__ = val[ dim : dim * 2, : ] a__ = val[ -dim:, : ] else: a__ = val[:dim] a__ = val[ dim : dim * 2 ] a__ = val[-dim:] elif key.startswith('''mit''' ): a__ = key_split[2] a__ = config.vision_config.mit_hidden_size if "weight" in key: a__ = val[:dim, :] a__ = val[dim : dim * 2, :] a__ = val[-dim:, :] else: a__ = val[:dim] a__ = val[dim : dim * 2] a__ = val[-dim:] else: a__ = key_split[2] a__ = config.text_config.hidden_size if "weight" in key: a__ = val[:dim, :] a__ = val[ dim : dim * 2, : ] a__ = val[-dim:, :] else: a__ = val[:dim] a__ = val[ dim : dim * 2 ] a__ = val[-dim:] else: a__ = rename_key(UpperCamelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: a__ = val.T a__ = val return orig_state_dict def __snake_case ( UpperCamelCase ) -> str: """simple docstring""" if num_frames == 8: a__ = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: a__ = '''eating_spaghetti.npy''' elif num_frames == 32: a__ = '''eating_spaghetti_32_frames.npy''' a__ = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=UpperCamelCase , repo_type='''dataset''' , ) a__ = np.load(UpperCamelCase ) return list(UpperCamelCase ) def __snake_case ( UpperCamelCase , UpperCamelCase=None , UpperCamelCase=False ) -> Union[str, Any]: """simple docstring""" a__ = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } a__ = model_to_url[model_name] a__ = 8 if "16-frames" in model_name: a__ = 16 elif "shot" in model_name: a__ = 32 a__ = get_xclip_config(UpperCamelCase , UpperCamelCase ) a__ = XCLIPModel(UpperCamelCase ) model.eval() if "drive" in checkpoint_url: a__ = '''pytorch_model.bin''' gdown.cached_download(UpperCamelCase , UpperCamelCase , quiet=UpperCamelCase ) a__ = torch.load(UpperCamelCase , map_location='''cpu''' )['''model'''] else: a__ = torch.hub.load_state_dict_from_url(UpperCamelCase )['''model'''] a__ = convert_state_dict(UpperCamelCase , UpperCamelCase ) a__ = XCLIPModel(UpperCamelCase ) a__ , a__ = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() a__ = 336 if model_name == '''xclip-large-patch14-16-frames''' else 224 a__ = VideoMAEImageProcessor(size=UpperCamelCase ) a__ = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) a__ = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) a__ = XCLIPProcessor(image_processor=UpperCamelCase , tokenizer=UpperCamelCase ) a__ = prepare_video(UpperCamelCase ) a__ = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=UpperCamelCase , return_tensors='''pt''' , padding=UpperCamelCase ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): a__ = model(**UpperCamelCase ) # Verify outputs a__ = outputs.logits_per_video a__ = logits_per_video.softmax(dim=1 ) print('''Probs:''' , UpperCamelCase ) # kinetics-400 if model_name == "xclip-base-patch32": a__ = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] ) elif model_name == "xclip-base-patch32-16-frames": a__ = torch.tensor([[7.0_999E-04, 9.9_883E-01, 4.5_580E-04]] ) elif model_name == "xclip-base-patch16": a__ = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] ) elif model_name == "xclip-base-patch16-16-frames": a__ = torch.tensor([[7.6_937E-04, 9.9_728E-01, 1.9_473E-03]] ) elif model_name == "xclip-large-patch14": a__ = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] ) elif model_name == "xclip-large-patch14-16-frames": a__ = torch.tensor([[3.3_877E-04, 9.9_937E-01, 2.8_888E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": a__ = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": a__ = torch.tensor([[3.8_554E-04, 9.9_929E-01, 3.2_754E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": a__ = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": a__ = torch.tensor([[7.1_890E-06, 9.9_994E-01, 5.6_559E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": a__ = torch.tensor([[1.0_320E-05, 9.9_993E-01, 6.2_435E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": a__ = torch.tensor([[4.1_377E-06, 9.9_990E-01, 9.8_386E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": a__ = torch.tensor([[4.1_347E-05, 9.9_962E-01, 3.3_411E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": a__ = torch.tensor([[8.5_857E-05, 9.9_928E-01, 6.3_291E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": a__ = torch.tensor([[8.5_857E-05, 9.9_928E-01, 6.3_291E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": a__ = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": a__ = torch.tensor([[9.8_219E-04, 9.9_593E-01, 3.0_863E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": a__ = torch.tensor([[3.5_082E-04, 9.9_785E-01, 1.7_966E-03]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(UpperCamelCase , organization='''nielsr''' ) processor.push_to_hub(UpperCamelCase , organization='''nielsr''' ) slow_tokenizer.push_to_hub(UpperCamelCase , organization='''nielsr''' ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowerCAmelCase : str = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
158
"""simple docstring""" from __future__ import annotations __lowerCAmelCase : Union[str, Any] = list[tuple[int, int]] __lowerCAmelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCAmelCase : Dict = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self :str , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int , __magic_name__ :float , __magic_name__ :Node | None , ) -> Tuple: '''simple docstring''' a__ = pos_x a__ = pos_y a__ = (pos_y, pos_x) a__ = goal_x a__ = goal_y a__ = g_cost a__ = parent a__ = self.calculate_heuristic() def _UpperCamelCase ( self :int ) -> float: '''simple docstring''' a__ = abs(self.pos_x - self.goal_x ) a__ = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self :List[str] , __magic_name__ :List[Any] ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self :Dict , __magic_name__ :tuple[int, int] , __magic_name__ :tuple[int, int] ) -> Tuple: '''simple docstring''' a__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __magic_name__ ) a__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __magic_name__ ) a__ = [self.start] a__ = [] a__ = False def _UpperCamelCase ( self :Union[str, Any] ) -> Path | None: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: a__ = True return self.retrace_path(__magic_name__ ) self.closed_nodes.append(__magic_name__ ) a__ = self.get_successors(__magic_name__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__magic_name__ ) else: # retrieve the best current path a__ = self.open_nodes.pop(self.open_nodes.index(__magic_name__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__magic_name__ ) else: self.open_nodes.append(__magic_name__ ) if not self.reached: return [self.start.pos] return None def _UpperCamelCase ( self :List[str] , __magic_name__ :Node ) -> list[Node]: '''simple docstring''' a__ = [] for action in delta: a__ = parent.pos_x + action[1] a__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__magic_name__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __magic_name__ , __magic_name__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __magic_name__ , ) ) return successors def _UpperCamelCase ( self :Any , __magic_name__ :Node | None ) -> Path: '''simple docstring''' a__ = node a__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) a__ = current_node.parent path.reverse() return path if __name__ == "__main__": __lowerCAmelCase : str = (0, 0) __lowerCAmelCase : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') __lowerCAmelCase : Optional[int] = GreedyBestFirst(init, goal) __lowerCAmelCase : Tuple = greedy_bf.search() if path: for pos_x, pos_y in path: __lowerCAmelCase : Tuple = 2 for elem in grid: print(elem)
158
1
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class __lowerCAmelCase ( _lowercase ): """simple docstring""" def __init__( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Dict=None , _snake_case : int=True , _snake_case : Any=None , **_snake_case : List[str] ) -> str: """simple docstring""" A_ = parent A_ = config_class A_ = has_text_modality A_ = kwargs A_ = common_properties def lowerCamelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" A_ = self.config_class(**self.inputs_dict ) A_ = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_snake_case , _snake_case ) , msg=F'`{prop}` does not exist' ) # Test that config has the common properties as setter for idx, name in enumerate(_snake_case ): try: setattr(_snake_case , _snake_case , _snake_case ) self.parent.assertEqual( getattr(_snake_case , _snake_case ) , _snake_case , msg=F'`{name} value {idx} expected, but was {getattr(_snake_case , _snake_case )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_snake_case ): try: A_ = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_snake_case , _snake_case ) , _snake_case , msg=F'`{name} value {idx} expected, but was {getattr(_snake_case , _snake_case )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def lowerCamelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" A_ = self.config_class(**self.inputs_dict ) A_ = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" A_ = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(_snake_case , "config.json" ) config_first.to_json_file(_snake_case ) A_ = self.config_class.from_json_file(_snake_case ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" A_ = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_snake_case ) A_ = self.config_class.from_pretrained(_snake_case ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCamelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" A_ = self.config_class(**self.inputs_dict ) A_ = "test" with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(_snake_case , _snake_case ) config_first.save_pretrained(_snake_case ) A_ = self.config_class.from_pretrained(_snake_case , subfolder=_snake_case ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" A_ = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A_ = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def lowerCamelCase__ ( self : Any ) -> List[Any]: """simple docstring""" if self.config_class.is_composition: return A_ = self.config_class() self.parent.assertIsNotNone(_snake_case ) def lowerCamelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" A_ = copy.deepcopy(_snake_case ) A_ = self.config_class(**_snake_case ) A_ = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(_snake_case , _snake_case ) != value: wrong_values.append((key, getattr(_snake_case , _snake_case ), value) ) if len(_snake_case ) > 0: A_ = "\n".join([F'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] ) raise ValueError(F'The following keys were not properly set in the config:\n{errors}' ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
115
"""simple docstring""" def A_ (__a ): '''simple docstring''' A_ = len(__a ) while cur > 1: # Find the maximum number in arr A_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi A_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list A_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": UpperCamelCase_ : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase_ : Any = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
115
1
from string import ascii_uppercase UpperCAmelCase_ = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase_ = dict(enumerate(ascii_uppercase)) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->str: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 while True: if x == i: _lowerCAmelCase = 0 if len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ): break key += key[i] i += 1 return key def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->str: _lowerCAmelCase = '''''' _lowerCAmelCase = 0 for letter in message: if letter == " ": cipher_text += " " else: _lowerCAmelCase = (dicta[letter] - dicta[key_new[i]]) % 2_6 i += 1 cipher_text += dicta[x] return cipher_text def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->str: _lowerCAmelCase = '''''' _lowerCAmelCase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: _lowerCAmelCase = (dicta[letter] + dicta[key_new[i]] + 2_6) % 2_6 i += 1 or_txt += dicta[x] return or_txt def UpperCAmelCase__ ( )->None: _lowerCAmelCase = '''THE GERMAN ATTACK''' _lowerCAmelCase = '''SECRET''' _lowerCAmelCase = generate_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = cipher_text(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f'''Encrypted Text = {s}''' ) print(f'''Original Text = {original_text(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
706
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
0
"""simple docstring""" from string import ascii_uppercase _snake_case = {str(ord(c) - 55): c for c in ascii_uppercase} def snake_case ( _a: int , _a: int )-> str: '''simple docstring''' if isinstance(_a , _a ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(_a , _a ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(_a , _a ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowerCamelCase__ = '' lowerCamelCase__ = 0 lowerCamelCase__ = 0 while div != 1: lowerCamelCase__ , lowerCamelCase__ = divmod(_a , _a ) if base >= 11 and 9 < mod < 36: lowerCamelCase__ = ALPHABET_VALUES[str(_a )] else: lowerCamelCase__ = str(_a ) new_value += actual_value lowerCamelCase__ = num // base lowerCamelCase__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_a ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
510
"""simple docstring""" import os from datetime import datetime as dt from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def snake_case ( )-> int: '''simple docstring''' lowerCamelCase__ = Github(os.environ['GITHUB_TOKEN'] ) lowerCamelCase__ = g.get_repo('huggingface/diffusers' ) lowerCamelCase__ = repo.get_issues(state='open' ) for issue in open_issues: lowerCamelCase__ = sorted(issue.get_comments() , key=lambda _a : i.created_at , reverse=_a ) lowerCamelCase__ = comments[0] if len(_a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
510
1
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def lowerCamelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] )-> Dict: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , UpperCAmelCase_ ) a =datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: a =dataset_size < in_memory_max_size else: a =False a =is_small_dataset(UpperCAmelCase_ ) assert result == expected
321
def lowerCamelCase ( UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1000 , UpperCAmelCase_ : bool = True )-> int: """simple docstring""" assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int )-> int: """simple docstring""" return int((number_a + number_a) / 2 ) def lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int )-> None: """simple docstring""" assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(UpperCAmelCase_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) a =lower a =higher a =[] while True: a =get_avg(UpperCAmelCase_ , UpperCAmelCase_ ) last_numbers.append(UpperCAmelCase_ ) if answer(UpperCAmelCase_ ) == "low": a =number elif answer(UpperCAmelCase_ ) == "high": a =number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def lowerCamelCase ( )-> None: """simple docstring""" a =int(input("""Enter lower value : """ ).strip() ) a =int(input("""Enter high value : """ ).strip() ) a =int(input("""Enter value to guess : """ ).strip() ) guess_the_number(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
321
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class __lowercase ( __lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["""input_ids""", """attention_mask"""] snake_case_ = RobertaTokenizer def __init__( self : List[str] ,A : Optional[int]=None ,A : Tuple=None ,A : int=None ,A : Tuple="replace" ,A : Tuple="<s>" ,A : Dict="</s>" ,A : Optional[int]="</s>" ,A : Dict="<s>" ,A : List[Any]="<unk>" ,A : Optional[Any]="<pad>" ,A : List[str]="<mask>" ,A : List[Any]=False ,A : int=True ,**A : Optional[int] ,): '''simple docstring''' super().__init__( A ,A ,tokenizer_file=A ,errors=A ,bos_token=A ,eos_token=A ,sep_token=A ,cls_token=A ,unk_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,trim_offsets=A ,**A ,) UpperCAmelCase__ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" ,A ) != add_prefix_space: UpperCAmelCase__ : Union[str, Any] = getattr(A ,pre_tok_state.pop("""type""" ) ) UpperCAmelCase__ : Dict = add_prefix_space UpperCAmelCase__ : Dict = pre_tok_class(**A ) UpperCAmelCase__ : List[Any] = add_prefix_space UpperCAmelCase__ : Dict = """post_processor""" UpperCAmelCase__ : Any = getattr(self.backend_tokenizer ,A ,A ) if tokenizer_component_instance: UpperCAmelCase__ : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase__ : List[Any] = tuple(state["""sep"""] ) if "cls" in state: UpperCAmelCase__ : List[str] = tuple(state["""cls"""] ) UpperCAmelCase__ : Dict = False if state.get("""add_prefix_space""" ,A ) != add_prefix_space: UpperCAmelCase__ : Tuple = add_prefix_space UpperCAmelCase__ : str = True if state.get("""trim_offsets""" ,A ) != trim_offsets: UpperCAmelCase__ : Tuple = trim_offsets UpperCAmelCase__ : str = True if changes_to_apply: UpperCAmelCase__ : List[str] = getattr(A ,state.pop("""type""" ) ) UpperCAmelCase__ : List[Any] = component_class(**A ) setattr(self.backend_tokenizer ,A ,A ) @property def __lowercase ( self : Dict ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def __lowercase ( self : Dict ,A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else value UpperCAmelCase__ : Union[str, Any] = value def __lowercase ( self : int ,*A : Optional[Any] ,**A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = kwargs.get("""is_split_into_words""" ,A ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A ,**A ) def __lowercase ( self : Union[str, Any] ,*A : Optional[Any] ,**A : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = kwargs.get("""is_split_into_words""" ,A ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*A ,**A ) def __lowercase ( self : List[str] ,A : str ,A : Optional[str] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self._tokenizer.model.save(A ,name=A ) return tuple(A ) def __lowercase ( self : Optional[int] ,A : List[Any] ,A : str=None ): '''simple docstring''' UpperCAmelCase__ : List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowercase ( self : List[str] ,A : List[int] ,A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [self.sep_token_id] UpperCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
65
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __UpperCAmelCase ( __UpperCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Any = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __lowercase : Dict = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) __lowercase : Dict = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) __lowercase : Dict = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) __lowercase : Tuple = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) __lowercase : Dict = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) __lowercase : Optional[int] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) __lowercase : Optional[int] = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) __lowercase : Union[str, Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) __lowercase : str = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) __lowercase : Dict = key.replace('''image_encoder.module''' , '''flava.image_model''' ) __lowercase : str = key.replace('''text_encoder.module''' , '''flava.text_model''' ) __lowercase : Dict = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) __lowercase : Union[str, Any] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) __lowercase : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' ) __lowercase : Any = key.replace('''image_projection''' , '''flava.image_projection''' ) __lowercase : Tuple = value.float() for key, value in codebook_state_dict.items(): __lowercase : int = value return upgrade @torch.no_grad() def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): if config_path is not None: __lowercase : Union[str, Any] = FlavaConfig.from_pretrained(__UpperCamelCase ) else: __lowercase : Union[str, Any] = FlavaConfig() __lowercase : Any = FlavaForPreTraining(__UpperCamelCase ).eval() __lowercase : Any = convert_dalle_checkpoint(__UpperCamelCase , __UpperCamelCase , save_checkpoint=__UpperCamelCase ) if os.path.exists(__UpperCamelCase ): __lowercase : Optional[Any] = torch.load(__UpperCamelCase , map_location='''cpu''' ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='''cpu''' ) __lowercase : Optional[int] = upgrade_state_dict(__UpperCamelCase , __UpperCamelCase ) hf_model.load_state_dict(__UpperCamelCase ) __lowercase : Union[str, Any] = hf_model.state_dict() __lowercase : Optional[Any] = count_parameters(__UpperCamelCase ) __lowercase : List[Any] = count_parameters(__UpperCamelCase ) + count_parameters(__UpperCamelCase ) assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') a_ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
76
0
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : int ,lowerCAmelCase_ : int ) -> int: """simple docstring""" while b: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] =b, a % b return a def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : int ,lowerCAmelCase_ : int ) -> int: """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase_ ,a % b ) def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" print(F"""euclidean_gcd(3, 5) = {euclidean_gcd(3 ,5 )}""" ) print(F"""euclidean_gcd(5, 3) = {euclidean_gcd(5 ,3 )}""" ) print(F"""euclidean_gcd(1, 3) = {euclidean_gcd(1 ,3 )}""" ) print(F"""euclidean_gcd(3, 6) = {euclidean_gcd(3 ,6 )}""" ) print(F"""euclidean_gcd(6, 3) = {euclidean_gcd(6 ,3 )}""" ) print(F"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 ,5 )}""" ) print(F"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 ,3 )}""" ) print(F"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 ,3 )}""" ) print(F"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 ,6 )}""" ) print(F"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 ,3 )}""" ) if __name__ == "__main__": main()
153
from __future__ import annotations __SCREAMING_SNAKE_CASE = '#' class lowerCAmelCase_ : '''simple docstring''' def __init__( self ): SCREAMING_SNAKE_CASE_ : dict ={} def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple =self._trie for char in text: if char not in trie: SCREAMING_SNAKE_CASE_ : Optional[int] ={} SCREAMING_SNAKE_CASE_ : Any =trie[char] SCREAMING_SNAKE_CASE_ : Optional[Any] =True def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple =self._trie for char in prefix: if char in trie: SCREAMING_SNAKE_CASE_ : Tuple =trie[char] else: return [] return self._elements(__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] =[] for c, v in d.items(): SCREAMING_SNAKE_CASE_ : List[Any] =[' '] if c == END else [(c + s) for s in self._elements(__UpperCAmelCase )] result.extend(__UpperCAmelCase ) return tuple(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = Trie() __SCREAMING_SNAKE_CASE = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ) -> tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : str =trie.find_word(lowerCAmelCase_ ) return tuple(string + word for word in suffixes ) def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
153
1
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _UpperCamelCase ( __UpperCamelCase ) -> Optional[Any]: return EnvironmentCommand() class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f'''{pt_version} ({pt_cuda_available})''', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(SCREAMING_SNAKE_CASE_ ) ) return info @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
42
'''simple docstring''' def a__ ( lowercase : Dict, lowercase : Optional[Any] ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = len(lowercase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _UpperCamelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase ): return None _UpperCamelCase = sorted_collection[point] if current_item == item: return point else: if point < left: _UpperCamelCase = left _UpperCamelCase = point elif point > right: _UpperCamelCase = right _UpperCamelCase = point else: if item < current_item: _UpperCamelCase = point - 1 else: _UpperCamelCase = point + 1 return None def a__ ( lowercase : int, lowercase : Optional[int], lowercase : List[Any], lowercase : List[Any] ) -> Dict: """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _UpperCamelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowercase, lowercase, lowercase, lowercase ) elif point > right: return interpolation_search_by_recursion(lowercase, lowercase, lowercase, lowercase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowercase, lowercase, lowercase, point - 1 ) else: return interpolation_search_by_recursion( lowercase, lowercase, point + 1, lowercase ) def a__ ( lowercase : Any ) -> List[Any]: """simple docstring""" if collection != sorted(lowercase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys lowercase__ : int = 0 if debug == 1: lowercase__ : Optional[Any] = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') lowercase__ : List[str] = 67 lowercase__ : Optional[int] = interpolation_search(collection, target) if result is not None: print(F"""{target} found at positions: {result}""") else: print('Not found')
98
0
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=30 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.02 , UpperCamelCase__=None , UpperCamelCase__=2 , ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = parent snake_case : Dict = batch_size snake_case : Union[str, Any] = image_size snake_case : Tuple = patch_size snake_case : List[Any] = num_channels snake_case : Union[str, Any] = is_training snake_case : Optional[int] = use_labels snake_case : Any = hidden_size snake_case : Optional[int] = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Optional[int] = intermediate_size snake_case : int = hidden_act snake_case : Optional[Any] = hidden_dropout_prob snake_case : Dict = attention_probs_dropout_prob snake_case : str = type_sequence_label_size snake_case : List[str] = initializer_range snake_case : Optional[Any] = scope snake_case : Tuple = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case : Optional[Any] = (image_size // patch_size) ** 2 snake_case : Union[str, Any] = num_patches + 1 def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Any = None if self.use_labels: snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : List[str] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' snake_case : str = ViTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Any = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' snake_case : Union[str, Any] = ViTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : List[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case : Optional[int] = 1 snake_case : Any = ViTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' snake_case : List[Any] = self.type_sequence_label_size snake_case : int = ViTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Tuple = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case : Any = 1 snake_case : str = ViTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Dict = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) , ) : List[Any] = config_and_inputs snake_case : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): __UpperCAmelCase : Tuple = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) __UpperCAmelCase : Any = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = False def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Dict = ViTModelTester(self ) snake_case : str = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCamelCase ( self ) -> str: '''simple docstring''' pass def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case ,snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Optional[int] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case ,snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : int = [*signature.parameters.keys()] snake_case : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Union[str, Any] = ViTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" snake_case : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ) -> Dict: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(UpperCamelCase__ ) snake_case : List[Any] = self.default_image_processor snake_case : Optional[Any] = prepare_img() snake_case : List[str] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : List[Any] = model(**UpperCamelCase__ ) # verify the logits snake_case : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) snake_case : List[str] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ViTModel.from_pretrained("facebook/dino-vits8" ).to(UpperCamelCase__ ) snake_case : Dict = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) snake_case : str = prepare_img() snake_case : Any = image_processor(images=UpperCamelCase__ , return_tensors="pt" ) snake_case : List[Any] = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : str = model(UpperCamelCase__ , interpolate_pos_encoding=UpperCamelCase__ ) # verify the logits snake_case : Tuple = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) snake_case : List[str] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : int = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) snake_case : Optional[int] = self.default_image_processor snake_case : str = prepare_img() snake_case : List[Any] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ) snake_case : str = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case : Any = model(UpperCamelCase__ )
117
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): @property def lowerCamelCase ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = self.dummy_uncond_unet snake_case : str = PNDMScheduler() snake_case : List[Any] = PNDMPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pndm.to(UpperCamelCase__ ) pndm.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : str = torch.manual_seed(0 ) snake_case : Union[str, Any] = pndm(generator=UpperCamelCase__ , num_inference_steps=20 , output_type="numpy" ).images snake_case : Optional[int] = torch.manual_seed(0 ) snake_case : Any = pndm(generator=UpperCamelCase__ , num_inference_steps=20 , output_type="numpy" , return_dict=UpperCamelCase__ )[0] snake_case : Optional[Any] = image[0, -3:, -3:, -1] snake_case : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Dict = "google/ddpm-cifar10-32" snake_case : Optional[int] = UNetaDModel.from_pretrained(UpperCamelCase__ ) snake_case : List[str] = PNDMScheduler() snake_case : Union[str, Any] = PNDMPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pndm.to(UpperCamelCase__ ) pndm.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : int = torch.manual_seed(0 ) snake_case : str = pndm(generator=UpperCamelCase__ , output_type="numpy" ).images snake_case : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case : Optional[Any] = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
117
1
def UpperCamelCase ( _A : int = 600851475143 )-> Tuple: """simple docstring""" try: A__ = int(_A ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A__ = 2 A__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A__ = i while n % i == 0: A__ = n // i i += 1 return int(_A ) if __name__ == "__main__": print(F'''{solution() = }''')
491
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCamelCase = 16 _UpperCamelCase = 32 def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Accelerator , SCREAMING_SNAKE_CASE : DatasetDict , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : int = 16 ): '''simple docstring''' __lowerCamelCase : Union[str, Any] =AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowerCamelCase : List[str] =DatasetDict( { '''train''': dataset['''train'''].select(SCREAMING_SNAKE_CASE ), '''validation''': dataset['''train'''].select(SCREAMING_SNAKE_CASE ), '''test''': dataset['''validation'''], } ) def tokenize_function(SCREAMING_SNAKE_CASE : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase : Optional[int] =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase : Optional[Any] =datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase : Dict =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase : Tuple =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase : List[str] =16 elif accelerator.mixed_precision != "no": __lowerCamelCase : Tuple =8 else: __lowerCamelCase : Optional[int] =None return tokenizer.pad( SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. __lowerCamelCase : int =DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[Any] =DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) __lowerCamelCase : Tuple =DataLoader( tokenized_datasets['''test'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader, test_dataloader def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' __lowerCamelCase : Optional[Any] =[] # Download the dataset __lowerCamelCase : Any =load_dataset('''glue''' , '''mrpc''' ) # Create our splits __lowerCamelCase : Optional[Any] =StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator __lowerCamelCase : str =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase : Any =config['''lr'''] __lowerCamelCase : int =int(config['''num_epochs'''] ) __lowerCamelCase : Optional[int] =int(config['''seed'''] ) __lowerCamelCase : Any =int(config['''batch_size'''] ) __lowerCamelCase : List[str] =evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __lowerCamelCase : List[Any] =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCamelCase : Optional[Any] =batch_size // MAX_GPU_BATCH_SIZE __lowerCamelCase : List[Any] =MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE ) # New Code # # Create our folds: __lowerCamelCase : str =kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) __lowerCamelCase : Tuple =[] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(SCREAMING_SNAKE_CASE ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any =get_fold_dataloaders( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase : Optional[int] =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase : Optional[Any] =model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase : Any =AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) # Instantiate scheduler __lowerCamelCase : Dict =get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any =accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase : Dict =model(**SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[Any] =outputs.loss __lowerCamelCase : int =loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase : Optional[int] =model(**SCREAMING_SNAKE_CASE ) __lowerCamelCase : int =outputs.logits.argmax(dim=-1 ) __lowerCamelCase , __lowerCamelCase : Union[str, Any] =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) __lowerCamelCase : str =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , SCREAMING_SNAKE_CASE ) # New Code # # We also run predictions on the test set at the very end __lowerCamelCase : Tuple =[] for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase : List[Any] =model(**SCREAMING_SNAKE_CASE ) __lowerCamelCase : int =outputs.logits __lowerCamelCase , __lowerCamelCase : Union[str, Any] =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(SCREAMING_SNAKE_CASE , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: __lowerCamelCase : Optional[Any] =torch.cat(SCREAMING_SNAKE_CASE , dim=0 ) __lowerCamelCase : int =torch.stack(SCREAMING_SNAKE_CASE , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) __lowerCamelCase : Tuple =metric.compute(predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE ) accelerator.print('''Average test metrics from all folds:''' , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ): '''simple docstring''' __lowerCamelCase : int =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=SCREAMING_SNAKE_CASE , default=3 , help='''The number of splits to perform across the dataset''' ) __lowerCamelCase : Any =parser.parse_args() __lowerCamelCase : Optional[int] ={'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
179
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowerCamelCase =(7_20, 12_80) # Height, Width _lowerCamelCase =(0.4, 0.6) # if height or width lower than this scale, drop it. _lowerCamelCase =1 / 1_00 _lowerCamelCase ="" _lowerCamelCase ="" _lowerCamelCase ="" _lowerCamelCase =2_50 def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =get_dataset(lowerCamelCase__, lowerCamelCase__ ) for index in range(lowerCamelCase__ ): SCREAMING_SNAKE_CASE =random.sample(range(len(lowerCamelCase__ ) ), 4 ) SCREAMING_SNAKE_CASE =update_image_and_anno( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, filter_scale=lowerCamelCase__, ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' SCREAMING_SNAKE_CASE =random_chars(32 ) SCREAMING_SNAKE_CASE =path.split(os.sep )[-1].rsplit('.', 1 )[0] SCREAMING_SNAKE_CASE =F'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(F'{file_root}.jpg', lowerCamelCase__, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) SCREAMING_SNAKE_CASE =[] for anno in new_annos: SCREAMING_SNAKE_CASE =anno[3] - anno[1] SCREAMING_SNAKE_CASE =anno[4] - anno[2] SCREAMING_SNAKE_CASE =anno[1] + width / 2 SCREAMING_SNAKE_CASE =anno[2] + height / 2 SCREAMING_SNAKE_CASE =F'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(lowerCamelCase__ ) with open(F'{file_root}.txt', 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =[] SCREAMING_SNAKE_CASE =[] for label_file in glob.glob(os.path.join(lowerCamelCase__, '*.txt' ) ): SCREAMING_SNAKE_CASE =label_file.split(os.sep )[-1].rsplit('.', 1 )[0] with open(lowerCamelCase__ ) as in_file: SCREAMING_SNAKE_CASE =in_file.readlines() SCREAMING_SNAKE_CASE =os.path.join(lowerCamelCase__, F'{label_name}.jpg' ) SCREAMING_SNAKE_CASE =[] for obj_list in obj_lists: SCREAMING_SNAKE_CASE =obj_list.rstrip('\n' ).split(' ' ) SCREAMING_SNAKE_CASE =float(obj[1] ) - float(obj[3] ) / 2 SCREAMING_SNAKE_CASE =float(obj[2] ) - float(obj[4] ) / 2 SCREAMING_SNAKE_CASE =float(obj[1] ) + float(obj[3] ) / 2 SCREAMING_SNAKE_CASE =float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowerCamelCase__ ) labels.append(lowerCamelCase__ ) return img_paths, labels def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 0.0, ): """simple docstring""" SCREAMING_SNAKE_CASE =np.zeros([output_size[0], output_size[1], 3], dtype=np.uinta ) SCREAMING_SNAKE_CASE =scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE =scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE =int(scale_x * output_size[1] ) SCREAMING_SNAKE_CASE =int(scale_y * output_size[0] ) SCREAMING_SNAKE_CASE =[] SCREAMING_SNAKE_CASE =[] for i, index in enumerate(lowerCamelCase__ ): SCREAMING_SNAKE_CASE =all_img_list[index] path_list.append(lowerCamelCase__ ) SCREAMING_SNAKE_CASE =all_annos[index] SCREAMING_SNAKE_CASE =cva.imread(lowerCamelCase__ ) if i == 0: # top-left SCREAMING_SNAKE_CASE =cva.resize(lowerCamelCase__, (divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE =img for bbox in img_annos: SCREAMING_SNAKE_CASE =bbox[1] * scale_x SCREAMING_SNAKE_CASE =bbox[2] * scale_y SCREAMING_SNAKE_CASE =bbox[3] * scale_x SCREAMING_SNAKE_CASE =bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right SCREAMING_SNAKE_CASE =cva.resize(lowerCamelCase__, (output_size[1] - divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE =img for bbox in img_annos: SCREAMING_SNAKE_CASE =scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE =bbox[2] * scale_y SCREAMING_SNAKE_CASE =scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE =bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left SCREAMING_SNAKE_CASE =cva.resize(lowerCamelCase__, (divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE =img for bbox in img_annos: SCREAMING_SNAKE_CASE =bbox[1] * scale_x SCREAMING_SNAKE_CASE =scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE =bbox[3] * scale_x SCREAMING_SNAKE_CASE =scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right SCREAMING_SNAKE_CASE =cva.resize( lowerCamelCase__, (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE =img for bbox in img_annos: SCREAMING_SNAKE_CASE =scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE =scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE =scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE =scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: SCREAMING_SNAKE_CASE =[ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" SCREAMING_SNAKE_CASE =ascii_lowercase + digits return "".join(random.choice(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
710
from ..utils import DummyObject, requires_backends class a_ ( metaclass=lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = ['torch', 'scipy'] def __init__( self : Any ,*snake_case : Any ,**snake_case : str ): requires_backends(self ,['torch', 'scipy'] ) @classmethod def _lowerCAmelCase ( cls : Tuple ,*snake_case : Optional[Any] ,**snake_case : int ): requires_backends(cls ,['torch', 'scipy'] ) @classmethod def _lowerCAmelCase ( cls : Optional[int] ,*snake_case : int ,**snake_case : Dict ): requires_backends(cls ,['torch', 'scipy'] )
252
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''mobilenet_v2''' def __init__( self : int , _A : Dict=3 , _A : Optional[int]=224 , _A : int=1.0 , _A : List[Any]=8 , _A : Optional[int]=8 , _A : Any=6 , _A : Any=32 , _A : List[Any]=True , _A : Optional[int]=True , _A : int="relu6" , _A : str=True , _A : List[str]=0.8 , _A : str=0.02 , _A : Optional[Any]=0.0_01 , _A : Optional[Any]=255 , **_A : List[Any] , ): """simple docstring""" super().__init__(**_A ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) __SCREAMING_SNAKE_CASE : Tuple = num_channels __SCREAMING_SNAKE_CASE : List[str] = image_size __SCREAMING_SNAKE_CASE : List[Any] = depth_multiplier __SCREAMING_SNAKE_CASE : str = depth_divisible_by __SCREAMING_SNAKE_CASE : Union[str, Any] = min_depth __SCREAMING_SNAKE_CASE : int = expand_ratio __SCREAMING_SNAKE_CASE : str = output_stride __SCREAMING_SNAKE_CASE : Optional[int] = first_layer_is_expansion __SCREAMING_SNAKE_CASE : Tuple = finegrained_output __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE : Any = tf_padding __SCREAMING_SNAKE_CASE : Any = classifier_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = semantic_loss_ignore_index class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def UpperCAmelCase__ ( self : int ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return 1e-4
74
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A = spec.loader.load_module() __A = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def a__ ( ) -> int: __lowerCAmelCase: str = [] for config_class in list(CONFIG_MAPPING.values() ): __lowerCAmelCase: List[Any] = False # source code of `config_class` __lowerCAmelCase: Any = inspect.getsource(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[str] = _re_checkpoint.findall(__SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` __lowerCAmelCase , __lowerCAmelCase: List[str] = checkpoint # verify the checkpoint name corresponds to the checkpoint link __lowerCAmelCase: Tuple = F"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: __lowerCAmelCase: str = True break __lowerCAmelCase: Optional[Any] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: __lowerCAmelCase: Union[str, Any] = "\n".join(sorted(__SCREAMING_SNAKE_CASE ) ) raise ValueError(F"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
346
0
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = XLMTokenizer lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> int: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(A_ ) ) def UpperCAmelCase_ ( self , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = 'lower newer' UpperCamelCase = 'lower newer' return input_text, output_text def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase = 'lower' UpperCamelCase = ['low', 'er</w>'] UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokens + ['<unk>'] UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) @slow def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) UpperCamelCase = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) UpperCamelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
716
'''simple docstring''' lowerCAmelCase : Optional[Any] = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase : Optional[int] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase : Optional[int] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
432
0
'''simple docstring''' import socket def _UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case : Dict = socket.gethostname() snake_case : Optional[Any] = 1_2312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: snake_case : List[Any] = sock.recv(1024 ) if not data: break out_file.write(SCREAMING_SNAKE_CASE__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
638
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
1
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Any = logging.get_logger(__name__) A__ : Optional[Any] = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = '''efficientformer''' def __init__( self , A_ = [3, 2, 6, 4] , A_ = [48, 96, 224, 448] , A_ = [True, True, True, True] , A_ = 448 , A_ = 32 , A_ = 4 , A_ = 7 , A_ = 5 , A_ = 8 , A_ = 4 , A_ = 0.0 , A_ = 16 , A_ = 3 , A_ = 3 , A_ = 3 , A_ = 2 , A_ = 1 , A_ = 0.0 , A_ = 1 , A_ = True , A_ = True , A_ = 1E-5 , A_ = "gelu" , A_ = 0.02 , A_ = 1E-12 , A_ = 224 , A_ = 1E-05 , **A_ , ) -> None: """simple docstring""" super().__init__(**A_ ) _lowercase: Optional[int] = hidden_act _lowercase: int = hidden_dropout_prob _lowercase: List[str] = hidden_sizes _lowercase: str = num_hidden_layers _lowercase: Tuple = num_attention_heads _lowercase: List[Any] = initializer_range _lowercase: List[str] = layer_norm_eps _lowercase: Union[str, Any] = patch_size _lowercase: Any = num_channels _lowercase: List[str] = depths _lowercase: Tuple = mlp_expansion_ratio _lowercase: List[str] = downsamples _lowercase: str = dim _lowercase: Optional[Any] = key_dim _lowercase: Any = attention_ratio _lowercase: Tuple = resolution _lowercase: Tuple = pool_size _lowercase: Optional[int] = downsample_patch_size _lowercase: Any = downsample_stride _lowercase: int = downsample_pad _lowercase: Dict = drop_path_rate _lowercase: str = num_metaad_blocks _lowercase: Any = distillation _lowercase: List[Any] = use_layer_scale _lowercase: Any = layer_scale_init_value _lowercase: Optional[int] = image_size _lowercase: Dict = batch_norm_eps
707
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) A__ : Any = logging.getLogger() def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase: Optional[int] = '''\n'''.join(_UpperCamelCase ) Path(_UpperCamelCase ).open('''w''' ).writelines(_UpperCamelCase ) A__ : int = 'patrickvonplaten/t5-tiny-random' A__ : Tuple = 'sshleifer/bart-tiny-random' A__ : Optional[Any] = 'sshleifer/tiny-mbart' A__ : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): def lowercase_ ( self , A_ ) -> List[Any]: """simple docstring""" _lowercase: str = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' _lowercase: Tuple = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() _lowercase: List[str] = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(A_ , A_ ) _lowercase: int = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) _lowercase: Optional[Any] = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' _lowercase: str = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(A_ , '''argv''' , A_ ): run_generate() assert Path(A_ ).exists() # os.remove(Path(output_file_name)) def lowercase_ ( self ) -> Any: """simple docstring""" self.run_eval_tester(A_ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowercase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" self.run_eval_tester(A_ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowercase_ ( self , A_ ) -> List[Any]: """simple docstring""" _lowercase: Tuple = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' _lowercase: Dict = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() _lowercase: int = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } _lowercase: Tuple = Path(self.get_auto_remove_tmp_dir() ) _lowercase: Tuple = str(tmp_dir / '''scores.json''' ) _lowercase: List[str] = str(tmp_dir / '''val.target''' ) _dump_articles(A_ , text['''en'''] ) _dump_articles(A_ , text['''de'''] ) _lowercase: Tuple = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' _lowercase: Tuple = f''' run_eval_search.py {model} {str(A_ )} {str(A_ )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(A_ , '''argv''' , A_ ): with CaptureStdout() as cs: run_search() _lowercase: List[str] = [''' num_beams | length_penalty''', model, '''Best score args'''] _lowercase: Union[str, Any] = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(A_ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(A_ ).exists() os.remove(Path(A_ ) )
272
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __A : Union[str, Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ ): super().__init__() _A = torchvision.models.resnetaaa(pretrained=snake_case_ ) _A = list(model.children() )[:-2] _A = nn.Sequential(*snake_case_ ) _A = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCAmelCase__ ( self , snake_case_ ): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 _A = self.pool(self.model(snake_case_ ) ) _A = torch.flatten(snake_case_ , start_dim=2 ) _A = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase( __snake_case ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = [json.loads(snake_case_ ) for l in open(snake_case_ )] _A = os.path.dirname(snake_case_ ) _A = tokenizer _A = labels _A = len(snake_case_ ) _A = max_seq_length _A = transforms def __len__( self ): return len(self.data ) def __getitem__( self , snake_case_ ): _A = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=snake_case_ ) ) _A, _A, _A = sentence[0], sentence[1:-1], sentence[-1] _A = sentence[: self.max_seq_length] _A = torch.zeros(self.n_classes ) _A = 1 _A = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) _A = self.transforms(snake_case_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCAmelCase__ ( self ): _A = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = [len(row['sentence'] ) for row in batch] _A, _A = len(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _A = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=torch.long ) _A = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): _A = input_row['sentence'] _A = 1 _A = torch.stack([row['image'] for row in batch] ) _A = torch.stack([row['label'] for row in batch] ) _A = torch.stack([row['image_start_token'] for row in batch] ) _A = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __lowerCAmelCase( ) -> Dict: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __lowerCAmelCase( ) -> str: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ] )
27
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Tuple = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
488
0
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase ( UpperCAmelCase_): """simple docstring""" def __init__( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : int=7 , UpperCamelCase__ : int=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Tuple=99 , UpperCamelCase__ : List[str]=32 , UpperCamelCase__ : Optional[int]=5 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : int=37 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Union[str, Any]=512 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : str=3 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : Optional[int]=None , ) -> List[Any]: _UpperCamelCase =parent _UpperCamelCase =batch_size _UpperCamelCase =seq_length _UpperCamelCase =is_training _UpperCamelCase =use_input_mask _UpperCamelCase =use_token_type_ids _UpperCamelCase =use_labels _UpperCamelCase =vocab_size _UpperCamelCase =hidden_size _UpperCamelCase =num_hidden_layers _UpperCamelCase =num_attention_heads _UpperCamelCase =intermediate_size _UpperCamelCase =hidden_act _UpperCamelCase =hidden_dropout_prob _UpperCamelCase =attention_probs_dropout_prob _UpperCamelCase =max_position_embeddings _UpperCamelCase =type_vocab_size _UpperCamelCase =type_sequence_label_size _UpperCamelCase =initializer_range _UpperCamelCase =num_labels _UpperCamelCase =num_choices _UpperCamelCase =scope def UpperCamelCase__ ( self : Dict ) -> List[Any]: _UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase =None if self.use_input_mask: _UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase =None _UpperCamelCase =None _UpperCamelCase =None if self.use_labels: _UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self : Any ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ) -> Dict: _UpperCamelCase =DistilBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() _UpperCamelCase =model(_lowercase , _lowercase ) _UpperCamelCase =model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ) -> Dict: _UpperCamelCase =DistilBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() _UpperCamelCase =model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] ) -> List[Any]: _UpperCamelCase =DistilBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() _UpperCamelCase =model( _lowercase , attention_mask=_lowercase , start_positions=_lowercase , end_positions=_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict ) -> Optional[int]: _UpperCamelCase =self.num_labels _UpperCamelCase =DistilBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() _UpperCamelCase =model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ) -> int: _UpperCamelCase =self.num_labels _UpperCamelCase =DistilBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() _UpperCamelCase =model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase =self.num_choices _UpperCamelCase =DistilBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() _UpperCamelCase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase =model( _lowercase , attention_mask=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self : int ) -> Dict: _UpperCamelCase =self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) =config_and_inputs _UpperCamelCase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCAmelCase_ = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = True def UpperCamelCase__ ( self : Dict ) -> Optional[Any]: _UpperCamelCase =DistilBertModelTester(self ) _UpperCamelCase =ConfigTester(self , config_class=_lowercase , dim=37 ) def UpperCamelCase__ ( self : int ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self : List[Any] ) -> Any: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowercase ) def UpperCamelCase__ ( self : str ) -> str: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowercase ) def UpperCamelCase__ ( self : Any ) -> Optional[Any]: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowercase ) def UpperCamelCase__ ( self : int ) -> List[Any]: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowercase ) def UpperCamelCase__ ( self : str ) -> Optional[int]: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowercase ) def UpperCamelCase__ ( self : str ) -> List[Any]: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowercase ) @slow def UpperCamelCase__ ( self : Tuple ) -> Tuple: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase =DistilBertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @slow @require_torch_gpu def UpperCamelCase__ ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase , _UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _UpperCamelCase =True _UpperCamelCase =model_class(config=_lowercase ) _UpperCamelCase =self._prepare_for_class(_lowercase , _lowercase ) _UpperCamelCase =torch.jit.trace( _lowercase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowercase , os.path.join(_lowercase , '''traced_model.pt''' ) ) _UpperCamelCase =torch.jit.load(os.path.join(_lowercase , '''traced_model.pt''' ) , map_location=_lowercase ) loaded(inputs_dict['''input_ids'''].to(_lowercase ) , inputs_dict['''attention_mask'''].to(_lowercase ) ) @require_torch class UpperCAmelCase ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase__ ( self : int ) -> int: _UpperCamelCase =DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _UpperCamelCase =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCamelCase =model(_lowercase , attention_mask=_lowercase )[0] _UpperCamelCase =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowercase ) _UpperCamelCase =torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) )
703
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , lowercase_ , ) class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = RobertaConfig lowerCAmelCase_ = """roberta""" def __init__( self : Dict , UpperCamelCase__ : List[str] ) -> List[Any]: super().__init__(UpperCamelCase__ ) _UpperCamelCase =RobertaEmbeddings(UpperCamelCase__ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , lowercase_ , ) class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = RobertaConfig lowerCAmelCase_ = """roberta""" def __init__( self : Tuple , UpperCamelCase__ : Any ) -> Dict: super().__init__(UpperCamelCase__ ) _UpperCamelCase =config.num_labels _UpperCamelCase =config.num_hidden_layers _UpperCamelCase =DeeRobertaModel(UpperCamelCase__ ) _UpperCamelCase =nn.Dropout(config.hidden_dropout_prob ) _UpperCamelCase =nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def UpperCamelCase__ ( self : List[Any] , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=-1 , UpperCamelCase__ : Dict=False , ) -> Union[str, Any]: _UpperCamelCase =self.num_layers try: _UpperCamelCase =self.roberta( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , position_ids=UpperCamelCase__ , head_mask=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ , ) _UpperCamelCase =outputs[1] _UpperCamelCase =self.dropout(UpperCamelCase__ ) _UpperCamelCase =self.classifier(UpperCamelCase__ ) _UpperCamelCase =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _UpperCamelCase =e.message _UpperCamelCase =e.exit_layer _UpperCamelCase =outputs[0] if not self.training: _UpperCamelCase =entropy(UpperCamelCase__ ) _UpperCamelCase =[] _UpperCamelCase =[] if labels is not None: if self.num_labels == 1: # We are doing regression _UpperCamelCase =MSELoss() _UpperCamelCase =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _UpperCamelCase =CrossEntropyLoss() _UpperCamelCase =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _UpperCamelCase =[] for highway_exit in outputs[-1]: _UpperCamelCase =highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _UpperCamelCase =MSELoss() _UpperCamelCase =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _UpperCamelCase =CrossEntropyLoss() _UpperCamelCase =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase__ ) if train_highway: _UpperCamelCase =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _UpperCamelCase =(loss,) + outputs if not self.training: _UpperCamelCase =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _UpperCamelCase =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
271
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def __lowerCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ) -> Tuple: __lowerCAmelCase =tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) __lowerCAmelCase =DatasetInfosDict.from_directory(__lowerCamelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def __lowerCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : DatasetInfo ) -> Dict: __lowerCAmelCase =str(__lowerCamelCase ) dataset_info.write_to_directory(__lowerCamelCase ) __lowerCAmelCase =DatasetInfo.from_directory(__lowerCamelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__lowerCamelCase , """dataset_info.json""" ) ) def __lowerCAmelCase ( ) -> Optional[int]: __lowerCAmelCase =DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) __lowerCAmelCase =dataset_info._to_yaml_dict() assert sorted(__lowerCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) __lowerCAmelCase =yaml.safe_dump(__lowerCamelCase ) __lowerCAmelCase =yaml.safe_load(__lowerCamelCase ) assert dataset_info_yaml_dict == reloaded def __lowerCAmelCase ( ) -> Optional[int]: __lowerCAmelCase =DatasetInfo() __lowerCAmelCase =dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=1337 ), } ), ] , ) def __lowerCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : DatasetInfosDict ) -> Dict: __lowerCAmelCase =str(__lowerCamelCase ) dataset_infos_dict.write_to_directory(__lowerCamelCase ) __lowerCAmelCase =DatasetInfosDict.from_directory(__lowerCamelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __lowerCAmelCase =config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __lowerCAmelCase =DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__lowerCamelCase , """README.md""" ) )
354
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __a : @staticmethod def UpperCamelCase ( *snake_case_ : Any , **snake_case_ : str)-> int: pass @is_pipeline_test @require_vision class __a ( unittest.TestCase ): @require_torch def UpperCamelCase ( self : Dict)-> List[str]: __lowerCAmelCase =pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) __lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") __lowerCAmelCase =image_classifier(snake_case_ , candidate_labels=["""a""", """b""", """c"""]) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(snake_case_) , [ [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}], [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """c"""}, {"""score""": 0.3_3_3, """label""": """b"""}], ] , ) __lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], ] , ) @require_tf def UpperCamelCase ( self : Dict)-> Optional[Any]: __lowerCAmelCase =pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""") __lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") __lowerCAmelCase =image_classifier(snake_case_ , candidate_labels=["""a""", """b""", """c"""]) self.assertEqual( nested_simplify(snake_case_) , [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}] , ) __lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], ] , ) @slow @require_torch def UpperCamelCase ( self : Any)-> Dict: __lowerCAmelCase =pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes __lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") __lowerCAmelCase =image_classifier(snake_case_ , candidate_labels=["""cat""", """plane""", """remote"""]) self.assertEqual( nested_simplify(snake_case_) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) __lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def UpperCamelCase ( self : Optional[int])-> int: __lowerCAmelCase =pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""") # This is an image of 2 cats with remotes and no planes __lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") __lowerCAmelCase =image_classifier(snake_case_ , candidate_labels=["""cat""", """plane""", """remote"""]) self.assertEqual( nested_simplify(snake_case_) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) __lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , )
354
1
"""simple docstring""" import pprint import requests SCREAMING_SNAKE_CASE_ = '''https://zenquotes.io/api''' def A__ ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/today" ).json() def A__ ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = random_quotes() pprint.pprint(response)
579
"""simple docstring""" def A__ ( A__ ) -> str: '''simple docstring''' _UpperCAmelCase = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def A__ ( A__ ) -> dict[str, str]: '''simple docstring''' _UpperCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _UpperCAmelCase = remove_duplicates(key.upper() ) _UpperCAmelCase = len(A__ ) # First fill cipher with key characters _UpperCAmelCase = {alphabet[i]: char for i, char in enumerate(A__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A__ ) , 26 ): _UpperCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _UpperCAmelCase = alphabet[i - offset] _UpperCAmelCase = char return cipher_alphabet def A__ ( A__ , A__ ) -> str: '''simple docstring''' return "".join(cipher_map.get(A__ , A__ ) for ch in message.upper() ) def A__ ( A__ , A__ ) -> str: '''simple docstring''' _UpperCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A__ , A__ ) for ch in message.upper() ) def A__ ( ) -> None: '''simple docstring''' _UpperCAmelCase = input("Enter message to encode or decode: " ).strip() _UpperCAmelCase = input("Enter keyword: " ).strip() _UpperCAmelCase = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: _UpperCAmelCase = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) _UpperCAmelCase = create_cipher_map(A__ ) print(func(A__ , A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
579
1