code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_ = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
1
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A : Tuple = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE:Tuple = PegasusConfig SCREAMING_SNAKE_CASE:Tuple = {} SCREAMING_SNAKE_CASE:int = "gelu" def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , ): """simple docstring""" a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = eos_token_id a__ = pad_token_id a__ = bos_token_id def lowercase__ ( self ): """simple docstring""" a__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) a__ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) a__ = np.concatenate([input_ids, eos_tensor] , axis=1 ) a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a__ = prepare_pegasus_inputs_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return config, inputs_dict def lowercase__ ( self , _a , _a , _a ): """simple docstring""" a__ = 20 a__ = model_class_name(lowerCamelCase_ ) a__ = model.encode(inputs_dict['input_ids'] ) a__ , a__ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) a__ = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase_ , lowerCamelCase_ ) a__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) a__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a__ = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) a__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) a__ = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase_ , ) a__ = model.decode(lowerCamelCase_ , lowerCamelCase_ ) a__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) def lowercase__ ( self , _a , _a , _a ): """simple docstring""" a__ = 20 a__ = model_class_name(lowerCamelCase_ ) a__ = model.encode(inputs_dict['input_ids'] ) a__ , a__ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) a__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) a__ = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase_ , lowerCamelCase_ ) a__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a__ = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) a__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) a__ = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) a__ = model.decode(lowerCamelCase_ , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ ) a__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) def lowerCAmelCase_ ( a : Dict , a : Dict , a : Any , a : str=None , a : str=None , ): if attention_mask is None: a__ = np.not_equal(a , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: a__ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE:Union[str, Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE:str = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () SCREAMING_SNAKE_CASE:Optional[int] = True SCREAMING_SNAKE_CASE:List[Any] = False SCREAMING_SNAKE_CASE:Union[str, Any] = False SCREAMING_SNAKE_CASE:Any = False def lowercase__ ( self ): """simple docstring""" a__ = FlaxPegasusModelTester(self ) a__ = ConfigTester(self , config_class=lowerCamelCase_ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowercase__ ( self ): """simple docstring""" a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowercase__ ( self ): """simple docstring""" a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a__ = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) a__ = model_class(lowerCamelCase_ ) @jax.jit def encode_jitted(_a , _a=None , **_a ): return model.encode(input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) with self.subTest('JIT Enabled' ): a__ = encode_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a__ = encode_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( self ): """simple docstring""" a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a__ = model_class(lowerCamelCase_ ) a__ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) a__ = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_a , _a , _a ): return model.decode( decoder_input_ids=lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , encoder_outputs=lowerCamelCase_ , ) with self.subTest('JIT Enabled' ): a__ = decode_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a__ = decode_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: a__ = model_class_name.from_pretrained('google/pegasus-large' , from_pt=lowerCamelCase_ ) a__ = np.ones((1, 1) ) a__ = model(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @slow def lowercase__ ( self ): """simple docstring""" a__ = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) a__ = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) a__ = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] a__ = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] a__ = tokenizer(lowerCamelCase_ , return_tensors='np' , truncation=lowerCamelCase_ , max_length=512 , padding=lowerCamelCase_ ) a__ = model.generate(**lowerCamelCase_ , num_beams=2 ).sequences a__ = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) assert tgt_text == decoded
710
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __A : Optional[Any] = logging.getLogger() def lowerCAmelCase_ ( a : str ): a__ = {} a__ = os.path.join(a , 'all_results.json' ) if os.path.exists(a ): with open(a , 'r' ) as f: a__ = json.load(a ) else: raise ValueError(f'''can\'t find {path}''' ) return results __A : Optional[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class _UpperCamelCase ( _A ): '''simple docstring''' def lowercase__ ( self ): """simple docstring""" import xla_spawn a__ = self.get_auto_remove_tmp_dir() a__ = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_a , 'argv' , _a ): a__ = time() xla_spawn.main() a__ = time() a__ = get_results(_a ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def lowercase__ ( self ): """simple docstring""" import xla_spawn a__ = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(_a , 'argv' , _a ): xla_spawn.main()
126
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case: Any = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case: Optional[Any] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __snake_case: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
577
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case: Optional[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = "timm_backbone" def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=3 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) a_ : Optional[Any] = backbone a_ : Union[str, Any] = num_channels a_ : str = features_only a_ : Any = use_pretrained_backbone a_ : Tuple = True a_ : Tuple = out_indices if out_indices is not None else (-1,)
577
1
import random def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE_ = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE_ = random.randrange(2, num - 1 ) SCREAMING_SNAKE_CASE_ = pow(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if v != 1: SCREAMING_SNAKE_CASE_ = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE_ = i + 1 SCREAMING_SNAKE_CASE_ = (v**2) % num return True def A__ ( __lowerCamelCase ): if num < 2: return False SCREAMING_SNAKE_CASE_ = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__lowerCamelCase ) def A__ ( __lowerCamelCase = 10_24 ): while True: SCREAMING_SNAKE_CASE_ = random.randrange(2 ** (keysize - 1), 2 ** (keysize) ) if is_prime_low_num(__lowerCamelCase ): return num if __name__ == "__main__": __UpperCAmelCase = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
713
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A=None , _A=True , _A=None , **_A ) -> Any: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = config_class SCREAMING_SNAKE_CASE_ = has_text_modality SCREAMING_SNAKE_CASE_ = kwargs SCREAMING_SNAKE_CASE_ = common_properties def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.config_class(**self.inputs_dict ) SCREAMING_SNAKE_CASE_ = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_A , _A ) , msg=F'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(_A ): try: setattr(_A , _A , _A ) self.parent.assertEqual( getattr(_A , _A ) , _A , msg=F'''`{name} value {idx} expected, but was {getattr(_A , _A )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_A ): try: SCREAMING_SNAKE_CASE_ = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_A , _A ) , _A , msg=F'''`{name} value {idx} expected, but was {getattr(_A , _A )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.config_class(**self.inputs_dict ) SCREAMING_SNAKE_CASE_ = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _A ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = os.path.join(_A , '''config.json''' ) config_first.to_json_file(_A ) SCREAMING_SNAKE_CASE_ = self.config_class.from_json_file(_A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = self.config_class.from_pretrained(_A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.config_class(**self.inputs_dict ) SCREAMING_SNAKE_CASE_ = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = os.path.join(_A , _A ) config_first.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = self.config_class.from_pretrained(_A , subfolder=_A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) SCREAMING_SNAKE_CASE_ = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _UpperCamelCase ( self ) -> List[Any]: if self.config_class.is_composition: return SCREAMING_SNAKE_CASE_ = self.config_class() self.parent.assertIsNotNone(_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(_A ) SCREAMING_SNAKE_CASE_ = self.config_class(**_A ) SCREAMING_SNAKE_CASE_ = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(_A , _A ) != value: wrong_values.append((key, getattr(_A , _A ), value) ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = '''\n'''.join([F'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(F'''The following keys were not properly set in the config:\n{errors}''' ) def _UpperCamelCase ( self ) -> int: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
597
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) SCREAMING_SNAKE_CASE : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[str] = field(default=__A , metadata={"help": "The input training data file (a text file)."} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={"help": "Overwrite the cached training and evaluation sets"} ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__A , metadata={"help": "The number of processes to use for the preprocessing."} , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__A , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def snake_case__( self : List[str] ) ->str: if self.train_file is not None: snake_case_ = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: snake_case_ = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : PreTrainedTokenizerBase SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = True SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None def __call__( self : Tuple , _UpperCamelCase : Union[str, Any] ) ->int: snake_case_ = '''label''' if '''label''' in features[0].keys() else '''labels''' snake_case_ = [feature.pop(_UpperCamelCase ) for feature in features] snake_case_ = len(_UpperCamelCase ) snake_case_ = len(features[0]['''input_ids'''] ) snake_case_ = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCamelCase )] for feature in features ] snake_case_ = list(chain(*_UpperCamelCase ) ) snake_case_ = self.tokenizer.pad( _UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten snake_case_ = {k: v.view(_UpperCamelCase , _UpperCamelCase , -1 ) for k, v in batch.items()} # Add back labels snake_case_ = torch.tensor(_UpperCamelCase , dtype=torch.intaa ) return batch def __SCREAMING_SNAKE_CASE (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_, snake_case_, snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_, snake_case_, snake_case_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: snake_case_ = {} if data_args.train_file is not None: snake_case_ = data_args.train_file if data_args.validation_file is not None: snake_case_ = data_args.validation_file snake_case_ = data_args.train_file.split('''.''' )[-1] snake_case_ = load_dataset( SCREAMING_SNAKE_CASE__ , data_files=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. snake_case_ = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. snake_case_ = [F'''ending{i}''' for i in range(4 )] snake_case_ = '''sent1''' snake_case_ = '''sent2''' if data_args.max_seq_length is None: snake_case_ = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) snake_case_ = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) snake_case_ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(SCREAMING_SNAKE_CASE__ ): snake_case_ = [[context] * 4 for context in examples[context_name]] snake_case_ = examples[question_header_name] snake_case_ = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(SCREAMING_SNAKE_CASE__ ) ] # Flatten out snake_case_ = list(chain(*SCREAMING_SNAKE_CASE__ ) ) snake_case_ = list(chain(*SCREAMING_SNAKE_CASE__ ) ) # Tokenize snake_case_ = tokenizer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) snake_case_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: snake_case_ = min(len(SCREAMING_SNAKE_CASE__ ) , data_args.max_train_samples ) snake_case_ = train_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): snake_case_ = train_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) snake_case_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: snake_case_ = min(len(SCREAMING_SNAKE_CASE__ ) , data_args.max_eval_samples ) snake_case_ = eval_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): snake_case_ = eval_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator snake_case_ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(SCREAMING_SNAKE_CASE__ ): snake_case_, snake_case_ = eval_predictions snake_case_ = np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer snake_case_ = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: snake_case_ = None if training_args.resume_from_checkpoint is not None: snake_case_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ = last_checkpoint snake_case_ = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case_ = train_result.metrics snake_case_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('''train''' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('''train''' , SCREAMING_SNAKE_CASE__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case_ = trainer.evaluate() snake_case_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE__ ) snake_case_ = min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
39
def __A(lowerCAmelCase ) -> bool: """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) _UpperCamelCase = str(lowerCAmelCase ) _UpperCamelCase = """""".join(sorted(lowerCAmelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __A(lowerCAmelCase = 9_9 ) -> int: """simple docstring""" if not 0 < percent < 1_0_0: raise ValueError("""solution() only accepts values from 0 to 100""" ) _UpperCamelCase = 0 _UpperCamelCase = 1 while True: if check_bouncy(lowerCAmelCase ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
612
0
def __UpperCamelCase ( _lowerCAmelCase ) -> int: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): A : Optional[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCamelCase__ ) if number < 1: A : str = f'''Input value of [number={number}] must be > 0''' raise ValueError(lowerCamelCase__ ) A : Optional[Any] = 1 for i in range(1 , lowerCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
710
def __UpperCamelCase ( _lowerCAmelCase ) -> list: """simple docstring""" def merge(_lowerCAmelCase , _lowerCAmelCase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowerCAmelCase ) <= 1: return collection A : int = len(_lowerCAmelCase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_:Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE_:Tuple = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
520
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCAmelCase = datasets.utils.logging.get_logger(__name__) @dataclass class __magic_name__ ( datasets.BuilderConfig ): __A : int = 1_00_00 __A : Optional[List[str]] = None __A : Optional[datasets.Features] = None class __magic_name__ ( datasets.ArrowBasedBuilder ): __A : Any = ParquetConfig def __snake_case ( self : Any ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __snake_case ( self : int , snake_case__ : Tuple ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowercase :Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case__ , (str, list, tuple) ): lowercase :str = data_files if isinstance(snake_case__ , snake_case__ ): lowercase :Tuple = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase :Dict = [dl_manager.iter_files(snake_case__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] lowercase :str = [] for split_name, files in data_files.items(): if isinstance(snake_case__ , snake_case__ ): lowercase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase :List[str] = [dl_manager.iter_files(snake_case__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(snake_case__ ): with open(snake_case__ , '''rb''' ) as f: lowercase :Optional[int] = datasets.Features.from_arrow_schema(pq.read_schema(snake_case__ ) ) break splits.append(datasets.SplitGenerator(name=snake_case__ , gen_kwargs={'''files''': files} ) ) return splits def __snake_case ( self : str , snake_case__ : pa.Table ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase :List[Any] = table_cast(snake_case__ , self.info.features.arrow_schema ) return pa_table def __snake_case ( self : Any , snake_case__ : Optional[Any] ): '''simple docstring''' lowercase :List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case__ ) ): with open(snake_case__ , '''rb''' ) as f: lowercase :int = pq.ParquetFile(snake_case__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowercase :List[str] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(snake_case__ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(snake_case__ )}: {e}""" ) raise
677
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
677
1
'''simple docstring''' class _UpperCamelCase : '''simple docstring''' def __init__( self , _a ): """simple docstring""" a__ = val a__ = None a__ = None def lowercase__ ( self , _a ): """simple docstring""" if self.val: if val < self.val: if self.left is None: a__ = Node(_a ) else: self.left.insert(_a ) elif val > self.val: if self.right is None: a__ = Node(_a ) else: self.right.insert(_a ) else: a__ = val def lowerCAmelCase_ ( a : Dict , a : Union[str, Any] ): # Recursive traversal if root: inorder(root.left , a ) res.append(root.val ) inorder(root.right , a ) def lowerCAmelCase_ ( a : List[str] ): # Build BST if len(a ) == 0: return arr a__ = Node(arr[0] ) for i in range(1 , len(a ) ): root.insert(arr[i] ) # Traverse BST in order. a__ = [] inorder(a , a ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
126
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __A : Any = '\nHuman: <<task>>\n\nAssistant: ' __A : int = 'huggingface-tools/default-prompts' __A : Tuple = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def lowerCAmelCase_ ( a : int , a : Optional[Any] , a : Tuple="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , a ) is not None: return prompt_or_repo_id a__ = cached_file( a , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(a , 'r' , encoding='utf-8' ) as f: return f.read()
126
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 class UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self , lowerCamelCase = 20_00 , lowerCamelCase = 0.15 , lowerCamelCase = 0.01 , lowerCamelCase = 1348.0 , lowerCamelCase = 1e-5 , lowerCamelCase = 1 , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Tuple = sigma_max # setable values UpperCamelCase : Tuple = None self.set_sigmas(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase = None ) -> torch.FloatTensor: '''simple docstring''' return sample def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) -> Any: '''simple docstring''' UpperCamelCase : Union[str, Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase : List[str] = torch.linspace(1 , lowerCamelCase , lowerCamelCase , device=lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : List[Any] = sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase : List[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase , lowerCamelCase ) UpperCamelCase : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase : str = torch.exp(torch.linspace(math.log(lowerCamelCase ) , math.log(lowerCamelCase ) , lowerCamelCase ) ) UpperCamelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase ) -> str: '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = True , ) -> Union[SdeVeOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) UpperCamelCase : Union[str, Any] = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase : Union[str, Any] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase : str = timesteps.to(self.discrete_sigmas.device ) UpperCamelCase : List[str] = self.discrete_sigmas[timesteps].to(sample.device ) UpperCamelCase : Union[str, Any] = self.get_adjacent_sigma(lowerCamelCase , lowerCamelCase ).to(sample.device ) UpperCamelCase : str = torch.zeros_like(lowerCamelCase ) UpperCamelCase : str = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase : Optional[Any] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCamelCase : Optional[Any] = diffusion.unsqueeze(-1 ) UpperCamelCase : Union[str, Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase : Union[str, Any] = randn_tensor( sample.shape , layout=sample.layout , generator=lowerCamelCase , device=sample.device , dtype=sample.dtype ) UpperCamelCase : List[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase : List[str] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase , prev_sample_mean=lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase : Union[str, Any] = randn_tensor(sample.shape , layout=sample.layout , generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCamelCase : Union[str, Any] = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase : Dict = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase : Union[str, Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase : int = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase : Optional[Any] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCamelCase : str = step_size.unsqueeze(-1 ) UpperCamelCase : List[str] = sample + step_size * model_output UpperCamelCase : Union[str, Any] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> torch.FloatTensor: '''simple docstring''' UpperCamelCase : int = timesteps.to(original_samples.device ) UpperCamelCase : int = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCamelCase : str = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) UpperCamelCase : Optional[Any] = noise + original_samples return noisy_samples def __len__( self ) -> str: '''simple docstring''' return self.config.num_train_timesteps
173
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def A__ ( A : Optional[int]): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def A__ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def A__ ( ): '''simple docstring''' UpperCamelCase : Tuple = "mock-s3-bucket" UpperCamelCase : List[str] = F'''s3://{mock_bucket}''' UpperCamelCase : Optional[Any] = extract_path_from_uri(A) assert dataset_path.startswith("s3://") is False UpperCamelCase : Any = "./local/path" UpperCamelCase : str = extract_path_from_uri(A) assert dataset_path == new_dataset_path def A__ ( A : Optional[Any]): '''simple docstring''' UpperCamelCase : List[Any] = is_remote_filesystem(A) assert is_remote is True UpperCamelCase : Tuple = fsspec.filesystem("file") UpperCamelCase : int = is_remote_filesystem(A) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , A) def A__ ( A : List[Any] , A : Any , A : str , A : Union[str, Any] , A : List[str] , A : List[Any] , A : Optional[Any]): '''simple docstring''' UpperCamelCase : List[str] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} UpperCamelCase : Any = input_paths[compression_fs_class.protocol] if input_path is None: UpperCamelCase : Any = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(A) UpperCamelCase : List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=A) assert isinstance(A , A) UpperCamelCase : List[Any] = os.path.basename(A) UpperCamelCase : Union[str, Any] = expected_filename[: expected_filename.rindex(".")] assert fs.glob("*") == [expected_filename] with fs.open(A , "r" , encoding="utf-8") as f, open(A , encoding="utf-8") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"]) def A__ ( A : Optional[int] , A : str , A : Optional[Any]): '''simple docstring''' UpperCamelCase : Any = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} UpperCamelCase : str = compressed_file_paths[protocol] UpperCamelCase : Optional[int] = "dataset.jsonl" UpperCamelCase : Tuple = F'''{protocol}://{member_file_path}::{compressed_file_path}''' UpperCamelCase , *UpperCamelCase : Dict = fsspec.get_fs_token_paths(A) assert fs.isfile(A) assert not fs.isfile("non_existing_" + member_file_path) @pytest.mark.integration def A__ ( A : Dict , A : List[str] , A : Dict , A : List[Any]): '''simple docstring''' UpperCamelCase : Optional[int] = hf_api.dataset_info(A , token=A) UpperCamelCase : List[str] = HfFileSystem(repo_info=A , token=A) assert sorted(hffs.glob("*")) == [".gitattributes", "data"] assert hffs.isdir("data") assert hffs.isfile(".gitattributes") and hffs.isfile("data/text_data.txt") with open(A) as f: assert hffs.open("data/text_data.txt" , "r").read() == f.read() def A__ ( ): '''simple docstring''' UpperCamelCase : str = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(A , A , clobber=A) with pytest.warns(A) as warning_info: importlib.reload(datasets.filesystems) assert len(A) == 1 assert ( str(warning_info[0].message) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
173
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase : List[Any] = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __UpperCamelCase : str = { "RUCAIBox/mvp": 1_0_2_4, } class UpperCAmelCase_ ( lowercase__ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["""input_ids""", """attention_mask"""] snake_case_ = MvpTokenizer def __init__( self : int , _lowercase : Dict=None , _lowercase : Union[str, Any]=None , _lowercase : List[Any]=None , _lowercase : Any="replace" , _lowercase : List[str]="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Any="</s>" , _lowercase : Optional[int]="<s>" , _lowercase : int="<unk>" , _lowercase : Optional[int]="<pad>" , _lowercase : List[Any]="<mask>" , _lowercase : Dict=False , _lowercase : str=True , **_lowercase : Any , ) -> Tuple: super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase , **_lowercase , ) _lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _lowercase ) != add_prefix_space: _lowercase = getattr(_lowercase , pre_tok_state.pop("type" ) ) _lowercase = add_prefix_space _lowercase = pre_tok_class(**_lowercase ) _lowercase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowercase = "post_processor" _lowercase = getattr(self.backend_tokenizer , _lowercase , _lowercase ) if tokenizer_component_instance: _lowercase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowercase = tuple(state["sep"] ) if "cls" in state: _lowercase = tuple(state["cls"] ) _lowercase = False if state.get("add_prefix_space" , _lowercase ) != add_prefix_space: _lowercase = add_prefix_space _lowercase = True if state.get("trim_offsets" , _lowercase ) != trim_offsets: _lowercase = trim_offsets _lowercase = True if changes_to_apply: _lowercase = getattr(_lowercase , state.pop("type" ) ) _lowercase = component_class(**_lowercase ) setattr(self.backend_tokenizer , _lowercase , _lowercase ) @property def _lowerCamelCase ( self : Optional[Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self : Optional[int] , _lowercase : int ) -> Optional[Any]: _lowercase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else value _lowercase = value def _lowerCamelCase ( self : str , *_lowercase : List[str] , **_lowercase : List[Any] ) -> BatchEncoding: _lowercase = kwargs.get("is_split_into_words" , _lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowercase , **_lowercase ) def _lowerCamelCase ( self : Tuple , *_lowercase : str , **_lowercase : List[str] ) -> BatchEncoding: _lowercase = kwargs.get("is_split_into_words" , _lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowercase , **_lowercase ) def _lowerCamelCase ( self : List[str] , _lowercase : str , _lowercase : Optional[str] = None ) -> Tuple[str]: _lowercase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase ) def _lowerCamelCase ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : str=None ) -> Any: _lowercase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ) -> List[int]: _lowercase = [self.sep_token_id] _lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
227
"""simple docstring""" def __UpperCAmelCase ( _snake_case : int ): if num < 0: return False _lowercase = num _lowercase = 0 while num > 0: _lowercase = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
227
1
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : int ) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def _lowerCAmelCase ( lowerCamelCase__ : int ) -> bool: _SCREAMING_SNAKE_CASE : Tuple = 0 _SCREAMING_SNAKE_CASE : int = number while duplicate > 0: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = divmod(lowerCamelCase__, 1_0 ) fact_sum += factorial(lowerCamelCase__ ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') lowercase_ : List[Any] = int(input('''Enter number: ''').strip()) print( F'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.' )
572
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : float ) -> float: if edge <= 0 or not isinstance(lowerCamelCase__, lowerCamelCase__ ): raise ValueError("Length must be a positive." ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _lowerCAmelCase ( lowerCamelCase__ : float ) -> float: if edge <= 0 or not isinstance(lowerCamelCase__, lowerCamelCase__ ): raise ValueError("Length must be a positive." ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
572
1
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCamelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCAmelCase_ ( lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Optional[Any] ): '''simple docstring''' for attribute in key.split('''.''' ): __SCREAMING_SNAKE_CASE : Dict = getattr(lowerCamelCase_ , lowerCamelCase_ ) if weight_type is not None: __SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape else: __SCREAMING_SNAKE_CASE : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __SCREAMING_SNAKE_CASE : Any = value elif weight_type == "weight_g": __SCREAMING_SNAKE_CASE : Dict = value elif weight_type == "weight_v": __SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "bias": __SCREAMING_SNAKE_CASE : Tuple = value else: __SCREAMING_SNAKE_CASE : Dict = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowerCAmelCase_ ( lowercase_ : Optional[Any] , lowercase_ : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : str = fairseq_model.state_dict() __SCREAMING_SNAKE_CASE : Optional[Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __SCREAMING_SNAKE_CASE : Any = None for name, value in fairseq_dict.items(): __SCREAMING_SNAKE_CASE : int = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == '''group''' , ) __SCREAMING_SNAKE_CASE : int = True elif name.split('''.''' )[0] == "proj": __SCREAMING_SNAKE_CASE : Union[str, Any] = fairseq_model.proj __SCREAMING_SNAKE_CASE : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __SCREAMING_SNAKE_CASE : Any = True if "*" in mapped_key: __SCREAMING_SNAKE_CASE : Optional[Any] = name.split(lowerCamelCase_ )[0].split('''.''' )[-2] __SCREAMING_SNAKE_CASE : str = mapped_key.replace('''*''' , lowerCamelCase_ ) if "weight_g" in name: __SCREAMING_SNAKE_CASE : List[str] = """weight_g""" elif "weight_v" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = """weight_v""" elif "bias" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = """bias""" elif "weight" in name: __SCREAMING_SNAKE_CASE : str = """weight""" else: __SCREAMING_SNAKE_CASE : List[Any] = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = full_name.split('''conv_layers.''' )[-1] __SCREAMING_SNAKE_CASE : Optional[int] = name.split('''.''' ) __SCREAMING_SNAKE_CASE : Tuple = int(items[0] ) __SCREAMING_SNAKE_CASE : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : List[str] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __SCREAMING_SNAKE_CASE : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase_ ) def lowerCAmelCase_ ( lowercase_ : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.shape __SCREAMING_SNAKE_CASE : Any = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( lowercase_ : Any ): '''simple docstring''' with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE : int = f.readlines() __SCREAMING_SNAKE_CASE : int = [line.split(''' ''' )[0] for line in lines] __SCREAMING_SNAKE_CASE : List[Any] = len(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : List[str] = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(lowerCamelCase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : int , ): '''simple docstring''' __SCREAMING_SNAKE_CASE : str = WavaVecaConfig.from_pretrained(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : int = SpeechaTextaConfig.from_pretrained( lowerCamelCase_ , vocab_size=lowerCamelCase_ , decoder_layers=lowerCamelCase_ , do_stable_layer_norm=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) __SCREAMING_SNAKE_CASE : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __SCREAMING_SNAKE_CASE : Tuple = model[0].eval() # set weights for wav2vec2 encoder __SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaModel(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Tuple = recursively_load_weights_wavaveca(model.encoder , lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : List[Any] = SpeechaTextaForCausalLM(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCamelCase_ ) # set output linear layer unexpected_keys.remove('''embed_out''' ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) __SCREAMING_SNAKE_CASE : List[str] = SpeechEncoderDecoderModel(encoder=lowerCamelCase_ , decoder=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Any = False # add projection layer __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(projection_layer.weight ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(projection_layer.bias ) __SCREAMING_SNAKE_CASE : List[str] = create_vocab_dict(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''vocab.json''' ) , '''w''' ) as fp: json.dump(lowerCamelCase_ , lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Any = SpeechaTextaTokenizer(os.path.join(lowerCamelCase_ , '''vocab.json''' ) ) tokenizer.save_pretrained(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : int = hf_wavavec.config.to_dict() __SCREAMING_SNAKE_CASE : Dict = tokenizer.pad_token_id __SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.eos_token_id __SCREAMING_SNAKE_CASE : Union[str, Any] = """speech_to_text_2""" __SCREAMING_SNAKE_CASE : List[Any] = """wav2vec2""" __SCREAMING_SNAKE_CASE : Dict = SpeechEncoderDecoderConfig.from_dict(lowerCamelCase_ ) hf_wavavec.save_pretrained(lowerCamelCase_ ) feature_extractor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=10_224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') _lowerCamelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
713
"""simple docstring""" def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : int , lowercase_ : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowerCAmelCase_ ( ): '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
401
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } a = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def _SCREAMING_SNAKE_CASE ( snake_case , snake_case=False ) -> Optional[Any]: _UpperCAmelCase , _UpperCAmelCase = create_model( """HTSAT-tiny""" , """roberta""" , snake_case , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=snake_case , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def _SCREAMING_SNAKE_CASE ( snake_case ) -> Union[str, Any]: _UpperCAmelCase = {} _UpperCAmelCase = R""".*sequential.(\d+).*""" _UpperCAmelCase = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _UpperCAmelCase = key.replace(snake_case , snake_case ) if re.match(snake_case , snake_case ): # replace sequential layers with list _UpperCAmelCase = re.match(snake_case , snake_case ).group(1 ) _UpperCAmelCase = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(snake_case )//3}.linear." ) elif re.match(snake_case , snake_case ): _UpperCAmelCase = int(re.match(snake_case , snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _UpperCAmelCase = 1 if projecton_layer == 0 else 2 _UpperCAmelCase = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value _UpperCAmelCase = value _UpperCAmelCase = mixed_qkv.size(0 ) // 3 _UpperCAmelCase = mixed_qkv[:qkv_dim] _UpperCAmelCase = mixed_qkv[qkv_dim : qkv_dim * 2] _UpperCAmelCase = mixed_qkv[qkv_dim * 2 :] _UpperCAmelCase = query_layer _UpperCAmelCase = key_layer _UpperCAmelCase = value_layer else: _UpperCAmelCase = value return model_state_dict def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case=False ) -> Dict: _UpperCAmelCase , _UpperCAmelCase = init_clap(snake_case , enable_fusion=snake_case ) clap_model.eval() _UpperCAmelCase = clap_model.state_dict() _UpperCAmelCase = rename_state_dict(snake_case ) _UpperCAmelCase = ClapConfig() _UpperCAmelCase = enable_fusion _UpperCAmelCase = ClapModel(snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(snake_case , strict=snake_case ) model.save_pretrained(snake_case ) transformers_config.save_pretrained(snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") a = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
518
import glob import os import random from string import ascii_lowercase, digits import cva a = "" a = "" a = "" a = 1 # (0 is vertical, 1 is horizontal) def _SCREAMING_SNAKE_CASE ( ) -> None: _UpperCAmelCase , _UpperCAmelCase = get_dataset(snake_case , snake_case ) print("""Processing...""" ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = update_image_and_anno(snake_case , snake_case , snake_case ) for index, image in enumerate(snake_case ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _UpperCAmelCase = random_chars(3_2 ) _UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] _UpperCAmelCase = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(f"/{file_root}.jpg" , snake_case , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"Success {index+1}/{len(snake_case )} with {file_name}" ) _UpperCAmelCase = [] for anno in new_annos[index]: _UpperCAmelCase = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(snake_case ) with open(f"/{file_root}.txt" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> tuple[list, list]: _UpperCAmelCase = [] _UpperCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case , """*.txt""" ) ): _UpperCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case ) as in_file: _UpperCAmelCase = in_file.readlines() _UpperCAmelCase = os.path.join(snake_case , f"{label_name}.jpg" ) _UpperCAmelCase = [] for obj_list in obj_lists: _UpperCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(snake_case ) labels.append(snake_case ) return img_paths, labels def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case = 1 ) -> tuple[list, list, list]: _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for idx in range(len(snake_case ) ): _UpperCAmelCase = [] _UpperCAmelCase = img_list[idx] path_list.append(snake_case ) _UpperCAmelCase = anno_list[idx] _UpperCAmelCase = cva.imread(snake_case ) if flip_type == 1: _UpperCAmelCase = cva.flip(snake_case , snake_case ) for bbox in img_annos: _UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _UpperCAmelCase = cva.flip(snake_case , snake_case ) for bbox in img_annos: _UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(snake_case ) new_imgs_list.append(snake_case ) return new_imgs_list, new_annos_lists, path_list def _SCREAMING_SNAKE_CASE ( snake_case = 3_2 ) -> str: assert number_char > 1, "The number of character should greater than 1" _UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case ) for _ in range(snake_case ) ) if __name__ == "__main__": main() print("DONE ✅")
518
1
'''simple docstring''' from math import pi, sqrt def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> float: if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(UpperCamelCase ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(UpperCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def SCREAMING_SNAKE_CASE( ) -> None: assert gamma(0.5 ) == sqrt(UpperCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase__ = 1.0 while num: lowerCAmelCase__ = float(input("Gamma of: ")) print(F'gamma({num}) = {gamma(num)}') print("\nEnter 0 to exit...")
471
'''simple docstring''' import math class lowercase : def __init__( self , _snake_case=0) -> Union[str, Any]: # a graph with Node 0,1,...,N-1 UpperCAmelCase_ : Tuple = n UpperCAmelCase_ : Optional[Any] = [ [math.inf for j in range(0 , _snake_case)] for i in range(0 , _snake_case) ] # adjacency matrix for weight UpperCAmelCase_ : Tuple = [ [math.inf for j in range(0 , _snake_case)] for i in range(0 , _snake_case) ] # dp[i][j] stores minimum distance from i to j def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = w def _snake_case ( self) -> str: for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): UpperCAmelCase_ : Optional[int] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def _snake_case ( self , _snake_case , _snake_case) -> str: return self.dp[u][v] if __name__ == "__main__": lowerCAmelCase__ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
471
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _lowercase : List[str] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_28, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_42, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } _lowercase : Optional[int] = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 1_28, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 1_42, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(UpperCamelCase ) , UpperCamelCase ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _lowercase : int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(UpperCamelCase ) , x.transpose() ) ) _lowercase : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(UpperCamelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _lowercase : List[Any] = np.random.randn(3 , 4 ) _lowercase : List[Any] = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase ) , transpose(UpperCamelCase ).numpy() ) ) _lowercase : int = np.random.randn(3 , 4 , 5 ) _lowercase : Dict = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase , axes=(1, 2, 0) ) , transpose(UpperCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _lowercase : Any = np.random.randn(3 , 4 ) _lowercase : Tuple = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase ) , transpose(UpperCamelCase ).numpy() ) ) _lowercase : Tuple = np.random.randn(3 , 4 , 5 ) _lowercase : Optional[Any] = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase , axes=(1, 2, 0) ) , transpose(UpperCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self : Any ): """simple docstring""" _lowercase : Dict = np.random.randn(3 , 4 ) _lowercase : Optional[Any] = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase ) , np.asarray(transpose(UpperCamelCase ) ) ) ) _lowercase : Optional[int] = np.random.randn(3 , 4 , 5 ) _lowercase : int = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase , axes=(1, 2, 0) ) , np.asarray(transpose(UpperCamelCase , axes=(1, 2, 0) ) ) ) ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" _lowercase : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (4, 3) ) , np.reshape(UpperCamelCase , (4, 3) ) ) ) _lowercase : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (12, 5) ) , np.reshape(UpperCamelCase , (12, 5) ) ) ) @require_torch def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _lowercase : Optional[int] = np.random.randn(3 , 4 ) _lowercase : Optional[int] = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (4, 3) ) , reshape(UpperCamelCase , (4, 3) ).numpy() ) ) _lowercase : Tuple = np.random.randn(3 , 4 , 5 ) _lowercase : List[str] = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (12, 5) ) , reshape(UpperCamelCase , (12, 5) ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _lowercase : Any = np.random.randn(3 , 4 ) _lowercase : str = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (4, 3) ) , reshape(UpperCamelCase , (4, 3) ).numpy() ) ) _lowercase : int = np.random.randn(3 , 4 , 5 ) _lowercase : str = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (12, 5) ) , reshape(UpperCamelCase , (12, 5) ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self : Any ): """simple docstring""" _lowercase : Union[str, Any] = np.random.randn(3 , 4 ) _lowercase : Optional[int] = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (4, 3) ) , np.asarray(reshape(UpperCamelCase , (4, 3) ) ) ) ) _lowercase : Any = np.random.randn(3 , 4 , 5 ) _lowercase : Dict = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (12, 5) ) , np.asarray(reshape(UpperCamelCase , (12, 5) ) ) ) ) def lowerCAmelCase_ ( self : str ): """simple docstring""" _lowercase : Dict = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ) , np.squeeze(UpperCamelCase ) ) ) _lowercase : Dict = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase , axis=2 ) , np.squeeze(UpperCamelCase , axis=2 ) ) ) @require_torch def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _lowercase : Dict = np.random.randn(1 , 3 , 4 ) _lowercase : Any = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ) , squeeze(UpperCamelCase ).numpy() ) ) _lowercase : Dict = np.random.randn(1 , 4 , 1 , 5 ) _lowercase : int = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase , axis=2 ) , squeeze(UpperCamelCase , axis=2 ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : Dict = np.random.randn(1 , 3 , 4 ) _lowercase : int = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ) , squeeze(UpperCamelCase ).numpy() ) ) _lowercase : int = np.random.randn(1 , 4 , 1 , 5 ) _lowercase : str = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase , axis=2 ) , squeeze(UpperCamelCase , axis=2 ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _lowercase : Any = np.random.randn(1 , 3 , 4 ) _lowercase : str = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ) , np.asarray(squeeze(UpperCamelCase ) ) ) ) _lowercase : Any = np.random.randn(1 , 4 , 1 , 5 ) _lowercase : Dict = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase , axis=2 ) , np.asarray(squeeze(UpperCamelCase , axis=2 ) ) ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _lowercase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase , axis=1 ) , np.expand_dims(UpperCamelCase , axis=1 ) ) ) @require_torch def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _lowercase : str = np.random.randn(3 , 4 ) _lowercase : Tuple = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase , axis=1 ) , expand_dims(UpperCamelCase , axis=1 ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : List[Any] = np.random.randn(3 , 4 ) _lowercase : Tuple = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase , axis=1 ) , expand_dims(UpperCamelCase , axis=1 ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self : str ): """simple docstring""" _lowercase : Union[str, Any] = np.random.randn(3 , 4 ) _lowercase : Tuple = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase , axis=1 ) , np.asarray(expand_dims(UpperCamelCase , axis=1 ) ) ) )
322
def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> float: '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate _lowercase : str = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _lowercase : str = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
322
1
def lowerCamelCase_ ( lowerCAmelCase__ : int = 1000 ) -> int: '''simple docstring''' A = 3 A = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
224
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :int =logging.get_logger(__name__) __snake_case :Any ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class lowerCAmelCase__ ( _lowerCamelCase ): A_ : List[Any] = 'switch_transformers' A_ : str = ['past_key_values'] A_ : Optional[int] = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Dict , __UpperCamelCase : List[str]=32_128 , __UpperCamelCase : Optional[Any]=768 , __UpperCamelCase : Optional[int]=64 , __UpperCamelCase : Tuple=2_048 , __UpperCamelCase : Dict=64 , __UpperCamelCase : List[str]=12 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : List[str]=12 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : List[Any]=12 , __UpperCamelCase : Optional[int]=8 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Optional[int]=0.0_1 , __UpperCamelCase : Any="float32" , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : List[Any]=32 , __UpperCamelCase : List[Any]=128 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : int=1e-6 , __UpperCamelCase : Union[str, Any]=0.0_0_1 , __UpperCamelCase : Tuple=0.0_0_1 , __UpperCamelCase : int=1.0 , __UpperCamelCase : Optional[Any]="relu" , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : List[str]=False , __UpperCamelCase : List[Any]=True , __UpperCamelCase : str=0 , __UpperCamelCase : int=1 , **__UpperCamelCase : Union[str, Any] , ) -> Dict: A = vocab_size A = d_model A = d_kv A = d_ff A = num_sparse_encoder_layers A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: A = self.num_layers // self.num_sparse_encoder_layers else: A = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: A = self.num_decoder_layers // self.num_sparse_decoder_layers else: A = self.num_decoder_layers # HACK: this will create 0 sparse layers A = num_heads A = num_experts A = expert_capacity A = router_bias A = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) A = router_dtype A = router_ignore_padding_tokens A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = add_router_probs A = router_z_loss_coef A = router_aux_loss_coef A = self.feed_forward_proj.split('-' ) A = act_info[-1] A = act_info[0] == 'gated' if len(__UpperCamelCase ) > 1 and act_info[0] != "gated" or len(__UpperCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A = 'gelu_new' super().__init__( pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase , )
224
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[Any] , snake_case__ :List[Any] , snake_case__ :Any=[] ) -> Any: _lowercase = size[0] - overlap_pixels * 2 _lowercase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _lowercase = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 _lowercase = np.pad(snake_case__ , mode='linear_ramp' , pad_width=snake_case__ , end_values=0 ) if "l" in remove_borders: _lowercase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _lowercase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _lowercase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _lowercase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[Any] , snake_case__ :List[str] , snake_case__ :List[str] ) -> Dict: return max(snake_case__ , min(snake_case__ , snake_case__ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :[int] , snake_case__ :[int] , snake_case__ :[int] ) -> Optional[Any]: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :[int] , snake_case__ :int , snake_case__ :[int] ) -> Dict: _lowercase = list(snake_case__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _lowercase = clamp_rect(snake_case__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple , snake_case__ :int , snake_case__ :Dict , snake_case__ :str ) -> Tuple: _lowercase = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(snake_case__ , (original_slice, 0) ) return result def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple , snake_case__ :Tuple ) -> List[str]: _lowercase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _lowercase = tile.crop(snake_case__ ) return tile def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :Optional[int] ) -> Tuple: _lowercase = n % d return n - divisor class A_ ( UpperCAmelCase ): """simple docstring""" def __init__( self : str ,__A : AutoencoderKL ,__A : CLIPTextModel ,__A : CLIPTokenizer ,__A : UNetaDConditionModel ,__A : DDPMScheduler ,__A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,__A : int = 350 ,) -> Union[str, Any]: super().__init__( vae=__A ,text_encoder=__A ,tokenizer=__A ,unet=__A ,low_res_scheduler=__A ,scheduler=__A ,max_noise_level=__A ,) def __UpperCAmelCase ( self : Dict ,__A : Dict ,__A : Tuple ,__A : List[Any] ,__A : str ,__A : Optional[Any] ,__A : Union[str, Any] ,__A : Optional[int] ,**__A : List[Any] ) -> int: torch.manual_seed(0 ) _lowercase = ( min(image.size[0] - (tile_size + original_image_slice) ,x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) ,y * tile_size ), min(image.size[0] ,(x + 1) * tile_size ), min(image.size[1] ,(y + 1) * tile_size ), ) _lowercase = add_overlap_rect(__A ,__A ,image.size ) _lowercase = image.crop(__A ) _lowercase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _lowercase = translated_slice_x - (original_image_slice / 2) _lowercase = max(0 ,__A ) _lowercase = squeeze_tile(__A ,__A ,__A ,__A ) _lowercase = to_input.size _lowercase = to_input.resize((tile_size, tile_size) ,Image.BICUBIC ) _lowercase = super(__A ,self ).__call__(image=__A ,**__A ).images[0] _lowercase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) ,Image.BICUBIC ) _lowercase = unsqueeze_tile(__A ,__A ) _lowercase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) ,Image.BICUBIC ) _lowercase = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) _lowercase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) ,tile_border * 4 ,remove_borders=__A ) ,mode='L' ,) final_image.paste( __A ,(crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) ,__A ) @torch.no_grad() def __call__( self : List[Any] ,__A : Union[str, List[str]] ,__A : Union[PIL.Image.Image, List[PIL.Image.Image]] ,__A : int = 75 ,__A : float = 9.0 ,__A : int = 50 ,__A : Optional[Union[str, List[str]]] = None ,__A : Optional[int] = 1 ,__A : float = 0.0 ,__A : Optional[torch.Generator] = None ,__A : Optional[torch.FloatTensor] = None ,__A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,__A : int = 1 ,__A : int = 128 ,__A : int = 32 ,__A : int = 32 ,) -> int: _lowercase = Image.new('RGB' ,(image.size[0] * 4, image.size[1] * 4) ) _lowercase = math.ceil(image.size[0] / tile_size ) _lowercase = math.ceil(image.size[1] / tile_size ) _lowercase = tcx * tcy _lowercase = 0 for y in range(__A ): for x in range(__A ): self._process_tile( __A ,__A ,__A ,__A ,__A ,__A ,__A ,prompt=__A ,num_inference_steps=__A ,guidance_scale=__A ,noise_level=__A ,negative_prompt=__A ,num_images_per_prompt=__A ,eta=__A ,generator=__A ,latents=__A ,) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: # Run a demo _lowercase = 'stabilityai/stable-diffusion-x4-upscaler' _lowercase = StableDiffusionTiledUpscalePipeline.from_pretrained(snake_case__ , revision='fp16' , torch_dtype=torch.floataa ) _lowercase = pipe.to('cuda' ) _lowercase = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(snake_case__ :int ): print(F"""progress: {obj["progress"]:.4f}""" ) obj["image"].save('diffusers_library_progress.jpg' ) _lowercase = pipe(image=snake_case__ , prompt='Black font, white background, vector' , noise_level=40 , callback=snake_case__ ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
67
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : complex ,a__ : str = "x" ,a__ : float = 10**-10 ,a__ : int = 1 ,) -> complex: __A : Tuple = symbols(a__ ) __A : List[str] = lambdify(a__ ,a__ ) __A : Any = lambdify(a__ ,diff(a__ ,a__ ) ) __A : Dict = starting_point while True: if diff_function(a__ ) != 0: __A : Optional[int] = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : List[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
17
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowercase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = nn.functional.normalize(snake_case__) lowerCAmelCase_ : Optional[Any] = nn.functional.normalize(snake_case__) return torch.mm(snake_case__ , normalized_text_embeds.t()) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = CLIPConfig UpperCamelCase_ = ['CLIPEncoderLayer'] def __init__( self : Tuple ,lowerCAmelCase__ : CLIPConfig ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCAmelCase__ ) lowerCAmelCase_ : Any = CLIPVisionModel(config.vision_config ) lowerCAmelCase_ : Dict = nn.Linear(config.vision_config.hidden_size ,config.projection_dim ,bias=lowerCAmelCase__ ) lowerCAmelCase_ : int = nn.Parameter(torch.ones(17 ,config.projection_dim ) ,requires_grad=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = nn.Parameter(torch.ones(3 ,config.projection_dim ) ,requires_grad=lowerCAmelCase__ ) lowerCAmelCase_ : int = nn.Parameter(torch.ones(17 ) ,requires_grad=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = nn.Parameter(torch.ones(3 ) ,requires_grad=lowerCAmelCase__ ) @torch.no_grad() def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : str = self.vision_model(lowerCAmelCase__ )[1] # pooled_output lowerCAmelCase_ : Optional[Any] = self.visual_projection(lowerCAmelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase_ : Union[str, Any] = cosine_distance(lowerCAmelCase__ ,self.special_care_embeds ).cpu().float().numpy() lowerCAmelCase_ : Optional[Any] = cosine_distance(lowerCAmelCase__ ,self.concept_embeds ).cpu().float().numpy() lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Union[str, Any] = image_embeds.shape[0] for i in range(lowerCAmelCase__ ): lowerCAmelCase_ : Any = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase_ : Tuple = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCAmelCase_ : int = special_cos_dist[i][concept_idx] lowerCAmelCase_ : Dict = self.special_care_embeds_weights[concept_idx].item() lowerCAmelCase_ : List[str] = round(concept_cos - concept_threshold + adjustment ,3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) lowerCAmelCase_ : Union[str, Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCAmelCase_ : int = cos_dist[i][concept_idx] lowerCAmelCase_ : Optional[int] = self.concept_embeds_weights[concept_idx].item() lowerCAmelCase_ : Optional[Any] = round(concept_cos - concept_threshold + adjustment ,3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__ ) result.append(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : torch.FloatTensor ,lowerCAmelCase__ : torch.FloatTensor ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = self.vision_model(lowerCAmelCase__ )[1] # pooled_output lowerCAmelCase_ : Optional[int] = self.visual_projection(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = cosine_distance(lowerCAmelCase__ ,self.special_care_embeds ) lowerCAmelCase_ : Tuple = cosine_distance(lowerCAmelCase__ ,self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCAmelCase_ : Optional[int] = torch.any(special_scores > 0 ,dim=1 ) lowerCAmelCase_ : str = special_care * 0.01 lowerCAmelCase_ : Optional[Any] = special_adjustment.unsqueeze(1 ).expand(-1 ,cos_dist.shape[1] ) lowerCAmelCase_ : Tuple = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCAmelCase_ : Tuple = torch.any(concept_scores > 0 ,dim=1 ) return images, has_nsfw_concepts
683
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
1
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _snake_case : @property def UpperCamelCase__ ( self ): return self.get_dummy_input() @property def UpperCamelCase__ ( self ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def UpperCamelCase__ ( self ,_snake_case=True ,_snake_case=False ,_snake_case=False ,_snake_case=False ,): UpperCAmelCase_ : List[Any] = 4 UpperCAmelCase_ : Any = 32 UpperCAmelCase_ : Tuple = (32, 32) UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : str = torch.device(_snake_case ) UpperCAmelCase_ : Optional[Any] = (batch_size, num_channels) + sizes UpperCAmelCase_ : Tuple = randn_tensor(_snake_case ,generator=_snake_case ,device=_snake_case ) UpperCAmelCase_ : Union[str, Any] = {"hidden_states": hidden_states} if include_temb: UpperCAmelCase_ : Optional[Any] = 1_28 UpperCAmelCase_ : Any = randn_tensor((batch_size, temb_channels) ,generator=_snake_case ,device=_snake_case ) if include_res_hidden_states_tuple: UpperCAmelCase_ : Optional[Any] = torch.manual_seed(1 ) UpperCAmelCase_ : List[str] = (randn_tensor(_snake_case ,generator=_snake_case ,device=_snake_case ),) if include_encoder_hidden_states: UpperCAmelCase_ : int = floats_tensor((batch_size, 32, 32) ).to(_snake_case ) if include_skip_sample: UpperCAmelCase_ : str = randn_tensor(((batch_size, 3) + sizes) ,generator=_snake_case ,device=_snake_case ) return dummy_input def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = { "in_channels": 32, "out_channels": 32, "temb_channels": 1_28, } if self.block_type == "up": UpperCAmelCase_ : List[str] = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) UpperCAmelCase_ : List[Any] = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : Tuple = self.block_class(**_snake_case ) unet_block.to(_snake_case ) unet_block.eval() with torch.no_grad(): UpperCAmelCase_ : Any = unet_block(**_snake_case ) if isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ : List[Any] = output[0] self.assertEqual(output.shape ,self.output_shape ) UpperCAmelCase_ : Union[str, Any] = output[0, -1, -3:, -3:] UpperCAmelCase_ : Tuple = torch.tensor(_snake_case ).to(_snake_case ) assert torch_all_close(output_slice.flatten() ,_snake_case ,atol=5E-3 ) @unittest.skipIf(torch_device == "mps" ,"Training is not supported in mps" ) def UpperCamelCase__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : Tuple = self.block_class(**_snake_case ) model.to(_snake_case ) model.train() UpperCAmelCase_ : List[Any] = model(**_snake_case ) if isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ : Optional[Any] = output[0] UpperCAmelCase_ : int = torch.device(_snake_case ) UpperCAmelCase_ : List[str] = randn_tensor(output.shape ,device=_snake_case ) UpperCAmelCase_ : str = torch.nn.functional.mse_loss(_snake_case ,_snake_case ) loss.backward()
71
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =XGLMTokenizer _lowerCamelCase =XGLMTokenizerFast _lowerCamelCase =True _lowerCamelCase =True def __snake_case ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[Any] ): UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(a__ ) , 1008 ) def __snake_case ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __snake_case ( self : Optional[Any] ): return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def __snake_case ( self : Optional[int] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a__ , f.name ) UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ ) UpperCAmelCase = pickle.dumps(a__ ) pickle.loads(a__ ) def __snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(a__ ) UpperCAmelCase = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __snake_case ( self : int ): UpperCAmelCase = '''Hello World!''' UpperCAmelCase = [2, 31227, 4447, 35] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : List[str] ): UpperCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : Any ): # fmt: off UpperCAmelCase = { '''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
51
0
"""simple docstring""" snake_case = 8.3_1_4_4_5_9_8 def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example snake_case = 3_0_0 snake_case = 2_8 snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
406
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case = '▁' snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class UpperCamelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : int = BertGenerationTokenizer UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : str = True def A ( self ) -> int: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE = BertGenerationTokenizer(lowercase__ , keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = '<s>' SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(lowercase__ ) , 1002 ) def A ( self ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = BertGenerationTokenizer(lowercase__ , keep_accents=lowercase__ ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [285, 46, 10, 170, 382] , ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A ( self ) -> Any: """simple docstring""" return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = 'Hello World!' SCREAMING_SNAKE_CASE = [18536, 2260, 101] self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @slow def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) SCREAMING_SNAKE_CASE = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @require_torch @slow def A ( self ) -> int: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence SCREAMING_SNAKE_CASE = list(self.big_tokenizer.get_vocab().keys() )[:10] SCREAMING_SNAKE_CASE = ' '.join(lowercase__ ) SCREAMING_SNAKE_CASE = self.big_tokenizer.encode_plus(lowercase__ , return_tensors='pt' , return_token_type_ids=lowercase__ ) SCREAMING_SNAKE_CASE = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=lowercase__ ) SCREAMING_SNAKE_CASE = BertGenerationConfig() SCREAMING_SNAKE_CASE = BertGenerationEncoder(lowercase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase__ ) model(**lowercase__ ) @slow def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
406
1
import os import string import sys SCREAMING_SNAKE_CASE__ = 1 << 8 SCREAMING_SNAKE_CASE__ = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 2_7, '''up''': 6_5 + ARROW_KEY_FLAG, '''down''': 6_6 + ARROW_KEY_FLAG, '''right''': 6_7 + ARROW_KEY_FLAG, '''left''': 6_8 + ARROW_KEY_FLAG, '''mod_int''': 9_1, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 5_0, '''delete''': 5_1, '''pg_up''': 5_3, '''pg_down''': 5_4, } SCREAMING_SNAKE_CASE__ = KEYMAP['''up'''] SCREAMING_SNAKE_CASE__ = KEYMAP['''left'''] if sys.platform == "win32": SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = { b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(1_0): SCREAMING_SNAKE_CASE__ = ord(str(i)) def A ( ) -> Union[str, Any]: if os.name == "nt": import msvcrt A__ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCamelCase ) == 0: # Read the keystroke A__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): A__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: A__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(__UpperCamelCase ) if ord(__UpperCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) A__ = chr(KEYMAP['esc'] ) except KeyError: A__ = cha[1] else: A__ = ch.decode(__UpperCamelCase ) else: A__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty A__ = sys.stdin.fileno() A__ = termios.tcgetattr(__UpperCamelCase ) try: tty.setraw(__UpperCamelCase ) A__ = sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCamelCase , termios.TCSADRAIN , __UpperCamelCase ) return ch def A ( ) -> Dict: A__ = get_raw_chars() if ord(__UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCamelCase ) == KEYMAP["esc"]: A__ = get_raw_chars() if ord(__UpperCamelCase ) == KEYMAP["mod_int"]: A__ = get_raw_chars() if ord(__UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
9
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if exponent == 1: return base if exponent % 2 == 0: A__ = _modexpt(__UpperCamelCase , exponent // 2 , __UpperCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCamelCase , exponent - 1 , __UpperCamelCase )) % modulo_value def A ( __UpperCamelCase = 1_777 , __UpperCamelCase = 1_855 , __UpperCamelCase = 8 ) -> int: A__ = base for _ in range(1 , __UpperCamelCase ): A__ = _modexpt(__UpperCamelCase , __UpperCamelCase , 10**digits ) return result if __name__ == "__main__": print(f'{solution() = }')
9
1
def UpperCAmelCase__ ( lowerCamelCase_ : int ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): __a : str = f'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCamelCase_ ) if number < 0: return False __a : Dict = number * number while number > 0: if number % 1_0 != number_square % 1_0: return False number //= 1_0 number_square //= 1_0 return True if __name__ == "__main__": import doctest doctest.testmod()
577
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller SCREAMING_SNAKE_CASE__ = 3 def UpperCAmelCase__ ( lowerCamelCase_ : int ): print('Generating primitive root of p' ) while True: __a : Optional[int] = random.randrange(3 , lowerCamelCase_ ) if pow(lowerCamelCase_ , 2 , lowerCamelCase_ ) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) == 1: continue return g def UpperCAmelCase__ ( lowerCamelCase_ : int ): print('Generating prime p...' ) __a : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_ ) # select large prime number. __a : Any = primitive_root(lowerCamelCase_ ) # one primitive root on modulo p. __a : Optional[int] = random.randrange(3 , lowerCamelCase_ ) # private_key -> have to be greater than 2 for safety. __a : Optional[int] = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) __a : List[Any] = (key_size, e_a, e_a, p) __a : str = (key_size, d) return public_key, private_key def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : int ): if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print('\nWARNING:' ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' 'Use a different name or delete these files and re-run this program.' ) sys.exit() __a , __a : Dict = generate_key(lowerCamelCase_ ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , 'w' ) as fo: fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , 'w' ) as fo: fo.write(f'''{private_key[0]},{private_key[1]}''' ) def UpperCAmelCase__ ( ): print('Making key files...' ) make_key_files('elgamal' , 2_0_4_8 ) print('Key files generation successful' ) if __name__ == "__main__": main()
577
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def lowercase__ ( snake_case_ :Optional[Any] ): __UpperCAmelCase = 384 if "tiny" in model_name: __UpperCAmelCase = [3, 3, 9, 3] __UpperCAmelCase = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase = [3, 3, 27, 3] __UpperCAmelCase = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase = [3, 3, 27, 3] __UpperCAmelCase = [128, 256, 512, 1_024] __UpperCAmelCase = 512 if "large" in model_name: __UpperCAmelCase = [3, 3, 27, 3] __UpperCAmelCase = [192, 384, 768, 1_536] __UpperCAmelCase = 768 if "xlarge" in model_name: __UpperCAmelCase = [3, 3, 27, 3] __UpperCAmelCase = [256, 512, 1_024, 2_048] __UpperCAmelCase = 1_024 # set label information __UpperCAmelCase = 150 __UpperCAmelCase = '''huggingface/label-files''' __UpperCAmelCase = '''ade20k-id2label.json''' __UpperCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()} __UpperCAmelCase = {v: k for k, v in idalabel.items()} __UpperCAmelCase = ConvNextConfig( depths=snake_case_ , hidden_sizes=snake_case_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __UpperCAmelCase = UperNetConfig( backbone_config=snake_case_ , auxiliary_in_channels=snake_case_ , num_labels=snake_case_ , idalabel=snake_case_ , labelaid=snake_case_ , ) return config def lowercase__ ( snake_case_ :Dict ): __UpperCAmelCase = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def lowercase__ ( snake_case_ :Tuple , snake_case_ :Optional[int] , snake_case_ :Any ): __UpperCAmelCase = dct.pop(snake_case_ ) __UpperCAmelCase = val def lowercase__ ( snake_case_ :Dict , snake_case_ :List[str] , snake_case_ :List[Any] ): __UpperCAmelCase = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } __UpperCAmelCase = model_name_to_url[model_name] __UpperCAmelCase = torch.hub.load_state_dict_from_url(snake_case_ , map_location='''cpu''' )['''state_dict'''] __UpperCAmelCase = get_upernet_config(snake_case_ ) __UpperCAmelCase = UperNetForSemanticSegmentation(snake_case_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase = state_dict.pop(snake_case_ ) if "bn" in key: __UpperCAmelCase = key.replace('''bn''' , '''batch_norm''' ) __UpperCAmelCase = val # rename keys __UpperCAmelCase = create_rename_keys(snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) model.load_state_dict(snake_case_ ) # verify on image __UpperCAmelCase = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' __UpperCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert('''RGB''' ) __UpperCAmelCase = SegformerImageProcessor() __UpperCAmelCase = processor(snake_case_ , return_tensors='''pt''' ).pixel_values with torch.no_grad(): __UpperCAmelCase = model(snake_case_ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case_ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case_ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": _lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f"""upernet-convnext-{size}""" for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowercase : Dict = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
def UpperCamelCase ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): snake_case : Dict = set() # Replace all the whitespace in our sentence snake_case : List[Any] = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowerCamelCase ) == 26 def UpperCamelCase ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): snake_case : Optional[int] = [False] * 26 for char in input_str: if char.islower(): snake_case : Dict = True elif char.isupper(): snake_case : Optional[Any] = True return all(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase ( ): from timeit import timeit snake_case : Tuple = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=__lowerCamelCase ) ) print(timeit("is_pangram_faster()" , setup=__lowerCamelCase ) ) print(timeit("is_pangram_fastest()" , setup=__lowerCamelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
204
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) A_ = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
479
from __future__ import annotations from collections.abc import MutableSequence class __lowercase : def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : MutableSequence[float] ) -> None: '''simple docstring''' if len(__lowerCamelCase ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) lowercase = list(__lowerCamelCase ) lowercase = degree def __add__( self : Any , __lowerCamelCase : Polynomial ) -> Polynomial: '''simple docstring''' if self.degree > polynomial_a.degree: lowercase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __lowerCamelCase ) else: lowercase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __lowerCamelCase ) def __sub__( self : str , __lowerCamelCase : Polynomial ) -> Polynomial: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : str ) -> Polynomial: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : List[str] , __lowerCamelCase : Polynomial ) -> Polynomial: '''simple docstring''' lowercase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __lowerCamelCase ) def __a ( self : List[str] , __lowerCamelCase : int | float ) -> int | float: '''simple docstring''' lowercase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : str ) -> str: '''simple docstring''' lowercase = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__lowerCamelCase ) return polynomial def __repr__( self : Tuple ) -> str: '''simple docstring''' return self.__str__() def __a ( self : Union[str, Any] ) -> Polynomial: '''simple docstring''' lowercase = [0] * self.degree for i in range(self.degree ): lowercase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __lowerCamelCase ) def __a ( self : Union[str, Any] , __lowerCamelCase : int | float = 0 ) -> Polynomial: '''simple docstring''' lowercase = [0] * (self.degree + 2) lowercase = constant for i in range(self.degree + 1 ): lowercase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __lowerCamelCase ) def __eq__( self : Tuple , __lowerCamelCase : object ) -> bool: '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , __lowerCamelCase : object ) -> bool: '''simple docstring''' return not self.__eq__(__lowerCamelCase )
479
1
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =RoCBertTokenizer _lowerCamelCase =None _lowerCamelCase =False _lowerCamelCase =True _lowerCamelCase =filter_non_english def __snake_case ( self : Any ): super().setUp() UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] UpperCAmelCase = {} UpperCAmelCase = {} for i, value in enumerate(a__ ): UpperCAmelCase = i UpperCAmelCase = i UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(a__ , a__ , ensure_ascii=a__ ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(a__ , a__ , ensure_ascii=a__ ) def __snake_case ( self : List[Any] ): UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCAmelCase = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(a__ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(a__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(a__ ) , [5, 6, 2, 5, 7, 8] ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self : Tuple ): UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ , strip_accents=a__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ , strip_accents=a__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self : Tuple ): UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self : int ): UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ , strip_accents=a__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ , strip_accents=a__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCAmelCase = {} for i, token in enumerate(a__ ): UpperCAmelCase = i UpperCAmelCase = RoCBertWordpieceTokenizer(vocab=a__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __snake_case ( self : int ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __snake_case ( self : Union[str, Any] ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __snake_case ( self : Any ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(a__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: UpperCAmelCase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(a__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def __snake_case ( self : int ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) UpperCAmelCase = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." UpperCAmelCase = tokenizer_r.encode_plus( a__ , return_attention_mask=a__ , return_token_type_ids=a__ , return_offsets_mapping=a__ , add_special_tokens=a__ , ) UpperCAmelCase = tokenizer_r.do_lower_case if hasattr(a__ , '''do_lower_case''' ) else False UpperCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __snake_case ( self : List[str] ): UpperCAmelCase = ['''的''', '''人''', '''有'''] UpperCAmelCase = ''''''.join(a__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase = True UpperCAmelCase = self.tokenizer_class.from_pretrained(a__ , **a__ ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) UpperCAmelCase = tokenizer_p.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = tokenizer_r.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(a__ ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(a__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(a__ , a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = False UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(a__ , **a__ ) UpperCAmelCase = tokenizer_r.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = tokenizer_p.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(a__ ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(a__ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(a__ ) ] self.assertListEqual(a__ , a__ ) self.assertListEqual(a__ , a__ ) @slow def __snake_case ( self : str ): UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCAmelCase = tokenizer.encode('''你好''' , add_special_tokens=a__ ) UpperCAmelCase = tokenizer.encode('''你是谁''' , add_special_tokens=a__ ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(a__ ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __snake_case ( self : str ): UpperCAmelCase = self.get_tokenizers(do_lower_case=a__ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase = '''你好,你是谁''' UpperCAmelCase = tokenizer.tokenize(a__ ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ ) UpperCAmelCase = tokenizer.convert_tokens_to_shape_ids(a__ ) UpperCAmelCase = tokenizer.convert_tokens_to_pronunciation_ids(a__ ) UpperCAmelCase = tokenizer.prepare_for_model( a__ , a__ , a__ , add_special_tokens=a__ ) UpperCAmelCase = tokenizer.encode_plus(a__ , add_special_tokens=a__ ) self.assertEqual(a__ , a__ )
51
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __snake_case : List[Any] = get_tests_dir('fixtures/test_sentencepiece.model') __snake_case : Union[str, Any] = {'target_lang': 'fi', 'source_lang': 'en'} __snake_case : Union[str, Any] = '>>zh<<' __snake_case : List[str] = 'Helsinki-NLP/' if is_torch_available(): __snake_case : Optional[int] = 'pt' elif is_tf_available(): __snake_case : List[Any] = 'tf' else: __snake_case : Union[str, Any] = 'jax' @require_sentencepiece class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = MarianTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True def _SCREAMING_SNAKE_CASE ( self: int) -> Tuple: """simple docstring""" super().setUp() __lowerCAmelCase : Dict = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] __lowerCAmelCase : Union[str, Any] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE)))) __lowerCAmelCase : int = Path(self.tmpdirname) save_json(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["vocab"]) save_json(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"]) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["source_spm"]) copyfile(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["target_spm"]) __lowerCAmelCase : Tuple = MarianTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self: Dict , **_SCREAMING_SNAKE_CASE: List[str]) -> MarianTokenizer: """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[str]) -> Dict: """simple docstring""" return ( "This is a test", "This is a test", ) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = "</s>" __lowerCAmelCase : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "</s>") self.assertEqual(vocab_keys[1] , "<unk>") self.assertEqual(vocab_keys[-1] , "<pad>") self.assertEqual(len(_SCREAMING_SNAKE_CASE) , 9) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""") __lowerCAmelCase : int = en_de_tokenizer(["I am a small frog"] , return_tensors=_SCREAMING_SNAKE_CASE) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(_SCREAMING_SNAKE_CASE , batch.input_ids[0]) __lowerCAmelCase : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = [x.name for x in Path(_SCREAMING_SNAKE_CASE).glob("*")] self.assertIn("source.spm" , _SCREAMING_SNAKE_CASE) MarianTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.get_tokenizer() __lowerCAmelCase : int = tok( ["I am a small frog" * 1000, "I am a small frog"] , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) self.assertEqual(batch.input_ids.shape , (2, 512)) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : str = tok(["I am a tiny frog", "I am a small frog"] , padding=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) self.assertEqual(batch_smaller.input_ids.shape , (2, 10)) @slow def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = {"input_ids": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs") __lowerCAmelCase : List[str] = "Tämä on testi" __lowerCAmelCase : int = "This is a test" __lowerCAmelCase : Union[str, Any] = [76, 7, 2047, 2] __lowerCAmelCase : Dict = [69, 12, 11, 940, 2] __lowerCAmelCase : List[str] = tokenizer(_SCREAMING_SNAKE_CASE).input_ids self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = tokenizer(text_target=_SCREAMING_SNAKE_CASE).input_ids self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
293
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCAmelCase = """true""" def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=82 , SCREAMING_SNAKE_CASE=16 )-> Tuple: """simple docstring""" set_seed(42 ) snake_case_ = RegressionModel() snake_case_ = deepcopy(SCREAMING_SNAKE_CASE ) snake_case_ = RegressionDataset(length=SCREAMING_SNAKE_CASE ) snake_case_ = DataLoader(SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) model.to(accelerator.device ) snake_case_ , snake_case_ = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return model, ddp_model, dataloader def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False )-> Any: """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) snake_case_ = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(SCREAMING_SNAKE_CASE ): snake_case_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs with accelerator.main_process_first(): snake_case_ = dataset.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) snake_case_ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=16 ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Optional[Any]: """simple docstring""" snake_case_ = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) snake_case_ = get_dataloader(SCREAMING_SNAKE_CASE , not dispatch_batches ) snake_case_ = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[Any]: """simple docstring""" snake_case_ = [] for batch in dataloader: snake_case_ , snake_case_ = batch.values() with torch.no_grad(): snake_case_ = model(SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) snake_case_ , snake_case_ = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE ) targs.append(SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = torch.cat(SCREAMING_SNAKE_CASE ), torch.cat(SCREAMING_SNAKE_CASE ) return logits, targs def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=82 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=16 )-> Dict: """simple docstring""" snake_case_ , snake_case_ , snake_case_ = get_basic_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = generate_predictions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert ( len(SCREAMING_SNAKE_CASE ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE )}''' def __lowerCAmelCase (SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False )-> Optional[int]: """simple docstring""" snake_case_ = evaluate.load('''glue''' , '''mrpc''' ) snake_case_ , snake_case_ = get_mrpc_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # First do baseline snake_case_ , snake_case_ , snake_case_ = setup['''no'''] model.to(SCREAMING_SNAKE_CASE ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE ) with torch.inference_mode(): snake_case_ = model(**SCREAMING_SNAKE_CASE ) snake_case_ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE , references=batch['''labels'''] ) snake_case_ = metric.compute() # Then do distributed snake_case_ , snake_case_ , snake_case_ = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): snake_case_ = model(**SCREAMING_SNAKE_CASE ) snake_case_ = outputs.logits.argmax(dim=-1 ) snake_case_ = batch['''labels'''] snake_case_ , snake_case_ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE ) snake_case_ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __lowerCAmelCase ()-> Union[str, Any]: """simple docstring""" snake_case_ = Accelerator(split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: snake_case_ = Accelerator(split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(SCREAMING_SNAKE_CASE , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) snake_case_ = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE , 512 ) accelerator.state._reset_state() def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" main() if __name__ == "__main__": main()
715
import copy import re class lowerCAmelCase_ : '''simple docstring''' __snake_case = "hp" __snake_case = {} __snake_case = None @classmethod def UpperCamelCase__ ( cls , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def UpperCamelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): if len(_UpperCAmelCase ) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word ): raise Exception(F'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_UpperCAmelCase ) + 1 ): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_UpperCAmelCase ): snake_case_ = '''''' while integer != 0: snake_case_ = chr(ord('''A''' ) + integer % 10 ) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '''#''' + int_to_alphabetic(_UpperCAmelCase ) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def UpperCamelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = param_name.split('''_''' ) snake_case_ = [TrialShortNamer.shortname_for_word(_UpperCAmelCase , _UpperCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['''''', '''_'''] for separator in separators: snake_case_ = separator.join(_UpperCAmelCase ) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def UpperCamelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = TrialShortNamer.shortname_for_key(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = short_name snake_case_ = param_name @classmethod def UpperCamelCase__ ( cls ): if cls.NAMING_INFO is not None: return snake_case_ = { '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } snake_case_ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = info @classmethod def UpperCamelCase__ ( cls , _UpperCAmelCase ): cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['''short_param'''][k] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): snake_case_ = 1 if v else 0 snake_case_ = '''''' if isinstance(_UpperCAmelCase , (int, float) ) else '''-''' snake_case_ = F'''{key}{sep}{v}''' name.append(_UpperCAmelCase ) return "_".join(_UpperCAmelCase ) @classmethod def UpperCamelCase__ ( cls , _UpperCAmelCase ): snake_case_ = repr[len(cls.PREFIX ) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('''_''' ) snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('''-''' ) else: snake_case_ = re.sub('''[0-9.]''' , '''''' , _UpperCAmelCase ) snake_case_ = float(re.sub('''[^0-9.]''' , '''''' , _UpperCAmelCase ) ) snake_case_ = cls.NAMING_INFO['''reverse_short_param'''][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
531
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration lowerCamelCase__ : List[Any] = pytest.mark.integration lowerCamelCase__ : Dict = {"""comet"""} lowerCamelCase__ : Optional[int] = importlib.util.find_spec("""fairseq""") is not None lowerCamelCase__ : Tuple = {"""code_eval"""} lowerCamelCase__ : str = os.name == """nt""" lowerCamelCase__ : int = {"""bertscore""", """frugalscore""", """perplexity"""} lowerCamelCase__ : Tuple = importlib.util.find_spec("""transformers""") is not None def UpperCamelCase ( lowercase_ ) -> Optional[Any]: '''simple docstring''' @wraps(lowercase_ ) def wrapper(self , lowercase_ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , lowercase_ ) return wrapper def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' @wraps(lowercase_ ) def wrapper(self , lowercase_ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , lowercase_ ) return wrapper def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' @wraps(lowercase_ ) def wrapper(self , lowercase_ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , lowercase_ ) return wrapper def UpperCamelCase ( ) -> List[str]: '''simple docstring''' lowercase__ : Union[str, Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @local class _snake_case ( parameterized.TestCase ): __lowerCAmelCase : Any = {} __lowerCAmelCase : str = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""") @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = """[...]""" lowercase__ : Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_)).module_path) lowercase__ : List[str] = datasets.load.import_main_class(metric_module.__name__ , dataset=SCREAMING_SNAKE_CASE_) # check parameters lowercase__ : Any = inspect.signature(metric._compute).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values())) # no **kwargs # run doctest with self.patch_intensive_calls(SCREAMING_SNAKE_CASE_ , metric_module.__name__): with self.use_local_metrics(): try: lowercase__ : int = doctest.testmod(SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , raise_on_error=SCREAMING_SNAKE_CASE_) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @slow def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[int] = """[...]""" lowercase__ : Union[str, Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_)).module_path) # run doctest with self.use_local_metrics(): lowercase__ : Union[str, Any] = doctest.testmod(SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , raise_on_error=SCREAMING_SNAKE_CASE_) self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @contextmanager def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](SCREAMING_SNAKE_CASE_): yield else: yield @contextmanager def lowercase__ ( self): '''simple docstring''' def load_local_metric(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): return load_metric(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_) , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) with patch("""datasets.load_metric""") as mock_load_metric: lowercase__ : Union[str, Any] = load_local_metric yield @classmethod def lowercase__ ( cls , SCREAMING_SNAKE_CASE_): '''simple docstring''' def wrapper(SCREAMING_SNAKE_CASE_): lowercase__ : Any = contextmanager(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class _snake_case ( UpperCAmelCase_ ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' assert len(input_dict["""input_ids"""]) == 2 return np.array([1.0_3, 1.0_4]) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: lowercase__ : str = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' import torch def bert_cos_score_idf(lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowercase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: lowercase__ : int = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def UpperCamelCase ( lowercase_ ) -> Dict: '''simple docstring''' def load_from_checkpoint(lowercase_ ): class _snake_case : def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' assert len(SCREAMING_SNAKE_CASE_) == 2 lowercase__ : Optional[Any] = [0.1_9, 0.9_2] return scores, sum(SCREAMING_SNAKE_CASE_) / len(SCREAMING_SNAKE_CASE_) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: lowercase__ : Union[str, Any] = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: lowercase__ : List[Any] = load_from_checkpoint yield def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowercase__ : Optional[Any] = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) lowercase__ : int = """ERROR""" lowercase__ : Tuple = F'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(lowercase_ , match=re.escape(lowercase_ ) ): metric.compute(predictions=[] , references=[] , scheme=lowercase_ )
12
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True def lowercase__ ( self): '''simple docstring''' super().setup() lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): lowercase__ : int = logits.shape[-1] lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 ) lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ : Optional[int] = reduction(lowercase_ ) return loss lowercase__ : int = partial(lowercase_ , reduction=jnp.mean ) lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _snake_case : __lowerCAmelCase : str = "google/bigbird-roberta-base" __lowerCAmelCase : int = 3_000 __lowerCAmelCase : int = 10_500 __lowerCAmelCase : int = 128 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 5 # tx_args __lowerCAmelCase : float = 3e-5 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 20_000 __lowerCAmelCase : float = 0.0_095 __lowerCAmelCase : str = "bigbird-roberta-natural-questions" __lowerCAmelCase : str = "training-expt" __lowerCAmelCase : str = "data/nq-training.jsonl" __lowerCAmelCase : str = "data/nq-validation.jsonl" def lowercase__ ( self): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_) lowercase__ : Any = os.path.join(self.base_dir , self.save_dir) lowercase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class _snake_case : __lowerCAmelCase : int __lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""]) lowercase__ : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))] while len(SCREAMING_SNAKE_CASE_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]: '''simple docstring''' if seed is not None: lowercase__ : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' def loss_fn(lowercase_ ): lowercase__ : Dict = model_inputs.pop("""start_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""end_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Any = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ ) lowercase__ : Tuple = jax.value_and_grad(lowercase_ ) lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params ) lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" ) lowercase__ : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str: '''simple docstring''' lowercase__ : Tuple = model_inputs.pop("""start_labels""" ) lowercase__ : List[str] = model_inputs.pop("""end_labels""" ) lowercase__ : int = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class _snake_case ( train_state.TrainState ): __lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class _snake_case : __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable = None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : List[str] = model.params lowercase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[Any] = args lowercase__ : Union[str, Any] = data_collator lowercase__ : str = lr lowercase__ : Union[str, Any] = params lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_) return state def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = self.args lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size lowercase__ : int = jax.random.PRNGKey(0) lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count()) for epoch in range(args.max_epochs): lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa) lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: lowercase__ : List[str] = jax_utils.unreplicate(state.step) lowercase__ : str = running_loss.item() / i lowercase__ : Tuple = self.scheduler_fn(state_step - 1) lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_)) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) lowercase__ : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_) print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_) print("""DONE""") def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase__ : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase__ : Dict = from_bytes(state.opt_state , f.read() ) lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Optional[Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = num_train_steps - warmup_steps lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ ) lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' def weight_decay_mask(lowercase_ ): lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ ) lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
12
1
from collections import namedtuple lowerCamelCase : List[str] = namedtuple('from_to', 'from_ to') lowerCamelCase : Any = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1_0_0_0), "kilolitre": from_to(1, 1), "gallon": from_to(0.0_0454, 2_6_4.1_7_2), "cubicyard": from_to(0.7_6455, 1.3_0795), "cubicfoot": from_to(0.028, 3_5.3_1_4_7), "cup": from_to(0.0_0023_6588, 4_2_2_6.7_5), } def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + """, """.join(a_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + """, """.join(a_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ : Optional[int] = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = ['GLPNFeatureExtractor'] lowercase_ : str = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowercase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
64
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : Union[str, Any] = KandinskyVaaPriorPipeline lowerCAmelCase : Dict = ["""prompt"""] lowerCAmelCase : List[Any] = ["""prompt""", """negative_prompt"""] lowerCAmelCase : Optional[int] = [ """num_images_per_prompt""", """generator""", """num_inference_steps""", """latents""", """negative_prompt""", """guidance_scale""", """output_type""", """return_dict""", ] lowerCAmelCase : Dict = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 100 @property def __A ( self ): A__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(UpperCAmelCase__ ) @property def __A ( self ): torch.manual_seed(0 ) A__ = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } A__ = PriorTransformer(**UpperCAmelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A__ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __A ( self ): torch.manual_seed(0 ) A__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A__ = CLIPVisionModelWithProjection(UpperCAmelCase__ ) return model @property def __A ( self ): A__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCAmelCase__ , do_normalize=UpperCAmelCase__ , do_resize=UpperCAmelCase__ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor def __A ( self ): A__ = self.dummy_prior A__ = self.dummy_image_encoder A__ = self.dummy_text_encoder A__ = self.dummy_tokenizer A__ = self.dummy_image_processor A__ = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_000 , clip_sample=UpperCAmelCase__ , clip_sample_range=10.0 , ) A__ = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=0 ): if str(UpperCAmelCase__ ).startswith("mps" ): A__ = torch.manual_seed(UpperCAmelCase__ ) else: A__ = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) A__ = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def __A ( self ): A__ = "cpu" A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__ ) A__ = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) A__ = pipe(**self.get_dummy_inputs(UpperCAmelCase__ ) ) A__ = output.image_embeds A__ = pipe( **self.get_dummy_inputs(UpperCAmelCase__ ) , return_dict=UpperCAmelCase__ , )[0] A__ = image[0, -10:] A__ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A__ = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __A ( self ): A__ = torch_device == "cpu" A__ = True A__ = False self._test_inference_batch_single_identical( test_max_difference=UpperCAmelCase__ , relax_max_difference=UpperCAmelCase__ , test_mean_pixel_difference=UpperCAmelCase__ , ) @skip_mps def __A ( self ): A__ = torch_device == "cpu" A__ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCAmelCase__ , test_mean_pixel_difference=UpperCAmelCase__ , )
491
0
"""simple docstring""" from __future__ import annotations def _lowercase ( __snake_case ,__snake_case ) -> list[list[int]]: __lowerCAmelCase : list[list[int]] = [] create_all_state(1 ,__snake_case ,__snake_case ,[] ,__snake_case ) return result def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(__snake_case ,total_number - level + 2 ): current_list.append(__snake_case ) create_all_state(i + 1 ,__snake_case ,level - 1 ,__snake_case ,__snake_case ) current_list.pop() def _lowercase ( __snake_case ) -> None: for i in total_list: print(*__snake_case ) if __name__ == "__main__": __snake_case : int = 4 __snake_case : Union[str, Any] = 2 __snake_case : int = generate_all_combinations(n, k) print_all_state(total_list)
615
"""simple docstring""" import unittest from knapsack import knapsack as k class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : str = [0] __lowerCAmelCase : Union[str, Any] = [0] __lowerCAmelCase : List[Any] = len(_SCREAMING_SNAKE_CASE) self.assertEqual(k.knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) , 0) __lowerCAmelCase : Dict = [60] __lowerCAmelCase : Optional[int] = [10] __lowerCAmelCase : Tuple = len(_SCREAMING_SNAKE_CASE) self.assertEqual(k.knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) , 0) def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" __lowerCAmelCase : Dict = 3 __lowerCAmelCase : Dict = [1, 2, 3] __lowerCAmelCase : str = [3, 2, 1] __lowerCAmelCase : Optional[int] = len(_SCREAMING_SNAKE_CASE) self.assertEqual(k.knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) , 5) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = 50 __lowerCAmelCase : Dict = [60, 100, 120] __lowerCAmelCase : List[Any] = [10, 20, 30] __lowerCAmelCase : int = len(_SCREAMING_SNAKE_CASE) self.assertEqual(k.knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) , 220) if __name__ == "__main__": unittest.main()
615
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _UpperCAmelCase : str = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _UpperCAmelCase : Union[str, Any] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: if "://" in dataset_path: lowerCamelCase__ : List[str] = dataset_path.split('://' )[1] return dataset_path def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = not is_remote_filesystem(__UpperCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__UpperCamelCase ) , fs._strip_protocol(__UpperCamelCase ) ) else: fs.mv(__UpperCamelCase , __UpperCamelCase , recursive=__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> None: if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowerCamelCase__ : str = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : Optional[Any] = threading.Lock()
295
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , *_snake_case : int , **_snake_case : Optional[int] ): """simple docstring""" warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
9
0
'''simple docstring''' from bisect import bisect from itertools import accumulate def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : x[0] / x[1] , reverse=__SCREAMING_SNAKE_CASE ) _UpperCamelCase , _UpperCamelCase =[i[0] for i in r], [i[1] for i in r] _UpperCamelCase =list(accumulate(__SCREAMING_SNAKE_CASE ) ) _UpperCamelCase =bisect(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
271
'''simple docstring''' import argparse import datetime def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase ={ '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } _UpperCamelCase ={0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__SCREAMING_SNAKE_CASE ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month _UpperCamelCase =int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) _UpperCamelCase =date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day _UpperCamelCase =int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator _UpperCamelCase =date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year _UpperCamelCase =int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation _UpperCamelCase =datetime.date(int(__SCREAMING_SNAKE_CASE ) , int(__SCREAMING_SNAKE_CASE ) , int(__SCREAMING_SNAKE_CASE ) ) # Start math if m <= 2: _UpperCamelCase =y - 1 _UpperCamelCase =m + 12 # maths var _UpperCamelCase =int(str(__SCREAMING_SNAKE_CASE )[:2] ) _UpperCamelCase =int(str(__SCREAMING_SNAKE_CASE )[2:] ) _UpperCamelCase =int(2.6 * m - 5.3_9 ) _UpperCamelCase =int(c / 4 ) _UpperCamelCase =int(k / 4 ) _UpperCamelCase =int(d + k ) _UpperCamelCase =int(t + u + v + x ) _UpperCamelCase =int(z - (2 * c) ) _UpperCamelCase =round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response _UpperCamelCase =f'''Your date {date_input}, is a {days[str(__SCREAMING_SNAKE_CASE )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : List[Any] = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) __lowerCamelCase : Union[str, Any] = parser.parse_args() zeller(args.date_input)
271
1
'''simple docstring''' from typing import Any class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , A : Any ): _UpperCAmelCase : Dict = data _UpperCAmelCase : Dict = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any ): _UpperCAmelCase : str = None def _A ( self : Tuple ): _UpperCAmelCase : Any = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase : int = temp.next print() def _A ( self : Tuple , A : int ): _UpperCAmelCase : List[str] = Node(A ) _UpperCAmelCase : int = self.head _UpperCAmelCase : str = new_node def _A ( self : Dict , A : Union[str, Any] , A : Tuple ): if node_data_a == node_data_a: return else: _UpperCAmelCase : Dict = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : Optional[int] = node_a.next _UpperCAmelCase : int = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : Union[str, Any] = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = node_a.data, node_a.data if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
244
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase__ : def __init__( self , lowercase , ) -> List[str]: __UpperCamelCase = parent __UpperCamelCase = 1_3 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 9_9 __UpperCamelCase = 3_2 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 3_7 __UpperCamelCase = """gelu""" __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 5_1_2 __UpperCamelCase = 1_6 __UpperCamelCase = 2 __UpperCamelCase = 0.02 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = None def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: __UpperCamelCase = TFDistilBertModel(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: __UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase ) __UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForSequenceClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: __UpperCamelCase = self.num_choices __UpperCamelCase = TFDistilBertForMultipleChoice(lowercase ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForTokenClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFDistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 ) def __lowerCamelCase ( self ) -> str: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def __lowerCamelCase ( self ) -> int: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def __lowerCamelCase ( self ) -> Union[str, Any]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class UpperCAmelCase__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase = model(lowercase )[0] __UpperCamelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , lowercase ) __UpperCamelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
601
0
import math def lowerCAmelCase__ ( _a : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase__ ( _a : float = 0.1 ): snake_case_ : int = 3 snake_case_ : Optional[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_a ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
114
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Any = logging.get_logger(__name__) lowercase : str = { '''naver-clova-ix/donut-base''': '''https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json''', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Tuple = 'donut-swin' A : Union[str, Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=96 , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[3, 6, 12, 24] , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , **_SCREAMING_SNAKE_CASE , ) -> List[str]: super().__init__(**_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = image_size snake_case_ : Any = patch_size snake_case_ : str = num_channels snake_case_ : Dict = embed_dim snake_case_ : Tuple = depths snake_case_ : List[Any] = len(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = num_heads snake_case_ : Optional[int] = window_size snake_case_ : Any = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : str = drop_path_rate snake_case_ : List[str] = hidden_act snake_case_ : Optional[int] = use_absolute_embeddings snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Any = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE ) - 1) )
114
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : List[Any] = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int = 1_0_0_0 ): snake_case_ ,snake_case_ : List[str] = 1, 1 snake_case_ : List[str] = 2 while True: snake_case_ : Tuple = 0 snake_case_ : Union[str, Any] = fa + fa snake_case_ ,snake_case_ : str = fa, f index += 1 for _ in str(lowerCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
666
0
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return round(float(moles / volume ) * nfactor ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
429
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(SCREAMING_SNAKE_CASE , n - 1 , SCREAMING_SNAKE_CASE ) * a) % mod else: lowercase__ = binary_exponentiation(SCREAMING_SNAKE_CASE , n / 2 , SCREAMING_SNAKE_CASE ) return (b * b) % mod # a prime number lowerCAmelCase = 701 lowerCAmelCase = 10_0000_0000 lowerCAmelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
429
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase__ = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = 'albert' def __init__( self : Any ,lowercase__ : Any=3_0_0_0_0 ,lowercase__ : Dict=1_2_8 ,lowercase__ : List[Any]=4_0_9_6 ,lowercase__ : Tuple=1_2 ,lowercase__ : Dict=1 ,lowercase__ : List[str]=6_4 ,lowercase__ : Dict=1_6_3_8_4 ,lowercase__ : List[Any]=1 ,lowercase__ : List[str]="gelu_new" ,lowercase__ : Optional[Any]=0 ,lowercase__ : Optional[Any]=0 ,lowercase__ : Optional[int]=5_1_2 ,lowercase__ : Union[str, Any]=2 ,lowercase__ : Dict=0.0_2 ,lowercase__ : Dict=1e-1_2 ,lowercase__ : List[str]=0.1 ,lowercase__ : List[Any]="absolute" ,lowercase__ : Union[str, Any]=0 ,lowercase__ : Optional[Any]=2 ,lowercase__ : List[Any]=3 ,**lowercase__ : Dict ,): super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = inner_group_num __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = classifier_dropout_prob __lowercase = position_embedding_type class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
41
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase_ ( __a , __a , __a , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionInpaintPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase__ : int = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) UpperCAmelCase__ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) UpperCAmelCase__ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase__ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase__ : str = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase_ ( self : str , _A : Dict , _A : Any=0 ): '''simple docstring''' UpperCAmelCase__ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((64, 64) ) UpperCAmelCase__ : int = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_A ).startswith('''mps''' ): UpperCAmelCase__ : List[Any] = torch.manual_seed(_A ) else: UpperCAmelCase__ : str = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase__ : Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Tuple = self.get_dummy_components() UpperCAmelCase__ : str = StableDiffusionInpaintPipeline(**_A ) UpperCAmelCase__ : List[str] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Dict = self.get_dummy_inputs(_A ) UpperCAmelCase__ : Any = sd_pipe(**_A ).images UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : int = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) UpperCAmelCase__ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) UpperCAmelCase__ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) UpperCAmelCase__ : Dict = '''stabilityai/stable-diffusion-2-inpainting''' UpperCAmelCase__ : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained(_A , safety_checker=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase__ : Tuple = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase__ : str = torch.manual_seed(0 ) UpperCAmelCase__ : str = pipe( prompt=_A , image=_A , mask_image=_A , generator=_A , output_type='''np''' , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) UpperCAmelCase__ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) UpperCAmelCase__ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) UpperCAmelCase__ : Tuple = '''stabilityai/stable-diffusion-2-inpainting''' UpperCAmelCase__ : Any = StableDiffusionInpaintPipeline.from_pretrained( _A , torch_dtype=torch.floataa , safety_checker=_A , ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase__ : Tuple = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase__ : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = pipe( prompt=_A , image=_A , mask_image=_A , generator=_A , output_type='''np''' , ) UpperCAmelCase__ : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowercase_ ( self : Any ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase__ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) UpperCAmelCase__ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) UpperCAmelCase__ : Optional[Any] = '''stabilityai/stable-diffusion-2-inpainting''' UpperCAmelCase__ : str = PNDMScheduler.from_pretrained(_A , subfolder='''scheduler''' ) UpperCAmelCase__ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained( _A , safety_checker=_A , scheduler=_A , torch_dtype=torch.floataa , ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase__ : Optional[int] = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase__ : Tuple = torch.manual_seed(0 ) UpperCAmelCase__ : Any = pipe( prompt=_A , image=_A , mask_image=_A , generator=_A , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase__ : int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 10**9
75
0
from __future__ import annotations def lowerCAmelCase( __lowerCamelCase ): create_state_space_tree(__lowerCamelCase , [] , 0 , [0 for i in range(len(__lowerCamelCase ) )] ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): if index == len(__lowerCamelCase ): print(__lowerCamelCase ) return for i in range(len(__lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __a = True create_state_space_tree(__lowerCamelCase , __lowerCamelCase , index + 1 , __lowerCamelCase ) current_sequence.pop() __a = False lowerCamelCase_ : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCamelCase_ : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
246
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Dict = logging.get_logger() @dataclass class a__ : A__ : nn.Module A__ : List[nn.Module] = field(default_factory=__snake_case ) A__ : list = field(default_factory=__snake_case ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: __a = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase , nn.Convad ) or isinstance(UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase ) def __call__( self , UpperCAmelCase ) -> Optional[int]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a__ : A__ : nn.Module A__ : nn.Module A__ : int = 0 A__ : List = field(default_factory=__snake_case ) A__ : List = field(default_factory=__snake_case ) def __call__( self , UpperCAmelCase ) -> List[str]: __a = Tracker(self.dest )(UpperCAmelCase ).parametrized __a = Tracker(self.src )(UpperCAmelCase ).parametrized __a = list(filter(lambda UpperCAmelCase : type(UpperCAmelCase ) not in self.src_skip , UpperCAmelCase ) ) __a = list(filter(lambda UpperCAmelCase : type(UpperCAmelCase ) not in self.dest_skip , UpperCAmelCase ) ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise Exception( f'''Numbers of operations are different. Source module has {len(UpperCAmelCase )} operations while''' f''' destination module has {len(UpperCAmelCase )}.''' ) for dest_m, src_m in zip(UpperCAmelCase , UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ): print(f'''Converting {name}...''' ) with torch.no_grad(): __a = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ).eval() __a = ResNetForImageClassification(__lowerCamelCase ).eval() __a = ModuleTransfer(src=__lowerCamelCase , dest=__lowerCamelCase ) __a = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCamelCase ) assert torch.allclose(from_model(__lowerCamelCase ) , our_model(__lowerCamelCase ).logits ), "The model logits don't match the original one." __a = f'''resnet{"-".join(name.split("resnet" ) )}''' print(__lowerCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=__lowerCamelCase , ) # we can use the convnext one __a = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=__lowerCamelCase , ) print(f'''Pushed {checkpoint_name}''' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ): __a = 'imagenet-1k-id2label.json' __a = 1000 __a = (1, num_labels) __a = 'huggingface/label-files' __a = num_labels __a = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='dataset' ) , 'r' ) ) __a = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) __a = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(__lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCamelCase_ : Any = parser.parse_args() lowerCamelCase_ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
246
1
'''simple docstring''' from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case : def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.0_2 , a__=3 , a__=None , ) -> int: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = num_patches + 1 def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> Tuple: '''simple docstring''' snake_case_ = TFViTModel(config=a__ ) snake_case_ = model(a__ , training=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. snake_case_ = self.image_size // 2 snake_case_ = pixel_values[:, :, :image_size, :image_size] snake_case_ = model(a__ , interpolate_pos_encoding=a__ , training=a__ ) snake_case_ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> List[str]: '''simple docstring''' snake_case_ = self.type_sequence_label_size snake_case_ = TFViTForImageClassification(a__ ) snake_case_ = model(a__ , labels=a__ , training=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. snake_case_ = self.image_size // 2 snake_case_ = pixel_values[:, :, :image_size, :image_size] snake_case_ = model(a__ , interpolate_pos_encoding=a__ , training=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ = 1 snake_case_ = TFViTForImageClassification(a__ ) snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _snake_case ( lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ : List[str] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowerCAmelCase_ : int = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Any = False lowerCAmelCase_ : str = False def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = TFViTModelTester(self ) snake_case_ = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(a__ ) snake_case_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , a__ ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(a__ ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=a__ , return_tensors="tf" ) # forward pass snake_case_ = model(**a__ ) # verify the logits snake_case_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , a__ ) snake_case_ = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , a__ , atol=1e-4 )
400
'''simple docstring''' def UpperCamelCase_( snake_case : int , snake_case : int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) snake_case_ = str(bin(snake_case ) ) binary_number += "0" * shift_amount return binary_number def UpperCamelCase_( snake_case : int , snake_case : int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) snake_case_ = str(bin(snake_case ) )[2:] if shift_amount >= len(snake_case ): return "0b0" snake_case_ = binary_number[: len(snake_case ) - shift_amount] return "0b" + shifted_binary_number def UpperCamelCase_( snake_case : int , snake_case : int ): '''simple docstring''' if number >= 0: # Get binary representation of positive number snake_case_ = "0" + str(bin(snake_case ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number snake_case_ = len(bin(snake_case )[3:] ) # Find 2's complement of number snake_case_ = bin(abs(snake_case ) - (1 << binary_number_length) )[3:] snake_case_ = ( "1" + "0" * (binary_number_length - len(snake_case )) + binary_number ) if shift_amount >= len(snake_case ): return "0b" + binary_number[0] * len(snake_case ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(snake_case ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
400
1
'''simple docstring''' def lowercase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f'{price_plus_tax(100, 0.25) = }') print(f'{price_plus_tax(125.50, 0.05) = }')
700
'''simple docstring''' def lowercase ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : list[int]): """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path) def lowercase ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : list[int] , lowerCAmelCase : int): """simple docstring""" if curr_ind == len(lowerCAmelCase): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(lowerCAmelCase)): if valid_connection(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase): # Insert current vertex into path as next transition _A : Tuple = next_ver # Validate created path if util_hamilton_cycle(lowerCAmelCase , lowerCAmelCase , curr_ind + 1): return True # Backtrack _A : Optional[int] = -1 return False def lowercase ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : int = 0): """simple docstring""" _A : Optional[Any] = [-1] * (len(lowerCAmelCase) + 1) # initialize start and end of path with starting index _A : int = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(lowerCAmelCase , lowerCAmelCase , 1) else []
417
0
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } lowerCamelCase__ : List[Any] = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } lowerCamelCase__ : int = { """jukebox""": 5_1_2, } class __magic_name__ (__UpperCamelCase ): '''simple docstring''' __lowercase : List[Any] = VOCAB_FILES_NAMES __lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Union[str, Any] = PRETRAINED_LYRIC_TOKENS_SIZES __lowercase : int = ['''input_ids''', '''attention_mask'''] def __init__( self:int , _a:Optional[int] , _a:Tuple , _a:Tuple , _a:Tuple=["v3", "v2", "v2"] , _a:Optional[Any]=5_12 , _a:List[Any]=5 , _a:List[Any]="<|endoftext|>" , **_a:Tuple , ): snake_case__ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else unk_token super().__init__( unk_token=_a , n_genres=_a , version=_a , max_n_lyric_tokens=_a , **_a , ) snake_case__ = version snake_case__ = max_n_lyric_tokens snake_case__ = n_genres with open(_a , encoding='''utf-8''' ) as vocab_handle: snake_case__ = json.load(_a ) with open(_a , encoding='''utf-8''' ) as vocab_handle: snake_case__ = json.load(_a ) with open(_a , encoding='''utf-8''' ) as vocab_handle: snake_case__ = json.load(_a ) snake_case__ = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: snake_case__ = oov.replace(r'''\-\'''' , r'''\-+\'''' ) snake_case__ = regex.compile(_a ) snake_case__ = {v: k for k, v in self.artists_encoder.items()} snake_case__ = {v: k for k, v in self.genres_encoder.items()} snake_case__ = {v: k for k, v in self.lyrics_encoder.items()} @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Optional[Any] , _a:Any , _a:int ): snake_case__ = [self.artists_encoder.get(_a , 0 ) for artist in list_artists] for genres in range(len(_a ) ): snake_case__ = [self.genres_encoder.get(_a , 0 ) for genre in list_genres[genres]] snake_case__ = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case__ = [[self.lyrics_encoder.get(_a , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:str ): return list(_a ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:List[str] , _a:Optional[int] , _a:Optional[int] , **_a:Any ): snake_case__ , snake_case__ , snake_case__ = self.prepare_for_tokenization(_a , _a , _a ) snake_case__ = self._tokenize(_a ) return artist, genre, lyrics def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:List[Any] , _a:int , _a:str , _a:Optional[int] = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case__ = artists[idx].lower() snake_case__ = [genres[idx].lower()] else: snake_case__ = self._normalize(artists[idx] ) + '''.v2''' snake_case__ = [ self._normalize(_a ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case__ = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) snake_case__ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' snake_case__ = {vocab[index]: index + 1 for index in range(len(_a ) )} snake_case__ = 0 snake_case__ = len(_a ) + 1 snake_case__ = self.vocab snake_case__ = {v: k for k, v in self.vocab.items()} snake_case__ = '''''' else: snake_case__ = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) snake_case__ = self._run_strip_accents(_a ) snake_case__ = lyrics.replace('''\\''' , '''\n''' ) snake_case__ = self.out_of_vocab.sub('''''' , _a ), [], [] return artists, genres, lyrics def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:str ): snake_case__ = unicodedata.normalize('''NFD''' , _a ) snake_case__ = [] for char in text: snake_case__ = unicodedata.category(_a ) if cat == "Mn": continue output.append(_a ) return "".join(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:List[str] ): snake_case__ = ( [chr(_a ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(_a ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(_a ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) snake_case__ = frozenset(_a ) snake_case__ = re.compile(r'''_+''' ) snake_case__ = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) snake_case__ = pattern.sub('''_''' , _a ).strip('''_''' ) return text def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:Dict ): return " ".join(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:Any , _a:List[Any] = None , _a:Any = False ): # Convert to TensorType if not isinstance(_a , _a ): snake_case__ = TensorType(_a ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf snake_case__ = tf.constant snake_case__ = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch snake_case__ = torch.tensor snake_case__ = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 snake_case__ = jnp.array snake_case__ = _is_jax else: snake_case__ = np.asarray snake_case__ = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case__ = [inputs] if not is_tensor(_a ): snake_case__ = as_tensor(_a ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self:Dict , _a:List[str] , _a:Optional[int] , _a:Optional[int]="" , _a:str="pt" ): snake_case__ = [0, 0, 0] snake_case__ = [artist] * len(self.version ) snake_case__ = [genres] * len(self.version ) snake_case__ , snake_case__ , snake_case__ = self.tokenize(_a , _a , _a ) snake_case__ , snake_case__ , snake_case__ = self._convert_token_to_id(_a , _a , _a ) snake_case__ = [-INFINITY] * len(full_tokens[-1] ) snake_case__ = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_a ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:List[str] , _a:Any = None ): if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_a ) ) snake_case__ = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_a ) ) snake_case__ = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_a ) ) return (artists_file, genres_file, lyrics_file) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:str , _a:Any , _a:int ): snake_case__ = self.artists_decoder.get(_a ) snake_case__ = [self.genres_decoder.get(_a ) for genre in genres_index] snake_case__ = [self.lyrics_decoder.get(_a ) for character in lyric_index] return artist, genres, lyrics
33
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
672
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __magic_name__ = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( ): snake_case__ = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=__lowerCAmelCase , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=__lowerCAmelCase , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=__lowerCAmelCase , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=__lowerCAmelCase , default=1_000 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=__lowerCAmelCase , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=__lowerCAmelCase , default=512 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=__lowerCAmelCase , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) snake_case__ = parser.parse_args() return args def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): def fn(__lowerCAmelCase ): return tokenizer(examples["text"] ) return fn def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = [] for i in range(len(tokenized_data["input_ids"] ) ): snake_case__ = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } snake_case__ = tf.train.Features(feature=__lowerCAmelCase ) snake_case__ = tf.train.Example(features=__lowerCAmelCase ) snake_case__ = example.SerializeToString() records.append(__lowerCAmelCase ) return records def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: snake_case__ = min(len(__lowerCAmelCase ) , args.limit ) snake_case__ = dataset.select(range(__lowerCAmelCase ) ) print(F"""Limiting the dataset to {args.limit} entries.""" ) snake_case__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) snake_case__ = os.path.join(args.output_dir , args.split ) if not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) else: snake_case__ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. snake_case__ = tokenize_function(__lowerCAmelCase ) snake_case__ = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__lowerCAmelCase ): # Concatenate all texts. snake_case__ = {k: sum(examples[k] , [] ) for k in examples.keys()} snake_case__ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 snake_case__ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. snake_case__ = { k: [t[i : i + args.max_length] for i in range(0 , __lowerCAmelCase , args.max_length )] for k, t in concatenated_examples.items() } return result snake_case__ = dataset_tokenized.map(__lowerCAmelCase , batched=__lowerCAmelCase , batch_size=1_000 , num_proc=4 ) snake_case__ = 0 snake_case__ = 0 for shard in range(0 , len(__lowerCAmelCase ) , args.shard_size ): snake_case__ = grouped_dataset[shard : shard + args.shard_size] snake_case__ = len(dataset_snapshot["input_ids"] ) snake_case__ = os.path.join(__lowerCAmelCase , F"""dataset-{shard_count}-{records_containing}.tfrecord""" ) snake_case__ = get_serialized_examples(__lowerCAmelCase ) with tf.io.TFRecordWriter(__lowerCAmelCase ) as out_file: for i in range(len(__lowerCAmelCase ) ): snake_case__ = serialized_examples[i] out_file.write(__lowerCAmelCase ) print("Wrote file {} containing {} records".format(__lowerCAmelCase , __lowerCAmelCase ) ) shard_count += 1 total_records += records_containing with open(F"""split-{args.split}-records-count.txt""" , "w" ) as f: print(F"""Total {args.split} records: {total_records}""" , file=__lowerCAmelCase ) if __name__ == "__main__": __magic_name__ = parse_args() main(args)
714
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): return None class _SCREAMING_SNAKE_CASE : def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): _A : int = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def A_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase , "tf" , 12 , **lowerCamelCase ) @require_torch @slow def A_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase , "pt" , 12 , **lowerCamelCase ) @require_torch @slow def A_ ( self ): from transformers import BertModel snake_case__ = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(lowerCamelCase ) ) vocab_file.flush() snake_case__ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: snake_case__ = BertModel(BertConfig(vocab_size=len(lowerCamelCase ) ) ) model.save_pretrained(lowerCamelCase ) self._test_export(lowerCamelCase , "pt" , 12 , lowerCamelCase ) @require_tf @slow def A_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case__ = self._test_export(lowerCamelCase , "tf" , 12 , **lowerCamelCase ) snake_case__ = quantize(Path(lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def A_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case__ = self._test_export(lowerCamelCase , "pt" , 12 , **lowerCamelCase ) snake_case__ = quantize(lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ): try: # Compute path with TemporaryDirectory() as tempdir: snake_case__ = Path(lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) return path except Exception as e: self.fail(lowerCamelCase ) @require_torch @require_tokenizers @slow def A_ ( self ): from transformers import BertModel snake_case__ = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) snake_case__ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCamelCase , lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def A_ ( self ): from transformers import TFBertModel snake_case__ = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) snake_case__ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCamelCase , lowerCamelCase , "tf" ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): snake_case__ = FeatureExtractionPipeline(lowerCamelCase , lowerCamelCase ) snake_case__ = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] snake_case__ , snake_case__ , snake_case__ , snake_case__ = infer_shapes(lowerCamelCase , lowerCamelCase ) # Assert all variables are present self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def A_ ( self ): snake_case__ = ["input_ids", "attention_mask", "token_type_ids"] snake_case__ = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} snake_case__ , snake_case__ = ensure_valid_input(FuncContiguousArgs() , lowerCamelCase , lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase ) , set(lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) snake_case__ , snake_case__ = ensure_valid_input(FuncNonContiguousArgs() , lowerCamelCase , lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase ) , 1 ) self.assertEqual(len(lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def A_ ( self ): snake_case__ = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
530
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A : def __init__( self : Tuple ) -> str: """simple docstring""" _a = {} def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=1 ) -> Dict: """simple docstring""" if self.graph.get(lowerCAmelCase_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a = [[w, v]] if not self.graph.get(lowerCAmelCase_ ): _a = [] def __lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" return list(self.graph ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] ) -> str: """simple docstring""" if self.graph.get(lowerCAmelCase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase_ ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Dict=-2 , lowerCAmelCase_ : List[str]=-1 ) -> Union[str, Any]: """simple docstring""" if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(lowerCAmelCase_ ) visited.append(lowerCAmelCase_ ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase_ ) != 0: _a = stack[len(lowerCAmelCase_ ) - 1] else: _a = ss # check if se have reached the starting point if len(lowerCAmelCase_ ) == 0: return visited def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Optional[int]=-1 ) -> str: """simple docstring""" if c == -1: _a = floor(random() * 1_00_00 ) + 10 for i in range(lowerCAmelCase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Dict=-2 ) -> Optional[int]: """simple docstring""" _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(lowerCAmelCase_ ) visited.append(lowerCAmelCase_ ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Dict ) -> List[Any]: """simple docstring""" _a = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : List[Any] ) -> Dict: """simple docstring""" return len(self.graph[u] ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : List[str]=-2 ) -> int: """simple docstring""" _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(lowerCAmelCase_ ) visited.append(lowerCAmelCase_ ) _a = s _a = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase_ ) != 0: _a = stack[len(lowerCAmelCase_ ) - 1] else: _a = ss # check if se have reached the starting point if len(lowerCAmelCase_ ) == 0: return sorted_nodes def __lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _a = [] _a = [] _a = list(self.graph )[0] stack.append(lowerCAmelCase_ ) visited.append(lowerCAmelCase_ ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(lowerCAmelCase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(lowerCAmelCase_ ) != 0: _a = stack[len(lowerCAmelCase_ ) - 1] else: _a = False indirect_parents.append(lowerCAmelCase_ ) _a = s _a = ss # check if se have reached the starting point if len(lowerCAmelCase_ ) == 0: return list(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _a = [] _a = [] _a = list(self.graph )[0] stack.append(lowerCAmelCase_ ) visited.append(lowerCAmelCase_ ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(lowerCAmelCase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(lowerCAmelCase_ ) != 0: _a = stack[len(lowerCAmelCase_ ) - 1] else: _a = False indirect_parents.append(lowerCAmelCase_ ) _a = s _a = ss # check if se have reached the starting point if len(lowerCAmelCase_ ) == 0: return False def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any=-2 , lowerCAmelCase_ : Optional[Any]=-1 ) -> Optional[Any]: """simple docstring""" _a = time() self.dfs(lowerCAmelCase_ , lowerCAmelCase_ ) _a = time() return end - begin def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Tuple=-2 ) -> List[str]: """simple docstring""" _a = time() self.bfs(lowerCAmelCase_ ) _a = time() return end - begin class A : def __init__( self : List[Any] ) -> Any: """simple docstring""" _a = {} def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str=1 ) -> Dict: """simple docstring""" if self.graph.get(lowerCAmelCase_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a = [[w, u]] def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: """simple docstring""" if self.graph.get(lowerCAmelCase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase_ ) # the other way round if self.graph.get(lowerCAmelCase_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Any=-2 , lowerCAmelCase_ : Optional[int]=-1 ) -> Optional[int]: """simple docstring""" if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(lowerCAmelCase_ ) visited.append(lowerCAmelCase_ ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase_ ) != 0: _a = stack[len(lowerCAmelCase_ ) - 1] else: _a = ss # check if se have reached the starting point if len(lowerCAmelCase_ ) == 0: return visited def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Union[str, Any]=-1 ) -> Any: """simple docstring""" if c == -1: _a = floor(random() * 1_00_00 ) + 10 for i in range(lowerCAmelCase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : List[Any]=-2 ) -> Optional[Any]: """simple docstring""" _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(lowerCAmelCase_ ) visited.append(lowerCAmelCase_ ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] ) -> Any: """simple docstring""" return len(self.graph[u] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a = [] _a = [] _a = list(self.graph )[0] stack.append(lowerCAmelCase_ ) visited.append(lowerCAmelCase_ ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(lowerCAmelCase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(lowerCAmelCase_ ) != 0: _a = stack[len(lowerCAmelCase_ ) - 1] else: _a = False indirect_parents.append(lowerCAmelCase_ ) _a = s _a = ss # check if se have reached the starting point if len(lowerCAmelCase_ ) == 0: return list(lowerCAmelCase_ ) def __lowerCAmelCase ( self : str ) -> str: """simple docstring""" _a = [] _a = [] _a = list(self.graph )[0] stack.append(lowerCAmelCase_ ) visited.append(lowerCAmelCase_ ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(lowerCAmelCase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(lowerCAmelCase_ ) != 0: _a = stack[len(lowerCAmelCase_ ) - 1] else: _a = False indirect_parents.append(lowerCAmelCase_ ) _a = s _a = ss # check if se have reached the starting point if len(lowerCAmelCase_ ) == 0: return False def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return list(self.graph ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int=-2 , lowerCAmelCase_ : int=-1 ) -> List[Any]: """simple docstring""" _a = time() self.dfs(lowerCAmelCase_ , lowerCAmelCase_ ) _a = time() return end - begin def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Dict=-2 ) -> int: """simple docstring""" _a = time() self.bfs(lowerCAmelCase_ ) _a = time() return end - begin
22
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> bool: A__ : List[Any] =len(snake_case_ ) + 1 A__ : List[Any] =len(snake_case_ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. A__ : Dict =[[0 for i in range(snake_case_ )] for j in range(snake_case_ )] # since string of zero length match pattern of zero length A__ : Dict =1 # since pattern of zero length will never match with string of non-zero length for i in range(1, snake_case_ ): A__ : Optional[Any] =0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1, snake_case_ ): A__ : str =dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1, snake_case_ ): for j in range(1, snake_case_ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": A__ : str =dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: A__ : str =1 elif pattern[j - 2] in (input_string[i - 1], "."): A__ : Union[str, Any] =dp[i - 1][j] else: A__ : Optional[int] =0 else: A__ : str =0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCamelCase : int = "aab" __lowerCamelCase : Dict = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"{input_string} matches the given pattern {pattern}") else: print(F"{input_string} does not match with the given pattern {pattern}")
416
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
203
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _snake_case : Any = "bert-base-cased" _snake_case : List[Any] = "google/pegasus-xsum" _snake_case : Dict = [" Sam ate lunch today.", "Sams lunch ingredients."] _snake_case : Dict = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] _snake_case : List[str] = "patrickvonplaten/t5-tiny-random" _snake_case : Optional[Any] = "sshleifer/bart-tiny-random" _snake_case : Optional[Any] = "sshleifer/tiny-mbart" _snake_case : Tuple = "sshleifer/tiny-marian-en-de" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : Union[str, Any] = "\n".join(__lowerCamelCase ) Path(__lowerCamelCase ).open("w" ).writelines(__lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCamelCase , F'{split}.source' ) , __lowerCamelCase ) _dump_articles(os.path.join(__lowerCamelCase , F'{split}.target' ) , __lowerCamelCase ) return tmp_dir class a (_lowerCAmelCase ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __snake_case ( self : List[Any] , lowerCamelCase : int ) -> Union[str, Any]: __snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase ) __snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase ) ) for a in ARTICLES ) __snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase ) ) for a in SUMMARIES ) __snake_case : str = 4 __snake_case : Optional[int] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __snake_case , __snake_case : Optional[int] = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. __snake_case : List[str] = SeqaSeqDataset( lowerCamelCase , data_dir=lowerCamelCase , type_path="train" , max_source_length=lowerCamelCase , max_target_length=lowerCamelCase , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase , ) __snake_case : str = DataLoader(lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase , lowerCamelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __snake_case : int = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any] ) -> Optional[Any]: __snake_case : Any = AutoTokenizer.from_pretrained(lowerCamelCase ) __snake_case : List[str] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase ) ) for a in ARTICLES ) __snake_case : Tuple = max(len(tokenizer.encode(lowerCamelCase ) ) for a in SUMMARIES ) __snake_case : List[str] = 4 __snake_case : List[str] = LegacySeqaSeqDataset( lowerCamelCase , data_dir=lowerCamelCase , type_path="train" , max_source_length=20 , max_target_length=lowerCamelCase , ) __snake_case : int = DataLoader(lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __snake_case ( self : List[str] ) -> int: __snake_case : str = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) __snake_case : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __snake_case : str = tmp_dir.joinpath("train.source" ).open().readlines() __snake_case : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase , lowerCamelCase , 128 , lowerCamelCase ) __snake_case : str = {x.name for x in tmp_dir.iterdir()} __snake_case : Optional[int] = {x.name for x in save_dir.iterdir()} __snake_case : Optional[int] = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase ) < len(lowerCamelCase ) assert len(lowerCamelCase ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def __snake_case ( self : Tuple ) -> str: if not FAIRSEQ_AVAILABLE: return __snake_case , __snake_case , __snake_case : Optional[Any] = self._get_dataset(max_len=64 ) __snake_case : Optional[int] = 64 __snake_case : List[Any] = ds.make_dynamic_sampler(lowerCamelCase , required_batch_size_multiple=lowerCamelCase ) __snake_case : str = [len(lowerCamelCase ) for x in batch_sampler] assert len(set(lowerCamelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase ) == len(lowerCamelCase ) # no dropped or added examples __snake_case : Optional[Any] = DataLoader(lowerCamelCase , batch_sampler=lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) __snake_case : Union[str, Any] = [] __snake_case : str = [] for batch in data_loader: __snake_case : str = batch["input_ids"].shape __snake_case : Dict = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __snake_case : str = np.product(batch["input_ids"].shape ) num_src_per_batch.append(lowerCamelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase ) assert num_src_per_batch[0] == max(lowerCamelCase ) if failures: raise AssertionError(F'too many tokens in {len(lowerCamelCase )} batches' ) def __snake_case ( self : int ) -> Any: __snake_case , __snake_case , __snake_case : Union[str, Any] = self._get_dataset(max_len=512 ) __snake_case : Union[str, Any] = 2 __snake_case : List[str] = ds.make_sortish_sampler(lowerCamelCase , shuffle=lowerCamelCase ) __snake_case : Dict = DataLoader(lowerCamelCase , batch_size=lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) __snake_case : List[Any] = DataLoader(lowerCamelCase , batch_size=lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase ) __snake_case : List[Any] = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase : List[Any] , lowerCamelCase : Optional[int]="input_ids" ): return [batch[k].eq(lowerCamelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase , k="labels" ) ) < sum(count_pad_tokens(lowerCamelCase , k="labels" ) ) assert sum(count_pad_tokens(lowerCamelCase ) ) < sum(count_pad_tokens(lowerCamelCase ) ) assert len(lowerCamelCase ) == len(lowerCamelCase ) def __snake_case ( self : Any , lowerCamelCase : List[Any]=1000 , lowerCamelCase : Union[str, Any]=128 ) -> Any: if os.getenv("USE_REAL_DATA" , lowerCamelCase ): __snake_case : int = "examples/seq2seq/wmt_en_ro" __snake_case : Union[str, Any] = max_len * 2 * 64 if not Path(lowerCamelCase ).joinpath("train.len" ).exists(): save_len_file(lowerCamelCase , lowerCamelCase ) else: __snake_case : List[str] = "examples/seq2seq/test_data/wmt_en_ro" __snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase , lowerCamelCase ) __snake_case : Dict = AutoTokenizer.from_pretrained(lowerCamelCase ) __snake_case : int = SeqaSeqDataset( lowerCamelCase , data_dir=lowerCamelCase , type_path="train" , max_source_length=lowerCamelCase , max_target_length=lowerCamelCase , n_obs=lowerCamelCase , ) return ds, max_tokens, tokenizer def __snake_case ( self : Tuple ) -> Dict: __snake_case , __snake_case , __snake_case : Any = self._get_dataset() __snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase ) ) __snake_case : int = set(DistributedSortishSampler(lowerCamelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase ) ) assert idsa.intersection(lowerCamelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __snake_case ( self : List[str] , lowerCamelCase : Union[str, Any] ) -> str: __snake_case : Tuple = AutoTokenizer.from_pretrained(lowerCamelCase , use_fast=lowerCamelCase ) if tok_name == MBART_TINY: __snake_case : Dict = SeqaSeqDataset( lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) __snake_case : Any = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __snake_case : Union[str, Any] = SeqaSeqDataset( lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) __snake_case : Optional[int] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase ) == 1 if tok_name == BART_TINY else len(lowerCamelCase ) == 0
203
1
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.2 , SCREAMING_SNAKE_CASE_ : Dict=0.2 ): lowerCamelCase__ = bp_numa lowerCamelCase__ = bp_numa lowerCamelCase__ = bp_numa lowerCamelCase__ = conva_get[:2] lowerCamelCase__ = conva_get[2] lowerCamelCase__ = size_pa lowerCamelCase__ = rate_w lowerCamelCase__ = rate_t lowerCamelCase__ = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowerCamelCase__ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCamelCase__ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCamelCase__ = -2 * np.random.rand(self.conva[1] ) + 1 lowerCamelCase__ = -2 * np.random.rand(self.num_bpa ) + 1 lowerCamelCase__ = -2 * np.random.rand(self.num_bpa ) + 1 def __UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : Any ): lowerCamelCase__ = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(SCREAMING_SNAKE_CASE_ , """wb""" ) as f: pickle.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(f"""Model saved: {save_path}""" ) @classmethod def __UpperCAmelCase ( cls : Any , SCREAMING_SNAKE_CASE_ : int ): with open(SCREAMING_SNAKE_CASE_ , """rb""" ) as f: lowerCamelCase__ = pickle.load(SCREAMING_SNAKE_CASE_ ) # noqa: S301 lowerCamelCase__ = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) lowerCamelCase__ = model_dic.get("""size_pooling1""" ) lowerCamelCase__ = model_dic.get("""num_bp1""" ) lowerCamelCase__ = model_dic.get("""num_bp2""" ) lowerCamelCase__ = model_dic.get("""num_bp3""" ) lowerCamelCase__ = model_dic.get("""rate_weight""" ) lowerCamelCase__ = model_dic.get("""rate_thre""" ) # create model instance lowerCamelCase__ = CNN(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # modify model parameter lowerCamelCase__ = model_dic.get("""w_conv1""" ) lowerCamelCase__ = model_dic.get("""wkj""" ) lowerCamelCase__ = model_dic.get("""vji""" ) lowerCamelCase__ = model_dic.get("""thre_conv1""" ) lowerCamelCase__ = model_dic.get("""thre_bp2""" ) lowerCamelCase__ = model_dic.get("""thre_bp3""" ) return conv_ins def __UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): return 1 / (1 + np.exp(-1 * x )) def __UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : str ): return round(SCREAMING_SNAKE_CASE_ , 3 ) def __UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCamelCase__ = convs[0] lowerCamelCase__ = convs[1] lowerCamelCase__ = np.shape(SCREAMING_SNAKE_CASE_ )[0] # get the data slice of original image data, data_focus lowerCamelCase__ = [] for i_focus in range(0 , size_data - size_conv + 1 , SCREAMING_SNAKE_CASE_ ): for j_focus in range(0 , size_data - size_conv + 1 , SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(SCREAMING_SNAKE_CASE_ ) # calculate the feature map of every single kernel, and saved as list of matrix lowerCamelCase__ = [] lowerCamelCase__ = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ = [] for i_focus in range(len(SCREAMING_SNAKE_CASE_ ) ): lowerCamelCase__ = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase__ = np.asmatrix(SCREAMING_SNAKE_CASE_ ).reshape( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) data_featuremap.append(SCREAMING_SNAKE_CASE_ ) # expanding the data slice to One dimenssion lowerCamelCase__ = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase__ = np.asarray(SCREAMING_SNAKE_CASE_ ) return focus_list, data_featuremap def __UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any]="average_pool" ): lowerCamelCase__ = len(featuremaps[0] ) lowerCamelCase__ = int(size_map / size_pooling ) lowerCamelCase__ = [] for i_map in range(len(SCREAMING_SNAKE_CASE_ ) ): lowerCamelCase__ = featuremaps[i_map] lowerCamelCase__ = [] for i_focus in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for j_focus in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(SCREAMING_SNAKE_CASE_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase__ = np.asmatrix(SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) featuremap_pooled.append(SCREAMING_SNAKE_CASE_ ) return featuremap_pooled def __UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowerCamelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): lowerCamelCase__ = np.shape(data[i] ) lowerCamelCase__ = data[i].reshape(1 , shapes[0] * shapes[1] ) lowerCamelCase__ = data_listed.getA().tolist()[0] data_expanded.extend(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = np.asarray(SCREAMING_SNAKE_CASE_ ) return data_expanded def __UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ): lowerCamelCase__ = np.asarray(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = np.shape(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def __UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCamelCase__ = [] lowerCamelCase__ = 0 for i_map in range(SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ = np.ones((size_map, size_map) ) for i in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for j in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ = pd_pool[ i_pool ] lowerCamelCase__ = i_pool + 1 lowerCamelCase__ = np.multiply( SCREAMING_SNAKE_CASE_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(SCREAMING_SNAKE_CASE_ ) return pd_all def __UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any]=bool ): print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(SCREAMING_SNAKE_CASE_ )) ) print((""" - - Shape: Teach_Data """, np.shape(SCREAMING_SNAKE_CASE_ )) ) lowerCamelCase__ = 0 lowerCamelCase__ = [] lowerCamelCase__ = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowerCamelCase__ = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(SCREAMING_SNAKE_CASE_ ) ): # print('------------Learning Image: %d--------------'%p) lowerCamelCase__ = np.asmatrix(datas_train[p] ) lowerCamelCase__ = np.asarray(datas_teach[p] ) lowerCamelCase__ = self.convolute( SCREAMING_SNAKE_CASE_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase__ = self.pooling(SCREAMING_SNAKE_CASE_ , self.size_poolinga ) lowerCamelCase__ = np.shape(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = self._expand(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = data_bp_input lowerCamelCase__ = np.dot(SCREAMING_SNAKE_CASE_ , self.vji.T ) - self.thre_bpa lowerCamelCase__ = self.sig(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = np.dot(SCREAMING_SNAKE_CASE_ , self.wkj.T ) - self.thre_bpa lowerCamelCase__ = self.sig(SCREAMING_SNAKE_CASE_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowerCamelCase__ = np.multiply( (data_teach - bp_outa) , np.multiply(SCREAMING_SNAKE_CASE_ , (1 - bp_outa) ) ) lowerCamelCase__ = np.multiply( np.dot(SCREAMING_SNAKE_CASE_ , self.wkj ) , np.multiply(SCREAMING_SNAKE_CASE_ , (1 - bp_outa) ) ) lowerCamelCase__ = np.dot(SCREAMING_SNAKE_CASE_ , self.vji ) lowerCamelCase__ = pd_i_all / (self.size_poolinga * self.size_poolinga) lowerCamelCase__ = pd_conva_pooled.T.getA().tolist() lowerCamelCase__ = self._calculate_gradient_from_pool( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowerCamelCase__ = self._expand_mat(pd_conva_all[k_conv] ) lowerCamelCase__ = self.rate_weight * np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowerCamelCase__ = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowerCamelCase__ = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowerCamelCase__ = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowerCamelCase__ = self.thre_bpa - pd_k_all * self.rate_thre lowerCamelCase__ = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowerCamelCase__ = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowerCamelCase__ = rp + 1 lowerCamelCase__ = error_count / patterns all_mse.append(SCREAMING_SNAKE_CASE_ ) def draw_error(): lowerCamelCase__ = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(SCREAMING_SNAKE_CASE_ , """+-""" ) plt.plot(SCREAMING_SNAKE_CASE_ , """r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(SCREAMING_SNAKE_CASE_ , alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def __UpperCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): lowerCamelCase__ = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(SCREAMING_SNAKE_CASE_ )) ) for p in range(len(SCREAMING_SNAKE_CASE_ ) ): lowerCamelCase__ = np.asmatrix(datas_test[p] ) lowerCamelCase__ = self.convolute( SCREAMING_SNAKE_CASE_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase__ = self.pooling(SCREAMING_SNAKE_CASE_ , self.size_poolinga ) lowerCamelCase__ = self._expand(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = data_bp_input lowerCamelCase__ = bp_outa * self.vji.T - self.thre_bpa lowerCamelCase__ = self.sig(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = bp_outa * self.wkj.T - self.thre_bpa lowerCamelCase__ = self.sig(SCREAMING_SNAKE_CASE_ ) produce_out.extend(bp_outa.getA().tolist() ) lowerCamelCase__ = [list(map(self.do_round , SCREAMING_SNAKE_CASE_ ) ) for each in produce_out] return np.asarray(SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCamelCase__ = np.asmatrix(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = self.convolute( SCREAMING_SNAKE_CASE_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase__ = self.pooling(SCREAMING_SNAKE_CASE_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
129
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = None ) -> list[list[str]]: UpperCamelCase__ : Tuple = word_bank or [] # create a table UpperCamelCase__ : int = len(__lowerCAmelCase ) + 1 UpperCamelCase__ : list[list[list[str]]] = [] for _ in range(__lowerCAmelCase ): table.append([] ) # seed value UpperCamelCase__ : int = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCAmelCase )] == word: UpperCamelCase__ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCAmelCase )]: combination.reverse() return table[len(__lowerCAmelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
228
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=3 , UpperCAmelCase__=30 , UpperCAmelCase__=400 , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=[0.5, 0.5, 0.5] , UpperCAmelCase__=[0.5, 0.5, 0.5] , UpperCAmelCase__=True , UpperCAmelCase__=1 / 255 , UpperCAmelCase__=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE__ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def lowerCAmelCase__ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__=False ): if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size["shortest_edge"] * h / w ) SCREAMING_SNAKE_CASE__ = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE__ = self.size["shortest_edge"] SCREAMING_SNAKE_CASE__ = int(self.size["shortest_edge"] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size["shortest_edge"] SCREAMING_SNAKE_CASE__ = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Optional[int] = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = DetaImageProcessingTester(self ) @property def lowerCAmelCase__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_rescale" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_pad" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "size" ) ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase__ ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase__ ( self ): # prepare image and target SCREAMING_SNAKE_CASE__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {"image_id": 3_9769, "annotations": target} # encode them SCREAMING_SNAKE_CASE__ = DetaImageProcessor() SCREAMING_SNAKE_CASE__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase__ ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase__ , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase__ ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase__ ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase__ ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase__ ) ) @slow def lowerCAmelCase__ ( self ): # prepare image, target and masks_path SCREAMING_SNAKE_CASE__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} SCREAMING_SNAKE_CASE__ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them SCREAMING_SNAKE_CASE__ = DetaImageProcessor(format="coco_panoptic" ) SCREAMING_SNAKE_CASE__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase__ ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase__ , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase__ ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase__ ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCAmelCase__ ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase__ ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase__ ) )
112
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class lowerCamelCase_ ( lowercase ): """simple docstring""" _lowerCAmelCase : List[Any] = CustomTokenizer pass
112
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : int = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class __magic_name__ ( A__, unittest.TestCase ): lowercase : str =DebertaVaTokenizer lowercase : Tuple =DebertaVaTokenizerFast lowercase : Optional[int] =True lowercase : Optional[Any] =True def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCamelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = "this is a test" UpperCAmelCase = "this is a test" return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase = "<pad>" UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(UpperCamelCase__ ) , 3_00_01 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase = " \tHeLLo!how \n Are yoU? " UpperCAmelCase = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: '''simple docstring''' pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase = "I was born in 92000, and this is falsé." UpperCAmelCase = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = "I was born in 92000, and this is falsé." UpperCAmelCase = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase = "I was born in 92000, and this is falsé." UpperCAmelCase = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase = "I was born in 92000, and this is falsé." UpperCAmelCase = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = " \tHeLLo!how \n Are yoU? " UpperCAmelCase = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = "I was born in 92000, and this is falsé." UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = "This is a test" UpperCAmelCase = [13, 1, 43_98, 25, 21, 12_89] UpperCAmelCase = ["▁", "T", "his", "▁is", "▁a", "▁test"] UpperCAmelCase = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) UpperCAmelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # fmt: off UpperCAmelCase = "I was born in 92000, and this is falsé." UpperCAmelCase = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] UpperCAmelCase = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] UpperCAmelCase = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on UpperCAmelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ ) UpperCAmelCase = tokenizer.encode("sequence builders" ) UpperCAmelCase = tokenizer.encode("multi-sequence build" ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase__ , ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase = {"input_ids": [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
323
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowerCamelCase : List[Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __lowerCamelCase : int = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() __lowerCamelCase : Optional[int] = "|".join(sys.argv[1:]) __lowerCamelCase : Dict = re.compile(rF'''^({joined_dirs}).*?\.py$''') __lowerCamelCase : List[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
323
1
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
718
from __future__ import annotations from collections import Counter from random import random class _a : """simple docstring""" def __init__( self ): _lowercase ={} def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase ={} def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if nodea not in self.connections: self.add_node(lowerCAmelCase_ ) if nodea not in self.connections: self.add_node(lowerCAmelCase_ ) _lowercase =probability def __lowerCAmelCase ( self ): return list(self.connections ) def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =0 _lowercase =random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __lowerCamelCase ( __a : str , __a : list[tuple[str, str, float]] , __a : int ) -> dict[str, int]: _lowercase =MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__a , __a , __a ) _lowercase =Counter(graph.get_nodes() ) _lowercase =start for _ in range(__a ): _lowercase =graph.transition(__a ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
594
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase_ : int = '''src/diffusers''' UpperCAmelCase_ : List[Any] = '''.''' # This is to make sure the diffusers module imported is the one in the repo. UpperCAmelCase_ : str = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCAmelCase_ : int = spec.loader.load_module() def __SCREAMING_SNAKE_CASE ( a__ : Union[str, Any] ,a__ : str ) -> Dict: return line.startswith(a__ ) or len(a__ ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" ,a__ ) is not None def __SCREAMING_SNAKE_CASE ( a__ : Tuple ) -> Union[str, Any]: __A : int = object_name.split(""".""" ) __A : List[str] = 0 # First let's find the module where our object lives. __A : Any = parts[i] while i < len(a__ ) and not os.path.isfile(os.path.join(a__ ,f"""{module}.py""" ) ): i += 1 if i < len(a__ ): __A : Any = os.path.join(a__ ,parts[i] ) if i >= len(a__ ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(a__ ,f"""{module}.py""" ) ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: __A : int = f.readlines() # Now let's find the class / func in the code! __A : int = """""" __A : Tuple = 0 for name in parts[i + 1 :]: while ( line_index < len(a__ ) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" ,lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(a__ ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __A : Optional[int] = line_index while line_index < len(a__ ) and _should_continue(lines[line_index] ,a__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __A : Dict = lines[start_index:line_index] return "".join(a__ ) UpperCAmelCase_ : Tuple = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') UpperCAmelCase_ : List[Any] = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') UpperCAmelCase_ : Tuple = re.compile(r'''<FILL\s+[^>]*>''') def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ) -> List[Any]: __A : Optional[int] = code.split("""\n""" ) __A : Optional[int] = 0 while idx < len(a__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(a__ ): return re.search(r"""^(\s*)\S""" ,lines[idx] ).groups()[0] return "" def __SCREAMING_SNAKE_CASE ( a__ : List[Any] ) -> Dict: __A : str = len(get_indent(a__ ) ) > 0 if has_indent: __A : List[Any] = f"""class Bla:\n{code}""" __A : Optional[int] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ,preview=a__ ) __A : int = black.format_str(a__ ,mode=a__ ) __A , __A : Optional[int] = style_docstrings_in_code(a__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str=False ) -> Tuple: with open(a__ ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: __A : int = f.readlines() __A : str = [] __A : Union[str, Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(a__ ): __A : str = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __A , __A , __A : List[str] = search.groups() __A : Any = find_code_in_diffusers(a__ ) __A : Dict = get_indent(a__ ) __A : int = line_index + 1 if indent == theoretical_indent else line_index + 2 __A : Optional[int] = theoretical_indent __A : List[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __A : Tuple = True while line_index < len(a__ ) and should_continue: line_index += 1 if line_index >= len(a__ ): break __A : Optional[int] = lines[line_index] __A : Optional[int] = _should_continue(a__ ,a__ ) and re.search(f"""^{indent}# End copy""" ,a__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __A : int = lines[start_index:line_index] __A : Optional[Any] = """""".join(a__ ) # Remove any nested `Copied from` comments to avoid circular copies __A : Dict = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(a__ ) is None] __A : Dict = """\n""".join(a__ ) # Before comparing, use the `replace_pattern` on the original code. if len(a__ ) > 0: __A : Tuple = replace_pattern.replace("""with""" ,"""""" ).split(""",""" ) __A : Optional[int] = [_re_replace_pattern.search(a__ ) for p in patterns] for pattern in patterns: if pattern is None: continue __A , __A , __A : int = pattern.groups() __A : Optional[int] = re.sub(a__ ,a__ ,a__ ) if option.strip() == "all-casing": __A : Union[str, Any] = re.sub(obja.lower() ,obja.lower() ,a__ ) __A : Optional[Any] = re.sub(obja.upper() ,obja.upper() ,a__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __A : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) __A : int = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __A : str = lines[:start_index] + [theoretical_code] + lines[line_index:] __A : int = start_index + 1 if overwrite and len(a__ ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(a__ ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.writelines(a__ ) return diffs def __SCREAMING_SNAKE_CASE ( a__ : bool = False ) -> Tuple: __A : Any = glob.glob(os.path.join(a__ ,"""**/*.py""" ) ,recursive=a__ ) __A : Optional[Any] = [] for filename in all_files: __A : Dict = is_copy_consistent(a__ ,a__ ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(a__ ) > 0: __A : Any = """\n""".join(a__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase_ : Optional[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
17
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int]=2 , UpperCamelCase : str=True , UpperCamelCase : List[str]=False , UpperCamelCase : Tuple=10 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Tuple=32 * 4 , UpperCamelCase : Tuple=32 * 6 , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : List[Any]=32 , ): '''simple docstring''' _snake_case : List[Any] = parent _snake_case : Optional[Any] = batch_size _snake_case : List[str] = is_training _snake_case : Optional[int] = use_auxiliary_loss _snake_case : Optional[Any] = num_queries _snake_case : Any = num_channels _snake_case : Union[str, Any] = min_size _snake_case : Dict = max_size _snake_case : str = num_labels _snake_case : List[Any] = mask_feature_size def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCamelCase ) _snake_case : Any = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCamelCase ) _snake_case : List[str] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCamelCase ) > 0.5 ).float() _snake_case : Any = (torch.rand((self.batch_size, self.num_labels) , device=UpperCamelCase ) > 0.5).long() _snake_case : List[Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCamelCase_ ( self : int ): '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Tuple = self.prepare_config_and_inputs() _snake_case : Optional[Any] = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : str , UpperCamelCase : Any ): '''simple docstring''' _snake_case : int = output.encoder_hidden_states _snake_case : Tuple = output.pixel_decoder_hidden_states _snake_case : Tuple = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase ) , config.decoder_config.decoder_layers ) def UpperCamelCase_ ( self : Any , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : str=False ): '''simple docstring''' with torch.no_grad(): _snake_case : str = MaskFormerModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Tuple = model(pixel_values=UpperCamelCase , pixel_mask=UpperCamelCase ) _snake_case : str = model(UpperCamelCase , output_hidden_states=UpperCamelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : str = MaskFormerForInstanceSegmentation(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() def comm_check_on_output(UpperCamelCase : Optional[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case : Tuple = model(pixel_values=UpperCamelCase , pixel_mask=UpperCamelCase ) _snake_case : Optional[Any] = model(UpperCamelCase ) comm_check_on_output(UpperCamelCase ) _snake_case : Union[str, Any] = model( pixel_values=UpperCamelCase , pixel_mask=UpperCamelCase , mask_labels=UpperCamelCase , class_labels=UpperCamelCase ) comm_check_on_output(UpperCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] =(MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () a_ : Tuple =( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) a_ : Any =False a_ : List[str] =False a_ : List[str] =False a_ : Optional[Any] =False def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = MaskFormerModelTester(self ) _snake_case : Optional[int] = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase , **UpperCamelCase , output_hidden_states=UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCamelCase ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='MaskFormer is not a generative model' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(UpperCamelCase ) _snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Optional[Any] = [*signature.parameters.keys()] _snake_case : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: _snake_case : int = MaskFormerModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = (self.model_tester.min_size,) * 2 _snake_case : Optional[int] = { 'pixel_values': torch.randn((2, 3, *size) , device=UpperCamelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=UpperCamelCase ), 'class_labels': torch.zeros(2 , 10 , device=UpperCamelCase ).long(), } _snake_case : Optional[int] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCamelCase ) _snake_case : Any = model(**UpperCamelCase ) self.assertTrue(outputs.loss is not None ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase , **UpperCamelCase , output_hidden_states=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Union[str, Any] = model_class(UpperCamelCase ).to(UpperCamelCase ) _snake_case : Dict = model(**UpperCamelCase , output_attentions=UpperCamelCase ) self.assertTrue(outputs.attentions is not None ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _snake_case : Dict = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() _snake_case : int = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.train() _snake_case : Optional[Any] = model(UpperCamelCase , mask_labels=UpperCamelCase , class_labels=UpperCamelCase ).loss loss.backward() def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs() _snake_case : List[str] = True _snake_case : List[Any] = True _snake_case : List[Any] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.train() _snake_case : Dict = model(UpperCamelCase , mask_labels=UpperCamelCase , class_labels=UpperCamelCase ) _snake_case : List[str] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case : Any = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _snake_case : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCAmelCase_ = 1E-4 def lowerCamelCase_ ( )-> List[Any]: _snake_case : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(UpperCamelCase ) _snake_case : Dict = self.default_image_processor _snake_case : Tuple = prepare_img() _snake_case : str = image_processor(UpperCamelCase , return_tensors='pt' ).to(UpperCamelCase ) _snake_case : int = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): _snake_case : Union[str, Any] = model(**UpperCamelCase ) _snake_case : Tuple = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(UpperCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) _snake_case : Optional[int] = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(UpperCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) _snake_case : Optional[int] = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(UpperCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(UpperCamelCase ) .eval() ) _snake_case : Any = self.default_image_processor _snake_case : List[Any] = prepare_img() _snake_case : List[str] = image_processor(UpperCamelCase , return_tensors='pt' ).to(UpperCamelCase ) _snake_case : List[Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): _snake_case : Optional[Any] = model(**UpperCamelCase ) # masks_queries_logits _snake_case : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case : Any = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] _snake_case : str = torch.tensor(UpperCamelCase ).to(UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) # class_queries_logits _snake_case : List[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case : Tuple = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Tuple = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(UpperCamelCase ) .eval() ) _snake_case : int = self.default_image_processor _snake_case : Optional[int] = prepare_img() _snake_case : int = image_processor(UpperCamelCase , return_tensors='pt' ).to(UpperCamelCase ) _snake_case : Optional[Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): _snake_case : List[Any] = model(**UpperCamelCase ) # masks_queries_logits _snake_case : Union[str, Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case : List[Any] = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] _snake_case : Union[str, Any] = torch.tensor(UpperCamelCase ).to(UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) # class_queries_logits _snake_case : Union[str, Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case : Union[str, Any] = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(UpperCamelCase ) .eval() ) _snake_case : Optional[int] = self.default_image_processor _snake_case : Dict = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='pt' , ) _snake_case : List[str] = inputs['pixel_values'].to(UpperCamelCase ) _snake_case : Tuple = [el.to(UpperCamelCase ) for el in inputs['mask_labels']] _snake_case : Optional[int] = [el.to(UpperCamelCase ) for el in inputs['class_labels']] with torch.no_grad(): _snake_case : List[str] = model(**UpperCamelCase ) self.assertTrue(outputs.loss is not None )
411
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase :int = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase :Union[str, Any] = ['YolosFeatureExtractor'] __lowerCAmelCase :List[Any] = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase :Any = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys __lowerCAmelCase :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
278
def A ( UpperCAmelCase ): return str(UpperCAmelCase ) == str(UpperCAmelCase )[::-1] def A ( UpperCAmelCase ): return int(UpperCAmelCase ) + int(str(UpperCAmelCase )[::-1] ) def A ( UpperCAmelCase = 10_000 ): _snake_case : Optional[int] = [] for num in range(1 , UpperCAmelCase ): _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = num while iterations < 50: _snake_case : Optional[Any] = sum_reverse(UpperCAmelCase ) iterations += 1 if is_palindrome(UpperCAmelCase ): break else: lychrel_nums.append(UpperCAmelCase ) return len(UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
278
1
'''simple docstring''' # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a = "allenai" def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = dict((re.sub(R"""@@$""" , """""" , __UpperCAmelCase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , __UpperCAmelCase ), v) for k, v in d.items() ) __SCREAMING_SNAKE_CASE = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] __SCREAMING_SNAKE_CASE = d[k] # restore return da def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' assert os.path.exists(__UpperCAmelCase ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __SCREAMING_SNAKE_CASE = basename(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = dirname(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel __SCREAMING_SNAKE_CASE = cls.hub_models() __SCREAMING_SNAKE_CASE = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} __SCREAMING_SNAKE_CASE = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) __SCREAMING_SNAKE_CASE = hub_utils.from_pretrained( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , archive_map=__UpperCAmelCase , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = vars(chkpt["""args"""]["""model"""] ) __SCREAMING_SNAKE_CASE = args["""source_lang"""] __SCREAMING_SNAKE_CASE = args["""target_lang"""] __SCREAMING_SNAKE_CASE = dirname(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = basename(__UpperCAmelCase ) # dicts __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , f"""dict.{src_lang}.txt""" ) __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , f"""dict.{tgt_lang}.txt""" ) __SCREAMING_SNAKE_CASE = Dictionary.load(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices ) __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , """vocab-src.json""" ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__UpperCAmelCase , ensure_ascii=__UpperCAmelCase , indent=__UpperCAmelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab __SCREAMING_SNAKE_CASE = True for k in src_vocab.keys(): if not k.islower(): __SCREAMING_SNAKE_CASE = False break __SCREAMING_SNAKE_CASE = Dictionary.load(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices ) __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , """vocab-tgt.json""" ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__UpperCAmelCase , ensure_ascii=__UpperCAmelCase , indent=__UpperCAmelCase ) ) # merges_file (bpecodes) __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if os.path.exists(__UpperCAmelCase ): break with open(__UpperCAmelCase , encoding="""utf-8""" ) as fin: __SCREAMING_SNAKE_CASE = fin.read() __SCREAMING_SNAKE_CASE = re.sub(R""" \d+$""" , """""" , __UpperCAmelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fout: fout.write(__UpperCAmelCase ) # model config __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" __SCREAMING_SNAKE_CASE = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.0_2, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with __SCREAMING_SNAKE_CASE = 5 __SCREAMING_SNAKE_CASE = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: __SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]["""length_penalty"""] else: __SCREAMING_SNAKE_CASE = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__UpperCAmelCase , ensure_ascii=__UpperCAmelCase , indent=__UpperCAmelCase ) ) # tokenizer config __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1024, """do_lower_case""": do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__UpperCAmelCase , ensure_ascii=__UpperCAmelCase , indent=__UpperCAmelCase ) ) # model __SCREAMING_SNAKE_CASE = chkpt["""models"""][0] __SCREAMING_SNAKE_CASE = model.state_dict() # rename keys to start with 'model.' __SCREAMING_SNAKE_CASE = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys __SCREAMING_SNAKE_CASE = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(__UpperCAmelCase ) # check that it loads ok model_new.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) # save __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
109
'''simple docstring''' def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[0] * len(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): # use last results for better performance - dynamic programming _UpperCamelCase =prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _UpperCamelCase =prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _UpperCamelCase =j return prefix_result def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return max(prefix_function(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod()
404
0
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } lowercase__ = { '''allenai/led-base-16384''': 1_63_84, } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = LEDTokenizer snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_="replace" , UpperCAmelCase_="<s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="<s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="<mask>" , UpperCAmelCase_=False , UpperCAmelCase_=True , **UpperCAmelCase_ , ): super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ , **UpperCAmelCase_ , ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase_ ) != add_prefix_space: snake_case_ = getattr(UpperCAmelCase_ , pre_tok_state.pop("type" ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**UpperCAmelCase_ ) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = "post_processor" snake_case_ = getattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_ ) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state["sep"] ) if "cls" in state: snake_case_ = tuple(state["cls"] ) snake_case_ = False if state.get("add_prefix_space" , UpperCAmelCase_ ) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get("trim_offsets" , UpperCAmelCase_ ) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(UpperCAmelCase_ , state.pop("type" ) ) snake_case_ = component_class(**UpperCAmelCase_ ) setattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowercase ( self ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self , UpperCAmelCase_ ): snake_case_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else value snake_case_ = value def _lowercase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): snake_case_ = kwargs.get("is_split_into_words" , UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _lowercase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): snake_case_ = kwargs.get("is_split_into_words" , UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): snake_case_ = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_=None ): snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase_ = None , UpperCAmelCase_ = None , ): snake_case_ = super()._pad( encoded_inputs=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding_strategy=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: snake_case_ = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case_ = len(encoded_inputs["global_attention_mask"] ) != len(UpperCAmelCase_ ) if needs_to_be_padded: snake_case_ = len(UpperCAmelCase_ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case_ = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case_ = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
717
'''simple docstring''' def __snake_case ( lowercase : int ): snake_case_ = [[0 for _ in range(lowercase )] for _ in range(m + 1 )] for i in range(m + 1 ): snake_case_ = 1 for n in range(m + 1 ): for k in range(1 , lowercase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase__ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase__ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
420
0
import cmath import math def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = math.radians(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = math.radians(SCREAMING_SNAKE_CASE ) # Convert voltage and current to rectangular form __UpperCamelCase :Union[str, Any] = cmath.rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = cmath.rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
167
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __lowercase = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase_ ( datasets.BuilderConfig ): '''simple docstring''' a__ : Optional[datasets.Features] = None a__ : str = "utf-8" a__ : Optional[str] = None a__ : Optional[str] = None a__ : bool = True # deprecated a__ : Optional[int] = None # deprecated a__ : int = 1_0 << 2_0 # 10MB a__ : Optional[bool] = None class lowerCamelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' a__ : Optional[int] = JsonConfig def UpperCamelCase__ ( self) -> int: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') __UpperCamelCase :int = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase__ ( self , __lowercase) -> Optional[Any]: if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") __UpperCamelCase :Optional[Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(__lowercase , (str, list, tuple)): __UpperCamelCase :List[str] = data_files if isinstance(__lowercase , __lowercase): __UpperCamelCase :Optional[int] = [files] __UpperCamelCase :Dict = [dl_manager.iter_files(__lowercase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] __UpperCamelCase :str = [] for split_name, files in data_files.items(): if isinstance(__lowercase , __lowercase): __UpperCamelCase :str = [files] __UpperCamelCase :Tuple = [dl_manager.iter_files(__lowercase) for file in files] splits.append(datasets.SplitGenerator(name=__lowercase , gen_kwargs={'''files''': files})) return splits def UpperCamelCase__ ( self , __lowercase) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): __UpperCamelCase :int = self.config.features.arrow_schema.field(__lowercase).type __UpperCamelCase :Tuple = pa_table.append_column(__lowercase , pa.array([None] * len(__lowercase) , type=__lowercase)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __UpperCamelCase :List[str] = table_cast(__lowercase , self.config.features.arrow_schema) return pa_table def UpperCamelCase__ ( self , __lowercase) -> str: for file_idx, file in enumerate(itertools.chain.from_iterable(__lowercase)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__lowercase , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: __UpperCamelCase :Optional[Any] = json.load(__lowercase) # We keep only the field we are interested in __UpperCamelCase :Union[str, Any] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__lowercase , (list, tuple)): __UpperCamelCase :int = set().union(*[row.keys() for row in dataset]) __UpperCamelCase :Union[str, Any] = {col: [row.get(__lowercase) for row in dataset] for col in keys} else: __UpperCamelCase :List[Any] = dataset __UpperCamelCase :Optional[int] = pa.Table.from_pydict(__lowercase) yield file_idx, self._cast_table(__lowercase) # If the file has one json object per line else: with open(__lowercase , '''rb''') as f: __UpperCamelCase :List[str] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __UpperCamelCase :Optional[int] = max(self.config.chunksize // 32 , 16 << 10) __UpperCamelCase :List[str] = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: __UpperCamelCase :List[str] = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__lowercase) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __UpperCamelCase :Union[str, Any] = batch.decode(self.config.encoding , errors=__lowercase).encode('''utf-8''') try: while True: try: __UpperCamelCase :Optional[int] = paj.read_json( io.BytesIO(__lowercase) , read_options=paj.ReadOptions(block_size=__lowercase)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__lowercase , pa.ArrowInvalid) and "straddling" not in str(__lowercase) or block_size > len(__lowercase) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(__lowercase)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( __lowercase , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: __UpperCamelCase :Tuple = json.load(__lowercase) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(__lowercase)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__lowercase , __lowercase): # list is the only sequence type supported in JSON try: __UpperCamelCase :Optional[int] = set().union(*[row.keys() for row in dataset]) __UpperCamelCase :Optional[int] = {col: [row.get(__lowercase) for row in dataset] for col in keys} __UpperCamelCase :int = pa.Table.from_pydict(__lowercase) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(__lowercase)}: {e}""") raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(__lowercase) break else: logger.error(f"""Failed to read file '{file}' with error {type(__lowercase)}: {e}""") raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowercase) batch_idx += 1
167
1
from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase__ ( _lowercase , _lowercase = "cpu" , _lowercase = None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.load(_lowercase , map_location=_lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowercase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) UpperCAmelCase_ : int = v.half() if save_path is None: # overwrite src_path UpperCAmelCase_ : Optional[Any] = src_path torch.save(_lowercase , _lowercase ) if __name__ == "__main__": fire.Fire(convert)
700
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __a: """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,) -> Tuple: UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : Optional[Any] = 13 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : str = True UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Dict = False UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Dict = 2 UpperCAmelCase_ : Tuple = 99 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Optional[int] = 32 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Tuple = 4 UpperCAmelCase_ : List[Any] = 0.1 UpperCAmelCase_ : int = 0.1 UpperCAmelCase_ : List[str] = 512 UpperCAmelCase_ : Any = 16 UpperCAmelCase_ : Union[str, Any] = 2 UpperCAmelCase_ : Any = 0.02 UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : List[Any] = 4 UpperCAmelCase_ : Dict = '''last''' UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Union[str, Any] = 0 def a__ ( self ) -> List[str]: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) UpperCAmelCase_ : Optional[Any] = None if self.use_input_lengths: UpperCAmelCase_ : Optional[int] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : List[str] = None if self.use_token_type_ids: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) UpperCAmelCase_ : str = None UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Any = None if self.use_labels: UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : Any = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : int = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> Any: UpperCAmelCase_ : Tuple = TFFlaubertModel(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase_ : List[Any] = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = [input_ids, input_mask] UpperCAmelCase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> str: UpperCAmelCase_ : int = TFFlaubertWithLMHeadModel(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> Tuple: UpperCAmelCase_ : List[Any] = TFFlaubertForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> int: UpperCAmelCase_ : List[Any] = TFFlaubertForSequenceClassification(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase_ : str = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> Optional[Any]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : List[str] = TFFlaubertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : List[str] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> str: UpperCAmelCase_ : List[Any] = self.num_choices UpperCAmelCase_ : Any = TFFlaubertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase_ : Union[str, Any] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase_ : str = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase_ : Dict = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase_ : str = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ) : Any = config_and_inputs UpperCAmelCase_ : Tuple = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class __a( _a , _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCAmelCase = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a__ ( self ) -> Any: UpperCAmelCase_ : Optional[int] = TFFlaubertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,emb_dim=37 ) def a__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def a__ ( self ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def a__ ( self ) -> Any: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = TFFlaubertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_tf @require_sentencepiece @require_tokenizers class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> int: UpperCAmelCase_ : Optional[Any] = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) UpperCAmelCase_ : Dict = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" UpperCAmelCase_ : str = model(_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase_ : Optional[int] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,_SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. UpperCAmelCase_ : List[Any] = tf.convert_to_tensor( [ [ [-1.8_76_87_73, -1.56_65_55, 0.27_07_24_18], [-1.6_92_00_38, -0.5_87_35_05, 1.9_32_95_99], [-2.9_56_39_85, -1.6_99_38_35, 1.7_97_20_52], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
300
0
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _snake_case = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class _a : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int = 14 ): if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ = primes[group]['prime'] lowerCamelCase__ = primes[group]['generator'] lowerCamelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _UpperCamelCase ( self : Tuple ): return hex(self.__private_key )[2:] def _UpperCamelCase ( self : int ): lowerCamelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(SCREAMING_SNAKE_CASE__ )[2:] def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(SCREAMING_SNAKE_CASE__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = int(SCREAMING_SNAKE_CASE__ , base=16 ) if not self.is_valid_public_key(SCREAMING_SNAKE_CASE__ ): raise ValueError('Invalid public key' ) lowerCamelCase__ = pow(SCREAMING_SNAKE_CASE__ , self.__private_key , self.prime ) return shaaaa(str(SCREAMING_SNAKE_CASE__ ).encode() ).hexdigest() @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(SCREAMING_SNAKE_CASE__ , (prime - 1) // 2 , SCREAMING_SNAKE_CASE__ ) == 1 ) @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 14 ): lowerCamelCase__ = int(SCREAMING_SNAKE_CASE__ , base=16 ) lowerCamelCase__ = int(SCREAMING_SNAKE_CASE__ , base=16 ) lowerCamelCase__ = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('Invalid public key' ) lowerCamelCase__ = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return shaaaa(str(SCREAMING_SNAKE_CASE__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
510
"""simple docstring""" def snake_case ( _a: float , _a: float )-> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.25) = }""") print(f"""{price_plus_tax(1_25.50, 0.05) = }""")
510
1
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) _lowercase : Dict = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase_ ) ) return round(lowerCamelCase_ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
719
from __future__ import annotations import requests def UpperCamelCase_( lowerCamelCase_ ) -> dict: _lowercase : Dict = F'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCamelCase_ ).json() def UpperCamelCase_( lowerCamelCase_ = 10 ) -> list[dict]: _lowercase : Dict = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : Dict = requests.get(lowerCamelCase_ ).json()[:max_stories] return [get_hackernews_story(lowerCamelCase_ ) for story_id in story_ids] def UpperCamelCase_( lowerCamelCase_ = 10 ) -> str: _lowercase : Optional[int] = hackernews_top_stories(lowerCamelCase_ ) return "\n".join('* [{title}]({url})'.format(**lowerCamelCase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
354
0
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCAmelCase_ ( __A : List[str] , __A : str , __A : List[Any] , __A : List[str]=5 ): '''simple docstring''' assert masked_input.count('<mask>' ) == 1 snake_case: Tuple = torch.tensor(tokenizer.encode(__A , add_special_tokens=__A ) ).unsqueeze(0 ) # Batch size 1 snake_case: List[str] = model(__A )[0] # The last hidden-state is the first element of the output tuple snake_case: Dict = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() snake_case: Any = logits[0, masked_index, :] snake_case: str = logits.softmax(dim=0 ) snake_case , snake_case: Union[str, Any] = prob.topk(k=__A , dim=0 ) snake_case: Optional[int] = ' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__A ) )] ) snake_case: Dict = tokenizer.mask_token snake_case: str = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): snake_case: int = predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(__A ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(__A ) , __A ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__A , __A ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __UpperCAmelCase = CamembertTokenizer.from_pretrained("camembert-base") __UpperCAmelCase = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() __UpperCAmelCase = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
329
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx" def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=0 ): '''simple docstring''' snake_case: Dict = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ) snake_case: Optional[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = self.get_dummy_inputs() snake_case: Dict = pipe(**SCREAMING_SNAKE_CASE__ ).images snake_case: int = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) snake_case: Optional[Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) snake_case: Any = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = self.get_dummy_inputs() snake_case: int = pipe(**SCREAMING_SNAKE_CASE__ ).images snake_case: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case: int = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) snake_case: Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.get_dummy_inputs() snake_case: Tuple = pipe(**SCREAMING_SNAKE_CASE__ ).images snake_case: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case: Dict = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) snake_case: Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.get_dummy_inputs() snake_case: int = pipe(**SCREAMING_SNAKE_CASE__ ).images snake_case: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case: Any = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) snake_case: Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.get_dummy_inputs() snake_case: Any = pipe(**SCREAMING_SNAKE_CASE__ ).images snake_case: int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case: int = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @property def _UpperCamelCase ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ort.SessionOptions() snake_case: int = False return options def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) snake_case: Dict = init_image.resize((1_28, 1_28) ) # using the PNDM scheduler by default snake_case: Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'A fantasy landscape, trending on artstation' snake_case: List[Any] = torch.manual_seed(0 ) snake_case: str = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) snake_case: Tuple = output.images snake_case: Any = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) snake_case: Any = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) snake_case: str = init_image.resize((1_28, 1_28) ) snake_case: Tuple = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) snake_case: List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'A fantasy landscape, trending on artstation' snake_case: Any = torch.manual_seed(0 ) snake_case: Optional[Any] = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) snake_case: Any = output.images snake_case: int = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) snake_case: Dict = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
329
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : List[str] , lowerCAmelCase_ : VQModel , lowerCAmelCase_ : UNetaDModel , lowerCAmelCase_ : DDIMScheduler): """simple docstring""" super().__init__() self.register_modules(vqvae=__A , unet=__A , scheduler=__A) @torch.no_grad() def __call__( self : Optional[Any] , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 5_0 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : int , ): """simple docstring""" lowercase_ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__A , ) lowercase_ = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler lowercase_ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__A) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowercase_ = """eta""" in set(inspect.signature(self.scheduler.step).parameters.keys()) lowercase_ = {} if accepts_eta: lowercase_ = eta for t in self.progress_bar(self.scheduler.timesteps): lowercase_ = self.scheduler.scale_model_input(__A , __A) # predict the noise residual lowercase_ = self.unet(__A , __A).sample # compute the previous noisy sample x_t -> x_t-1 lowercase_ = self.scheduler.step(__A , __A , __A , **__A).prev_sample # decode the image latents with the VAE lowercase_ = self.vqvae.decode(__A).sample lowercase_ = (image / 2 + 0.5).clamp(0 , 1) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": lowercase_ = self.numpy_to_pil(__A) if not return_dict: return (image,) return ImagePipelineOutput(images=__A)
718
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase=2_81_23 ) -> Optional[Any]: '''simple docstring''' lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__lowerCAmelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
100
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "blenderbot-small" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any]=50_265 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Tuple=8 , __SCREAMING_SNAKE_CASE : str=2_048 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Dict=8 , __SCREAMING_SNAKE_CASE : Dict=2_048 , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Dict=2 , **__SCREAMING_SNAKE_CASE : Any , ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , forced_eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) class lowerCAmelCase__ ( a ): """simple docstring""" @property def UpperCAmelCase__ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE = {0: """batch"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """decoder_sequence"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __SCREAMING_SNAKE_CASE = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_layers for i in range(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = {0: """batch""", 2: """past_sequence + sequence"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 2: """past_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def UpperCAmelCase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = super().outputs else: __SCREAMING_SNAKE_CASE = super(__SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_layers for i in range(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = {0: """batch""", 2: """past_sequence + sequence"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Generate decoder inputs __SCREAMING_SNAKE_CASE = seq_length if not self.use_past else 1 __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __SCREAMING_SNAKE_CASE = dict(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape __SCREAMING_SNAKE_CASE = common_inputs["""decoder_input_ids"""].shape[1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_attention_heads __SCREAMING_SNAKE_CASE = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE = decoder_seq_length + 3 __SCREAMING_SNAKE_CASE = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __SCREAMING_SNAKE_CASE = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] , dim=1 ) __SCREAMING_SNAKE_CASE = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_layers __SCREAMING_SNAKE_CASE = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) - min_num_layers __SCREAMING_SNAKE_CASE = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. __SCREAMING_SNAKE_CASE = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) ) return common_inputs def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE = seqlen + 2 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_layers __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_attention_heads __SCREAMING_SNAKE_CASE = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE = common_inputs["""attention_mask"""].dtype __SCREAMING_SNAKE_CASE = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) __SCREAMING_SNAKE_CASE = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(__SCREAMING_SNAKE_CASE ) ] return common_inputs def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __SCREAMING_SNAKE_CASE = tokenizer.num_special_tokens_to_add(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence __SCREAMING_SNAKE_CASE = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __SCREAMING_SNAKE_CASE = dict(tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) ) return common_inputs def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) elif self.task == "causal-lm": __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_causal_lm( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) return common_inputs def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = super()._flatten_past_key_values_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = super(__SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
627
'''simple docstring''' import math import sys import cva import numpy as np def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = math.sqrt(a__ ) __SCREAMING_SNAKE_CASE = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def a__ ( a__ , a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = np.zeros((kernel_size, kernel_size) ) for i in range(0 , a__ ): for j in range(0 , a__ ): __SCREAMING_SNAKE_CASE = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(a__ , a__ ) def a__ ( a__ , a__ , a__ , a__ , ): """simple docstring""" __SCREAMING_SNAKE_CASE = np.zeros(img.shape ) __SCREAMING_SNAKE_CASE = get_gauss_kernel(a__ , a__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __SCREAMING_SNAKE_CASE = get_slice(a__ , a__ , a__ , a__ ) __SCREAMING_SNAKE_CASE = img_s - img_s[kernel_size // 2, kernel_size // 2] __SCREAMING_SNAKE_CASE = vec_gaussian(a__ , a__ ) __SCREAMING_SNAKE_CASE = np.multiply(a__ , a__ ) __SCREAMING_SNAKE_CASE = np.multiply(a__ , a__ ) __SCREAMING_SNAKE_CASE = np.sum(a__ ) / np.sum(a__ ) __SCREAMING_SNAKE_CASE = val return imga def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = args[1] if args[1:] else """../image_data/lena.jpg""" __SCREAMING_SNAKE_CASE = float(args[2] ) if args[2:] else 1.0 __SCREAMING_SNAKE_CASE = float(args[3] ) if args[3:] else 1.0 if args[4:]: __SCREAMING_SNAKE_CASE = int(args[4] ) __SCREAMING_SNAKE_CASE = kernel_size + abs(kernel_size % 2 - 1 ) else: __SCREAMING_SNAKE_CASE = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = parse_args(sys.argv) UpperCAmelCase : Union[str, Any] = cva.imread(filename, 0) cva.imshow('input image', img) UpperCAmelCase : Optional[int] = img / 2_5_5 UpperCAmelCase : Optional[Any] = out.astype('float32') UpperCAmelCase : Tuple = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) UpperCAmelCase : List[Any] = out * 2_5_5 UpperCAmelCase : Any = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
627
1
def UpperCamelCase_( _A :int )-> int: UpperCamelCase__ = [1] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = 0, 0, 0 UpperCamelCase__ = ugly_nums[ia] * 2 UpperCamelCase__ = ugly_nums[ia] * 3 UpperCamelCase__ = ugly_nums[ia] * 5 for _ in range(1 , _A ): UpperCamelCase__ = min(_A , _A , _A ) ugly_nums.append(_A ) if next_num == next_a: ia += 1 UpperCamelCase__ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCamelCase__ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCamelCase__ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
185
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
185
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> bool: snake_case__ = str(__lowerCAmelCase ) return n == n[::-1] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100_0000 ) -> Union[str, Any]: snake_case__ = 0 for i in range(1 , __lowerCAmelCase ): if is_palindrome(__lowerCAmelCase ) and is_palindrome(bin(__lowerCAmelCase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
33
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self ) -> Dict: torch.manual_seed(0 ) _UpperCamelCase : Any = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def _lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCamelCase : Optional[Any] = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def _lowercase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCamelCase : Optional[int] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) _UpperCamelCase : int = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def _lowercase ( self ) -> Any: _UpperCamelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : Tuple = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _UpperCamelCase : int = DDPMScheduler() _UpperCamelCase : Optional[int] = AudioDiffusionPipeline(vqvae=_snake_case , unet=self.dummy_unet , mel=_snake_case , scheduler=_snake_case ) _UpperCamelCase : List[Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCamelCase : Tuple = torch.Generator(device=_snake_case ).manual_seed(42 ) _UpperCamelCase : Optional[int] = pipe(generator=_snake_case , steps=4 ) _UpperCamelCase : Union[str, Any] = output.audios[0] _UpperCamelCase : Union[str, Any] = output.images[0] _UpperCamelCase : str = torch.Generator(device=_snake_case ).manual_seed(42 ) _UpperCamelCase : int = pipe(generator=_snake_case , steps=4 , return_dict=_snake_case ) _UpperCamelCase : int = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _UpperCamelCase : List[str] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : List[str] = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : int = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _UpperCamelCase : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _UpperCamelCase : Dict = DDIMScheduler() _UpperCamelCase : str = self.dummy_vqvae_and_unet _UpperCamelCase : List[Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_snake_case , scheduler=_snake_case ) _UpperCamelCase : List[Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) np.random.seed(0 ) _UpperCamelCase : Optional[Any] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _UpperCamelCase : Optional[Any] = torch.Generator(device=_snake_case ).manual_seed(42 ) _UpperCamelCase : Tuple = pipe(raw_audio=_snake_case , generator=_snake_case , start_step=5 , steps=10 ) _UpperCamelCase : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _UpperCamelCase : Any = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : Tuple = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _UpperCamelCase : Any = self.dummy_unet_condition _UpperCamelCase : List[Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_snake_case , mel=_snake_case , scheduler=_snake_case ) _UpperCamelCase : Union[str, Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) np.random.seed(0 ) _UpperCamelCase : int = torch.rand((1, 1, 10) ) _UpperCamelCase : Optional[Any] = pipe(generator=_snake_case , encoding=_snake_case ) _UpperCamelCase : Dict = output.images[0] _UpperCamelCase : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : Any = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Any: _UpperCamelCase : Optional[int] = torch_device _UpperCamelCase : int = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) _UpperCamelCase : str = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCamelCase : Tuple = torch.Generator(device=_snake_case ).manual_seed(42 ) _UpperCamelCase : Optional[int] = pipe(generator=_snake_case ) _UpperCamelCase : List[Any] = output.audios[0] _UpperCamelCase : List[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _UpperCamelCase : Union[str, Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : Union[str, Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
683
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
97
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __a : '''simple docstring''' UpperCAmelCase__ : List[str] UpperCAmelCase__ : Optional[str] = None # Automatically constructed UpperCAmelCase__ : ClassVar[str] = "dict" UpperCAmelCase__ : ClassVar[Any] = None UpperCAmelCase__ : str = field(default="""Translation""" , init=__A , repr=__A ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __snake_case ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __a : '''simple docstring''' UpperCAmelCase__ : Optional[List] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[str] = None # Automatically constructed UpperCAmelCase__ : ClassVar[str] = "dict" UpperCAmelCase__ : ClassVar[Any] = None UpperCAmelCase__ : str = field(default="""TranslationVariableLanguages""" , init=__A , repr=__A ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = sorted(set(self.languages ) ) if self.languages else None SCREAMING_SNAKE_CASE_ : Dict = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = set(self.languages ) if self.languages and set(UpperCamelCase__ ) - lang_set: raise ValueError( F'''Some languages in example ({', '.join(sorted(set(UpperCamelCase__ ) - lang_set ) )}) are not in valid set ({', '.join(UpperCamelCase__ )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. SCREAMING_SNAKE_CASE_ : List[str] = [] for lang, text in translation_dict.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = zip(*sorted(UpperCamelCase__ ) ) return {"language": languages, "translation": translations} def __snake_case ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
97
1
def UpperCamelCase ( __magic_name__ : list ) -> list: """simple docstring""" def merge(__magic_name__ : list , __magic_name__ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__magic_name__ ) <= 1: return collection lowercase__ = len(__magic_name__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() A : Any = input('Enter numbers separated by a comma:\n').strip() A : str = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
15
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
1
"""simple docstring""" def snake_case ( _a: Any = 50 )-> Any: '''simple docstring''' lowerCamelCase__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
703
"""simple docstring""" from __future__ import annotations from math import gcd def snake_case ( _a: int , _a: int = 2 , _a: int = 1 , _a: int = 3 , )-> int | None: '''simple docstring''' if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_a: int , _a: int , _a: int ) -> int: return (pow(_a , 2 ) + step) % modulus for _ in range(_a ): # These track the position within the cycle detection logic. lowerCamelCase__ = seed lowerCamelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCamelCase__ = gcd(hare - tortoise , _a ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCamelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _snake_case = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) _snake_case = parser.parse_args() _snake_case = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: _snake_case = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
659
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : str = '▁' UpperCamelCase : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} UpperCamelCase : Optional[Any] = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } UpperCamelCase : str = {'vinai/bartpho-syllable': 10_24} class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,) lowerCamelCase__ = vocab_file lowerCamelCase__ = monolingual_vocab_file lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCamelCase__ = {} lowerCamelCase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_lowerCAmelCase ) not in self.fairseq_tokens_to_ids: lowerCamelCase__ = cnt cnt += 1 with open(_lowerCAmelCase ,"""r""" ,encoding="""utf-8""" ) as f: for line in f.readlines(): lowerCamelCase__ = line.strip().split()[0] lowerCamelCase__ = len(self.fairseq_tokens_to_ids ) if str(_lowerCAmelCase ) not in self.fairseq_tokens_to_ids: lowerCamelCase__ = len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None lowerCamelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self ,_lowerCAmelCase ): lowerCamelCase__ = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ): return len(self.fairseq_ids_to_tokens ) def UpperCamelCase_ ( self ): lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.fairseq_ids_to_tokens[index] def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase ,""" """ ).strip() return out_string def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase ,"""wb""" ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_lowerCAmelCase ,"""w""" ,encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(_lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
50
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Tuple = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: lowerCamelCase__ = 1024 lowerCamelCase__ = 4096 lowerCamelCase__ = 24 lowerCamelCase__ = 16 lowerCamelCase__ = [5, 11, 17, 23] lowerCamelCase__ = [256, 512, 1024, 1024] lowerCamelCase__ = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = [256, 512, 768, 768] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = (1, 384, 384) lowerCamelCase__ = False lowerCamelCase__ = """project""" if "ade" in checkpoint_url: lowerCamelCase__ = True lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = """huggingface/label-files""" lowerCamelCase__ = """ade20k-id2label.json""" lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = [1, 150, 480, 480] return config, expected_shape def A__ ( __lowerCAmelCase : Optional[int] ): lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : List[Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowerCamelCase__ = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowerCamelCase__ = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowerCamelCase__ = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowerCamelCase__ = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowerCamelCase__ = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: lowerCamelCase__ = name.replace("""..""" , """.""" ) if "stem.conv" in name: lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: lowerCamelCase__ = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: lowerCamelCase__ = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ = in_proj_bias[: config.hidden_size] lowerCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ = in_proj_bias[-config.hidden_size :] def A__ ( ): lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ): lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384 lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) # forward pass lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth if show_prediction: lowerCamelCase__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCamelCase : List[str] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
50
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __lowercase ( _lowercase ): lowerCamelCase : jnp.ndarray @flax_register_to_config class __lowercase ( nn.Module , _lowercase , _lowercase ): lowerCamelCase : int = 32 lowerCamelCase : int = 4 lowerCamelCase : int = 4 lowerCamelCase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCamelCase : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") lowerCamelCase : Union[bool, Tuple[bool]] = False lowerCamelCase : Tuple[int] = (320, 640, 1280, 1280) lowerCamelCase : int = 2 lowerCamelCase : Union[int, Tuple[int]] = 8 lowerCamelCase : Optional[Union[int, Tuple[int]]] = None lowerCamelCase : int = 1280 lowerCamelCase : float = 0.0 lowerCamelCase : bool = False lowerCamelCase : jnp.dtype = jnp.floataa lowerCamelCase : bool = True lowerCamelCase : int = 0 lowerCamelCase : bool = False def UpperCAmelCase__ (self , A ): # init input tensors lowerCamelCase_ : Optional[int] = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase_ : Dict = jnp.zeros(A , dtype=jnp.floataa ) lowerCamelCase_ : Optional[int] = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase_ : Optional[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase_ : Any = jax.random.split(A ) lowerCamelCase_ : Optional[Any] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(A , A , A , A )["params"] def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.block_out_channels lowerCamelCase_ : Tuple = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase_ : Dict = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase_ : Any = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase_ : Dict = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase_ : Tuple = FlaxTimestepEmbedding(A , dtype=self.dtype ) lowerCamelCase_ : str = self.only_cross_attention if isinstance(A , A ): lowerCamelCase_ : List[str] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(A , A ): lowerCamelCase_ : List[str] = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase_ : Dict = [] lowerCamelCase_ : int = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase_ : Tuple = output_channel lowerCamelCase_ : List[str] = block_out_channels[i] lowerCamelCase_ : Tuple = i == len(A ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase_ : int = FlaxCrossAttnDownBlockaD( in_channels=A , out_channels=A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase_ : List[str] = FlaxDownBlockaD( in_channels=A , out_channels=A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(A ) lowerCamelCase_ : List[Any] = down_blocks # mid lowerCamelCase_ : int = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowerCamelCase_ : List[str] = [] lowerCamelCase_ : Tuple = list(reversed(A ) ) lowerCamelCase_ : Union[str, Any] = list(reversed(A ) ) lowerCamelCase_ : Any = list(reversed(A ) ) lowerCamelCase_ : Union[str, Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): lowerCamelCase_ : Tuple = output_channel lowerCamelCase_ : Optional[Any] = reversed_block_out_channels[i] lowerCamelCase_ : Optional[int] = reversed_block_out_channels[min(i + 1 , len(A ) - 1 )] lowerCamelCase_ : Union[str, Any] = i == len(A ) - 1 if up_block_type == "CrossAttnUpBlock2D": lowerCamelCase_ : Any = FlaxCrossAttnUpBlockaD( in_channels=A , out_channels=A , prev_output_channel=A , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase_ : Dict = FlaxUpBlockaD( in_channels=A , out_channels=A , prev_output_channel=A , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(A ) lowerCamelCase_ : List[Any] = output_channel lowerCamelCase_ : Tuple = up_blocks # out lowerCamelCase_ : Dict = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) lowerCamelCase_ : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self , A , A , A , A=None , A=None , A = True , A = False , ): # 1. time if not isinstance(A , jnp.ndarray ): lowerCamelCase_ : Dict = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(A , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase_ : Optional[int] = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase_ : Any = jnp.expand_dims(A , 0 ) lowerCamelCase_ : Optional[Any] = self.time_proj(A ) lowerCamelCase_ : List[str] = self.time_embedding(A ) # 2. pre-process lowerCamelCase_ : List[Any] = jnp.transpose(A , (0, 2, 3, 1) ) lowerCamelCase_ : List[str] = self.conv_in(A ) # 3. down lowerCamelCase_ : int = (sample,) for down_block in self.down_blocks: if isinstance(A , A ): lowerCamelCase_ : Tuple = down_block(A , A , A , deterministic=not train ) else: lowerCamelCase_ : Tuple = down_block(A , A , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowerCamelCase_ : Optional[Any] = () for down_block_res_sample, down_block_additional_residual in zip( A , A ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowerCamelCase_ : Union[str, Any] = new_down_block_res_samples # 4. mid lowerCamelCase_ : Tuple = self.mid_block(A , A , A , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowerCamelCase_ : Optional[int] = down_block_res_samples[-(self.layers_per_block + 1) :] lowerCamelCase_ : Any = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(A , A ): lowerCamelCase_ : List[str] = up_block( A , temb=A , encoder_hidden_states=A , res_hidden_states_tuple=A , deterministic=not train , ) else: lowerCamelCase_ : Dict = up_block(A , temb=A , res_hidden_states_tuple=A , deterministic=not train ) # 6. post-process lowerCamelCase_ : str = self.conv_norm_out(A ) lowerCamelCase_ : List[str] = nn.silu(A ) lowerCamelCase_ : List[str] = self.conv_out(A ) lowerCamelCase_ : Any = jnp.transpose(A , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=A )
711
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowercase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __lowercase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: a_ : int = None a_ : List[Any] = logging.get_logger(__name__) a_ : List[Any] = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} a_ : Optional[int] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } a_ : Union[str, Any] = { "google/rembert": 256, } a_ : List[Any] = "▁" class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =RemBertTokenizer def __init__( self : int , snake_case__ : Any=None , snake_case__ : Optional[Any]=None , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=False , snake_case__ : Dict="[CLS]" , snake_case__ : List[str]="[SEP]" , snake_case__ : List[str]="<unk>" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="<pad>" , snake_case__ : Tuple="[CLS]" , snake_case__ : str="[MASK]" , **snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , remove_space=snake_case__ , keep_accents=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = remove_space SCREAMING_SNAKE_CASE = keep_accents SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def UpperCamelCase ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error('Vocabulary path ({}) should be a directory'.format(snake_case__ ) ) return SCREAMING_SNAKE_CASE = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
439
import string def __lowerCAmelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = '' for i in sequence: SCREAMING_SNAKE_CASE = ord(_UpperCamelCase ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def __lowerCAmelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = string.ascii_letters SCREAMING_SNAKE_CASE = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_UpperCamelCase )] if c in letters else c for c in sequence ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from timeit import timeit print('Running performance benchmarks...' ) SCREAMING_SNAKE_CASE = 'from string import printable ; from __main__ import atbash, atbash_slow' print(f"""> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_UpperCamelCase )} seconds""" ) print(f"""> atbash(): {timeit('atbash(printable)' , setup=_UpperCamelCase )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
439
1
"""simple docstring""" import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def A__ ( UpperCamelCase ): return input_array.reshape((input_array.size, 1) ) def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = np.nan for i in range(UpperCamelCase ): A = features[:, labels == i] A = data.mean(1 ) # Centralize the data of class i A = data - column_reshape(UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) A = np.dot(UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = features.mean(1 ) A = np.nan for i in range(UpperCamelCase ): A = features[:, labels == i] A = data.shape[1] A = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase ) , (column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) A = device_data * np.dot( column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase ) , (column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def A__ ( UpperCamelCase , UpperCamelCase ): # Check if the features have been loaded if features.any(): A = features.mean(1 ) # Center the dataset A = features - np.reshape(UpperCamelCase , (data_mean.size, 1) ) A = np.dot(UpperCamelCase , centered_data.T ) / features.shape[1] A, A = np.linalg.eigh(UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first A = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space A = np.dot(filtered_eigenvectors.T , UpperCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): assert classes > dimensions # Check if features have been already loaded if features.any: A, A = eigh( covariance_between_classes(UpperCamelCase , UpperCamelCase , UpperCamelCase ) , covariance_within_classes(UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) A = eigenvectors[:, ::-1][:, :dimensions] A, A, A = np.linalg.svd(UpperCamelCase ) A = svd_matrix[:, 0:dimensions] A = np.dot(filtered_svd_matrix.T , UpperCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A__ ( ): # Create dummy dataset with 2 classes and 3 features A = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) A = np.array([0, 0, 0, 1, 1] ) A = 2 A = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase ) as error_info: A = linear_discriminant_analysis( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if isinstance(UpperCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A__ ( ): A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) A = 2 A = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase ) as error_info: A = principal_component_analysis(UpperCamelCase , UpperCamelCase ) if not np.allclose(UpperCamelCase , UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
524
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def A__ ( UpperCamelCase ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def A__ ( ): with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" A = [1, 2, 3] with pytest.raises(UpperCamelCase ): with parallel_backend("unsupported backend" ): map_nested(UpperCamelCase , UpperCamelCase , num_proc=2 ) with pytest.raises(UpperCamelCase ): with parallel_backend("unsupported backend" ): map_nested(UpperCamelCase , UpperCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def A__ ( UpperCamelCase ): A = [1, 2] A = {"a": 1, "b": 2} A = {"a": [1, 2], "b": [3, 4]} A = {"a": {"1": 1}, "b": 2} A = {"a": 1, "b": 2, "c": 3, "d": 4} A = [2, 3] A = {"a": 2, "b": 3} A = {"a": [2, 3], "b": [4, 5]} A = {"a": {"1": 2}, "b": 3} A = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(UpperCamelCase , UpperCamelCase , num_proc=UpperCamelCase ) == expected_map_nested_sa assert map_nested(UpperCamelCase , UpperCamelCase , num_proc=UpperCamelCase ) == expected_map_nested_sa assert map_nested(UpperCamelCase , UpperCamelCase , num_proc=UpperCamelCase ) == expected_map_nested_sa assert map_nested(UpperCamelCase , UpperCamelCase , num_proc=UpperCamelCase ) == expected_map_nested_sa assert map_nested(UpperCamelCase , UpperCamelCase , num_proc=UpperCamelCase ) == expected_map_nested_sa
524
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowercase ( unittest.TestCase , a_ ): """simple docstring""" def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : int = load_tool('text-to-speech' ) self.tool.setup() def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : str = self.tool('hey' ) _snake_case : Any = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Tuple = self.tool('hey' ) _snake_case : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
304
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase_ : Union[str, Any] = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } lowercase_ : List[str] = {'''allegro/herbert-base-cased''': 514} lowercase_ : Union[str, Any] = {} class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Tuple = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Union[str, Any] = HerbertTokenizer def __init__( self : int , lowerCamelCase_ : int=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Dict="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : Dict="<pad>" , lowerCamelCase_ : Dict="<mask>" , lowerCamelCase_ : Optional[Any]="</s>" , **lowerCamelCase_ : List[Any] , ): '''simple docstring''' super().__init__( lowerCamelCase_ , lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , cls_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , **lowerCamelCase_ , ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] _snake_case : str = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[str] = [self.sep_token_id] _snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' _snake_case : Union[str, Any] = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
304
1
from math import factorial __snake_case :List[Any] = {str(d): factorial(d) for d in range(10)} def __snake_case ( _UpperCAmelCase ): return sum(DIGIT_FACTORIAL[d] for d in str(_UpperCAmelCase ) ) def __snake_case ( ): __a = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _UpperCAmelCase ) if sum_of_digit_factorial(_UpperCAmelCase ) == i ) if __name__ == "__main__": print(f'{solution() = }')
60
__snake_case :str = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Return True if there is node that has not iterated. __a = [False] * len(_UpperCAmelCase ) __a = [s] __a = True while queue: __a = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_UpperCAmelCase ) __a = True __a = u return visited[t] def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = [-1] * (len(_UpperCAmelCase )) __a = 0 __a = [] __a = [i[:] for i in graph] # Record original cut, copy. while bfs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = float('''Inf''' ) __a = sink while s != source: # Find the minimum value in select path __a = min(_UpperCAmelCase , graph[parent[s]][s] ) __a = parent[s] max_flow += path_flow __a = sink while v != source: __a = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __a = parent[v] for i in range(len(_UpperCAmelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
60
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class lowerCAmelCase : def __init__( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Any=3 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : Dict=False , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=99 , UpperCAmelCase : Tuple=32 , UpperCAmelCase : int=5 , UpperCAmelCase : str=4 , UpperCAmelCase : Optional[Any]=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : List[str]=512 , UpperCAmelCase : Dict=16 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Optional[Any]=0.0_2 , UpperCAmelCase : Dict=3 , UpperCAmelCase : int=4 , UpperCAmelCase : List[str]=None , ) -> Dict: lowerCamelCase__ : Optional[Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : int = seq_length lowerCamelCase__ : Optional[Any] = is_training lowerCamelCase__ : Any = use_input_mask lowerCamelCase__ : Dict = use_token_type_ids lowerCamelCase__ : Dict = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : List[Any] = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : Any = type_sequence_label_size lowerCamelCase__ : Tuple = initializer_range lowerCamelCase__ : Union[str, Any] = num_labels lowerCamelCase__ : str = num_choices lowerCamelCase__ : int = scope def A_ ( self : Dict ) -> Any: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : str = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None lowerCamelCase__ : Tuple = None lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Optional[int] = None if self.use_labels: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : Any ) -> Any: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=UpperCAmelCase , ) def A_ ( self : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] ) -> Tuple: lowerCamelCase__ : Tuple = FalconModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : List[str] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Optional[Any] = FalconModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : str = model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Union[str, Any] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , ) lowerCamelCase__ : Dict = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : str , ) -> List[str]: lowerCamelCase__ : Optional[Any] = FalconForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : int = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , ) -> List[str]: lowerCamelCase__ : int = True lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : str = FalconForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() # first forward pass lowerCamelCase__ : List[str] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase , ) lowerCamelCase__ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase__ : Union[str, Any] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['hidden_states'][0] lowerCamelCase__ : Tuple = model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase__ = (FalconForCausalLM,) if is_torch_available() else () UpperCAmelCase__ = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : List[str] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = FalconModelTester(self ) lowerCamelCase__ : List[Any] = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A_ ( self : Optional[int] ) -> int: self.config_tester.run_common_tests() def A_ ( self : Dict ) -> Dict: lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A_ ( self : List[str] ) -> int: lowerCamelCase__ , *lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCamelCase__ : List[Any] = alibi self.model_tester.create_and_check_model(UpperCAmelCase , *UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Optional[int]: lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : int = 3 lowerCamelCase__ : List[str] = input_dict['input_ids'] lowerCamelCase__ : Dict = input_ids.ne(1 ).to(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase__ : int = FalconForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : List[str] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A_ ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Tuple = 3 lowerCamelCase__ : List[str] = 'single_label_classification' lowerCamelCase__ : Optional[int] = input_dict['input_ids'] lowerCamelCase__ : Union[str, Any] = input_ids.ne(1 ).to(UpperCAmelCase ) lowerCamelCase__ : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = FalconForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Any = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A_ ( self : Any ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : List[str] = input_dict['input_ids'] lowerCamelCase__ : Optional[Any] = FalconForCausalLM(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Any = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : int = input_ids.shape[0] lowerCamelCase__ : str = model._convert_to_rw_cache(result.past_key_values ) lowerCamelCase__ : Optional[Any] = model._convert_cache_to_standard_format(UpperCAmelCase , UpperCAmelCase ) for layer in range(len(UpperCAmelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def A_ ( self : List[str] ) -> str: lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = 3 lowerCamelCase__ : List[str] = 'multi_label_classification' lowerCamelCase__ : Optional[int] = input_dict['input_ids'] lowerCamelCase__ : Tuple = input_ids.ne(1 ).to(UpperCAmelCase ) lowerCamelCase__ : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase__ : Any = FalconForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Any = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A_ ( self : Any ) -> Tuple: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(UpperCAmelCase , 'use_cache' ): return lowerCamelCase__ : Dict = model_class(UpperCAmelCase ).to(UpperCAmelCase ) if "use_cache" not in inputs: lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : Any = model(**UpperCAmelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCamelCase__ : Any = ( getattr(UpperCAmelCase , 'decoder_layers' , UpperCAmelCase ) or getattr(UpperCAmelCase , 'num_decoder_layers' , UpperCAmelCase ) or config.num_hidden_layers ) lowerCamelCase__ : Dict = getattr(UpperCAmelCase , 'num_kv_heads' , config.num_attention_heads ) lowerCamelCase__ : Dict = getattr(UpperCAmelCase , 'd_model' , config.hidden_size ) lowerCamelCase__ : str = embed_dim // num_attention_heads lowerCamelCase__ : List[Any] = outputs['past_key_values'] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Any = inputs['input_ids'].shape for i in range(UpperCAmelCase ): if config.new_decoder_architecture: lowerCamelCase__ : int = config.num_attention_heads elif config.multi_query: lowerCamelCase__ : Optional[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def A_ ( self : int ) -> Union[str, Any]: lowerCamelCase__ : str = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) lowerCamelCase__ : List[Any] = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Any = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) lowerCamelCase__ : Optional[Any] = model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=19 ) lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase )[0] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) @slow def A_ ( self : Any ) -> int: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCamelCase__ : str = AutoTokenizer.from_pretrained(UpperCAmelCase ) lowerCamelCase__ : int = FalconForCausalLM.from_pretrained(UpperCAmelCase ) model.eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=4 ) model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=4 ) model.generate(**UpperCAmelCase , num_beams=2 , max_new_tokens=4 ) @slow def A_ ( self : Union[str, Any] ) -> str: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCamelCase__ : Dict = AutoTokenizer.from_pretrained(UpperCAmelCase ) lowerCamelCase__ : Tuple = FalconForCausalLM.from_pretrained(UpperCAmelCase ) model.eval() model.to(device=UpperCAmelCase ) lowerCamelCase__ : Any = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase ) # Test results are the same with and without cache lowerCamelCase__ : List[str] = model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=20 , use_cache=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=20 , use_cache=UpperCAmelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
295
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : str ) -> Dict: lowerCamelCase__ : Optional[Any] = tempfile.mkdtemp() # fmt: off lowerCamelCase__ : Tuple = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on lowerCamelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowerCamelCase__ : Any = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } lowerCamelCase__ : int = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : List[str] , **UpperCAmelCase : str ) -> int: return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A_ ( self : Optional[int] , **UpperCAmelCase : List[str] ) -> List[str]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A_ ( self : int ) -> Any: shutil.rmtree(self.tmpdirname ) def A_ ( self : str ) -> str: lowerCamelCase__ : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase__ : Union[str, Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : Dict ) -> Dict: lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : Tuple = self.get_image_processor() lowerCamelCase__ : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : List[str] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A_ ( self : List[str] ) -> Tuple: lowerCamelCase__ : List[Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase__ : int = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase__ : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A_ ( self : Any ) -> Tuple: lowerCamelCase__ : List[Any] = self.get_image_processor() lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.prepare_image_inputs() lowerCamelCase__ : int = image_processor(UpperCAmelCase , return_tensors='np' ) lowerCamelCase__ : List[str] = processor(images=UpperCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self : Tuple ) -> List[Any]: lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : List[str] = self.get_tokenizer() lowerCamelCase__ : str = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase__ : Tuple = 'lower newer' lowerCamelCase__ : Tuple = processor(text=UpperCAmelCase ) lowerCamelCase__ : Any = tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A_ ( self : Optional[int] ) -> Any: lowerCamelCase__ : Optional[int] = self.get_image_processor() lowerCamelCase__ : Tuple = self.get_tokenizer() lowerCamelCase__ : Tuple = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase__ : str = 'lower newer' lowerCamelCase__ : Dict = self.prepare_image_inputs() lowerCamelCase__ : int = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(UpperCAmelCase ): processor() def A_ ( self : Optional[Any] ) -> List[str]: lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : Union[str, Any] = self.get_tokenizer() lowerCamelCase__ : List[str] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : Dict = processor.batch_decode(UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Tuple = self.get_image_processor() lowerCamelCase__ : List[str] = self.get_tokenizer() lowerCamelCase__ : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase__ : Dict = 'lower newer' lowerCamelCase__ : List[Any] = self.prepare_image_inputs() lowerCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
295
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _a (__SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=__SCREAMING_SNAKE_CASE ) @dataclass class UpperCAmelCase : """simple docstring""" lowerCAmelCase_ = field( metadata={"""help""": """The csv file to plot."""} , ) lowerCAmelCase_ = field( default=lowercase_ , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) lowerCAmelCase_ = field( default=lowercase_ , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) lowerCAmelCase_ = field( default=lowercase_ , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) lowerCAmelCase_ = field( default=lowercase_ , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) lowerCAmelCase_ = field( default=lowercase_ , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) lowerCAmelCase_ = list_field( default=lowercase_ , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""}) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" try: int(__SCREAMING_SNAKE_CASE ) return True except ValueError: return False def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" try: float(__SCREAMING_SNAKE_CASE ) return True except ValueError: return False class UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[int] ) -> str: _UpperCamelCase =args _UpperCamelCase =defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: _UpperCamelCase =csv.DictReader(UpperCamelCase__ ) for row in reader: _UpperCamelCase =row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None _UpperCamelCase =int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None _UpperCamelCase =float(row['''result'''] ) def UpperCamelCase__ ( self : str ) -> int: _UpperCamelCase , _UpperCamelCase =plt.subplots() _UpperCamelCase ='''Time usage''' if self.args.is_time else '''Memory usage''' _UpperCamelCase =title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCamelCase =sorted(set(self.result_dict[model_name]['''bsz'''] ) ) _UpperCamelCase =sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) _UpperCamelCase =self.result_dict[model_name]['''result'''] ((_UpperCamelCase) , (_UpperCamelCase)) =( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCamelCase =( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCamelCase =np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=UpperCamelCase__ , ) else: _UpperCamelCase =np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_UpperCamelCase) , (_UpperCamelCase)) =( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) _UpperCamelCase =np.asarray(UpperCamelCase__ , UpperCamelCase__ )[: len(UpperCamelCase__ )] plt.scatter( UpperCamelCase__ , UpperCamelCase__ , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(UpperCamelCase__ , UpperCamelCase__ , '''--''' ) title_str += F''' {label_model_name} vs.''' _UpperCamelCase =title_str[:-4] _UpperCamelCase ='''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(UpperCamelCase__ ) plt.xlabel(UpperCamelCase__ ) plt.ylabel(UpperCamelCase__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _a (): """simple docstring""" _UpperCamelCase =HfArgumentParser(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =parser.parse_args_into_dataclasses()[0] _UpperCamelCase =Plot(args=__SCREAMING_SNAKE_CASE ) plot.plot() if __name__ == "__main__": main()
707
'''simple docstring''' from collections.abc import Generator from math import sin def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" if len(__SCREAMING_SNAKE_CASE ) != 32: raise ValueError('''Input must be of length 32''' ) _UpperCamelCase =b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) _UpperCamelCase =format(__SCREAMING_SNAKE_CASE , '''08x''' )[-8:] _UpperCamelCase =b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =b'''''' for char in message: bit_string += format(__SCREAMING_SNAKE_CASE , '''08b''' ).encode('''utf-8''' ) _UpperCamelCase =format(len(__SCREAMING_SNAKE_CASE ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__SCREAMING_SNAKE_CASE ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" if len(__SCREAMING_SNAKE_CASE ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(__SCREAMING_SNAKE_CASE ) , 512 ): _UpperCamelCase =bit_string[pos : pos + 512] _UpperCamelCase =[] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) _UpperCamelCase =format(__SCREAMING_SNAKE_CASE , '''032b''' ) _UpperCamelCase ='''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(__SCREAMING_SNAKE_CASE , 2 ) def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return (a + b) % 2**32 def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =preprocess(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =[int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _UpperCamelCase =0X6745_2301 _UpperCamelCase =0Xefcd_ab89 _UpperCamelCase =0X98ba_dcfe _UpperCamelCase =0X1032_5476 _UpperCamelCase =[ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__SCREAMING_SNAKE_CASE ): _UpperCamelCase =aa _UpperCamelCase =ba _UpperCamelCase =ca _UpperCamelCase =da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _UpperCamelCase =d ^ (b & (c ^ d)) _UpperCamelCase =i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _UpperCamelCase =c ^ (d & (b ^ c)) _UpperCamelCase =(5 * i + 1) % 16 elif i <= 47: _UpperCamelCase =b ^ c ^ d _UpperCamelCase =(3 * i + 5) % 16 else: _UpperCamelCase =c ^ (b | not_aa(__SCREAMING_SNAKE_CASE )) _UpperCamelCase =(7 * i) % 16 _UpperCamelCase =(f + a + added_consts[i] + block_words[g]) % 2**32 _UpperCamelCase =d _UpperCamelCase =c _UpperCamelCase =b _UpperCamelCase =sum_aa(__SCREAMING_SNAKE_CASE , left_rotate_aa(__SCREAMING_SNAKE_CASE , shift_amounts[i] ) ) # Add hashed chunk to running total _UpperCamelCase =sum_aa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCamelCase =sum_aa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCamelCase =sum_aa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCamelCase =sum_aa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCamelCase =reformat_hex(__SCREAMING_SNAKE_CASE ) + reformat_hex(__SCREAMING_SNAKE_CASE ) + reformat_hex(__SCREAMING_SNAKE_CASE ) + reformat_hex(__SCREAMING_SNAKE_CASE ) return digest if __name__ == "__main__": import doctest doctest.testmod()
271
0
from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase_ ( a_ ): _A : Optional[int] = 'facebook/bart-large-mnli' _A : Union[str, Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) _A : Dict = 'text_classifier' _A : Union[str, Any] = AutoTokenizer _A : Tuple = AutoModelForSequenceClassification _A : Optional[int] = ['text', ['text']] _A : Dict = ['text'] def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" super().setup() UpperCAmelCase = self.model.config UpperCAmelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): UpperCAmelCase = int(snake_case__ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ ) -> List[Any]: """simple docstring""" UpperCAmelCase = labels return self.pre_processor( [text] * len(snake_case__ ) , [f'''This example is {label}''' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def UpperCamelCase_ ( self , snake_case__ ) -> str: """simple docstring""" UpperCAmelCase = outputs.logits UpperCAmelCase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a : Any = logging.get_logger(__name__) class __lowercase ( lowercase_ ): '''simple docstring''' def __init__( self : str , *UpperCamelCase_ : str , **UpperCamelCase_ : Union[str, Any] ): """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
199
from collections.abc import Sequence def _SCREAMING_SNAKE_CASE ( __lowercase : Sequence[float] , __lowercase : float ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(__lowercase ) ) def _SCREAMING_SNAKE_CASE ( __lowercase : Sequence[float] , __lowercase : float ) -> float: """simple docstring""" __A = 0.0 for coeff in reversed(__lowercase ): __A = result * x + coeff return result if __name__ == "__main__": __a : Dict = (0.0, 0.0, 5.0, 9.3, 7.0) __a : Optional[Any] = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
199
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class _a ( UpperCamelCase__ ): _lowercase : Any = ['''input_features''', '''attention_mask'''] def __init__( self: Dict , UpperCamelCase_: str=80 , UpperCamelCase_: Any=16_000 , UpperCamelCase_: Union[str, Any]=80 , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: int=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Optional[Any]=True , **UpperCamelCase_: List[str] , ) -> int: """simple docstring""" super().__init__(feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = num_mel_bins lowercase__ = do_ceptral_normalize lowercase__ = normalize_means lowercase__ = normalize_vars lowercase__ = True def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , ) -> np.ndarray: """simple docstring""" lowercase__ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowercase__ = torch.from_numpy(UpperCamelCase_ ).unsqueeze(0 ) lowercase__ = ta_kaldi.fbank(UpperCamelCase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCamelCase_ ( UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[bool] = True , UpperCamelCase_: Optional[bool] = True , UpperCamelCase_: float = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: lowercase__ = x[:input_length].mean(axis=0 ) lowercase__ = np.subtract(UpperCamelCase_ , UpperCamelCase_ ) if normalize_vars: lowercase__ = x[:input_length].std(axis=0 ) lowercase__ = np.divide(UpperCamelCase_ , UpperCamelCase_ ) if input_length < x.shape[0]: lowercase__ = padding_value # make sure array is in float32 lowercase__ = x.astype(np.floataa ) return x def lowerCamelCase_ ( self: int , UpperCamelCase_: List[np.ndarray] , UpperCamelCase_: Optional[np.ndarray] = None ) -> List[np.ndarray]: """simple docstring""" lowercase__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCamelCase_ , UpperCamelCase_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCamelCase_ , UpperCamelCase_ ) ] def __call__( self: List[Any] , UpperCamelCase_: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_: Union[bool, str, PaddingStrategy] = False , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[bool] = None , **UpperCamelCase_: List[Any] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowercase__ = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): lowercase__ = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [raw_speech] # extract fbank features lowercase__ = [self._extract_fbank_features(UpperCamelCase_ ) for waveform in raw_speech] # convert into correct format for padding lowercase__ = BatchFeature({'''input_features''': features} ) lowercase__ = self.pad( UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) # make sure list is in array format lowercase__ = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , UpperCamelCase_ ): lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_features] lowercase__ = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowercase__ = ( np.array(UpperCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase_ , max_length=UpperCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase__ = self.normalize( padded_inputs['''input_features'''] , attention_mask=UpperCamelCase_ ) if return_tensors is not None: lowercase__ = padded_inputs.convert_to_tensors(UpperCamelCase_ ) return padded_inputs
43
import random from typing import Any def UpperCamelCase( __UpperCamelCase : list ): for _ in range(len(__UpperCamelCase ) ): lowerCAmelCase_ : Union[str, Any] = random.randint(0 ,len(__UpperCamelCase ) - 1 ) lowerCAmelCase_ : List[Any] = random.randint(0 ,len(__UpperCamelCase ) - 1 ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = data[b], data[a] return data if __name__ == "__main__": A__ : List[Any] = [0, 1, 2, 3, 4, 5, 6, 7] A__ : int = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
171
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase__ ( __lowerCAmelCase ): def __a ( self : Tuple ): '''simple docstring''' a__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , "width_multiplier" ) ) class UpperCamelCase__ : def __init__( self : str , lowerCamelCase : int , lowerCamelCase : Optional[Any]=1_3 , lowerCamelCase : Any=6_4 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : List[str]="swish" , lowerCamelCase : str=3 , lowerCamelCase : Dict=3_2 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : str=True , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Optional[int]=1_0 , lowerCamelCase : Any=None , lowerCamelCase : Tuple=0.25 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.0 , ): '''simple docstring''' a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = make_divisible(5_1_2 * width_multiplier , divisor=8 ) a__ = hidden_act a__ = conv_kernel_size a__ = output_stride a__ = classifier_dropout_prob a__ = use_labels a__ = is_training a__ = num_labels a__ = initializer_range a__ = scope a__ = width_multiplier a__ = ffn_dropout a__ = attn_dropout def __a ( self : Dict ): '''simple docstring''' a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.num_labels ) a__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : Any ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __a ( self : List[str] , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : Dict , lowerCamelCase : str ): '''simple docstring''' a__ = MobileViTVaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() a__ = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __a ( self : Any , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' a__ = self.num_labels a__ = MobileViTVaForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() a__ = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : Dict , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : List[str] , lowerCamelCase : Any ): '''simple docstring''' a__ = self.num_labels a__ = MobileViTVaForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() a__ = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) a__ = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __a ( self : Optional[Any] ): '''simple docstring''' a__ = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ = config_and_inputs a__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __lowerCAmelCase ,__lowerCAmelCase ,unittest.TestCase ): lowerCAmelCase__ : Optional[int] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase__ : Union[str, Any] = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : str = False lowerCAmelCase__ : Any = False def __a ( self : Dict ): '''simple docstring''' a__ = MobileViTVaModelTester(self ) a__ = MobileViTVaConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def __a ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def __a ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def __a ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def __a ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def __a ( self : Tuple ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __a ( self : Optional[Any] ): '''simple docstring''' pass def __a ( self : Union[str, Any] ): '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(lowerCamelCase ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __a ( self : Union[str, Any] ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __a ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : str ): a__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) a__ = outputs.hidden_states a__ = 5 self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. a__ = 2 for i in range(len(lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __a ( self : Dict ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def __a ( self : int ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = MobileViTVaModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _lowerCamelCase () -> Optional[int]: a__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def __a ( self : Optional[int] ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def __a ( self : List[Any] ): '''simple docstring''' a__ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( lowerCamelCase ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): a__ = model(**lowerCamelCase ) # verify the logits a__ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) a__ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' a__ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) a__ = model.to(lowerCamelCase ) a__ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) a__ = prepare_img() a__ = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): a__ = model(**lowerCamelCase ) a__ = outputs.logits # verify the logits a__ = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , lowerCamelCase ) a__ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def __a ( self : int ): '''simple docstring''' a__ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) a__ = model.to(lowerCamelCase ) a__ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) a__ = prepare_img() a__ = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): a__ = model(**lowerCamelCase ) a__ = outputs.logits.detach().cpu() a__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase , target_sizes=[(5_0, 6_0)] ) a__ = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , lowerCamelCase ) a__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) a__ = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , lowerCamelCase )
721
'''simple docstring''' from __future__ import annotations from math import pi def _lowerCamelCase (__lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
289
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
520
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _a ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Tuple = DistilBertTokenizer lowerCamelCase_ : Any = DistilBertTokenizerFast lowerCamelCase_ : Union[str, Any] = True @slow def __UpperCAmelCase( self ): __A : Any = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) __A : Optional[Any] = tokenizer.encode("sequence builders" , add_special_tokens=__UpperCAmelCase ) __A : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=__UpperCAmelCase ) __A : Any = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) __A : str = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
520
1
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( UpperCamelCase__ :List[Any] , UpperCamelCase__ :List[str] , UpperCamelCase__ :str , UpperCamelCase__ :Any="attention" ) -> List[Any]: snake_case__ : List[Any] = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] snake_case__ : Union[str, Any] = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] snake_case__ : List[str] = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] snake_case__ : str = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def __UpperCAmelCase ( UpperCamelCase__ :Any , UpperCamelCase__ :int , UpperCamelCase__ :int , UpperCamelCase__ :Any=False ) -> Optional[int]: if split_mlp_wi: snake_case__ : Any = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] snake_case__ : Union[str, Any] = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] snake_case__ : Any = (wi_a, wi_a) else: snake_case__ : List[str] = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] snake_case__ : Optional[int] = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def __UpperCAmelCase ( UpperCamelCase__ :Dict , UpperCamelCase__ :int , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Union[str, Any] ) -> str: return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def __UpperCAmelCase ( UpperCamelCase__ :dict , *, UpperCamelCase__ :int , UpperCamelCase__ :bool ) -> Union[str, Any]: snake_case__ : Tuple = traverse_util.flatten_dict(variables['''target'''] ) snake_case__ : str = {'''/'''.join(UpperCamelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi snake_case__ : Optional[Any] = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , UpperCamelCase__ ) snake_case__ : List[str] = collections.OrderedDict() # Shared embeddings. snake_case__ : Union[str, Any] = old['''token_embedder/embedding'''] # Encoder. for i in range(UpperCamelCase__ ): # Block i, layer 0 (Self Attention). snake_case__ : Dict = tax_layer_norm_lookup(UpperCamelCase__ , UpperCamelCase__ , '''encoder''' , '''pre_attention_layer_norm''' ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = tax_attention_lookup(UpperCamelCase__ , UpperCamelCase__ , '''encoder''' , '''attention''' ) snake_case__ : Optional[int] = layer_norm snake_case__ : Tuple = k.T snake_case__ : Any = o.T snake_case__ : Dict = q.T snake_case__ : int = v.T # Block i, layer 1 (MLP). snake_case__ : Any = tax_layer_norm_lookup(UpperCamelCase__ , UpperCamelCase__ , '''encoder''' , '''pre_mlp_layer_norm''' ) snake_case__ , snake_case__ : str = tax_mlp_lookup(UpperCamelCase__ , UpperCamelCase__ , '''encoder''' , UpperCamelCase__ ) snake_case__ : str = layer_norm if split_mlp_wi: snake_case__ : List[str] = wi[0].T snake_case__ : str = wi[1].T else: snake_case__ : int = wi.T snake_case__ : Any = wo.T snake_case__ : Tuple = old[ '''encoder/relpos_bias/rel_embedding''' ].T snake_case__ : List[str] = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(UpperCamelCase__ ): # Block i, layer 0 (Self Attention). snake_case__ : Tuple = tax_layer_norm_lookup(UpperCamelCase__ , UpperCamelCase__ , '''decoder''' , '''pre_self_attention_layer_norm''' ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = tax_attention_lookup(UpperCamelCase__ , UpperCamelCase__ , '''decoder''' , '''self_attention''' ) snake_case__ : str = layer_norm snake_case__ : Optional[int] = k.T snake_case__ : Any = o.T snake_case__ : Any = q.T snake_case__ : List[Any] = v.T # Block i, layer 1 (Cross Attention). snake_case__ : str = tax_layer_norm_lookup(UpperCamelCase__ , UpperCamelCase__ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = tax_attention_lookup(UpperCamelCase__ , UpperCamelCase__ , '''decoder''' , '''encoder_decoder_attention''' ) snake_case__ : int = layer_norm snake_case__ : Optional[Any] = k.T snake_case__ : List[Any] = o.T snake_case__ : Dict = q.T snake_case__ : str = v.T # Block i, layer 2 (MLP). snake_case__ : Union[str, Any] = tax_layer_norm_lookup(UpperCamelCase__ , UpperCamelCase__ , '''decoder''' , '''pre_mlp_layer_norm''' ) snake_case__ , snake_case__ : str = tax_mlp_lookup(UpperCamelCase__ , UpperCamelCase__ , '''decoder''' , UpperCamelCase__ ) snake_case__ : Optional[Any] = layer_norm if split_mlp_wi: snake_case__ : Union[str, Any] = wi[0].T snake_case__ : int = wi[1].T else: snake_case__ : str = wi.T snake_case__ : Any = wo.T snake_case__ : str = old['''decoder/decoder_norm/scale'''] snake_case__ : str = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: snake_case__ : List[Any] = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( UpperCamelCase__ :List[Any] , UpperCamelCase__ :bool ) -> str: snake_case__ : str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: snake_case__ : str = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: snake_case__ : Tuple = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) snake_case__ : Optional[int] = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( UpperCamelCase__ :str , UpperCamelCase__ :Tuple , UpperCamelCase__ :List[str] , UpperCamelCase__ :Dict ) -> Tuple: snake_case__ : List[str] = checkpoints.load_tax_checkpoint(UpperCamelCase__ ) snake_case__ : Union[str, Any] = convert_tax_to_pytorch(UpperCamelCase__ , num_layers=config.num_layers , is_encoder_only=UpperCamelCase__ ) snake_case__ : List[Any] = make_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) def __UpperCAmelCase ( UpperCamelCase__ :Optional[int] , UpperCamelCase__ :List[Any] , UpperCamelCase__ :List[Any] , UpperCamelCase__ :bool = False ) -> Optional[Any]: snake_case__ : Optional[Any] = TaConfig.from_json_file(UpperCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: snake_case__ : Tuple = TaEncoderModel(UpperCamelCase__ ) else: snake_case__ : Optional[Any] = TaForConditionalGeneration(UpperCamelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCamelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCamelCase__ ) print('''Done''' ) if __name__ == "__main__": _lowercase : Tuple =argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) _lowercase : Optional[Any] =parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
574
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any ={ "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict =["ConditionalDetrFeatureExtractor"] _lowercase : Optional[int] =["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =[ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
574
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Dict ) -> Optional[int]: __UpperCAmelCase =AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =AutoTokenizer.from_pretrained("""google/mt5-small""" ) __UpperCAmelCase =tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids __UpperCAmelCase =tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids __UpperCAmelCase =model(input_ids.to(__SCREAMING_SNAKE_CASE ) , labels=labels.to(__SCREAMING_SNAKE_CASE ) ).loss __UpperCAmelCase =-(labels.shape[-1] * loss.item()) __UpperCAmelCase =-84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
68
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : Dict = (DDPMScheduler,) def _SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase = -1 else: lowerCAmelCase = timesteps[i + 1] lowerCAmelCase = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [1_00, 87, 50, 1, 0] lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
284
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __lowerCamelCase ( __snake_case , __snake_case ): lowerCamelCase_ : Any = 1 @register_to_config def __init__( self , lowerCamelCase=2000 , lowerCamelCase=0.1 , lowerCamelCase=20 , lowerCamelCase=1e-3 ) -> Optional[Any]: snake_case_ = None snake_case_ = None snake_case_ = None def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> int: snake_case_ = torch.linspace(1 , self.config.sampling_eps , lowerCamelCase , device=lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ) -> int: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case_ = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case_ = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case_ = std.flatten() while len(std.shape ) < len(score.shape ): snake_case_ = std.unsqueeze(-1 ) snake_case_ = -score / std # compute snake_case_ = -1.0 / len(self.timesteps ) snake_case_ = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case_ = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case_ = beta_t.unsqueeze(-1 ) snake_case_ = -0.5 * beta_t * x snake_case_ = torch.sqrt(lowerCamelCase ) snake_case_ = drift - diffusion**2 * score snake_case_ = x + drift * dt # add noise snake_case_ = randn_tensor(x.shape , layout=x.layout , generator=lowerCamelCase , device=x.device , dtype=x.dtype ) snake_case_ = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Tuple: return self.config.num_train_timesteps
702
from typing import Any def UpperCamelCase( lowercase_ ) -> list[Any]: '''simple docstring''' if not input_list: return [] snake_case_ = [input_list.count(lowercase_ ) for value in input_list] snake_case_ = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
161
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCamelCase = 'pt' elif is_tf_available(): lowerCamelCase = 'tf' else: lowerCamelCase = 'jax' class A ( __a , unittest.TestCase ): UpperCamelCase__ : Dict =PerceiverTokenizer UpperCamelCase__ : Optional[Any] =False def lowerCamelCase ( self : Tuple ) -> Dict: """simple docstring""" super().setUp() _lowerCamelCase : Union[str, Any] =PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowerCamelCase ( self : List[str] , **lowercase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowerCamelCase ( self : Dict , lowercase_ : Tuple , lowercase_ : int=False , lowercase_ : List[Any]=20 , lowercase_ : Optional[Any]=5 ) -> str: """simple docstring""" _lowerCamelCase : Optional[int] =[] for i in range(len(__lowerCAmelCase ) ): try: _lowerCamelCase : Union[str, Any] =tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowerCamelCase : Dict =list(filter(lambda lowercase_ : re.match(R'^[ a-zA-Z]+$' , t[1] ) , __lowerCAmelCase ) ) _lowerCamelCase : int =list(filter(lambda lowercase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowerCAmelCase ) , __lowerCAmelCase ) ) if max_length is not None and len(__lowerCAmelCase ) > max_length: _lowerCamelCase : Tuple =toks[:max_length] if min_length is not None and len(__lowerCAmelCase ) < min_length and len(__lowerCAmelCase ) > 0: while len(__lowerCAmelCase ) < min_length: _lowerCamelCase : List[Any] =toks + toks # toks_str = [t[1] for t in toks] _lowerCamelCase : Any =[t[0] for t in toks] # Ensure consistency _lowerCamelCase : Optional[Any] =tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) if " " not in output_txt and len(__lowerCAmelCase ) > 1: _lowerCamelCase : Union[str, Any] =( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCAmelCase ) ) if with_prefix_space: _lowerCamelCase : Dict =' ' + output_txt _lowerCamelCase : Dict =tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) return output_txt, output_ids def lowerCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[Any] =self.perceiver_tokenizer _lowerCamelCase : Union[str, Any] ='Unicode €.' _lowerCamelCase : Union[str, Any] =tokenizer(__lowerCAmelCase ) _lowerCamelCase : List[str] =[4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , __lowerCAmelCase ) # decoding _lowerCamelCase : Optional[int] =tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , '[CLS]Unicode €.[SEP]' ) _lowerCamelCase : Dict =tokenizer('e è é ê ë' ) _lowerCamelCase : int =[4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , __lowerCAmelCase ) # decoding _lowerCamelCase : Any =tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowerCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[int] =self.perceiver_tokenizer _lowerCamelCase : List[str] =['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowerCamelCase : Union[str, Any] =[4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _lowerCamelCase : List[Any] =tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) if FRAMEWORK != "jax": _lowerCamelCase : Any =list(batch.input_ids.numpy()[0] ) else: _lowerCamelCase : Dict =list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowerCamelCase ( self : str ) -> str: """simple docstring""" _lowerCamelCase : str =self.perceiver_tokenizer _lowerCamelCase : Dict =['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowerCamelCase : List[str] =tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , __lowerCAmelCase ) self.assertIn('attention_mask' , __lowerCAmelCase ) self.assertNotIn('decoder_input_ids' , __lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , __lowerCAmelCase ) def lowerCamelCase ( self : Tuple ) -> int: """simple docstring""" _lowerCamelCase : int =self.perceiver_tokenizer _lowerCamelCase : List[Any] =[ 'Summary of the text.', 'Another summary.', ] _lowerCamelCase : Optional[Any] =tokenizer( text_target=__lowerCAmelCase , max_length=32 , padding='max_length' , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowerCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _lowerCamelCase : Any =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowerCamelCase : Any =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowerCamelCase : Optional[Any] =tempfile.mkdtemp() _lowerCamelCase : Tuple =' He is very happy, UNwant\u00E9d,running' _lowerCamelCase : int =tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[Any] =tokenizer.__class__.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : str =after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) shutil.rmtree(__lowerCAmelCase ) _lowerCamelCase : str =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowerCamelCase : Any =tempfile.mkdtemp() _lowerCamelCase : Union[str, Any] =' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowerCamelCase : str =tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowerCamelCase : Union[str, Any] =tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Tuple =tokenizer.__class__.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : str =after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowerCamelCase : List[Any] =tokenizer.__class__.from_pretrained(__lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCAmelCase ) def lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowerCamelCase : int =json.load(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowerCamelCase : Optional[Any] =json.load(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] =[F'''<extra_id_{i}>''' for i in range(125 )] _lowerCamelCase : Tuple =added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowerCamelCase : Dict =added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(__lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowerCamelCase : List[Any] =tokenizer_class.from_pretrained( __lowerCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowerCamelCase : List[Any] =added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=__lowerCAmelCase )] _lowerCamelCase : Any =tokenizer_class.from_pretrained( __lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowerCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : int =self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" pass def lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def lowerCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _lowerCamelCase : List[str] =self.get_tokenizers(fast=__lowerCAmelCase , do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowerCamelCase : List[str] =['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowerCamelCase : Optional[Any] =tokenizer.convert_tokens_to_string(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
464
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case = [0, 25, 50] snake_case = [25, 50, 75] snake_case = fuzz.membership.trimf(X, abca) snake_case = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case = np.ones(75) snake_case = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
309
0
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata __A : Union[str, Any] = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class lowercase ( tr.AbstractTransform ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : str = " " ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = sentence_delimiter def a__ ( self : Any , __lowerCamelCase : str ) -> Any: '''simple docstring''' return list(__lowerCamelCase ) def a__ ( self : str , __lowerCamelCase : List[str] ) -> Dict: '''simple docstring''' lowerCamelCase__ = [] for sent_idx, sentence in enumerate(__lowerCamelCase ): chars.extend(self.process_string(__lowerCamelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__lowerCamelCase ) - 1: chars.append(self.sentence_delimiter ) return chars __A : Any = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __A : Optional[int] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __A : int = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ __A : int = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ __A : str = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): '''simple docstring''' def a__ ( self : str ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def a__ ( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Any=False ) -> Dict: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( __lowerCamelCase , __lowerCamelCase , truth_transform=__lowerCamelCase , hypothesis_transform=__lowerCamelCase , )["wer"] lowerCamelCase__ = 0 lowerCamelCase__ = 0 for prediction, reference in zip(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ = jiwer.compute_measures( __lowerCamelCase , __lowerCamelCase , truth_transform=__lowerCamelCase , hypothesis_transform=__lowerCamelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
187
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class lowercase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Dict ) -> str: '''simple docstring''' super().__init__(**__lowerCamelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = d_embed lowerCamelCase__ = d_proj lowerCamelCase__ = cutoffs + [vocab_size] lowerCamelCase__ = [0] + self.cutoffs lowerCamelCase__ = div_val lowerCamelCase__ = self.cutoffs[0] lowerCamelCase__ = len(self.cutoffs ) - 1 lowerCamelCase__ = self.shortlist_size + self.n_clusters lowerCamelCase__ = keep_order lowerCamelCase__ = [] lowerCamelCase__ = [] def a__ ( self : Optional[int] , __lowerCamelCase : str ) -> List[str]: '''simple docstring''' if self.n_clusters > 0: lowerCamelCase__ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=__lowerCamelCase , name="cluster_weight" ) lowerCamelCase__ = self.add_weight( shape=(self.n_clusters,) , initializer="zeros" , trainable=__lowerCamelCase , name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowerCamelCase__ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_projs_._{i}''' , ) self.out_projs.append(__lowerCamelCase ) else: self.out_projs.append(__lowerCamelCase ) lowerCamelCase__ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._weight''' , ) lowerCamelCase__ = self.add_weight( shape=(self.vocab_size,) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowerCamelCase__ , lowerCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase__ = self.d_embed // (self.div_val**i) lowerCamelCase__ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_projs_._{i}''' ) self.out_projs.append(__lowerCamelCase ) lowerCamelCase__ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._weight''' , ) lowerCamelCase__ = self.add_weight( shape=(r_idx - l_idx,) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(__lowerCamelCase ) @staticmethod def a__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=None ) -> str: '''simple docstring''' lowerCamelCase__ = x if proj is not None: lowerCamelCase__ = tf.einsum("ibd,ed->ibe" , __lowerCamelCase , __lowerCamelCase ) return tf.einsum("ibd,nd->ibn" , __lowerCamelCase , __lowerCamelCase ) + b @staticmethod def a__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = shape_list(__lowerCamelCase ) lowerCamelCase__ = tf.range(lp_size[0] , dtype=target.dtype ) lowerCamelCase__ = tf.stack([r, target] , 1 ) return tf.gather_nd(__lowerCamelCase , __lowerCamelCase ) def a__ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : str=True , __lowerCamelCase : Tuple=False ) -> int: '''simple docstring''' lowerCamelCase__ = 0 if self.n_clusters == 0: lowerCamelCase__ = self._logit(__lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowerCamelCase__ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__lowerCamelCase , logits=__lowerCamelCase ) lowerCamelCase__ = tf.nn.log_softmax(__lowerCamelCase , axis=-1 ) else: lowerCamelCase__ = shape_list(__lowerCamelCase ) lowerCamelCase__ = [] lowerCamelCase__ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowerCamelCase__ , lowerCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowerCamelCase__ = (target >= l_idx) & (target < r_idx) lowerCamelCase__ = tf.where(__lowerCamelCase ) lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) - l_idx if self.div_val == 1: lowerCamelCase__ = self.out_layers[0][0][l_idx:r_idx] lowerCamelCase__ = self.out_layers[0][1][l_idx:r_idx] else: lowerCamelCase__ = self.out_layers[i][0] lowerCamelCase__ = self.out_layers[i][1] if i == 0: lowerCamelCase__ = tf.concat([cur_W, self.cluster_weight] , 0 ) lowerCamelCase__ = tf.concat([cur_b, self.cluster_bias] , 0 ) lowerCamelCase__ = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[0] ) lowerCamelCase__ = tf.nn.log_softmax(__lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) else: lowerCamelCase__ = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[i] ) lowerCamelCase__ = tf.nn.log_softmax(__lowerCamelCase ) lowerCamelCase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster lowerCamelCase__ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__lowerCamelCase ) if target is not None: lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__lowerCamelCase , -cur_logprob , shape_list(__lowerCamelCase ) ) lowerCamelCase__ = tf.concat(__lowerCamelCase , axis=-1 ) if target is not None: if return_mean: lowerCamelCase__ = tf.reduce_mean(__lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__lowerCamelCase , name=self.name , aggregation="mean" if return_mean else "" ) return out
187
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor a__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any] ) -> None: """simple docstring""" warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
279
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCAmelCase_ : """simple docstring""" def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: return None class UpperCAmelCase_ : """simple docstring""" def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: return None class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any =[ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def UpperCAmelCase ( self ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(SCREAMING_SNAKE_CASE_ , '''tf''' , 12 , **SCREAMING_SNAKE_CASE_ ) @require_torch @slow def UpperCAmelCase ( self ) -> Optional[int]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(SCREAMING_SNAKE_CASE_ , '''pt''' , 12 , **SCREAMING_SNAKE_CASE_ ) @require_torch @slow def UpperCAmelCase ( self ) -> int: from transformers import BertModel UpperCamelCase :int = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) vocab_file.flush() UpperCamelCase :Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: UpperCamelCase :Union[str, Any] = BertModel(BertConfig(vocab_size=len(SCREAMING_SNAKE_CASE_ ) ) ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) self._test_export(SCREAMING_SNAKE_CASE_ , '''pt''' , 12 , SCREAMING_SNAKE_CASE_ ) @require_tf @slow def UpperCAmelCase ( self ) -> str: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase :Tuple = self._test_export(SCREAMING_SNAKE_CASE_ , '''tf''' , 12 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = quantize(Path(SCREAMING_SNAKE_CASE_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def UpperCAmelCase ( self ) -> Optional[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase :str = self._test_export(SCREAMING_SNAKE_CASE_ , '''pt''' , 12 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = quantize(SCREAMING_SNAKE_CASE_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: try: # Compute path with TemporaryDirectory() as tempdir: UpperCamelCase :Union[str, Any] = Path(SCREAMING_SNAKE_CASE_ ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return path except Exception as e: self.fail(SCREAMING_SNAKE_CASE_ ) @require_torch @require_tokenizers @slow def UpperCAmelCase ( self ) -> List[str]: from transformers import BertModel UpperCamelCase :List[Any] = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) UpperCamelCase :int = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''pt''' ) @require_tf @require_tokenizers @slow def UpperCAmelCase ( self ) -> List[Any]: from transformers import TFBertModel UpperCamelCase :Optional[Any] = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) UpperCamelCase :Optional[Any] = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''tf''' ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase :Tuple = FeatureExtractionPipeline(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :List[Any] = infer_shapes(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Assert all variables are present self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , SCREAMING_SNAKE_CASE_ ) self.assertSequenceEqual(variable_names[3:] , SCREAMING_SNAKE_CASE_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def UpperCAmelCase ( self ) -> int: UpperCamelCase :int = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] UpperCamelCase :Tuple = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} UpperCamelCase , UpperCamelCase :Any = ensure_valid_input(FuncContiguousArgs() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(SCREAMING_SNAKE_CASE_ ) , set(SCREAMING_SNAKE_CASE_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(SCREAMING_SNAKE_CASE_ , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) UpperCamelCase , UpperCamelCase :Tuple = ensure_valid_input(FuncNonContiguousArgs() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :str = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
658
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) A_ = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
'''simple docstring''' def A_ ( snake_case = 100 ): SCREAMING_SNAKE_CASE:Dict = 0 SCREAMING_SNAKE_CASE:Optional[int] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
465
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __lowercase ( unittest.TestCase ): def __init__( self : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=1_3 , __lowerCamelCase : Optional[int]=3_0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=3 , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple=3_2 , __lowerCamelCase : Dict=5 , __lowerCamelCase : str=4 , __lowerCamelCase : Tuple=3_7 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Dict=1_0 , __lowerCamelCase : Union[str, Any]=0.02 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 1 def _lowercase ( self : Any ) -> Dict: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase = FlaxViTModel(config=__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase = (self.image_size, self.image_size) UpperCAmelCase = (self.patch_size, self.patch_size) UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase ( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ) -> Tuple: """simple docstring""" UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = FlaxViTForImageClassification(config=__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = FlaxViTForImageClassification(__lowerCamelCase ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(__lowerCamelCase ) def _lowercase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __lowercase ( __snake_case , unittest.TestCase ): UpperCamelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase ( self : Union[str, Any] ) -> None: """simple docstring""" UpperCAmelCase = FlaxViTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self : List[str] ) -> int: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowercase ( self : List[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__lowerCamelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowercase ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase = model_class(__lowerCamelCase ) @jax.jit def model_jitted(__lowerCamelCase : int , **__lowerCamelCase : Optional[Any] ): return model(pixel_values=__lowerCamelCase , **__lowerCamelCase ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase = model_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase ( self : Tuple ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) UpperCAmelCase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(__lowerCamelCase )
377
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __a = datasets.logging.get_logger(__name__) __a = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ __a = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ __a = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_="dummy_doc" ) ->Optional[Any]: UpperCAmelCase = {doc: key_lines} UpperCAmelCase = {doc: sys_lines} UpperCAmelCase = {} UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase , UpperCAmelCase = reader.get_doc_mentions(lowerCAmelCase_ , key_doc_lines[doc] , lowerCAmelCase_ ) key_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase = reader.set_annotated_parse_trees(lowerCAmelCase_ , key_doc_lines[doc] , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = reader.get_doc_mentions(lowerCAmelCase_ , sys_doc_lines[doc] , lowerCAmelCase_ ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase = reader.set_annotated_parse_trees(lowerCAmelCase_ , key_doc_lines[doc] , lowerCAmelCase_ , lowerCAmelCase_ ) if remove_nested: UpperCAmelCase , UpperCAmelCase = reader.remove_nested_coref_mentions(lowerCAmelCase_ , lowerCAmelCase_ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCAmelCase , UpperCAmelCase = reader.remove_nested_coref_mentions(lowerCAmelCase_ , lowerCAmelCase_ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCAmelCase = reader.get_mention_assignments(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = reader.get_mention_assignments(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( """Number of resulting singleton clusters in the key """ F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ """files, respectively""" ) return doc_coref_infos def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->int: UpperCAmelCase = get_coref_infos(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = {} UpperCAmelCase = 0 UpperCAmelCase = 0 for name, metric in metrics: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = evaluator.evaluate_documents(lowerCAmelCase_ , lowerCAmelCase_ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(1_0 ) , F"""Recall: {recall * 1_0_0:.2f}""" , F""" Precision: {precision * 1_0_0:.2f}""" , F""" F1: {fa * 1_0_0:.2f}""" , ) if conll_subparts_num == 3: UpperCAmelCase = (conll / 3) * 1_0_0 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({"""conll_score""": conll} ) return output_scores def _UpperCamelCase ( lowerCAmelCase_ ) ->List[Any]: UpperCAmelCase = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: UpperCAmelCase = line.split()[5] if not parse_col == "-": UpperCAmelCase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def _lowercase ( self : int ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def _lowercase ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Any=False , __lowerCamelCase : List[Any]=False , __lowerCamelCase : List[Any]=False ) -> List[Any]: """simple docstring""" UpperCAmelCase = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: UpperCAmelCase = util.check_gold_parse_annotation(__lowerCamelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCAmelCase = evaluate( key_lines=__lowerCamelCase , sys_lines=__lowerCamelCase , metrics=__lowerCamelCase , NP_only=__lowerCamelCase , remove_nested=__lowerCamelCase , keep_singletons=__lowerCamelCase , min_span=__lowerCamelCase , ) return score
377
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __lowerCamelCase = logging.get_logger(__name__) # General docstring __lowerCamelCase = 'ResNetConfig' # Base docstring __lowerCamelCase = 'microsoft/resnet-50' __lowerCamelCase = [1, 2_048, 7, 7] # Image classification docstring __lowerCamelCase = 'microsoft/resnet-50' __lowerCamelCase = 'tiger cat' __lowerCamelCase = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 3 , lowercase = 1 , lowercase = "relu" ) -> str: super().__init__() _a : str = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _a : Optional[Any] = nn.BatchNormad(lowercase ) _a : int = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__( self , lowercase ) -> Tensor: _a : Union[str, Any] = self.convolution(lowercase ) _a : List[str] = self.normalization(lowercase ) _a : List[str] = self.activation(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase ) -> Optional[int]: super().__init__() _a : int = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _a : Union[str, Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _a : Union[str, Any] = config.num_channels def snake_case__( self , lowercase ) -> Tensor: _a : Any = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) _a : Any = self.embedder(lowercase ) _a : Optional[int] = self.pooler(lowercase ) return embedding class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 2 ) -> Dict: super().__init__() _a : str = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _a : Union[str, Any] = nn.BatchNormad(lowercase ) def snake_case__( self , lowercase ) -> Tensor: _a : Optional[int] = self.convolution(lowercase ) _a : Any = self.normalization(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 1 , lowercase = "relu" ) -> List[str]: super().__init__() _a : List[str] = in_channels != out_channels or stride != 1 _a : List[Any] = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _a : List[str] = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _a : Dict = ACTaFN[activation] def snake_case__( self , lowercase ) -> Optional[int]: _a : List[Any] = hidden_state _a : Optional[Any] = self.layer(lowercase ) _a : int = self.shortcut(lowercase ) hidden_state += residual _a : Dict = self.activation(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 1 , lowercase = "relu" , lowercase = 4 ) -> Dict: super().__init__() _a : Union[str, Any] = in_channels != out_channels or stride != 1 _a : Union[str, Any] = out_channels // reduction _a : List[str] = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _a : Dict = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _a : List[str] = ACTaFN[activation] def snake_case__( self , lowercase ) -> str: _a : List[str] = hidden_state _a : Optional[int] = self.layer(lowercase ) _a : Any = self.shortcut(lowercase ) hidden_state += residual _a : Union[str, Any] = self.activation(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , ) -> Optional[int]: super().__init__() _a : List[str] = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer _a : str = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def snake_case__( self , lowercase ) -> Tensor: _a : Optional[int] = input for layer in self.layers: _a : Any = layer(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase ) -> Any: super().__init__() _a : Tuple = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _a : str = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def snake_case__( self , lowercase , lowercase = False , lowercase = True ) -> BaseModelOutputWithNoAttention: _a : str = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _a : Dict = hidden_states + (hidden_state,) _a : List[str] = stage_module(lowercase ) if output_hidden_states: _a : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class UpperCamelCase_ ( UpperCamelCase ): lowercase = ResNetConfig lowercase = '''resnet''' lowercase = '''pixel_values''' lowercase = True def snake_case__( self , lowercase ) -> Any: if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case__( self , lowercase , lowercase=False ) -> int: if isinstance(lowercase , lowercase ): _a : List[str] = value __lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , UpperCamelCase , ) class UpperCamelCase_ ( UpperCamelCase ): def __init__( self , lowercase ) -> int: super().__init__(lowercase ) _a : Any = config _a : Optional[int] = ResNetEmbeddings(lowercase ) _a : Any = ResNetEncoder(lowercase ) _a : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case__( self , lowercase , lowercase = None , lowercase = None ) -> BaseModelOutputWithPoolingAndNoAttention: _a : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _a : Optional[Any] = self.embedder(lowercase ) _a : Tuple = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _a : str = encoder_outputs[0] _a : str = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCamelCase , ) class UpperCamelCase_ ( UpperCamelCase ): def __init__( self , lowercase ) -> str: super().__init__(lowercase ) _a : str = config.num_labels _a : List[str] = ResNetModel(lowercase ) # classification head _a : Optional[int] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case__( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , ) -> ImageClassifierOutputWithNoAttention: _a : Dict = return_dict if return_dict is not None else self.config.use_return_dict _a : str = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _a : int = outputs.pooler_output if return_dict else outputs[1] _a : str = self.classifier(lowercase ) _a : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _a : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _a : Optional[Any] = '''single_label_classification''' else: _a : Optional[Any] = '''multi_label_classification''' if self.config.problem_type == "regression": _a : Optional[Any] = MSELoss() if self.num_labels == 1: _a : Union[str, Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: _a : List[str] = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _a : str = CrossEntropyLoss() _a : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _a : List[Any] = BCEWithLogitsLoss() _a : List[Any] = loss_fct(lowercase , lowercase ) if not return_dict: _a : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , UpperCamelCase , ) class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase ): def __init__( self , lowercase ) -> str: super().__init__(lowercase ) super()._init_backbone(lowercase ) _a : Optional[int] = [config.embedding_size] + config.hidden_sizes _a : Any = ResNetEmbeddings(lowercase ) _a : List[str] = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def snake_case__( self , lowercase , lowercase = None , lowercase = None ) -> BackboneOutput: _a : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _a : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : List[Any] = self.embedder(lowercase ) _a : Tuple = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _a : str = outputs.hidden_states _a : Tuple = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _a : Dict = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
709
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase ): lowercase = ['''input_values''', '''padding_mask'''] def __init__( self , lowercase = 1 , lowercase = 24_000 , lowercase = 0.0 , lowercase = None , lowercase = None , **lowercase , ) -> Union[str, Any]: super().__init__(feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , **lowercase ) _a : int = chunk_length_s _a : Any = overlap @property def snake_case__( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def snake_case__( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , lowercase , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs _a : int = True _a : Union[str, Any] = bool( isinstance(lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _a : Any = [np.asarray(lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(lowercase , np.ndarray ): _a : int = np.asarray(lowercase , dtype=np.floataa ) elif isinstance(lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _a : Tuple = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _a : str = [np.asarray(lowercase ).T] # verify inputs are valid for idx, example in enumerate(lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _a : Any = None _a : List[str] = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _a : Union[str, Any] = min(array.shape[0] for array in raw_audio ) _a : int = int(np.floor(max_length / self.chunk_stride ) ) _a : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _a : int = max(array.shape[0] for array in raw_audio ) _a : Any = int(np.ceil(max_length / self.chunk_stride ) ) _a : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length _a : Any = '''max_length''' else: _a : Tuple = input_values # normal padding on batch if padded_inputs is None: _a : List[Any] = self.pad( lowercase , max_length=lowercase , truncation=lowercase , padding=lowercase , return_attention_mask=lowercase , ) if padding: _a : str = padded_inputs.pop('''attention_mask''' ) _a : List[str] = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: _a : str = example[..., None] input_values.append(example.T ) _a : Union[str, Any] = input_values if return_tensors is not None: _a : Optional[Any] = padded_inputs.convert_to_tensors(lowercase ) return padded_inputs
307
0
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def UpperCAmelCase ( a__ ): '''simple docstring''' if num <= 0: raise ValueError('math domain error' ) return quad(lowerCamelCase_ , 0 , lowerCamelCase_ , args=(lowerCamelCase_) )[0] def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' return math.pow(lowerCamelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
553
import math from datetime import datetime, timedelta def UpperCAmelCase__ ( lowerCamelCase_ : int ): __a : Union[str, Any] = year % 1_9 __a : int = year % 4 __a : Optional[int] = year % 7 __a : Dict = math.floor(year / 1_0_0 ) __a : Optional[Any] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __a : Union[str, Any] = leap_day_inhibits / 4 __a : str = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __a : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __a : List[Any] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __a : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase_ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase_ , 4 , 1_8 ) else: return datetime(lowerCamelCase_ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): SCREAMING_SNAKE_CASE__ = '''will be''' if year > datetime.now().year else '''was''' print(F"Easter in {year} {tense} {gauss_easter(year)}")
47
0
"""simple docstring""" def lowerCamelCase__ ( UpperCAmelCase_ )-> int: """simple docstring""" UpperCamelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def lowerCamelCase__ ( UpperCAmelCase_ = 1_00 )-> int: """simple docstring""" UpperCamelCase = 1 UpperCamelCase = 2 for i in range(2 , max_n + 1 ): UpperCamelCase = pre_numerator UpperCamelCase = 2 * i // 3 if i % 3 == 0 else 1 UpperCamelCase = cur_numerator UpperCamelCase = e_cont * pre_numerator + temp return sum_digits(UpperCAmelCase_ ) if __name__ == "__main__": print(F'''{solution() = }''')
556
"""simple docstring""" def lowerCamelCase__ ( UpperCAmelCase_ = 4_00_00_00 )-> int: """simple docstring""" UpperCamelCase = [0, 1] UpperCamelCase = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 UpperCamelCase = 0 for j in range(len(UpperCAmelCase_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
556
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 13 , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : int = 128 , SCREAMING_SNAKE_CASE__ : int=[16, 32, 64, 128] , SCREAMING_SNAKE_CASE__ : int = 7 , SCREAMING_SNAKE_CASE__ : int = 4 , SCREAMING_SNAKE_CASE__ : int = 37 , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 128 , SCREAMING_SNAKE_CASE__ : List[int] = [2, 2, 2, 2] , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , ) -> Tuple: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = encoder_stride lowerCAmelCase__ = num_attention_outputs lowerCAmelCase__ = embed_dim lowerCAmelCase__ = embed_dim + 1 lowerCAmelCase__ = resolution lowerCAmelCase__ = depths lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = dim lowerCAmelCase__ = mlp_expansion_ratio def a ( self : int ) -> Optional[Any]: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def a ( self : int ) -> List[str]: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: lowerCAmelCase__ = TFEfficientFormerModel(config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self : Dict ) -> Optional[Any]: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) snake_case__ = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def a ( self : List[str] ) -> int: lowerCAmelCase__ = TFEfficientFormerModelTester(self ) lowerCAmelCase__ = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def a ( self : Any ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def a ( self : str ) -> Dict: pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def a ( self : Optional[Any] ) -> List[str]: pass def a ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Union[str, Any]: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , training=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) if hasattr(self.model_tester , "encoder_seq_length" ): lowerCAmelCase__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: lowerCAmelCase__ = seq_length * self.model_tester.chunk_length else: lowerCAmelCase__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowerCAmelCase__ = outputs.decoder_hidden_states self.asseretIsInstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = getattr(self.model_tester , "decoder_seq_length" , SCREAMING_SNAKE_CASE__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=False ) -> Tuple: lowerCAmelCase__ = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def a ( self : List[Any] ) -> List[Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def a ( self : List[str] ) -> Union[str, Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE__ ) def a ( self : str ) -> Any: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : Optional[Any] ) -> str: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFEfficientFormerModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True lowerCAmelCase__ = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = getattr(self.model_tester , "encoder_seq_length" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = getattr(self.model_tester , "key_length" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = getattr(self.model_tester , "chunk_length" , SCREAMING_SNAKE_CASE__ ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): lowerCAmelCase__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , training=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ = True lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , training=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def a ( self : Union[str, Any] ) -> Any: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCAmelCase__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=SCREAMING_SNAKE_CASE__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(outputs_dict is not None ) def _A ( ): """simple docstring""" lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self : Dict ) -> Dict: return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def a ( self : str ) -> Optional[Any]: lowerCAmelCase__ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="tf" ) # forward pass lowerCAmelCase__ = model(**SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) @slow def a ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="tf" ) # forward pass lowerCAmelCase__ = model(**SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
61
import operator as op UpperCamelCase = 'scaler.pt' UpperCamelCase = 'pytorch_model' UpperCamelCase = 'random_states' UpperCamelCase = 'optimizer' UpperCamelCase = 'scheduler' UpperCamelCase = 'pytorch_model.bin' UpperCamelCase = 'pytorch_model.bin.index.json' UpperCamelCase = 'model.safetensors' UpperCamelCase = 'model.safetensors.index.json' UpperCamelCase = '1.10.2' UpperCamelCase = 'py38' UpperCamelCase = '4.17.0' UpperCamelCase = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] UpperCamelCase = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] UpperCamelCase = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] UpperCamelCase = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] UpperCamelCase = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] UpperCamelCase = '2.0.1' UpperCamelCase = ['pdsh', 'standard', 'openmpi', 'mvapich'] UpperCamelCase = ['default', 'reduce-overhead', 'max-autotune'] UpperCamelCase = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCamelCase = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] UpperCamelCase = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] UpperCamelCase = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
61
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowercase__( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int]=1_3 , SCREAMING_SNAKE_CASE_ : List[Any]=7 , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : List[Any]=9_9 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE_ : List[str]=5 , SCREAMING_SNAKE_CASE_ : int=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_7 , SCREAMING_SNAKE_CASE_ : Any="gelu" , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : Dict=5_1_2 , SCREAMING_SNAKE_CASE_ : Tuple=1_6 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : str=0.02 , SCREAMING_SNAKE_CASE_ : Optional[int]=4 , ) -> int: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_attention_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_choices def _lowercase ( self : int ) -> List[str]: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_attention_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self : Optional[Any] ) -> Any: lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowercase ( self : Tuple ) -> str: lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = True lowercase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :List[str] = True a :str = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self : Dict ) -> int: lowercase_ = FlaxBertModelTester(self ) @slow def _lowercase ( self : Union[str, Any] ) -> Dict: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. lowercase_ = FlaxBertModel.from_pretrained('''bert-base-cased''' ) lowercase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
718
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Dict ) -> int: lowercase_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Optional[int] ) -> str: lowercase_ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Tuple ) -> Tuple: lowercase_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Optional[Any] ) -> List[Any]: lowercase_ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Optional[Any] ) -> List[str]: lowercase_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Any ) -> Optional[Any]: lowercase_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] lowercase_ = '''fp16''' self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : List[Any] ) -> int: lowercase_ = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] lowercase_ = '''fp16''' self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Any ) -> int: # pass variant but use the non-variant filenames lowercase_ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] lowercase_ = '''fp16''' self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : str ) -> List[str]: lowercase_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ = '''fp16''' self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Union[str, Any] ) -> Tuple: lowercase_ = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] lowercase_ = '''fp16''' self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Dict ) -> Any: # pass variant but use the non-variant filenames lowercase_ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] lowercase_ = '''fp16''' self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: lowercase_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] lowercase_ = '''fp16''' self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) )
409
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _A = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __UpperCamelCase ( _A ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __UpperCamelCase ( _A , _A ): if args.student_type == "roberta": lowerCAmelCase_ = False elif args.student_type == "gpt2": lowerCAmelCase_ = False def __UpperCamelCase ( _A , _A ): if args.student_type == "roberta": lowerCAmelCase_ = False def __UpperCamelCase ( ): lowerCAmelCase_ = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=__lowerCAmelCase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=__lowerCAmelCase , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=__lowerCAmelCase , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=__lowerCAmelCase , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=__lowerCAmelCase , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=__lowerCAmelCase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=__lowerCAmelCase , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=__lowerCAmelCase , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=__lowerCAmelCase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.1_5 , type=__lowerCAmelCase , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=__lowerCAmelCase , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=__lowerCAmelCase , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=__lowerCAmelCase , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=__lowerCAmelCase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=__lowerCAmelCase , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=__lowerCAmelCase , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=__lowerCAmelCase , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=__lowerCAmelCase , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.0_5 , type=__lowerCAmelCase , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=__lowerCAmelCase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=__lowerCAmelCase , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=__lowerCAmelCase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=__lowerCAmelCase , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.0_2 , type=__lowerCAmelCase , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=__lowerCAmelCase , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=__lowerCAmelCase , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=__lowerCAmelCase , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=__lowerCAmelCase , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=__lowerCAmelCase , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=__lowerCAmelCase , default=4000 , help='''Checkpoint interval.''' ) lowerCAmelCase_ = parser.parse_args() sanity_checks(__lowerCAmelCase ) # ARGS # init_gpu_params(__lowerCAmelCase ) set_seed(__lowerCAmelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(f"Param: {args}" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(__lowerCAmelCase ) , __lowerCAmelCase , indent=4 ) git_log(args.dump_path ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = MODEL_CLASSES[args.student_type] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowerCAmelCase_ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowerCAmelCase_ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowerCAmelCase_ = tokenizer.all_special_tokens.index(__lowerCAmelCase ) lowerCAmelCase_ = tokenizer.all_special_ids[idx] logger.info(f"Special tokens {special_tok_ids}" ) lowerCAmelCase_ = special_tok_ids lowerCAmelCase_ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"Loading data from {args.data_file}" ) with open(args.data_file , '''rb''' ) as fp: lowerCAmelCase_ = pickle.load(__lowerCAmelCase ) if args.mlm: logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , '''rb''' ) as fp: lowerCAmelCase_ = pickle.load(__lowerCAmelCase ) lowerCAmelCase_ = np.maximum(__lowerCAmelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowerCAmelCase_ = 0.0 # do not predict special tokens lowerCAmelCase_ = torch.from_numpy(__lowerCAmelCase ) else: lowerCAmelCase_ = None lowerCAmelCase_ = LmSeqsDataset(params=__lowerCAmelCase , data=__lowerCAmelCase ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"Loading student config from {args.student_config}" ) lowerCAmelCase_ = student_config_class.from_pretrained(args.student_config ) lowerCAmelCase_ = True if args.student_pretrained_weights is not None: logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}" ) lowerCAmelCase_ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowerCAmelCase ) else: lowerCAmelCase_ = student_model_class(__lowerCAmelCase ) if args.n_gpu > 0: student.to(f"cuda:{args.local_rank}" ) logger.info('''Student loaded.''' ) # TEACHER # lowerCAmelCase_ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowerCAmelCase ) if args.n_gpu > 0: teacher.to(f"cuda:{args.local_rank}" ) logger.info(f"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__lowerCAmelCase , __lowerCAmelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__lowerCAmelCase , __lowerCAmelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowerCAmelCase_ = Distiller( params=__lowerCAmelCase , dataset=__lowerCAmelCase , token_probs=__lowerCAmelCase , student=__lowerCAmelCase , teacher=__lowerCAmelCase ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
431
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _UpperCamelCase , ) class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = RobertaConfig SCREAMING_SNAKE_CASE_ : Optional[Any] = """roberta""" def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] ) -> Tuple: super().__init__(__lowerCamelCase ) a = RobertaEmbeddings(__lowerCamelCase ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _UpperCamelCase , ) class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = RobertaConfig SCREAMING_SNAKE_CASE_ : int = """roberta""" def __init__( self : List[str] , __lowerCamelCase : Tuple ) -> Optional[int]: super().__init__(__lowerCamelCase ) a = config.num_labels a = config.num_hidden_layers a = DeeRobertaModel(__lowerCamelCase ) a = nn.Dropout(config.hidden_dropout_prob ) a = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__lowerCamelCase ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : int=None , __lowerCamelCase : Any=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=-1 , __lowerCamelCase : Tuple=False , ) -> str: a = self.num_layers try: a = self.roberta( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , position_ids=__lowerCamelCase , head_mask=__lowerCamelCase , inputs_embeds=__lowerCamelCase , ) a = outputs[1] a = self.dropout(__lowerCamelCase ) a = self.classifier(__lowerCamelCase ) a = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: a = e.message a = e.exit_layer a = outputs[0] if not self.training: a = entropy(__lowerCamelCase ) a = [] a = [] if labels is not None: if self.num_labels == 1: # We are doing regression a = MSELoss() a = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: a = CrossEntropyLoss() a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits a = [] for highway_exit in outputs[-1]: a = highway_exit[0] if not self.training: highway_logits_all.append(__lowerCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression a = MSELoss() a = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: a = CrossEntropyLoss() a = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__lowerCamelCase ) if train_highway: a = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: a = (loss,) + outputs if not self.training: a = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: a = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
715
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : Any = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
662
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowercase_ = logging.get_logger("""transformers.models.speecht5""") def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" hf_model.apply_weight_norm() __SCREAMING_SNAKE_CASE : Tuple = checkpoint['''input_conv.weight_g'''] __SCREAMING_SNAKE_CASE : Any = checkpoint['''input_conv.weight_v'''] __SCREAMING_SNAKE_CASE : Optional[int] = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): __SCREAMING_SNAKE_CASE : Any = checkpoint[F'''upsamples.{i}.1.weight_g'''] __SCREAMING_SNAKE_CASE : List[Any] = checkpoint[F'''upsamples.{i}.1.weight_v'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] __SCREAMING_SNAKE_CASE : str = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] __SCREAMING_SNAKE_CASE : int = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] __SCREAMING_SNAKE_CASE : Dict = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] __SCREAMING_SNAKE_CASE : Dict = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] __SCREAMING_SNAKE_CASE : List[Any] = checkpoint['''output_conv.1.weight_g'''] __SCREAMING_SNAKE_CASE : Tuple = checkpoint['''output_conv.1.weight_v'''] __SCREAMING_SNAKE_CASE : List[Any] = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def a__ ( snake_case , snake_case , snake_case , snake_case=None , snake_case=None , ): """simple docstring""" if config_path is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(snake_case ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechTaHifiGanConfig() __SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(snake_case ) __SCREAMING_SNAKE_CASE : str = torch.load(snake_case ) load_weights(orig_checkpoint['''model''']['''generator'''] , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Any = np.load(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = stats[1].reshape(-1 ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.from_numpy(snake_case ).float() __SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(snake_case ).float() model.save_pretrained(snake_case ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(snake_case ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowercase_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
74
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : int = jax.device_count() __SCREAMING_SNAKE_CASE : Tuple = num_samples * [prompt] __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.prepare_inputs(_A ) __SCREAMING_SNAKE_CASE : Tuple = replicate(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = shard(_A ) __SCREAMING_SNAKE_CASE : Dict = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = jax.random.split(_A , jax.device_count() ) __SCREAMING_SNAKE_CASE : str = sd_pipe(_A , _A , _A , num_inference_steps=25 , jit=_A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __SCREAMING_SNAKE_CASE : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 253:256, 253:256, -1] __SCREAMING_SNAKE_CASE : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __SCREAMING_SNAKE_CASE : Tuple = jnp.array([0.42_38, 0.44_14, 0.43_95, 0.44_53, 0.46_29, 0.45_90, 0.45_31, 0.4_55_08, 0.45_12] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = '''stabilityai/stable-diffusion-2''' __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = FlaxDPMSolverMultistepScheduler.from_pretrained(_A , subfolder='''scheduler''' ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = FlaxStableDiffusionPipeline.from_pretrained( _A , scheduler=_A , revision='''bf16''' , dtype=jnp.bfloataa , ) __SCREAMING_SNAKE_CASE : List[str] = scheduler_params __SCREAMING_SNAKE_CASE : Tuple = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : List[Any] = jax.device_count() __SCREAMING_SNAKE_CASE : Tuple = num_samples * [prompt] __SCREAMING_SNAKE_CASE : Any = sd_pipe.prepare_inputs(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = replicate(_A ) __SCREAMING_SNAKE_CASE : List[str] = shard(_A ) __SCREAMING_SNAKE_CASE : int = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = jax.random.split(_A , jax.device_count() ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe(_A , _A , _A , num_inference_steps=25 , jit=_A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __SCREAMING_SNAKE_CASE : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __SCREAMING_SNAKE_CASE : Dict = images[0, 253:256, 253:256, -1] __SCREAMING_SNAKE_CASE : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array([0.43_36, 0.4_29_69, 0.44_53, 0.41_99, 0.42_97, 0.45_31, 0.44_34, 0.44_34, 0.42_97] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
74
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __lowercase : '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase ): __a : list[list[Edge]] = [[] for _ in range(_UpperCAmelCase )] __a : Dict = size def __getitem__( self , _UpperCAmelCase ): return iter(self._graph[vertex] ) @property def _lowerCamelCase ( self ): return self._size def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(_UpperCAmelCase , _UpperCAmelCase ) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = deque([start_vertex] ) __a : list[int | None] = [None] * self.size __a : int = 0 while queue: __a : Any = queue.popleft() __a : Tuple = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: __a : List[str] = current_distance + edge.weight __a : str = distances[edge.destination_vertex] if ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and new_distance >= dest_vertex_distance ): continue __a : str = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __A ( a_ :Tuple) -> Dict: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_) def __A ( a_ :Any) -> int: from transformers.testing_utils import pytest_terminal_summary_main __a : str = terminalreporter.config.getoption('''--make-reports''') if make_reports: pytest_terminal_summary_main(a_ , id=a_)
101
0
'''simple docstring''' def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any ): """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=0 ): """simple docstring""" return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[column] ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=float("inf" ) ): """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCAmelCase ): _lowerCamelCase : Optional[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCamelCase : Optional[int] = current_dis return min_dis def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : str=float("inf" ) ): """simple docstring""" for i in range(min(6 , points_counts - 1 ) , _lowerCAmelCase ): for j in range(max(0 , i - 6 ) , _lowerCAmelCase ): _lowerCamelCase : Any = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCamelCase : Optional[int] = current_dis return min_dis def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ): """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(_lowerCAmelCase , _lowerCAmelCase ) # recursion _lowerCamelCase : int = points_counts // 2 _lowerCamelCase : Dict = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[:mid] , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) _lowerCamelCase : Tuple = min(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = dis_between_closest_in_strip( _lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) return min(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = column_based_sort(_lowerCAmelCase , column=0 ) _lowerCamelCase : int = column_based_sort(_lowerCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase_ : Tuple = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
44
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _snake_case : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase : CLIPSegForImageSegmentation , lowerCamelCase : CLIPSegProcessor , lowerCamelCase : AutoencoderKL , lowerCamelCase : CLIPTextModel , lowerCamelCase : CLIPTokenizer , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase : StableDiffusionSafetyChecker , lowerCamelCase : CLIPImageProcessor , ) -> Tuple: super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: __snake_case : Tuple = ( F'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' F' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowerCamelCase , standard_warn=lowerCamelCase ) __snake_case : Any = dict(scheduler.config ) __snake_case : List[Any] = 1 __snake_case : Tuple = FrozenDict(lowerCamelCase ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: __snake_case : List[str] = ( F'The configuration file of this scheduler: {scheduler} has not set the configuration' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowerCamelCase , standard_warn=lowerCamelCase ) __snake_case : List[str] = dict(scheduler.config ) __snake_case : List[str] = True __snake_case : Any = FrozenDict(lowerCamelCase ) if safety_checker is None: logger.warning( F'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=lowerCamelCase , segmentation_processor=lowerCamelCase , vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , ) def __snake_case ( self : Dict , lowerCamelCase : Optional[Union[str, int]] = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __snake_case : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Any: self.enable_attention_slicing(lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) __snake_case : Optional[int] = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase , lowerCamelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case ( self : int ) -> Any: if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : List[Any] , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , lowerCamelCase : str , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Dict , ) -> List[str]: __snake_case : Tuple = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) __snake_case : str = self.segmentation_model(**lowerCamelCase ) __snake_case : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __snake_case : List[Any] = self.numpy_to_pil(lowerCamelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __snake_case : Tuple = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowerCamelCase , image=lowerCamelCase , mask_image=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , )
81
0
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(UpperCAmelCase ): lowercase : List[str] =AutoConfig.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) lowercase : Dict =FlaxAutoModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) @slow def A__ ( self : List[str] ) -> Dict: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(UpperCAmelCase ): lowercase : int =AutoConfig.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[int] =FlaxAutoModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) @slow def A__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase : List[str] =AutoTokenizer.from_pretrained(UpperCAmelCase ) lowercase : List[str] =FlaxBertModel.from_pretrained(UpperCAmelCase ) lowercase : Dict =tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCAmelCase : Optional[int] ): return model(**UpperCAmelCase ) eval(**UpperCAmelCase ).block_until_ready() @slow def A__ ( self : Union[str, Any] ) -> str: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase : Optional[Any] =AutoTokenizer.from_pretrained(UpperCAmelCase ) lowercase : Tuple =FlaxRobertaModel.from_pretrained(UpperCAmelCase ) lowercase : Tuple =tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCAmelCase : Optional[int] ): return model(**UpperCAmelCase ) eval(**UpperCAmelCase ).block_until_ready() def A__ ( self : str ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): lowercase : Optional[int] =FlaxAutoModel.from_pretrained('''bert-base''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Optional[int] =FlaxAutoModel.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Dict ) -> Any: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ): lowercase : Union[str, Any] =FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : Dict ) -> Any: '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase , '''Use `from_pt=True` to load this model''' ): lowercase : str =FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
8
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
1
from __future__ import annotations from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE__ : __lowerCamelCase : float __lowerCamelCase : TreeNode | None = None __lowerCamelCase : TreeNode | None = None def snake_case__ ( SCREAMING_SNAKE_CASE_ : TreeNode | None ): '''simple docstring''' def is_valid_tree(SCREAMING_SNAKE_CASE_ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( SCREAMING_SNAKE_CASE_ : TreeNode | None , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , SCREAMING_SNAKE_CASE_ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , SCREAMING_SNAKE_CASE_ ) ) return is_binary_search_tree_recursive_check(SCREAMING_SNAKE_CASE_ , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
164
def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' lowercase__ : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case__ ( SCREAMING_SNAKE_CASE_ : int = 5_000 ): '''simple docstring''' lowercase__ : int = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE_ )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ : Tuple = pentagonal_nums[j] lowercase__ : Union[str, Any] = pentagonal_i + pentagonal_j lowercase__ : int = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE_ ) and is_pentagonal(SCREAMING_SNAKE_CASE_ ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
164
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
503
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __UpperCAmelCase = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
503
1
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _lowercase : int = """src/transformers""" _lowercase : str = """docs/source/en/tasks""" def lowerCamelCase__ ( A : List[str] , A : str , A : Optional[int] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start prompt. UpperCAmelCase = 0 while not lines[start_index].startswith(A ): start_index += 1 start_index += 1 UpperCAmelCase = start_index while not lines[end_index].startswith(A ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _lowercase : Tuple = direct_transformers_import(TRANSFORMERS_PATH) _lowercase : str = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _lowercase : Optional[int] = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def lowerCamelCase__ ( A : Dict ): '''simple docstring''' UpperCAmelCase = TASK_GUIDE_TO_MODELS[task_guide] UpperCAmelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(A , set() ) UpperCAmelCase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def lowerCamelCase__ ( A : Dict , A : Optional[Any]=False ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = _find_text_in_file( filename=os.path.join(A , A ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) UpperCAmelCase = get_model_list_for_task(A ) if current_list != new_list: if overwrite: with open(os.path.join(A , A ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ''' to fix this.''' ) if __name__ == "__main__": _lowercase : str = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _lowercase : str = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
210
'''simple docstring''' def lowerCamelCase__ ( A : int = 50 ): '''simple docstring''' UpperCAmelCase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
210
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
714
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
0