code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import comet # From: unbabel-comet import torch import datasets A__ : Union[str, Any] = datasets.logging.get_logger(__name__) A__ : str = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ A__ : List[Any] = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ A__ : Tuple = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if self.config_name == "default": lowerCAmelCase__ : List[str] = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: lowerCAmelCase__ : str = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False ): """simple docstring""" if gpus is None: lowerCAmelCase__ : Union[str, Any] = 1 if torch.cuda.is_available() else 0 lowerCAmelCase__ : Union[str, Any] = {'''src''': sources, '''mt''': predictions, '''ref''': references} lowerCAmelCase__ : str = [dict(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) for t in zip(*data.values() )] lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.scorer.predict(SCREAMING_SNAKE_CASE__ , gpus=SCREAMING_SNAKE_CASE__ , progress_bar=SCREAMING_SNAKE_CASE__ ) return {"mean_score": mean_score, "scores": scores}
233
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A__ : Dict = 1_6 A__ : Union[str, Any] = 3_2 def _a ( __UpperCamelCase : List[str] ): return int(x / 2**20 ) class lowercase : def __enter__( self ): """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCAmelCase__ : str = torch.cuda.memory_allocated() return self def __exit__( self , *SCREAMING_SNAKE_CASE__ ): """simple docstring""" gc.collect() torch.cuda.empty_cache() lowerCAmelCase__ : Optional[Any] = torch.cuda.memory_allocated() lowerCAmelCase__ : str = torch.cuda.max_memory_allocated() lowerCAmelCase__ : Any = bamb(self.end - self.begin ) lowerCAmelCase__ : Optional[int] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def _a ( __UpperCamelCase : Accelerator ,__UpperCamelCase : int = 16 ,__UpperCamelCase : str = "bert-base-cased" ,__UpperCamelCase : int = 320 ,__UpperCamelCase : int = 160 ,): lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCAmelCase__ : List[Any] = load_dataset( '''glue''' ,'''mrpc''' ,split={'''train''': f'''train[:{n_train}]''', '''validation''': f'''validation[:{n_val}]'''} ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ : Optional[Any] = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ : Dict = datasets.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(__UpperCamelCase : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase ,padding='''max_length''' ,max_length=128 ,return_tensors='''pt''' ) return tokenizer.pad(__UpperCamelCase ,padding='''longest''' ,return_tensors='''pt''' ) # Instantiate dataloaders. lowerCAmelCase__ : Any = DataLoader( tokenized_datasets['''train'''] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def _a ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ): # Initialize accelerator lowerCAmelCase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ : str = config['''lr'''] lowerCAmelCase__ : Any = int(config['''num_epochs'''] ) lowerCAmelCase__ : str = int(config['''seed'''] ) lowerCAmelCase__ : List[Any] = int(config['''batch_size'''] ) lowerCAmelCase__ : Optional[int] = args.model_name_or_path set_seed(__UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : int = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,args.n_train ,args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ,return_dict=__UpperCamelCase ) # Instantiate optimizer lowerCAmelCase__ : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase__ : Tuple = optimizer_cls(params=model.parameters() ,lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase__ : Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Union[str, Any] = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase ,num_warmup_steps=0 ,num_training_steps=__UpperCamelCase ,) else: lowerCAmelCase__ : Dict = DummyScheduler(__UpperCamelCase ,total_num_steps=__UpperCamelCase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = accelerator.prepare( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase__ : Tuple = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase__ : int = 0 # Now we train the model lowerCAmelCase__ : Optional[Any] = {} for epoch in range(__UpperCamelCase ,__UpperCamelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__UpperCamelCase ): lowerCAmelCase__ : List[str] = model(**__UpperCamelCase ) lowerCAmelCase__ : Dict = outputs.loss lowerCAmelCase__ : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCAmelCase__ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,'''peak_memory_utilization.json''' ) ,'''w''' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _a ( ): lowerCAmelCase__ : str = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' ,type=__UpperCamelCase ,default='''bert-base-cased''' ,help='''Path to pretrained model or model identifier from huggingface.co/models.''' ,required=__UpperCamelCase ,) parser.add_argument( '''--output_dir''' ,type=__UpperCamelCase ,default='''.''' ,help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' ,) parser.add_argument( '''--peak_memory_upper_bound''' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' ,) parser.add_argument( '''--n_train''' ,type=__UpperCamelCase ,default=320 ,help='''Number of training examples to use.''' ,) parser.add_argument( '''--n_val''' ,type=__UpperCamelCase ,default=160 ,help='''Number of validation examples to use.''' ,) parser.add_argument( '''--num_epochs''' ,type=__UpperCamelCase ,default=1 ,help='''Number of train epochs.''' ,) lowerCAmelCase__ : List[str] = parser.parse_args() lowerCAmelCase__ : str = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": main()
233
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowercase: List[str] = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def _lowerCamelCase ( ): _lowerCAmelCase = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def _lowerCamelCase ( snake_case=None ): if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('config' , description=snake_case ) else: _lowerCAmelCase = argparse.ArgumentParser('Accelerate config command' , description=snake_case ) parser.add_argument( '--config_file' , default=snake_case , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=snake_case ) return parser def _lowerCamelCase ( snake_case ): _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(snake_case ): os.makedirs(snake_case ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(snake_case ) else: config.to_yaml_file(snake_case ) print(F'accelerate configuration saved at {config_file}' ) def _lowerCamelCase ( ): _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(snake_case ) if __name__ == "__main__": main()
225
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowercase: Optional[Any] = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase__ : UpperCamelCase__ =PegasusConfig UpperCamelCase__ ={} UpperCamelCase__ ="gelu" def __init__( self : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : str=13 , lowercase__ : Any=7 , lowercase__ : Tuple=True , lowercase__ : str=False , lowercase__ : Optional[int]=99 , lowercase__ : Optional[int]=32 , lowercase__ : Optional[int]=5 , lowercase__ : Optional[int]=4 , lowercase__ : List[str]=37 , lowercase__ : Dict=0.1 , lowercase__ : Optional[int]=0.1 , lowercase__ : Optional[Any]=20 , lowercase__ : int=2 , lowercase__ : Dict=1 , lowercase__ : Union[str, Any]=0 , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = eos_token_id _lowerCAmelCase = pad_token_id _lowerCAmelCase = bos_token_id def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _lowerCAmelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCAmelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowerCAmelCase = prepare_pegasus_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Any , lowercase__ : Optional[Any] , lowercase__ : List[Any] ): _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(lowercase__ ) _lowerCAmelCase = model.encode(inputs_dict['input_ids'] ) _lowerCAmelCase , _lowerCAmelCase = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase__ , lowercase__ ) _lowerCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCAmelCase = model.decode( decoder_input_ids[:, :-1] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=lowercase__ , decoder_position_ids=lowercase__ , ) _lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowerCAmelCase = model.decode( decoder_input_ids[:, -1:] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase__ , ) _lowerCAmelCase = model.decode(lowercase__ , lowercase__ ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : str ): _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(lowercase__ ) _lowerCAmelCase = model.encode(inputs_dict['input_ids'] ) _lowerCAmelCase , _lowerCAmelCase = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowerCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase__ , lowercase__ ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCAmelCase = model.decode( decoder_input_ids[:, :-1] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=lowercase__ , decoder_position_ids=lowercase__ , ) _lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowerCAmelCase = model.decode( decoder_input_ids[:, -1:] , lowercase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase__ , decoder_position_ids=lowercase__ , ) _lowerCAmelCase = model.decode(lowercase__ , lowercase__ , decoder_attention_mask=lowercase__ ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) def _lowerCamelCase ( snake_case , snake_case , snake_case , snake_case=None , snake_case=None , ): if attention_mask is None: _lowerCAmelCase = np.not_equal(snake_case , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _lowerCAmelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCamelCase__ =(FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCamelCase__ =True UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =False def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = FlaxPegasusModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase__ , lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase__ , lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase = self._prepare_for_class(lowercase__ , lowercase__ ) _lowerCAmelCase = model_class(lowercase__ ) @jax.jit def encode_jitted(lowercase__ : int , lowercase__ : List[str]=None , **lowercase__ : Optional[Any] ): return model.encode(input_ids=lowercase__ , attention_mask=lowercase__ ) with self.subTest('JIT Enabled' ): _lowerCAmelCase = encode_jitted(**lowercase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCAmelCase = encode_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ , lowercase__ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase = model_class(lowercase__ ) _lowerCAmelCase = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowerCAmelCase = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ): return model.decode( decoder_input_ids=lowercase__ , decoder_attention_mask=lowercase__ , encoder_outputs=lowercase__ , ) with self.subTest('JIT Enabled' ): _lowerCAmelCase = decode_jitted(**lowercase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCAmelCase = decode_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ , lowercase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): for model_class_name in self.all_model_classes: _lowerCAmelCase = model_class_name.from_pretrained('google/pegasus-large' , from_pt=lowercase__ ) _lowerCAmelCase = np.ones((1, 1) ) _lowerCAmelCase = model(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) _lowerCAmelCase = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) _lowerCAmelCase = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] _lowerCAmelCase = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] _lowerCAmelCase = tokenizer(lowercase__ , return_tensors='np' , truncation=lowercase__ , max_length=5_12 , padding=lowercase__ ) _lowerCAmelCase = model.generate(**lowercase__ , num_beams=2 ).sequences _lowerCAmelCase = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__ ) assert tgt_text == decoded
225
1
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase : List[str] = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
336
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __snake_case ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : str= StableUnCLIPImgaImgPipeline _a : Optional[int]= TEXT_GUIDED_IMAGE_VARIATION_PARAMS _a : List[str]= TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _a : Any= frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _a : Optional[int]= frozenset([] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = 32 lowercase : str = embedder_hidden_size # image encoding components lowercase : List[str] = CLIPImageProcessor(crop_size=32 ,size=32 ) torch.manual_seed(0 ) lowercase : Tuple = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=snake_case ,projection_dim=snake_case ,num_hidden_layers=5 ,num_attention_heads=4 ,image_size=32 ,intermediate_size=37 ,patch_size=1 ,) ) # regular denoising components torch.manual_seed(0 ) lowercase : Any = StableUnCLIPImageNormalizer(embedding_dim=snake_case ) lowercase : Tuple = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) lowercase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowercase : int = CLIPTextModel( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=snake_case ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) ) torch.manual_seed(0 ) lowercase : Tuple = UNetaDConditionModel( sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") ,up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") ,block_out_channels=(32, 64) ,attention_head_dim=(2, 4) ,class_embed_type="""projection""" ,projection_class_embeddings_input_dim=embedder_projection_dim * 2 ,cross_attention_dim=snake_case ,layers_per_block=1 ,upcast_attention=snake_case ,use_linear_projection=snake_case ,) torch.manual_seed(0 ) lowercase : Union[str, Any] = DDIMScheduler( beta_schedule="""scaled_linear""" ,beta_start=0.00_085 ,beta_end=0.012 ,prediction_type="""v_prediction""" ,set_alpha_to_one=snake_case ,steps_offset=1 ,) torch.manual_seed(0 ) lowercase : int = AutoencoderKL() lowercase : Any = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=0 ,snake_case=True ): '''simple docstring''' if str(snake_case ).startswith("""mps""" ): lowercase : int = torch.manual_seed(snake_case ) else: lowercase : Dict = torch.Generator(device=snake_case ).manual_seed(snake_case ) lowercase : Optional[Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(snake_case ) ).to(snake_case ) if pil_image: lowercase : List[Any] = input_image * 0.5 + 0.5 lowercase : Union[str, Any] = input_image.clamp(0 ,1 ) lowercase : List[Any] = input_image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() lowercase : int = DiffusionPipeline.numpy_to_pil(snake_case )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase : Optional[int] = self.get_dummy_components() lowercase : Dict = StableUnCLIPImgaImgPipeline(**snake_case ) lowercase : List[str] = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) lowercase : str = self.get_dummy_inputs(snake_case ) inputs.update({"""image_embeds""": None} ) lowercase : List[str] = sd_pipe(**snake_case ).images lowercase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase : List[str] = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=snake_case ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=snake_case ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) lowercase : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) lowercase : Optional[int] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" ,torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase : Dict = pipe(snake_case ,"""anime turle""" ,generator=snake_case ,output_type="""np""" ) lowercase : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) lowercase : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) lowercase : Optional[int] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" ,torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase : Union[str, Any] = pipe(snake_case ,"""anime turle""" ,generator=snake_case ,output_type="""np""" ) lowercase : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase : Any = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" ,torch_dtype=torch.floataa ) lowercase : Union[str, Any] = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase : Tuple = pipe( snake_case ,"""anime turtle""" ,num_inference_steps=2 ,output_type="""np""" ,) lowercase : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
336
1
from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase ( lowercase__ ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ ): super().__init__() self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self , UpperCAmelCase__ = 1 , UpperCAmelCase__ = None , UpperCAmelCase__ = 50 , UpperCAmelCase__ = "pil" , UpperCAmelCase__ = True , **UpperCAmelCase__ , ): A__ = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=UpperCAmelCase__ , ) A__ = image.to(self.device ) # set step values self.scheduler.set_timesteps(UpperCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A__ = self.unet(UpperCAmelCase__ , UpperCAmelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A__ = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) A__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=UpperCAmelCase__ ), "This is a local test"
700
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( _A : list , _A : list , _A : list , _A : list , _A : list )-> float: """simple docstring""" A__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_A )] ) A__ = np.array(_A ) A__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _A ) ) , x.transpose() ) , _A ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( _A : list , _A : list , _A : list )-> float: """simple docstring""" A__ = (1, 2, 1) A__ = (1, 1, 0, 7) A__ = SARIMAX( _A , exog=_A , order=_A , seasonal_order=_A ) A__ = model.fit(disp=_A , maxiter=600 , method="nm" ) A__ = model_fit.predict(1 , len(_A ) , exog=[test_match] ) return result[0] def UpperCamelCase ( _A : list , _A : list , _A : list )-> float: """simple docstring""" A__ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_A , _A ) A__ = regressor.predict(_A ) return y_pred[0] def UpperCamelCase ( _A : list )-> float: """simple docstring""" train_user.sort() A__ = np.percentile(_A , 25 ) A__ = np.percentile(_A , 75 ) A__ = qa - qa A__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( _A : list , _A : float )-> bool: """simple docstring""" A__ = 0 A__ = 0 for i in list_vote: if i > actual_result: A__ = not_safe + 1 else: if abs(abs(_A ) - abs(_A ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCAmelCase_ : Tuple = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] UpperCAmelCase_ : Optional[int] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) UpperCAmelCase_ : Optional[int] = Normalizer().fit_transform(data_input_df.values) # split data UpperCAmelCase_ : str = normalize_df[:, 2].tolist() UpperCAmelCase_ : Optional[int] = normalize_df[:, 0].tolist() UpperCAmelCase_ : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCAmelCase_ : Optional[int] = normalize_df[:, [1, 2]].tolist() UpperCAmelCase_ : List[str] = x[: len(x) - 1] UpperCAmelCase_ : Optional[Any] = x[len(x) - 1 :] # for linear regression & sarimax UpperCAmelCase_ : Union[str, Any] = total_date[: len(total_date) - 1] UpperCAmelCase_ : Dict = total_user[: len(total_user) - 1] UpperCAmelCase_ : Any = total_match[: len(total_match) - 1] UpperCAmelCase_ : str = total_date[len(total_date) - 1 :] UpperCAmelCase_ : Dict = total_user[len(total_user) - 1 :] UpperCAmelCase_ : Dict = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCAmelCase_ : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCAmelCase_ : Optional[int] = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
232
0
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def UpperCAmelCase_ ( snake_case__ ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = checkpoints.load_tax_checkpoint(snake_case__ ) lowerCAmelCase__ = flatten_dict(snake_case__ ) return flax_params def UpperCAmelCase_ ( snake_case__ ) -> Tuple: """simple docstring""" lowerCAmelCase__ = {} lowerCAmelCase__ = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } lowerCAmelCase__ = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowerCAmelCase__ = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowerCAmelCase__ = new_key.replace(snake_case__ , snake_case__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowerCAmelCase__ = new_key.replace(snake_case__ , snake_case__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowerCAmelCase__ = re.sub(R'layers_(\d+)' , R'layer.\1' , snake_case__ ) lowerCAmelCase__ = new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowerCAmelCase__ = re.sub(R'layers_(\d+)' , R'layer.\1' , snake_case__ ) lowerCAmelCase__ = flax_dict[key] lowerCAmelCase__ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowerCAmelCase__ = torch.from_numpy(converted_dict[key].T ) else: lowerCAmelCase__ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=False , snake_case__=False ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = get_flax_param(snake_case__ ) if not use_large: lowerCAmelCase__ = PixaStructVisionConfig() lowerCAmelCase__ = PixaStructTextConfig() else: lowerCAmelCase__ = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowerCAmelCase__ = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowerCAmelCase__ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=snake_case__ ) lowerCAmelCase__ = PixaStructForConditionalGeneration(snake_case__ ) lowerCAmelCase__ = rename_and_convert_flax_params(snake_case__ ) model.load_state_dict(snake_case__ ) lowerCAmelCase__ = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) lowerCAmelCase__ = PixaStructImageProcessor() lowerCAmelCase__ = PixaStructProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) if use_large: lowerCAmelCase__ = 4096 lowerCAmelCase__ = True # mkdir if needed os.makedirs(snake_case__ , exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) print('Model saved in {}'.format(snake_case__ ) ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") _lowerCAmelCase : Dict = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
193
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on lowerCAmelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowerCAmelCase__ = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } lowerCAmelCase__ = os.path.join(self.tmpdirname ,a_ ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(a_ ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ,**a_ ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname ,**a_ ) def SCREAMING_SNAKE_CASE_ ( self ,**a_ ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname ,**a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(a_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) lowerCAmelCase__ = self.get_image_processor(do_normalize=a_ ,padding_value=1.0 ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=a_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(a_ ,return_tensors='np' ) lowerCAmelCase__ = processor(images=a_ ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = 'lower newer' lowerCAmelCase__ = processor(text=a_ ) lowerCAmelCase__ = tokenizer(a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = 'lower newer' lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=a_ ,images=a_ ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(a_ ): processor() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(a_ ) lowerCAmelCase__ = tokenizer.batch_decode(a_ ) self.assertListEqual(a_ ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = 'lower newer' lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=a_ ,images=a_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
193
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) a_ = logging.getLogger() def __lowerCAmelCase ( A_ : Optional[int] ) -> List[Any]: __UpperCAmelCase = {} __UpperCAmelCase = os.path.join(A_ , "all_results.json" ) if os.path.exists(A_ ): with open(A_ , "r" ) as f: __UpperCAmelCase = json.load(A_ ) else: raise ValueError(F'''can\'t find {path}''' ) return results a_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCAmelCase__ ( snake_case ): """simple docstring""" def _UpperCAmelCase ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' import xla_spawn __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(__lowerCAmelCase , "argv" , __lowerCAmelCase ): __UpperCAmelCase = time() xla_spawn.main() __UpperCAmelCase = time() __UpperCAmelCase = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def _UpperCAmelCase ( self: str ) -> List[str]: '''simple docstring''' import xla_spawn __UpperCAmelCase = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(__lowerCAmelCase , "argv" , __lowerCAmelCase ): xla_spawn.main()
286
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : int = DiTPipeline lowerCAmelCase__ : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCAmelCase__ : Optional[Any] = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } lowerCAmelCase__ : List[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCAmelCase__ : Optional[int] = False def _UpperCAmelCase ( self: str ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__lowerCAmelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1_000 , norm_type="ada_norm_zero" , norm_elementwise_affine=__lowerCAmelCase , ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = DDIMScheduler() __UpperCAmelCase = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def _UpperCAmelCase ( self: str , __lowerCAmelCase: str , __lowerCAmelCase: Optional[int]=0 ) -> int: '''simple docstring''' if str(__lowerCAmelCase ).startswith("mps" ): __UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: __UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) __UpperCAmelCase = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _UpperCAmelCase ( self: Tuple ) -> Dict: '''simple docstring''' __UpperCAmelCase = "cpu" __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) __UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase ) __UpperCAmelCase = pipe(**__lowerCAmelCase ).images __UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) __UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def _UpperCAmelCase ( self: int ) -> str: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=__lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _UpperCAmelCase ( self: Optional[int] ) -> str: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self: Any ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self: Dict ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __UpperCAmelCase = ["vase", "umbrella", "white shark", "white wolf"] __UpperCAmelCase = pipe.get_label_ids(__lowerCAmelCase ) __UpperCAmelCase = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(__lowerCAmelCase , __lowerCAmelCase ): __UpperCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def _UpperCAmelCase ( self: Any ) -> List[str]: '''simple docstring''' __UpperCAmelCase = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __UpperCAmelCase = ["vase", "umbrella"] __UpperCAmelCase = pipe.get_label_ids(__lowerCAmelCase ) __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(__lowerCAmelCase , __lowerCAmelCase ): __UpperCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
286
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : Dict =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase : int =get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase__ ) , torch_builtin(UpperCAmelCase__ ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase__ ) , gelu_new(UpperCAmelCase__ ) ) ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : Union[str, Any] =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase : List[str] =get_activation('''gelu''' ) lowercase : Optional[int] =get_activation('''gelu_10''' ) lowercase : Union[str, Any] =torch_builtin(UpperCAmelCase__ ) lowercase : int =geluaa(UpperCAmelCase__ ) lowercase : Dict =torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCAmelCase__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(UpperCAmelCase__ ): get_activation('''bogus''' ) with self.assertRaises(UpperCAmelCase__ ): get_activation(UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : Tuple =get_activation('''gelu''' ) lowercase : Optional[int] =1 lowercase : List[Any] =get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCAmelCase__ ): lowercase : Tuple =acta.a
92
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ): '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) lowercase : Union[str, Any] =img lowercase : Union[str, Any] =img.shape[1] lowercase : str =img.shape[0] lowercase : Union[str, Any] =dst_width lowercase : str =dst_height lowercase : str =self.src_w / self.dst_w lowercase : Optional[Any] =self.src_h / self.dst_h lowercase : int =( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): lowercase : List[Any] =self.img[self.get_y(UpperCAmelCase__ )][self.get_x(UpperCAmelCase__ )] def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : int ): '''simple docstring''' return int(self.ratio_x * x ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : int ): '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": UpperCamelCase_ , UpperCamelCase_ = 800, 600 UpperCamelCase_ = imread("""image_data/lena.jpg""", 1) UpperCamelCase_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
92
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a__ ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=None , ): lowercase : List[str] = size if size is not None else {"shortest_edge": 20} lowercase : Dict = crop_size if crop_size is not None else {"height": 18, "width": 18} lowercase : int = parent lowercase : str = batch_size lowercase : Optional[Any] = num_channels lowercase : str = image_size lowercase : Union[str, Any] = min_resolution lowercase : List[str] = max_resolution lowercase : Optional[Any] = do_resize lowercase : List[Any] = size lowercase : Dict = do_center_crop lowercase : List[Any] = crop_size def __magic_name__ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class a__ ( a_, unittest.TestCase ): __lowerCAmelCase = MobileNetVaImageProcessor if is_vision_available() else None def __magic_name__ ( self ): lowercase : Optional[Any] = MobileNetVaImageProcessingTester(self ) @property def __magic_name__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ): lowercase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , "do_resize" ) ) self.assertTrue(hasattr(_a , "size" ) ) self.assertTrue(hasattr(_a , "do_center_crop" ) ) self.assertTrue(hasattr(_a , "crop_size" ) ) def __magic_name__ ( self ): lowercase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): # Initialize image_processing lowercase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input lowercase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase : str = image_processing(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __magic_name__ ( self ): # Initialize image_processing lowercase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input lowercase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase : str = image_processing(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __magic_name__ ( self ): # Initialize image_processing lowercase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input lowercase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase : Optional[int] = image_processing(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
518
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class a__ ( unittest.TestCase ): @slow def __magic_name__ ( self ): lowercase : List[str] = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) lowercase : Any = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(_a ) from datasets import load_dataset lowercase : Any = load_dataset("nielsr/rvlcdip-demo" ) lowercase : List[str] = dataset["train"][0]["image"].convert("RGB" ) lowercase : str = image_processor(_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): lowercase : Tuple = model(**_a ) lowercase : Dict = outputs.logits lowercase : Union[str, Any] = torch.Size((1, 16) ) self.assertEqual(logits.shape , _a ) lowercase : int = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=_a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _a , atol=1E-4 ) )
518
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") lowerCAmelCase = logging.getLogger(__name__) @dataclass class lowerCamelCase : snake_case_ = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case_ = field( default=_A , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) snake_case_ = field( default=_A , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) snake_case_ = field( default=_A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case_ = field( default=_A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) snake_case_ = field( default=_A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class lowerCamelCase : snake_case_ = field( default=_A , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=_A , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) snake_case_ = field( default=_A , metadata={"help": "Train language if it is different from the evaluation language."} ) snake_case_ = field( default=_A , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case_ = field( default=_A , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case_ = field( default=_A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case_ = field( default=_A , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) snake_case_ = field( default=_A , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) snake_case_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case_ = field( default=_A , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) snake_case_ = field( default=_A , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" ,a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase : str = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCAmelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCAmelCase : Any = load_dataset( "xnli" ,model_args.language ,split="train" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) else: lowerCAmelCase : Union[str, Any] = load_dataset( "xnli" ,model_args.train_language ,split="train" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : int = train_dataset.features["label"].names if training_args.do_eval: lowerCAmelCase : Any = load_dataset( "xnli" ,model_args.language ,split="validation" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Dict = eval_dataset.features["label"].names if training_args.do_predict: lowerCAmelCase : Optional[Any] = load_dataset( "xnli" ,model_args.language ,split="test" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : List[Any] = predict_dataset.features["label"].names # Labels lowerCAmelCase : Tuple = len(a_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=a_ ,idalabel={str(a_ ): label for i, label in enumerate(a_ )} ,labelaid={label: i for i, label in enumerate(a_ )} ,finetuning_task="xnli" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,do_lower_case=model_args.do_lower_case ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path ) ,config=a_ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase : int = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase : Union[str, Any] = False def preprocess_function(a_ : Dict ): # Tokenize the texts return tokenizer( examples["premise"] ,examples["hypothesis"] ,padding=a_ ,max_length=data_args.max_seq_length ,truncation=a_ ,) if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase : Tuple = min(len(a_ ) ,data_args.max_train_samples ) lowerCAmelCase : int = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCAmelCase : Optional[int] = train_dataset.map( a_ ,batched=a_ ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on train dataset" ,) # Log a few random samples from the training set: for index in random.sample(range(len(a_ ) ) ,3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase : int = min(len(a_ ) ,data_args.max_eval_samples ) lowerCAmelCase : Optional[Any] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCAmelCase : Optional[Any] = eval_dataset.map( a_ ,batched=a_ ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on validation dataset" ,) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCAmelCase : Optional[Any] = min(len(a_ ) ,data_args.max_predict_samples ) lowerCAmelCase : Optional[Any] = predict_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): lowerCAmelCase : Tuple = predict_dataset.map( a_ ,batched=a_ ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on prediction dataset" ,) # Get the metric function lowerCAmelCase : str = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a_ : EvalPrediction ): lowerCAmelCase : Union[str, Any] = p.predictions[0] if isinstance(p.predictions ,a_ ) else p.predictions lowerCAmelCase : Any = np.argmax(a_ ,axis=1 ) return metric.compute(predictions=a_ ,references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase : Optional[Any] = default_data_collator elif training_args.fpaa: lowerCAmelCase : Union[str, Any] = DataCollatorWithPadding(a_ ,pad_to_multiple_of=8 ) else: lowerCAmelCase : str = None # Initialize our Trainer lowerCAmelCase : Tuple = Trainer( model=a_ ,args=a_ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=a_ ,tokenizer=a_ ,data_collator=a_ ,) # Training if training_args.do_train: lowerCAmelCase : str = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase : List[str] = last_checkpoint lowerCAmelCase : Optional[int] = trainer.train(resume_from_checkpoint=a_ ) lowerCAmelCase : List[Any] = train_result.metrics lowerCAmelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) lowerCAmelCase : Any = min(a_ ,len(a_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" ,a_ ) trainer.save_metrics("train" ,a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase : Optional[int] = trainer.evaluate(eval_dataset=a_ ) lowerCAmelCase : Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) lowerCAmelCase : Any = min(a_ ,len(a_ ) ) trainer.log_metrics("eval" ,a_ ) trainer.save_metrics("eval" ,a_ ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = trainer.predict(a_ ,metric_key_prefix="predict" ) lowerCAmelCase : List[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(a_ ) ) lowerCAmelCase : Any = min(a_ ,len(a_ ) ) trainer.log_metrics("predict" ,a_ ) trainer.save_metrics("predict" ,a_ ) lowerCAmelCase : Optional[int] = np.argmax(a_ ,axis=1 ) lowerCAmelCase : Any = os.path.join(training_args.output_dir ,"predictions.txt" ) if trainer.is_world_process_zero(): with open(a_ ,"w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(a_ ): lowerCAmelCase : str = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
525
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __A ( a_ : Dict ,a_ : List[Any] ,a_ : List[str]=None ,a_ : Optional[int]=None ,a_ : Any=None ,a_ : Any=None ,a_ : str=None ,a_ : Union[str, Any]=None ,): if attention_mask is None: lowerCAmelCase : List[Any] = np.where(input_ids != config.pad_token_id ,1 ,0 ) if decoder_attention_mask is None: lowerCAmelCase : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id ,1 ,0 ) if head_mask is None: lowerCAmelCase : Dict = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase : def __init__( self , a_ , a_=13 , a_=7 , a_=True , a_=False , a_=99 , a_=16 , a_=2 , a_=4 , a_=4 , a_="gelu" , a_=0.1 , a_=0.1 , a_=32 , a_=2 , a_=1 , a_=0 , a_=0.02 , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : Any = seq_length lowerCAmelCase : int = is_training lowerCAmelCase : int = use_labels lowerCAmelCase : Any = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : int = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : Optional[int] = eos_token_id lowerCAmelCase : Union[str, Any] = pad_token_id lowerCAmelCase : Tuple = bos_token_id lowerCAmelCase : Tuple = initializer_range def _lowerCamelCase ( self ): lowerCAmelCase : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase : List[str] = shift_tokens_right(a_ , 1 , 2 ) lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=a_ , ) lowerCAmelCase : Tuple = prepare_blenderbot_inputs_dict(a_ , a_ , a_ ) return config, inputs_dict def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCamelCase ( self , a_ , a_ , a_ ): lowerCAmelCase : Any = 20 lowerCAmelCase : int = model_class_name(a_ ) lowerCAmelCase : Tuple = model.encode(inputs_dict["input_ids"] ) lowerCAmelCase , lowerCAmelCase : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , a_ , a_ ) lowerCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowerCAmelCase : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , a_ , decoder_attention_mask=a_ , past_key_values=a_ , decoder_position_ids=a_ , ) lowerCAmelCase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , a_ , decoder_attention_mask=a_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=a_ , ) lowerCAmelCase : int = model.decode(a_ , a_ ) lowerCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) def _lowerCamelCase ( self , a_ , a_ , a_ ): lowerCAmelCase : Union[str, Any] = 20 lowerCAmelCase : Tuple = model_class_name(a_ ) lowerCAmelCase : Dict = model.encode(inputs_dict["input_ids"] ) lowerCAmelCase , lowerCAmelCase : str = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCAmelCase : Any = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , a_ , a_ ) lowerCAmelCase : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Any = model.decode( decoder_input_ids[:, :-1] , a_ , decoder_attention_mask=a_ , past_key_values=a_ , decoder_position_ids=a_ , ) lowerCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase : Any = model.decode( decoder_input_ids[:, -1:] , a_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=a_ , decoder_position_ids=a_ , ) lowerCAmelCase : List[str] = model.decode(a_ , a_ , decoder_attention_mask=a_ ) lowerCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) @require_flax class lowerCamelCase ( unittest.TestCase ): snake_case_ = 99 def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase : Union[str, Any] = input_ids.shape[0] lowerCAmelCase : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = self._get_config_and_data() lowerCAmelCase : Tuple = FlaxBlenderbotForConditionalGeneration(a_ ) lowerCAmelCase : str = lm_model(input_ids=a_ ) lowerCAmelCase : Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCAmelCase : int = FlaxBlenderbotForConditionalGeneration(a_ ) lowerCAmelCase : Optional[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCAmelCase : List[str] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase : List[str] = lm_model(input_ids=a_ , decoder_input_ids=a_ ) lowerCAmelCase : List[str] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCAmelCase : Dict = shift_tokens_right(a_ , 1 , 2 ) lowerCAmelCase : Optional[Any] = np.equal(a_ , 1 ).astype(np.floataa ).sum() lowerCAmelCase : Any = np.equal(a_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(a_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase ( _A , unittest.TestCase , _A ): snake_case_ = True snake_case_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) snake_case_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _lowerCamelCase ( self ): lowerCAmelCase : Optional[Any] = FlaxBlenderbotModelTester(self ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(a_ , a_ , a_ ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(a_ , a_ , a_ ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : List[str] = self._prepare_for_class(a_ , a_ ) lowerCAmelCase : str = model_class(a_ ) @jax.jit def encode_jitted(a_ , a_=None , **a_ ): return model.encode(input_ids=a_ , attention_mask=a_ ) with self.subTest("JIT Enabled" ): lowerCAmelCase : List[Any] = encode_jitted(**a_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase : Tuple = encode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) ) for jitted_output, output in zip(a_ , a_ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : int = model_class(a_ ) lowerCAmelCase : Optional[int] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) lowerCAmelCase : Optional[Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(a_ , a_ , a_ ): return model.decode( decoder_input_ids=a_ , decoder_attention_mask=a_ , encoder_outputs=a_ , ) with self.subTest("JIT Enabled" ): lowerCAmelCase : str = decode_jitted(**a_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase : Optional[Any] = decode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) ) for jitted_output, output in zip(a_ , a_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: lowerCAmelCase : List[str] = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase : Union[str, Any] = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase : Dict = model(a_ ) self.assertIsNotNone(a_ ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def _lowerCamelCase ( self ): lowerCAmelCase : Dict = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCAmelCase : Any = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCAmelCase : Optional[int] = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=a_ ) lowerCAmelCase : List[str] = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) lowerCAmelCase : Any = ["Sam"] lowerCAmelCase : int = tokenizer(a_ , return_tensors="jax" ) lowerCAmelCase : List[Any] = model.generate(**a_ , **a_ ) lowerCAmelCase : Optional[Any] = "Sam is a great name. It means \"sun\" in Gaelic." lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(a_ , **a_ ) assert generated_txt[0].strip() == tgt_text
525
1
def snake_case( __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 0 lowercase : List[Any] = len(__snake_case ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowercase : List[Any] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__snake_case ): return None lowercase : Dict = sorted_collection[point] if current_item == item: return point else: if point < left: lowercase : Any = left lowercase : Dict = point elif point > right: lowercase : Tuple = right lowercase : List[Any] = point else: if item < current_item: lowercase : int = point - 1 else: lowercase : List[str] = point + 1 return None def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowercase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__snake_case ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__snake_case , __snake_case , __snake_case , __snake_case ) elif point > right: return interpolation_search_by_recursion(__snake_case , __snake_case , __snake_case , __snake_case ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __snake_case , __snake_case , __snake_case , point - 1 ) else: return interpolation_search_by_recursion( __snake_case , __snake_case , point + 1 , __snake_case ) def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' if collection != sorted(__snake_case ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys lowerCAmelCase_ = 0 if debug == 1: lowerCAmelCase_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') lowerCAmelCase_ = 67 lowerCAmelCase_ = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print('Not found')
707
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
596
0
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a__( lowerCamelCase__ ): lowercase__ = (EulerDiscreteScheduler,) lowercase__ = 10 def lowercase_ ( self : Tuple , **__snake_case : str ): a : Union[str, Any] = { 'num_train_timesteps': 11_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**__snake_case ) return config def lowercase_ ( self : str ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__snake_case ) def lowercase_ ( self : Tuple ): for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case ) def lowercase_ ( self : Dict ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__snake_case ) def lowercase_ ( self : Dict ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def lowercase_ ( self : Any ): a : Optional[int] = self.scheduler_classes[0] a : int = self.get_scheduler_config() a : Optional[Any] = scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps ) a : Union[str, Any] = torch.manual_seed(0 ) a : Union[str, Any] = self.dummy_model() a : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma a : Tuple = sample.to(__snake_case ) for i, t in enumerate(scheduler.timesteps ): a : int = scheduler.scale_model_input(__snake_case , __snake_case ) a : List[str] = model(__snake_case , __snake_case ) a : Dict = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ) a : Union[str, Any] = output.prev_sample a : Any = torch.sum(torch.abs(__snake_case ) ) a : List[Any] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def lowercase_ ( self : Tuple ): a : Optional[int] = self.scheduler_classes[0] a : List[Any] = self.get_scheduler_config(prediction_type='v_prediction' ) a : int = scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps ) a : Tuple = torch.manual_seed(0 ) a : Union[str, Any] = self.dummy_model() a : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma a : int = sample.to(__snake_case ) for i, t in enumerate(scheduler.timesteps ): a : Tuple = scheduler.scale_model_input(__snake_case , __snake_case ) a : Optional[int] = model(__snake_case , __snake_case ) a : Union[str, Any] = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ) a : Optional[Any] = output.prev_sample a : Any = torch.sum(torch.abs(__snake_case ) ) a : List[Any] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def lowercase_ ( self : List[Any] ): a : Optional[Any] = self.scheduler_classes[0] a : Tuple = self.get_scheduler_config() a : str = scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=__snake_case ) a : List[str] = torch.manual_seed(0 ) a : Dict = self.dummy_model() a : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() a : Optional[int] = sample.to(__snake_case ) for t in scheduler.timesteps: a : int = scheduler.scale_model_input(__snake_case , __snake_case ) a : List[str] = model(__snake_case , __snake_case ) a : Optional[Any] = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ) a : int = output.prev_sample a : Optional[Any] = torch.sum(torch.abs(__snake_case ) ) a : List[str] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def lowercase_ ( self : List[str] ): a : Optional[int] = self.scheduler_classes[0] a : Dict = self.get_scheduler_config() a : Tuple = scheduler_class(**__snake_case , use_karras_sigmas=__snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=__snake_case ) a : Optional[Any] = torch.manual_seed(0 ) a : int = self.dummy_model() a : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() a : Optional[int] = sample.to(__snake_case ) for t in scheduler.timesteps: a : Tuple = scheduler.scale_model_input(__snake_case , __snake_case ) a : Any = model(__snake_case , __snake_case ) a : Dict = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ) a : str = output.prev_sample a : Tuple = torch.sum(torch.abs(__snake_case ) ) a : Union[str, Any] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
526
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase: Tuple = logging.get_logger(__name__) lowerCAmelCase: Dict = '▁' lowerCAmelCase: Dict = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } lowerCAmelCase: int = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } lowerCAmelCase: Any = { 'facebook/s2t-small-librispeech-asr': 1_0_2_4, } lowerCAmelCase: Optional[int] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] lowerCAmelCase: List[Any] = {'mustc': MUSTC_LANGS} class a__( lowerCamelCase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = MAX_MODEL_INPUT_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = [] def __init__( self : int , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Optional[Any]="<s>" , __snake_case : Optional[int]="</s>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : str="<unk>" , __snake_case : Dict=False , __snake_case : int=False , __snake_case : str=None , __snake_case : Optional[int]=None , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Union[str, Any] , ): a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , do_upper_case=__snake_case , do_lower_case=__snake_case , tgt_lang=__snake_case , lang_codes=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) a : Tuple = do_upper_case a : Optional[Any] = do_lower_case a : List[str] = load_json(__snake_case ) a : Dict = {v: k for k, v in self.encoder.items()} a : int = spm_file a : Tuple = load_spm(__snake_case , self.sp_model_kwargs ) if lang_codes is not None: a : Any = lang_codes a : str = LANGUAGES[lang_codes] a : Tuple = [F"""<lang:{lang}>""" for lang in self.langs] a : str = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} a : Optional[Any] = self.lang_tokens a : Union[str, Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: a : List[str] = {} @property def lowercase_ ( self : Optional[Any] ): return len(self.encoder ) @property def lowercase_ ( self : int ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self : int , __snake_case : Optional[int] ): a : Union[str, Any] = new_tgt_lang self.set_tgt_lang_special_tokens(__snake_case ) def lowercase_ ( self : str , __snake_case : str ): a : int = self.lang_code_to_id[tgt_lang] a : int = [lang_code_id] def lowercase_ ( self : Optional[int] , __snake_case : str ): return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowercase_ ( self : List[str] , __snake_case : List[Any] ): return self.encoder.get(__snake_case , self.encoder[self.unk_token] ) def lowercase_ ( self : List[Any] , __snake_case : int ): return self.decoder.get(__snake_case , self.unk_token ) def lowercase_ ( self : Union[str, Any] , __snake_case : List[str] ): a : List[Any] = [] a : List[Any] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: a : Union[str, Any] = self.sp_model.decode(__snake_case ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " a : Optional[int] = [] else: current_sub_tokens.append(__snake_case ) a : Tuple = self.sp_model.decode(__snake_case ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self : int , __snake_case : List[Any] , __snake_case : List[str]=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) a : Optional[int] = [1] * len(self.prefix_tokens ) a : Any = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def lowercase_ ( self : Union[str, Any] ): a : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): a : List[str] = self.__dict__.copy() a : Union[str, Any] = None return state def __setstate__( self : str , __snake_case : Dict ): a : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): a : int = {} a : Any = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self : str , __snake_case : str , __snake_case : Optional[str] = None ): a : Union[str, Any] = Path(__snake_case ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" a : Any = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) a : List[Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , __snake_case ) if os.path.abspath(self.spm_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __snake_case ) elif not os.path.isfile(self.spm_file ): with open(__snake_case , 'wb' ) as fi: a : Tuple = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (str(__snake_case ), str(__snake_case )) def lowerCamelCase__ ( _A , _A ): a : List[Any] = sentencepiece.SentencePieceProcessor(**_A ) spm.Load(str(_A ) ) return spm def lowerCamelCase__ ( _A ): with open(_A , 'r' ) as f: return json.load(_A ) def lowerCamelCase__ ( _A , _A ): with open(_A , 'w' ) as f: json.dump(_A , _A , indent=2 )
526
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
443
from sklearn.metrics import fa_score import datasets UpperCAmelCase_ : List[Any] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' UpperCAmelCase_ : Optional[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' UpperCAmelCase_ : Optional[Any] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : int ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="binary" , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Any: a_ : List[Any] = fa_score( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , pos_label=SCREAMING_SNAKE_CASE__ , average=SCREAMING_SNAKE_CASE__ , sample_weight=SCREAMING_SNAKE_CASE__ ) return {"f1": float(SCREAMING_SNAKE_CASE__ ) if score.size == 1 else score}
443
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A : str = logging.get_logger(__name__) A : Dict = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase ( snake_case__ ): '''simple docstring''' A = 'unispeech-sat' def __init__( self :List[str] , lowerCamelCase_ :Union[str, Any]=3_2 , lowerCamelCase_ :List[str]=7_6_8 , lowerCamelCase_ :str=1_2 , lowerCamelCase_ :int=1_2 , lowerCamelCase_ :List[Any]=3_0_7_2 , lowerCamelCase_ :str="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :str=0.0 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Tuple=0.1 , lowerCamelCase_ :Dict=0.02 , lowerCamelCase_ :Any=1e-5 , lowerCamelCase_ :List[str]="group" , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCamelCase_ :List[str]=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase_ :Any=(1_0, 3, 3, 3, 3, 2, 2) , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :str=1_2_8 , lowerCamelCase_ :str=1_6 , lowerCamelCase_ :List[str]=False , lowerCamelCase_ :Any=True , lowerCamelCase_ :Dict=0.05 , lowerCamelCase_ :Any=1_0 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :int=0.0 , lowerCamelCase_ :int=1_0 , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :str=3_2_0 , lowerCamelCase_ :List[Any]=2 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :int=1_0_0 , lowerCamelCase_ :List[str]=2_5_6 , lowerCamelCase_ :Optional[Any]=2_5_6 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Optional[int]="mean" , lowerCamelCase_ :Tuple=False , lowerCamelCase_ :List[str]=False , lowerCamelCase_ :List[str]=2_5_6 , lowerCamelCase_ :Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowerCamelCase_ :Optional[Any]=(5, 3, 3, 1, 1) , lowerCamelCase_ :Tuple=(1, 2, 3, 1, 1) , lowerCamelCase_ :List[Any]=5_1_2 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :str=1 , lowerCamelCase_ :List[Any]=2 , lowerCamelCase_ :Tuple=5_0_4 , **lowerCamelCase_ :List[Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = feat_extract_norm UpperCamelCase__ = feat_extract_activation UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = conv_bias UpperCamelCase__ = num_conv_pos_embeddings UpperCamelCase__ = num_conv_pos_embedding_groups UpperCamelCase__ = len(self.conv_dim ) UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = feat_proj_dropout UpperCamelCase__ = final_dropout UpperCamelCase__ = layerdrop UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = initializer_range UpperCamelCase__ = vocab_size UpperCamelCase__ = num_clusters UpperCamelCase__ = do_stable_layer_norm UpperCamelCase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ = apply_spec_augment UpperCamelCase__ = mask_time_prob UpperCamelCase__ = mask_time_length UpperCamelCase__ = mask_time_min_masks UpperCamelCase__ = mask_feature_prob UpperCamelCase__ = mask_feature_length UpperCamelCase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase__ = num_codevectors_per_group UpperCamelCase__ = num_codevector_groups UpperCamelCase__ = contrastive_logits_temperature UpperCamelCase__ = feat_quantizer_dropout UpperCamelCase__ = num_negatives UpperCamelCase__ = codevector_dim UpperCamelCase__ = proj_codevector_dim UpperCamelCase__ = diversity_loss_weight # ctc loss UpperCamelCase__ = ctc_loss_reduction UpperCamelCase__ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = xvector_output_dim @property def lowerCamelCase__ ( self :List[str] ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
516
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger A : int = get_logger(__name__) A : Dict = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class lowerCAmelCase : '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self :int , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCAmelCase : '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self :Optional[Any] , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCAmelCase ( snake_case__ ): '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self :List[str] , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int , **lowerCamelCase_ :Any ) -> jnp.ndarray: """simple docstring""" for processor in self: UpperCamelCase__ = inspect.signature(processor.__call__ ).parameters if len(lowerCamelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) UpperCamelCase__ = processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) else: UpperCamelCase__ = processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Union[str, Any] , lowerCamelCase_ :float ) -> Tuple: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) UpperCamelCase__ = temperature def __call__( self :Any , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ = scores / self.temperature return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :float , lowerCamelCase_ :float = -float("Inf" ) , lowerCamelCase_ :int = 1 ) -> str: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) UpperCamelCase__ = top_p UpperCamelCase__ = filter_value UpperCamelCase__ = min_tokens_to_keep def __call__( self :str , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = lax.top_k(lowerCamelCase_ , scores.shape[-1] ) UpperCamelCase__ = jnp.full_like(lowerCamelCase_ , self.filter_value ) UpperCamelCase__ = jax.nn.softmax(lowerCamelCase_ , axis=-1 ).cumsum(axis=-1 ) UpperCamelCase__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCamelCase__ = jnp.roll(lowerCamelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(lowerCamelCase_ ) # min tokens to keep UpperCamelCase__ = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCamelCase_ ) UpperCamelCase__ = jnp.where(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = jax.lax.sort_key_val(lowerCamelCase_ , lowerCamelCase_ )[-1] return next_scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :float = -float("Inf" ) , lowerCamelCase_ :int = 1 ) -> Optional[Any]: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) UpperCamelCase__ = max(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = filter_value def __call__( self :Tuple , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = scores.shape UpperCamelCase__ = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCamelCase__ = min(self.top_k , scores.shape[-1] ) # Safety check UpperCamelCase__ , UpperCamelCase__ = lax.top_k(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = jnp.broadcast_to((jnp.arange(lowerCamelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCamelCase__ = topk_scores.flatten() UpperCamelCase__ = topk_indices.flatten() + shift UpperCamelCase__ = next_scores_flat.at[topk_indices_flat].set(lowerCamelCase_ ) UpperCamelCase__ = next_scores_flat.reshape(lowerCamelCase_ , lowerCamelCase_ ) return next_scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :str , lowerCamelCase_ :int ) -> int: """simple docstring""" UpperCamelCase__ = bos_token_id def __call__( self :Any , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ = jnp.full(scores.shape , -float("inf" ) ) UpperCamelCase__ = 1 - jnp.bool_(cur_len - 1 ) UpperCamelCase__ = jnp.where(lowerCamelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , lowerCamelCase_ ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :int ) -> List[str]: """simple docstring""" UpperCamelCase__ = max_length UpperCamelCase__ = eos_token_id def __call__( self :Optional[Any] , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ = jnp.full(scores.shape , -float("inf" ) ) UpperCamelCase__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCamelCase__ = jnp.where(lowerCamelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , lowerCamelCase_ ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :int ) -> Optional[Any]: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) UpperCamelCase__ = min_length UpperCamelCase__ = eos_token_id def __call__( self :Any , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCamelCase__ = jnp.where(lowerCamelCase_ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , lowerCamelCase_ ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :List[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = begin_index def __call__( self :str , lowerCamelCase_ :int , lowerCamelCase_ :Any , lowerCamelCase_ :int ) -> Tuple: """simple docstring""" UpperCamelCase__ = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCamelCase__ = jnp.where(lowerCamelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , lowerCamelCase_ ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :list ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = list(lowerCamelCase_ ) def __call__( self :Any , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Dict , lowerCamelCase_ :Any ) -> str: """simple docstring""" UpperCamelCase__ = dict(lowerCamelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCamelCase__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCamelCase__ = force_token_array.at[index].set(lowerCamelCase_ ) UpperCamelCase__ = jnp.intaa(lowerCamelCase_ ) def __call__( self :List[Any] , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" def _force_token(lowerCamelCase_ :Any ): UpperCamelCase__ = scores.shape[0] UpperCamelCase__ = self.force_token_array[generation_idx] UpperCamelCase__ = jnp.ones_like(lowerCamelCase_ , dtype=scores.dtype ) * -float("inf" ) UpperCamelCase__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCamelCase__ = lax.dynamic_update_slice(lowerCamelCase_ , lowerCamelCase_ , (0, current_token) ) return new_scores UpperCamelCase__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowerCamelCase_ ) , lambda: scores , ) , ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any , lowerCamelCase_ :Any ) -> List[str]: """simple docstring""" UpperCamelCase__ = generate_config.eos_token_id UpperCamelCase__ = generate_config.no_timestamps_token_id UpperCamelCase__ = generate_config.no_timestamps_token_id + 1 UpperCamelCase__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCamelCase_ , "max_initial_timestamp_index" ): UpperCamelCase__ = generate_config.max_initial_timestamp_index else: UpperCamelCase__ = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCamelCase__ = model_config.vocab_size def __call__( self :List[str] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(lowerCamelCase_ :List[str] , lowerCamelCase_ :str ): UpperCamelCase__ = jnp.where((cur_len - self.begin_index) >= 1 , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowerCamelCase_ , ) UpperCamelCase__ = jnp.where((cur_len - self.begin_index) < 2 , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowerCamelCase_ , lowerCamelCase_ , ) return jnp.where( lowerCamelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , lowerCamelCase_ , ) UpperCamelCase__ = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = jnp.where(cur_len == self.begin_index , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowerCamelCase_ , ) UpperCamelCase__ = self.timestamp_begin + self.max_initial_timestamp_index UpperCamelCase__ = jnp.where( lowerCamelCase_ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , lowerCamelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCamelCase__ = jax.nn.log_softmax(lowerCamelCase_ , axis=-1 ) def handle_cumulative_probs(lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any ): UpperCamelCase__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCamelCase__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , lowerCamelCase_ , ) UpperCamelCase__ = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ , lowerCamelCase_ ) return scores
516
1
'''simple docstring''' def _a ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : int ): """simple docstring""" if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate snake_case__ : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly snake_case__ : Tuple = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case_ , '''width_multiplier''' ) ) class a : """simple docstring""" def __init__( self : List[str] , snake_case_ : Optional[int] , snake_case_ : Dict=1_3 , snake_case_ : Any=6_4 , snake_case_ : Dict=2 , snake_case_ : Optional[int]=3 , snake_case_ : str="swish" , snake_case_ : str=3 , snake_case_ : Union[str, Any]=3_2 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Any=0.0_2 , snake_case_ : int=True , snake_case_ : Tuple=True , snake_case_ : Dict=1_0 , snake_case_ : Optional[int]=None , snake_case_ : str=0.2_5 , snake_case_ : List[Any]=0.0 , snake_case_ : Optional[Any]=0.0 , ): '''simple docstring''' snake_case__ : List[Any] = parent snake_case__ : Dict = batch_size snake_case__ : Dict = image_size snake_case__ : Tuple = patch_size snake_case__ : Tuple = num_channels snake_case__ : Tuple = make_divisible(5_1_2 * width_multiplier , divisor=8 ) snake_case__ : Optional[int] = hidden_act snake_case__ : int = conv_kernel_size snake_case__ : Optional[int] = output_stride snake_case__ : List[Any] = classifier_dropout_prob snake_case__ : int = use_labels snake_case__ : Optional[Any] = is_training snake_case__ : int = num_labels snake_case__ : str = initializer_range snake_case__ : Dict = scope snake_case__ : Tuple = width_multiplier snake_case__ : Optional[Any] = ffn_dropout snake_case__ : Dict = attn_dropout def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[str] = None snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __magic_name__ ( self : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] ): '''simple docstring''' snake_case__ : Optional[Any] = MobileViTVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Optional[Any] ): '''simple docstring''' snake_case__ : Optional[int] = self.num_labels snake_case__ : Optional[Any] = MobileViTVaForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : int = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : int , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : List[str] ): '''simple docstring''' snake_case__ : Dict = self.num_labels snake_case__ : Any = MobileViTVaForSemanticSegmentation(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : str = model(snake_case_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case__ : Optional[int] = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = config_and_inputs snake_case__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : str = MobileViTVaModelTester(self ) snake_case__ : Union[str, Any] = MobileViTVaConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __magic_name__ ( self : int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __magic_name__ ( self : int ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' pass def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(snake_case_ ) snake_case__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Any = [*signature.parameters.keys()] snake_case__ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Tuple ): snake_case__ : Optional[Any] = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): snake_case__ : Tuple = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : Union[str, Any] = outputs.hidden_states snake_case__ : Any = 5 self.assertEqual(len(snake_case_ ) , snake_case_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case__ : Dict = 2 for i in range(len(snake_case_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : int = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) def __magic_name__ ( self : Any ): '''simple docstring''' snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case_ ) @slow def __magic_name__ ( self : List[Any] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Any = MobileViTVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _a ( ): """simple docstring""" snake_case__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ ( self : Optional[int] ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : Tuple = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( snake_case_ ) snake_case__ : Any = self.default_image_processor snake_case__ : Tuple = prepare_img() snake_case__ : str = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Any = model(**snake_case_ ) # verify the logits snake_case__ : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : Tuple = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) ) @slow def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : List[Any] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ : Any = model.to(snake_case_ ) snake_case__ : Tuple = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ : str = prepare_img() snake_case__ : Union[str, Any] = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Union[str, Any] = model(**snake_case_ ) snake_case__ : Tuple = outputs.logits # verify the logits snake_case__ : Optional[Any] = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , snake_case_ ) snake_case__ : List[Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=snake_case_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case_ , atol=1e-4 ) ) @slow def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ : List[str] = model.to(snake_case_ ) snake_case__ : Optional[int] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ : str = prepare_img() snake_case__ : str = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Any = model(**snake_case_ ) snake_case__ : str = outputs.logits.detach().cpu() snake_case__ : int = image_processor.post_process_semantic_segmentation(outputs=snake_case_ , target_sizes=[(5_0, 6_0)] ) snake_case__ : int = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , snake_case_ ) snake_case__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case_ ) snake_case__ : Any = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , snake_case_ )
502
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a =logging.get_logger(__name__) a ="▁" a ={ "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } a ={ "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } a ={ "facebook/s2t-small-librispeech-asr": 1024, } a =["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] a ={"mustc": MUSTC_LANGS} class A_ ( lowercase_ ): _UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Dict = MAX_MODEL_INPUT_SIZES _UpperCAmelCase : Any = ["input_ids", "attention_mask"] _UpperCAmelCase : List[int] = [] def __init__( self : int ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Dict="<s>" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="</s>" ,SCREAMING_SNAKE_CASE__ : List[Any]="<pad>" ,SCREAMING_SNAKE_CASE__ : str="<unk>" ,SCREAMING_SNAKE_CASE__ : int=False ,SCREAMING_SNAKE_CASE__ : Dict=False ,SCREAMING_SNAKE_CASE__ : str=None ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : Tuple = None ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): __lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ ,eos_token=a__ ,unk_token=a__ ,pad_token=a__ ,do_upper_case=a__ ,do_lower_case=a__ ,tgt_lang=a__ ,lang_codes=a__ ,sp_model_kwargs=self.sp_model_kwargs ,**a__ ,) __lowerCamelCase : Tuple = do_upper_case __lowerCamelCase : List[str] = do_lower_case __lowerCamelCase : Tuple = load_json(a__) __lowerCamelCase : Dict = {v: k for k, v in self.encoder.items()} __lowerCamelCase : List[str] = spm_file __lowerCamelCase : List[Any] = load_spm(a__ ,self.sp_model_kwargs) if lang_codes is not None: __lowerCamelCase : Optional[Any] = lang_codes __lowerCamelCase : List[str] = LANGUAGES[lang_codes] __lowerCamelCase : List[str] = [F"<lang:{lang}>" for lang in self.langs] __lowerCamelCase : Tuple = {lang: self.sp_model.PieceToId(F"<lang:{lang}>") for lang in self.langs} __lowerCamelCase : Optional[int] = self.lang_tokens __lowerCamelCase : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang) else: __lowerCamelCase : Optional[Any] = {} @property def lowerCAmelCase ( self : List[Any]): return len(self.encoder) @property def lowerCAmelCase ( self : str): return self._tgt_lang @tgt_lang.setter def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : Optional[Any] = new_tgt_lang self.set_tgt_lang_special_tokens(a__) def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Union[str, Any]): __lowerCamelCase : int = self.lang_code_to_id[tgt_lang] __lowerCamelCase : Optional[int] = [lang_code_id] def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : str): return self.sp_model.encode(a__ ,out_type=a__) def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[str]): return self.encoder.get(a__ ,self.encoder[self.unk_token]) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Any): return self.decoder.get(a__ ,self.unk_token) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Optional[int]): __lowerCamelCase : Dict = [] __lowerCamelCase : Union[str, Any] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __lowerCamelCase : Union[str, Any] = self.sp_model.decode(a__) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __lowerCamelCase : Any = [] else: current_sub_tokens.append(a__) __lowerCamelCase : List[str] = self.sp_model.decode(a__) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Tuple=None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[Any] = None ,SCREAMING_SNAKE_CASE__ : Tuple = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ ,token_ids_a=a__ ,already_has_special_tokens=a__) __lowerCamelCase : str = [1] * len(self.prefix_tokens) __lowerCamelCase : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(a__)) + suffix_ones return prefix_ones + ([0] * len(a__)) + ([0] * len(a__)) + suffix_ones def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Tuple = self.encoder.copy() vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Optional[Any]): __lowerCamelCase : Optional[Any] = self.__dict__.copy() __lowerCamelCase : Optional[int] = None return state def __setstate__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Any): __lowerCamelCase : List[str] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs'): __lowerCamelCase : str = {} __lowerCamelCase : Optional[Any] = load_spm(self.spm_file ,self.sp_model_kwargs) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any = None): __lowerCamelCase : List[str] = Path(a__) assert save_dir.is_dir(), F"{save_directory} should be a directory" __lowerCamelCase : Dict = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __lowerCamelCase : Dict = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder ,a__) if os.path.abspath(self.spm_file) != os.path.abspath(a__) and os.path.isfile(self.spm_file): copyfile(self.spm_file ,a__) elif not os.path.isfile(self.spm_file): with open(a__ ,'wb') as fi: __lowerCamelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(a__) return (str(a__), str(a__)) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Union[str, Any]: with open(lowerCamelCase__ , 'r' ) as f: return json.load(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: with open(lowerCamelCase__ , 'w' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=2 )
652
'''simple docstring''' def UpperCamelCase_( ): '''simple docstring''' snake_case_ = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] snake_case_ = 6 snake_case_ = 1 snake_case_ = 1_9_0_1 snake_case_ = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 snake_case_ = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 snake_case_ = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 snake_case_ = day - days_per_month[month - 2] if month > 1_2: year += 1 snake_case_ = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
400
0
'''simple docstring''' import baseaa def lowercase__( __UpperCamelCase: Dict ): """simple docstring""" return baseaa.baaencode(string.encode('utf-8' ) ) def lowercase__( __UpperCamelCase: Union[str, Any] ): """simple docstring""" return baseaa.baadecode(__UpperCamelCase ).decode('utf-8' ) if __name__ == "__main__": UpperCamelCase_ = "Hello World!" UpperCamelCase_ = baseaa_encode(test) print(encoded) UpperCamelCase_ = baseaa_decode(encoded) print(decoded)
714
'''simple docstring''' from __future__ import annotations import math def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: bool ,__UpperCamelCase: list[int] ,__UpperCamelCase: float ): """simple docstring""" if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(__UpperCamelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 ,node_index * 2 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ,minimax(depth + 1 ,node_index * 2 + 1 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ,) return min( minimax(depth + 1 ,node_index * 2 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ,minimax(depth + 1 ,node_index * 2 + 1 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ,) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] SCREAMING_SNAKE_CASE : List[Any] = math.log(len(__UpperCamelCase ) ,2 ) print('Optimal value : ' ,end='' ) print(minimax(0 ,0 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
508
0
import sys from pathlib import Path UpperCAmelCase_ : Optional[int] = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) UpperCAmelCase_ : Union[str, Any] = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} UpperCAmelCase_ : int = "zero2" UpperCAmelCase_ : List[Any] = "zero3" UpperCAmelCase_ : Union[str, Any] = [ZEROa, ZEROa] def UpperCamelCase ( _A : str , _A : Tuple , _A : str )-> str: """simple docstring""" A__ = parameterized.to_safe_name("_".join(str(_lowercase ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test UpperCAmelCase_ : Any = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class UpperCamelCase ( lowerCamelCase_ ): @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) def __A ( self , UpperCAmelCase__ ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 10 , UpperCAmelCase__ = True , UpperCAmelCase__ = True , UpperCAmelCase__ = True , ): A__ = models[model] A__ = self.run_trainer( stage=lowerCamelCase_ , model_name=lowerCamelCase_ , eval_steps=lowerCamelCase_ , num_train_epochs=1 , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) self.do_checks(lowerCamelCase_ ) return output_dir def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 10 , UpperCAmelCase__ = 1 , UpperCAmelCase__ = True , UpperCAmelCase__ = True , ): A__ = self.get_auto_remove_tmp_dir("./xxx" , after=lowerCamelCase_ ) A__ = F"""\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowerCamelCase_ )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n """.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A__ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() A__ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] A__ = self.get_launcher(lowerCamelCase_ ) A__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase_ , env=self.get_env() ) return output_dir def __A ( self , UpperCAmelCase__=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) A__ = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
491
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
0
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( lowerCAmelCase__: list[float] ) -> bool: if len(lowerCAmelCase__ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) SCREAMING_SNAKE_CASE_ = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) SCREAMING_SNAKE_CASE : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _UpperCamelCase ( lowerCAmelCase__: str ) -> Tuple: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE_ = model_type_to_module_name(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = importlib.import_module(F""".{module_name}""" ,'transformers.models' ) try: return getattr(lowerCAmelCase__ ,lowerCAmelCase__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase__ ,'__name__' ,lowerCAmelCase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE_ = importlib.import_module('transformers' ) if hasattr(lowerCAmelCase__ ,lowerCAmelCase__ ): return getattr(lowerCAmelCase__ ,lowerCAmelCase__ ) return None def _UpperCamelCase ( lowerCAmelCase__: Union[str, os.PathLike] ,lowerCAmelCase__: Optional[Union[str, os.PathLike]] = None ,lowerCAmelCase__: bool = False ,lowerCAmelCase__: bool = False ,lowerCAmelCase__: Optional[Dict[str, str]] = None ,lowerCAmelCase__: Optional[Union[bool, str]] = None ,lowerCAmelCase__: Optional[str] = None ,lowerCAmelCase__: bool = False ,**lowerCAmelCase__: int ,) -> str: SCREAMING_SNAKE_CASE_ = get_file_from_repo( lowerCAmelCase__ ,lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,use_auth_token=lowerCAmelCase__ ,revision=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(lowerCAmelCase__ ,encoding='utf-8' ) as reader: return json.load(lowerCAmelCase__ ) class snake_case : """simple docstring""" def __init__( self ) -> str: raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_lowercase ) def a__ ( cls, _lowercase, **_lowercase ) -> List[str]: SCREAMING_SNAKE_CASE_ = kwargs.pop('config', _lowercase ) SCREAMING_SNAKE_CASE_ = kwargs.pop('trust_remote_code', _lowercase ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = FeatureExtractionMixin.get_feature_extractor_dict(_lowercase, **_lowercase ) SCREAMING_SNAKE_CASE_ = config_dict.get('feature_extractor_type', _lowercase ) SCREAMING_SNAKE_CASE_ = None if "AutoFeatureExtractor" in config_dict.get('auto_map', {} ): SCREAMING_SNAKE_CASE_ = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_lowercase, _lowercase ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowercase, **_lowercase ) # It could be in `config.feature_extractor_type`` SCREAMING_SNAKE_CASE_ = getattr(_lowercase, 'feature_extractor_type', _lowercase ) if hasattr(_lowercase, 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: SCREAMING_SNAKE_CASE_ = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: SCREAMING_SNAKE_CASE_ = feature_extractor_class_from_name(_lowercase ) SCREAMING_SNAKE_CASE_ = feature_extractor_auto_map is not None SCREAMING_SNAKE_CASE_ = feature_extractor_class is not None or type(_lowercase ) in FEATURE_EXTRACTOR_MAPPING SCREAMING_SNAKE_CASE_ = resolve_trust_remote_code( _lowercase, _lowercase, _lowercase, _lowercase ) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE_ = get_class_from_dynamic_module( _lowercase, _lowercase, **_lowercase ) SCREAMING_SNAKE_CASE_ = kwargs.pop('code_revision', _lowercase ) if os.path.isdir(_lowercase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_lowercase, **_lowercase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_lowercase, **_lowercase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_lowercase ) in FEATURE_EXTRACTOR_MAPPING: SCREAMING_SNAKE_CASE_ = FEATURE_EXTRACTOR_MAPPING[type(_lowercase )] return feature_extractor_class.from_dict(_lowercase, **_lowercase ) raise ValueError( f"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ f"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def a__ ( _lowercase, _lowercase ) -> Tuple: FEATURE_EXTRACTOR_MAPPING.register(_lowercase, _lowercase )
238
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class lowerCAmelCase_ ( lowercase_ ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Optional[Any] = 8 # DPR tok SCREAMING_SNAKE_CASE_ : List[str] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(self.tmpdirname ,'dpr_tokenizer' ) os.makedirs(snake_case__ ,exist_ok=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(snake_case__ ,DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE_ : int = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE_ : Tuple = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(self.tmpdirname ,'bart_tokenizer' ) os.makedirs(snake_case__ ,exist_ok=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(snake_case__ ,BART_VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = os.path.join(snake_case__ ,BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,'dpr_tokenizer' ) ) def snake_case ( self ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,'dpr_tokenizer' ) ) def snake_case ( self ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,'bart_tokenizer' ) ) def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' ,string_factory='Flat' ,metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_dataset() SCREAMING_SNAKE_CASE_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: SCREAMING_SNAKE_CASE_ : Any = dataset SCREAMING_SNAKE_CASE_ : str = RagRetriever( snake_case__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) return retriever def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = self.get_dummy_dataset() SCREAMING_SNAKE_CASE_ : List[str] = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name='custom' ,) if from_disk: SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(self.tmpdirname ,'dataset' ) SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(self.tmpdirname ,'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname ,'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname ,'dataset' ) ) del dataset SCREAMING_SNAKE_CASE_ : List[str] = RagRetriever( snake_case__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = RagRetriever( snake_case__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,index=CustomHFIndex(config.retrieval_vector_size ,snake_case__ ) ,) return retriever def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' ,string_factory='Flat' ,metric_type=faiss.METRIC_INNER_PRODUCT ) SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(self.tmpdirname ,'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' ,index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] ,open(index_file_name + '.index_meta.dpr' ,'wb' ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(self.tmpdirname ,'psgs_w100.tsv.pkl' ) SCREAMING_SNAKE_CASE_ : List[Any] = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(snake_case__ ,open(snake_case__ ,'wb' ) ) SCREAMING_SNAKE_CASE_ : List[str] = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name='legacy' ,index_path=self.tmpdirname ,) SCREAMING_SNAKE_CASE_ : Tuple = RagRetriever( snake_case__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ) return retriever def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = retriever.retrieve(snake_case__ ,n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) ,snake_case__ ) self.assertEqual(doc_dicts[0]['id'][0] ,'1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] ,'0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_dataset() retriever.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : str = retriever.retrieve(snake_case__ ,n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = 1 SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = retriever.retrieve(snake_case__ ,n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) ,snake_case__ ) self.assertEqual(doc_dicts[0]['id'][0] ,'1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] ,'0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : Tuple = retriever.retrieve(snake_case__ ,n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = retriever.retrieve(snake_case__ ,n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) ,snake_case__ ) self.assertEqual(doc_dicts[0]['id'][0] ,'1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] ,'0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : int = retriever.retrieve(snake_case__ ,n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_legacy_index_retriever() SCREAMING_SNAKE_CASE_ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = retriever.retrieve(snake_case__ ,n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) ,snake_case__ ) self.assertEqual(doc_dicts[0]['text'][0] ,'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] ,'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : List[str] = retriever.retrieve(snake_case__ ,n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self ): import torch SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE_ : Optional[int] = [[5, 7], [10, 11]] SCREAMING_SNAKE_CASE_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = retriever(snake_case__ ,snake_case__ ,prefix=retriever.config.generator.prefix ,n_docs=snake_case__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(snake_case__ ,snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) self.assertIsInstance(snake_case__ ,np.ndarray ) SCREAMING_SNAKE_CASE_ : List[Any] = retriever( snake_case__ ,snake_case__ ,prefix=retriever.config.generator.prefix ,n_docs=snake_case__ ,return_tensors='pt' ,) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(snake_case__ ,torch.Tensor ) self.assertIsInstance(snake_case__ ,torch.Tensor ) self.assertIsInstance(snake_case__ ,torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_dpr_ctx_encoder_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) retriever.set_ctx_encoder_tokenizer(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = [[5, 7], [10, 11]] SCREAMING_SNAKE_CASE_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : Any = retriever(snake_case__ ,snake_case__ ,prefix=retriever.config.generator.prefix ,n_docs=snake_case__ ) self.assertEqual( len(snake_case__ ) ,6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) ,snake_case__ ) # check for doc token related keys in dictionary.
105
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" lowercase__ = [int(A ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(A ) == 4 and all(0 <= int(A ) <= 254 for octet in octets ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = input().strip() lowerCamelCase : Union[str, Any] = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
460
0
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() snake_case_ = logging.get_logger(__name__) def __lowercase (_SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :int ): SCREAMING_SNAKE_CASE : Dict = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def __lowercase (_SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :Tuple ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) SCREAMING_SNAKE_CASE : str = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE : Any = in_proj_weight[ : encoder_config.hidden_size, : ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : Dict = in_proj_weight[ -encoder_config.hidden_size :, : ] def __lowercase (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :Optional[int] ): SCREAMING_SNAKE_CASE : List[str] = dct.pop(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = val def __lowercase (_SCREAMING_SNAKE_CASE :List[str] ): if "handwritten" in checkpoint_url: SCREAMING_SNAKE_CASE : Any = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) return im @torch.no_grad() def __lowercase (_SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = ViTConfig(image_size=3_84 , qkv_bias=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: SCREAMING_SNAKE_CASE : List[Any] = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder SCREAMING_SNAKE_CASE : Union[str, Any] = 10_24 SCREAMING_SNAKE_CASE : Optional[Any] = 40_96 SCREAMING_SNAKE_CASE : List[str] = 24 SCREAMING_SNAKE_CASE : Any = 16 SCREAMING_SNAKE_CASE : Optional[Any] = 10_24 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = '''relu''' SCREAMING_SNAKE_CASE : Tuple = 10_24 SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = False # load HuggingFace model SCREAMING_SNAKE_CASE : List[Any] = ViTModel(_SCREAMING_SNAKE_CASE , add_pooling_layer=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = TrOCRForCausalLM(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = VisionEncoderDecoderModel(encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) model.eval() # load state_dict of original model, rename some keys SCREAMING_SNAKE_CASE : List[Any] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='''cpu''' , check_hash=_SCREAMING_SNAKE_CASE )['''model'''] SCREAMING_SNAKE_CASE : int = create_rename_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE : List[Any] = state_dict.pop(_SCREAMING_SNAKE_CASE ) if key.startswith('''decoder''' ) and "output_projection" not in key: SCREAMING_SNAKE_CASE : Tuple = val else: SCREAMING_SNAKE_CASE : int = val # load state dict model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) SCREAMING_SNAKE_CASE : Tuple = RobertaTokenizer.from_pretrained('''roberta-large''' ) SCREAMING_SNAKE_CASE : Dict = TrOCRProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = processor(images=prepare_img(_SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).pixel_values # verify logits SCREAMING_SNAKE_CASE : str = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) SCREAMING_SNAKE_CASE : Dict = model(pixel_values=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = outputs.logits SCREAMING_SNAKE_CASE : Any = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: SCREAMING_SNAKE_CASE : Any = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: SCREAMING_SNAKE_CASE : str = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _SCREAMING_SNAKE_CASE , atol=1E-3 ), "First elements of logits not as expected" Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) snake_case_ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
355
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def __lowercase (_SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :Any , _SCREAMING_SNAKE_CASE :str ): SCREAMING_SNAKE_CASE : int = 0 if start < end: SCREAMING_SNAKE_CASE : Optional[int] = randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = a[end] SCREAMING_SNAKE_CASE : List[str] = a[pivot] SCREAMING_SNAKE_CASE : Dict = temp SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = _in_place_partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) count += _in_place_quick_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , p - 1 ) count += _in_place_quick_sort(_SCREAMING_SNAKE_CASE , p + 1 , _SCREAMING_SNAKE_CASE ) return count def __lowercase (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :Optional[Any] ): SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Tuple = randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = a[end] SCREAMING_SNAKE_CASE : int = a[pivot] SCREAMING_SNAKE_CASE : Tuple = temp SCREAMING_SNAKE_CASE : Union[str, Any] = start - 1 for index in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value SCREAMING_SNAKE_CASE : Tuple = new_pivot_index + 1 SCREAMING_SNAKE_CASE : Dict = a[new_pivot_index] SCREAMING_SNAKE_CASE : Union[str, Any] = a[index] SCREAMING_SNAKE_CASE : Optional[int] = temp SCREAMING_SNAKE_CASE : List[Any] = a[new_pivot_index + 1] SCREAMING_SNAKE_CASE : Any = a[end] SCREAMING_SNAKE_CASE : Union[str, Any] = temp return new_pivot_index + 1, count snake_case_ = TemporaryFile() snake_case_ = 100 # 1000 elements are to be sorted snake_case_ , snake_case_ = 0, 1 # mean and standard deviation snake_case_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array snake_case_ = np.load(outfile) snake_case_ = len(M) - 1 snake_case_ = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
355
1
_lowerCamelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] ): # Return True if there is node that has not iterated. SCREAMING_SNAKE_CASE__ = [False] * len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [s] SCREAMING_SNAKE_CASE__ = True while queue: SCREAMING_SNAKE_CASE__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = u return visited[t] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [-1] * (len(UpperCamelCase__ )) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [i[:] for i in graph] # Record original cut, copy. while bfs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = float("""Inf""" ) SCREAMING_SNAKE_CASE__ = sink while s != source: # Find the minimum value in select path SCREAMING_SNAKE_CASE__ = min(UpperCamelCase__ , graph[parent[s]][s] ) SCREAMING_SNAKE_CASE__ = parent[s] max_flow += path_flow SCREAMING_SNAKE_CASE__ = sink while v != source: SCREAMING_SNAKE_CASE__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow SCREAMING_SNAKE_CASE__ = parent[v] for i in range(len(UpperCamelCase__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
6
from torch import nn def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
6
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowercase__ : def __init__( self : List[str] , UpperCamelCase__ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Optional[Any] = 13 SCREAMING_SNAKE_CASE : Any = 7 SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Any = 99 SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : Any = 4 SCREAMING_SNAKE_CASE : Dict = 0.1 SCREAMING_SNAKE_CASE : Tuple = 0.1 SCREAMING_SNAKE_CASE : Dict = 512 SCREAMING_SNAKE_CASE : Tuple = 16 SCREAMING_SNAKE_CASE : Any = 2 SCREAMING_SNAKE_CASE : int = 0.02 SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : List[Any] = 4 SCREAMING_SNAKE_CASE : int = '''last''' SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = 0 def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) SCREAMING_SNAKE_CASE : int = None if self.use_input_lengths: SCREAMING_SNAKE_CASE : Dict = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __A ( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = TFFlaubertModel(config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = [input_ids, input_mask] SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = TFFlaubertWithLMHeadModel(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} SCREAMING_SNAKE_CASE : Any = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFFlaubertForQuestionAnsweringSimple(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': input_ids, '''lengths''': input_lengths} SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : str , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFFlaubertForSequenceClassification(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths} SCREAMING_SNAKE_CASE : Any = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = TFFlaubertForTokenClassification(config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_choices SCREAMING_SNAKE_CASE : int = TFFlaubertForMultipleChoice(config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : int = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : Optional[Any] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class lowercase__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def __A ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFFlaubertModelTester(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase__ , emb_dim=37 ) def __A ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCamelCase__ ) def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCamelCase__ ) def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCamelCase__ ) def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCamelCase__ ) def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*UpperCamelCase__ ) def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*UpperCamelCase__ ) @slow def __A ( self : Optional[int] ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Union[str, Any] = TFFlaubertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase): @slow def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" SCREAMING_SNAKE_CASE : Tuple = model(UpperCamelCase__ )[0] SCREAMING_SNAKE_CASE : str = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE : Optional[Any] = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
34
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowercase__ ( UpperCamelCase_): def __init__( self : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = dataset SCREAMING_SNAKE_CASE : Optional[Any] = process SCREAMING_SNAKE_CASE : Union[str, Any] = params def __len__( self : Tuple ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : List[str] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.dataset[i] SCREAMING_SNAKE_CASE : Optional[int] = self.process(UpperCamelCase__ , **self.params ) return processed class lowercase__ ( UpperCamelCase_): def __init__( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = loader SCREAMING_SNAKE_CASE : List[Any] = infer SCREAMING_SNAKE_CASE : int = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[str] = loader_batch_size # Internal bookkeeping SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : int = None def __len__( self : int ): '''simple docstring''' return len(self.loader ) def __iter__( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = iter(self.loader ) return self def __A ( self : List[str] ): '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice SCREAMING_SNAKE_CASE : Optional[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) SCREAMING_SNAKE_CASE : Union[str, Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # Convert ModelOutput to tuple first SCREAMING_SNAKE_CASE : Dict = element.to_tuple() if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase__ , UpperCamelCase__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE : List[str] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around SCREAMING_SNAKE_CASE : int = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE : Union[str, Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. SCREAMING_SNAKE_CASE : Tuple = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 SCREAMING_SNAKE_CASE : Any = self._loader_batch_data.__class__(UpperCamelCase__ ) self._loader_batch_index += 1 return result def __A ( self : Union[str, Any] ): '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch SCREAMING_SNAKE_CASE : Tuple = next(self.iterator ) SCREAMING_SNAKE_CASE : List[Any] = self.infer(UpperCamelCase__ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCamelCase__ , torch.Tensor ): SCREAMING_SNAKE_CASE : Optional[int] = processed else: SCREAMING_SNAKE_CASE : int = list(processed.keys() )[0] SCREAMING_SNAKE_CASE : int = processed[key] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : List[Any] = len(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE : List[Any] = observed_batch_size # Setting internal index to unwrap the batch SCREAMING_SNAKE_CASE : List[Any] = processed SCREAMING_SNAKE_CASE : int = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowercase__ ( UpperCamelCase_): def __init__( self : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=None ): '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __iter__( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = iter(self.loader ) SCREAMING_SNAKE_CASE : List[Any] = None return self def __A ( self : List[str] ): '''simple docstring''' if self.subiterator is None: SCREAMING_SNAKE_CASE : Dict = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item SCREAMING_SNAKE_CASE : Any = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators SCREAMING_SNAKE_CASE : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) SCREAMING_SNAKE_CASE : Union[str, Any] = next(self.subiterator ) return processed class lowercase__ ( UpperCamelCase_): def __iter__( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = iter(self.loader ) return self def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Optional[int] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE : Tuple = self.loader_batch_item() SCREAMING_SNAKE_CASE : Any = item.pop('''is_last''' ) accumulator.append(UpperCamelCase__ ) if is_last: return accumulator while not is_last: SCREAMING_SNAKE_CASE : Any = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCamelCase__ , torch.Tensor ): SCREAMING_SNAKE_CASE : Tuple = processed else: SCREAMING_SNAKE_CASE : Union[str, Any] = list(processed.keys() )[0] SCREAMING_SNAKE_CASE : List[str] = processed[key] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : List[Any] = len(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE : List[str] = observed_batch_size SCREAMING_SNAKE_CASE : List[Any] = processed SCREAMING_SNAKE_CASE : str = 0 while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE : Any = self.loader_batch_item() SCREAMING_SNAKE_CASE : List[Any] = item.pop('''is_last''' ) accumulator.append(UpperCamelCase__ ) if is_last: return accumulator else: SCREAMING_SNAKE_CASE : int = processed SCREAMING_SNAKE_CASE : List[str] = item.pop('''is_last''' ) accumulator.append(UpperCamelCase__ ) return accumulator class lowercase__ ( UpperCamelCase_): def __init__( self : Optional[Any] , UpperCamelCase__ : Dataset , UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = dataset SCREAMING_SNAKE_CASE : Dict = key def __len__( self : Optional[int] ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Dict , UpperCamelCase__ : Tuple ): '''simple docstring''' return self.dataset[i][self.key] class lowercase__ ( UpperCamelCase_): def __init__( self : List[Any] , UpperCamelCase__ : Dataset , UpperCamelCase__ : str , UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataset SCREAMING_SNAKE_CASE : List[str] = keya SCREAMING_SNAKE_CASE : Tuple = keya def __len__( self : List[str] ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Union[str, Any] , UpperCamelCase__ : Any ): '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
34
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class UpperCamelCase__ ( unittest.TestCase): """simple docstring""" def a__ ( self : Optional[int] ): '''simple docstring''' __magic_name__ = tempfile.mkdtemp() # fmt: off __magic_name__ = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __magic_name__ = dict(zip(__a , range(len(__a ) ) ) ) __magic_name__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __magic_name__ = {"""unk_token""": """<unk>"""} __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) __magic_name__ = { """do_resize""": True, """size""": 2_0, """do_center_crop""": True, """crop_size""": 1_8, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } __magic_name__ = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(__a , __a ) def a__ ( self : List[str] , **UpperCamelCase_ : Any ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **__a ) def a__ ( self : str , **UpperCamelCase_ : List[str] ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **__a ) def a__ ( self : Tuple , **UpperCamelCase_ : List[Any] ): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__a ) def a__ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a__ ( self : Dict ): '''simple docstring''' __magic_name__ = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __magic_name__ = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : Any ): '''simple docstring''' __magic_name__ = self.get_tokenizer() __magic_name__ = self.get_rust_tokenizer() __magic_name__ = self.get_image_processor() __magic_name__ = OwlViTProcessor(tokenizer=__a , image_processor=__a ) processor_slow.save_pretrained(self.tmpdirname ) __magic_name__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) __magic_name__ = OwlViTProcessor(tokenizer=__a , image_processor=__a ) processor_fast.save_pretrained(self.tmpdirname ) __magic_name__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __a ) self.assertIsInstance(processor_fast.tokenizer , __a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __a ) self.assertIsInstance(processor_fast.image_processor , __a ) def a__ ( self : Any ): '''simple docstring''' __magic_name__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __magic_name__ = self.get_image_processor(do_normalize=__a ) __magic_name__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def a__ ( self : str ): '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = OwlViTProcessor(tokenizer=__a , image_processor=__a ) __magic_name__ = self.prepare_image_inputs() __magic_name__ = image_processor(__a , return_tensors='np' ) __magic_name__ = processor(images=__a , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a__ ( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = OwlViTProcessor(tokenizer=__a , image_processor=__a ) __magic_name__ = """lower newer""" __magic_name__ = processor(text=__a , return_tensors='np' ) __magic_name__ = tokenizer(__a , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def a__ ( self : List[Any] ): '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = OwlViTProcessor(tokenizer=__a , image_processor=__a ) __magic_name__ = """lower newer""" __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def a__ ( self : List[str] ): '''simple docstring''' __magic_name__ = """google/owlvit-base-patch32""" __magic_name__ = OwlViTProcessor.from_pretrained(__a ) __magic_name__ = ["""cat""", """nasa badge"""] __magic_name__ = processor(text=__a ) __magic_name__ = 1_6 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def a__ ( self : Dict ): '''simple docstring''' __magic_name__ = """google/owlvit-base-patch32""" __magic_name__ = OwlViTProcessor.from_pretrained(__a ) __magic_name__ = [["""cat""", """nasa badge"""], ["""person"""]] __magic_name__ = processor(text=__a ) __magic_name__ = 1_6 __magic_name__ = len(__a ) __magic_name__ = max([len(__a ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def a__ ( self : List[str] ): '''simple docstring''' __magic_name__ = """google/owlvit-base-patch32""" __magic_name__ = OwlViTProcessor.from_pretrained(__a ) __magic_name__ = ["""cat""", """nasa badge"""] __magic_name__ = processor(text=__a ) __magic_name__ = 1_6 __magic_name__ = inputs["""input_ids"""] __magic_name__ = [ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def a__ ( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = OwlViTProcessor(tokenizer=__a , image_processor=__a ) __magic_name__ = self.prepare_image_inputs() __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(images=__a , query_images=__a ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def a__ ( self : Dict ): '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = OwlViTProcessor(tokenizer=__a , image_processor=__a ) __magic_name__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ = processor.batch_decode(__a ) __magic_name__ = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a )
545
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def snake_case_ ( lowerCAmelCase_ : ndarray ): return np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , *, __a : float = np.inf , __a : str = "linear" , __a : float = 0.0 , ) -> None: """simple docstring""" __lowercase : Any = regularization __lowercase : List[str] = gamma if kernel == "linear": __lowercase : Dict = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) __lowercase : Optional[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __lowercase : List[Any] = F"Unknown kernel: {kernel}" raise ValueError(__a ) def lowerCAmelCase ( self : int , __a : ndarray , __a : ndarray ) -> float: """simple docstring""" return np.dot(__a , __a ) def lowerCAmelCase ( self : str , __a : ndarray , __a : ndarray ) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase ( self : Optional[int] , __a : list[ndarray] , __a : ndarray ) -> None: """simple docstring""" __lowercase : List[Any] = observations __lowercase : Union[str, Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__lowercase) , ) : Union[str, Any] = np.shape(__a ) def to_minimize(__a : ndarray ) -> float: __lowercase : str = 0 ((__lowercase) , ) : Tuple = np.shape(__a ) for i in range(__a ): for j in range(__a ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(__a ) __lowercase : Tuple = LinearConstraint(__a , 0 , 0 ) __lowercase : List[Any] = Bounds(0 , self.regularization ) __lowercase : Dict = minimize( __a , np.ones(__a ) , bounds=__a , constraints=[ly_contraint] ).x __lowercase : str = l_star # calculating mean offset of separation plane to points __lowercase : Optional[Any] = 0 for i in range(__a ): for j in range(__a ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __lowercase : Any = s / n def lowerCAmelCase ( self : Any , __a : ndarray ) -> int: """simple docstring""" __lowercase : Optional[Any] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , __a ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
149
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowerCamelCase : Optional[int] = logging.get_logger(__name__) @dataclass class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : Tuple = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : List[Any] , **snake_case : Tuple ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE : List[Any] = deprecated_arg[3:] setattr(self , snake_case , not kwargs.pop(snake_case ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) SCREAMING_SNAKE_CASE : int = kwargs.pop('torchscript' , self.torchscript ) SCREAMING_SNAKE_CASE : str = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**snake_case ) UpperCAmelCase : bool = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Trace the models using torchscript'}) UpperCAmelCase : bool = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Print Xla/PyTorch tpu metrics'}) UpperCAmelCase : str = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: SCREAMING_SNAKE_CASE : Dict = torch.device('cpu' ) SCREAMING_SNAKE_CASE : Tuple = 0 elif is_torch_tpu_available(): SCREAMING_SNAKE_CASE : List[Any] = xm.xla_device() SCREAMING_SNAKE_CASE : List[Any] = 0 else: SCREAMING_SNAKE_CASE : Dict = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) SCREAMING_SNAKE_CASE : str = torch.cuda.device_count() return device, n_gpu @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowerCamelCase_ ( self : Any ): '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return self.n_gpu > 0
308
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : Optional[int] = 'git_vision_model' def __init__( self : Optional[Any] , snake_case : Any=768 , snake_case : List[str]=3072 , snake_case : Optional[Any]=12 , snake_case : Optional[Any]=12 , snake_case : Tuple=3 , snake_case : str=224 , snake_case : Tuple=16 , snake_case : Union[str, Any]="quick_gelu" , snake_case : Dict=1E-5 , snake_case : int=0.0 , snake_case : Union[str, Any]=0.02 , **snake_case : int , ): '''simple docstring''' super().__init__(**snake_case ) SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : str = hidden_act @classmethod def lowerCamelCase_ ( cls : Optional[int] , snake_case : Union[str, os.PathLike] , **snake_case : List[Any] ): '''simple docstring''' cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = cls.get_config_dict(snake_case , **snake_case ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": SCREAMING_SNAKE_CASE : Optional[int] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case , **snake_case ) class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : int = 'git' def __init__( self : Union[str, Any] , snake_case : str=None , snake_case : List[str]=30522 , snake_case : Optional[Any]=768 , snake_case : Optional[Any]=6 , snake_case : Union[str, Any]=12 , snake_case : Union[str, Any]=3072 , snake_case : Dict="gelu" , snake_case : Optional[Any]=0.1 , snake_case : Optional[Any]=0.1 , snake_case : str=1024 , snake_case : Tuple=0.02 , snake_case : Dict=1E-12 , snake_case : List[str]=0 , snake_case : Optional[int]="absolute" , snake_case : Optional[int]=True , snake_case : Optional[int]=False , snake_case : Optional[Any]=101 , snake_case : Optional[int]=102 , snake_case : int=None , **snake_case : Any , ): '''simple docstring''' super().__init__(bos_token_id=snake_case , eos_token_id=snake_case , pad_token_id=snake_case , **snake_case ) if vision_config is None: SCREAMING_SNAKE_CASE : List[Any] = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Dict = layer_norm_eps SCREAMING_SNAKE_CASE : Any = position_embedding_type SCREAMING_SNAKE_CASE : Any = use_cache SCREAMING_SNAKE_CASE : int = tie_word_embeddings SCREAMING_SNAKE_CASE : Optional[int] = num_image_with_embedding SCREAMING_SNAKE_CASE : Tuple = bos_token_id SCREAMING_SNAKE_CASE : Union[str, Any] = eos_token_id def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : int = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Dict = self.__class__.model_type return output
308
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
452
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : List[str] = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
452
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter A = logging.get_logger(__name__) A = {} A = {} A = {} def lowerCamelCase ( UpperCamelCase : type , UpperCamelCase : Optional[str] , UpperCamelCase : Optional[List[str]] = None , ) -> Optional[Any]: _lowerCamelCase = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) _lowerCamelCase = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) _lowerCamelCase = format_type def lowerCamelCase ( UpperCamelCase : Exception , UpperCamelCase : Optional[str] , UpperCamelCase : Optional[List[str]] = None ) -> Dict: _lowerCamelCase = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _lowerCamelCase = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: A = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: A = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: A = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def lowerCamelCase ( UpperCamelCase : Optional[str] ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowerCamelCase ( UpperCamelCase : Optional[str] , **UpperCamelCase : List[Any] ) -> Formatter: _lowerCamelCase = get_format_type_from_alias(UpperCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
234
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig A = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } A = logging.get_logger(__name__) class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = 'maskformer' lowerCAmelCase_ = {'hidden_size': 'mask_feature_size'} lowerCAmelCase_ = ['resnet', 'swin'] lowerCAmelCase_ = ['detr'] def __init__( self : int , snake_case__ : int = 2_5_6 , snake_case__ : int = 2_5_6 , snake_case__ : float = 0.1 , snake_case__ : bool = False , snake_case__ : Optional[Dict] = None , snake_case__ : Optional[Dict] = None , snake_case__ : float = 0.02 , snake_case__ : float = 1.0 , snake_case__ : float = 1.0 , snake_case__ : float = 1.0 , snake_case__ : float = 20.0 , snake_case__ : Optional[bool] = None , **snake_case__ : Dict , ) -> int: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _lowerCamelCase = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(snake_case__ , snake_case__ ): _lowerCamelCase = backbone_config.pop('model_type' ) _lowerCamelCase = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase = config_class.from_dict(snake_case__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _lowerCamelCase = DetrConfig() else: # verify that the decoder is supported _lowerCamelCase = ( decoder_config.pop('model_type' ) if isinstance(snake_case__ , snake_case__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(snake_case__ , snake_case__ ): _lowerCamelCase = CONFIG_MAPPING[decoder_type] _lowerCamelCase = config_class.from_dict(snake_case__ ) _lowerCamelCase = backbone_config _lowerCamelCase = decoder_config # main feature dimension for the model _lowerCamelCase = fpn_feature_size _lowerCamelCase = mask_feature_size # initializer _lowerCamelCase = init_std _lowerCamelCase = init_xavier_std # Hungarian matcher && loss _lowerCamelCase = cross_entropy_weight _lowerCamelCase = dice_weight _lowerCamelCase = mask_weight _lowerCamelCase = use_auxiliary_loss _lowerCamelCase = no_object_weight _lowerCamelCase = output_auxiliary_logits _lowerCamelCase = self.decoder_config.encoder_attention_heads _lowerCamelCase = self.decoder_config.num_hidden_layers super().__init__(**snake_case__ ) @classmethod def _snake_case ( cls : Optional[int] , snake_case__ : PretrainedConfig , snake_case__ : PretrainedConfig , **snake_case__ : Tuple ) -> List[str]: return cls( backbone_config=snake_case__ , decoder_config=snake_case__ , **snake_case__ , ) def _snake_case ( self : Optional[Any] ) -> Dict[str, any]: _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.backbone_config.to_dict() _lowerCamelCase = self.decoder_config.to_dict() _lowerCamelCase = self.__class__.model_type return output
234
1
'''simple docstring''' def a ( _UpperCAmelCase ) -> bool: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_UpperCAmelCase ) == 0: raise ValueError('Input list must be a non empty list' ) if len(_UpperCAmelCase ) == 1: return True a_ = series[1] - series[0] for index in range(len(_UpperCAmelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def a ( _UpperCAmelCase ) -> float: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_UpperCAmelCase ) == 0: raise ValueError('Input list must be a non empty list' ) a_ = 0 for val in series: answer += val return answer / len(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
697
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "vit" def __init__( self , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=224 , UpperCAmelCase__=16 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=16 , **UpperCAmelCase__ , ) -> Dict: super().__init__(**UpperCAmelCase__ ) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = encoder_stride class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> float: return 1e-4
697
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : Dict = 1 @register_to_config def __init__( self: List[str] , UpperCamelCase_: int = 10_00 , UpperCamelCase_: Optional[Union[np.ndarray, List[float]]] = None ): # set `betas`, `alphas`, `timesteps` self.set_timesteps(UpperCamelCase_ ) # standard deviation of the initial noise distribution __lowerCamelCase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __lowerCamelCase = 4 # running values __lowerCamelCase = [] def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Union[str, torch.device] = None ): __lowerCamelCase = num_inference_steps __lowerCamelCase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __lowerCamelCase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __lowerCamelCase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __lowerCamelCase = torch.sin(steps * math.pi / 2 ) ** 2 __lowerCamelCase = (1.0 - self.betas**2) ** 0.5 __lowerCamelCase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __lowerCamelCase = timesteps.to(UpperCamelCase_ ) __lowerCamelCase = [] def lowerCAmelCase__ ( self: int , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: bool = True , ): if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) __lowerCamelCase = (self.timesteps == timestep).nonzero().item() __lowerCamelCase = timestep_index + 1 __lowerCamelCase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCamelCase_ ) if len(self.ets ) == 1: __lowerCamelCase = self.ets[-1] elif len(self.ets ) == 2: __lowerCamelCase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __lowerCamelCase = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __lowerCamelCase = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __lowerCamelCase = self._get_prev_sample(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , *UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ): return sample def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Any ): __lowerCamelCase = self.alphas[timestep_index] __lowerCamelCase = self.betas[timestep_index] __lowerCamelCase = self.alphas[prev_timestep_index] __lowerCamelCase = self.betas[prev_timestep_index] __lowerCamelCase = (sample - sigma * ets) / max(UpperCamelCase_ , 1E-8 ) __lowerCamelCase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self: List[Any] ): return self.config.num_train_timesteps
80
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: str = None , UpperCamelCase_: uuid.UUID = None , UpperCamelCase_: Dict=None , UpperCamelCase_: Any=None ): if not conversation_id: __lowerCamelCase = uuid.uuida() if past_user_inputs is None: __lowerCamelCase = [] if generated_responses is None: __lowerCamelCase = [] __lowerCamelCase = conversation_id __lowerCamelCase = past_user_inputs __lowerCamelCase = generated_responses __lowerCamelCase = text def __eq__( self: Optional[Any] , UpperCamelCase_: Union[str, Any] ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: str , UpperCamelCase_: bool = False ): if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) __lowerCamelCase = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: __lowerCamelCase = text def lowerCAmelCase__ ( self: List[str] ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowerCamelCase = None def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str ): self.generated_responses.append(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self: Union[str, Any] ): __lowerCamelCase = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): __lowerCamelCase = """user""" if is_user else """bot""" output += F'{name} >> {text} \n' return output @add_end_docstrings( __lowerCamelCase , r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[str] , *UpperCamelCase_: List[Any] , **UpperCamelCase_: str ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) if self.tokenizer.pad_token_id is None: __lowerCamelCase = self.tokenizer.eos_token def lowerCAmelCase__ ( self: str , UpperCamelCase_: int=None , UpperCamelCase_: Any=None , UpperCamelCase_: Union[str, Any]=None , **UpperCamelCase_: int ): __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} if min_length_for_response is not None: __lowerCamelCase = min_length_for_response if minimum_tokens is not None: __lowerCamelCase = minimum_tokens if "max_length" in generate_kwargs: __lowerCamelCase = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowerCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(UpperCamelCase_ ) return preprocess_params, forward_params, postprocess_params def __call__( self: Any , UpperCamelCase_: Union[Conversation, List[Conversation]] , UpperCamelCase_: Optional[int]=0 , **UpperCamelCase_: Optional[int] ): __lowerCamelCase = super().__call__(UpperCamelCase_ , num_workers=UpperCamelCase_ , **UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) == 1: return outputs[0] return outputs def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Conversation , UpperCamelCase_: Optional[Any]=32 ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowerCamelCase = self.tokenizer._build_conversation_input_ids(UpperCamelCase_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowerCamelCase = self._legacy_parse_and_tokenize(UpperCamelCase_ ) if self.framework == "pt": __lowerCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowerCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str=10 , **UpperCamelCase_: List[str] ): __lowerCamelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowerCamelCase = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) __lowerCamelCase = max_length - minimum_tokens __lowerCamelCase = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowerCamelCase = model_inputs["""attention_mask"""][:, -trim:] __lowerCamelCase = model_inputs.pop("""conversation""" ) __lowerCamelCase = max_length __lowerCamelCase = self.model.generate(**UpperCamelCase_ , **UpperCamelCase_ ) if self.model.config.is_encoder_decoder: __lowerCamelCase = 1 else: __lowerCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int=True ): __lowerCamelCase = model_outputs["""output_ids"""] __lowerCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , ) __lowerCamelCase = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(UpperCamelCase_ ) return conversation def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Conversation ): __lowerCamelCase = self.tokenizer.eos_token_id __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > self.tokenizer.model_max_length: __lowerCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
80
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Optional[int] , lowercase_ : str) -> str: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): _UpperCamelCase = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(A_) def __UpperCAmelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCamelCase = """sshleifer/tiny-gpt2""" _UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _UpperCamelCase = PyTorchBenchmark(A_) _UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = """sgugger/tiny-distilbert-classification""" _UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , only_pretrain_model=A_ , ) _UpperCamelCase = PyTorchBenchmark(A_) _UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" _UpperCamelCase = """sshleifer/tiny-gpt2""" _UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , torchscript=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _UpperCamelCase = PyTorchBenchmark(A_) _UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def __UpperCAmelCase ( self : Any) -> Any: """simple docstring""" _UpperCamelCase = """sshleifer/tiny-gpt2""" _UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , fpaa=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _UpperCamelCase = PyTorchBenchmark(A_) _UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCAmelCase ( self : List[Any]) -> Any: """simple docstring""" _UpperCamelCase = """sshleifer/tiny-gpt2""" _UpperCamelCase = AutoConfig.from_pretrained(A_) # set architectures equal to `None` _UpperCamelCase = None _UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _UpperCamelCase = PyTorchBenchmark(A_ , configs=[config]) _UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" _UpperCamelCase = """sshleifer/tiny-gpt2""" _UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _UpperCamelCase = PyTorchBenchmark(A_) _UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def __UpperCAmelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCamelCase = """sshleifer/tiny-gpt2""" _UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A_ , multi_process=A_ , ) _UpperCamelCase = PyTorchBenchmark(A_) _UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" _UpperCamelCase = """sshleifer/tiny-gpt2""" _UpperCamelCase = AutoConfig.from_pretrained(A_) _UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _UpperCamelCase = PyTorchBenchmark(A_ , configs=[config]) _UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" _UpperCamelCase = """sshleifer/tinier_bart""" _UpperCamelCase = AutoConfig.from_pretrained(A_) _UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _UpperCamelCase = PyTorchBenchmark(A_ , configs=[config]) _UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCAmelCase ( self : Any) -> Any: """simple docstring""" _UpperCamelCase = """sshleifer/tiny-gpt2""" _UpperCamelCase = AutoConfig.from_pretrained(A_) _UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _UpperCamelCase = PyTorchBenchmark(A_ , configs=[config]) _UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __UpperCAmelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCamelCase = """sshleifer/tinier_bart""" _UpperCamelCase = AutoConfig.from_pretrained(A_) _UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _UpperCamelCase = PyTorchBenchmark(A_ , configs=[config]) _UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" _UpperCamelCase = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , save_to_csv=A_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A_ , "inf_time.csv") , train_memory_csv_file=os.path.join(A_ , "train_mem.csv") , inference_memory_csv_file=os.path.join(A_ , "inf_mem.csv") , train_time_csv_file=os.path.join(A_ , "train_time.csv") , env_info_csv_file=os.path.join(A_ , "env.csv") , multi_process=A_ , ) _UpperCamelCase = PyTorchBenchmark(A_) benchmark.run() self.assertTrue(Path(os.path.join(A_ , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(A_ , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(A_ , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(A_ , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(A_ , "env.csv")).exists()) def __UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCamelCase = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(lowercase_ : int): self.assertTrue(hasattr(A_ , "sequential")) self.assertTrue(hasattr(A_ , "cumulative")) self.assertTrue(hasattr(A_ , "current")) self.assertTrue(hasattr(A_ , "total")) with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A_ , "log.txt") , log_print=A_ , trace_memory_line_by_line=A_ , multi_process=A_ , ) _UpperCamelCase = PyTorchBenchmark(A_) _UpperCamelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(A_ , "log.txt")).exists())
547
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE__ : List[Any] = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( A ): __SCREAMING_SNAKE_CASE = '''ernie_m''' __SCREAMING_SNAKE_CASE = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , A_ = 25_00_02 , A_ = 7_68 , A_ = 12 , A_ = 12 , A_ = 30_72 , A_ = "gelu" , A_ = 0.1 , A_ = 0.1 , A_ = 5_14 , A_ = 0.0_2 , A_ = 1 , A_ = 1e-05 , A_=None , A_=False , A_=0.0 , **A_ , ): super().__init__(pad_token_id=A_ , **A_ ) _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Tuple = max_position_embeddings _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : Optional[Any] = layer_norm_eps _UpperCAmelCase : str = classifier_dropout _UpperCAmelCase : Any = is_decoder _UpperCAmelCase : Union[str, Any] = act_dropout
643
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a : List[str] = logging.get_logger(__name__) __a : Union[str, Any] = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Union[str, Any] = """unispeech""" def __init__( self , lowerCamelCase=32 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=1E-5 , lowerCamelCase="group" , lowerCamelCase="gelu" , lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , lowerCamelCase=False , lowerCamelCase=128 , lowerCamelCase=16 , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=0.05 , lowerCamelCase=10 , lowerCamelCase=2 , lowerCamelCase=0.0 , lowerCamelCase=10 , lowerCamelCase=0 , lowerCamelCase=320 , lowerCamelCase=2 , lowerCamelCase=0.1 , lowerCamelCase=100 , lowerCamelCase=256 , lowerCamelCase=256 , lowerCamelCase=0.1 , lowerCamelCase="mean" , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=256 , lowerCamelCase=80 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , lowerCamelCase=0.5 , **lowerCamelCase , ) -> int: """simple docstring""" super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase ) lowercase__ : int = hidden_size lowercase__ : Union[str, Any] = feat_extract_norm lowercase__ : Dict = feat_extract_activation lowercase__ : List[str] = list(lowerCamelCase ) lowercase__ : int = list(lowerCamelCase ) lowercase__ : int = list(lowerCamelCase ) lowercase__ : Union[str, Any] = conv_bias lowercase__ : Dict = num_conv_pos_embeddings lowercase__ : Optional[int] = num_conv_pos_embedding_groups lowercase__ : Any = len(self.conv_dim ) lowercase__ : Optional[int] = num_hidden_layers lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Tuple = hidden_act lowercase__ : List[str] = num_attention_heads lowercase__ : Any = hidden_dropout lowercase__ : List[str] = attention_dropout lowercase__ : int = activation_dropout lowercase__ : Tuple = feat_proj_dropout lowercase__ : Optional[int] = final_dropout lowercase__ : Dict = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : int = initializer_range lowercase__ : str = num_ctc_classes lowercase__ : Optional[Any] = vocab_size lowercase__ : List[Any] = do_stable_layer_norm lowercase__ : Optional[int] = use_weighted_layer_sum lowercase__ : Union[str, Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[str] = apply_spec_augment lowercase__ : List[Any] = mask_time_prob lowercase__ : Optional[Any] = mask_time_length lowercase__ : List[str] = mask_time_min_masks lowercase__ : List[str] = mask_feature_prob lowercase__ : Optional[int] = mask_feature_length lowercase__ : Optional[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[Any] = num_codevectors_per_group lowercase__ : Tuple = num_codevector_groups lowercase__ : Union[str, Any] = contrastive_logits_temperature lowercase__ : List[str] = feat_quantizer_dropout lowercase__ : Union[str, Any] = num_negatives lowercase__ : int = codevector_dim lowercase__ : Optional[Any] = proj_codevector_dim lowercase__ : int = diversity_loss_weight # ctc loss lowercase__ : str = ctc_loss_reduction lowercase__ : Optional[int] = ctc_zero_infinity # pretraining loss lowercase__ : Union[str, Any] = replace_prob @property def __a ( self ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
298
from __future__ import annotations def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> list[int]: lowercase__ : List[str] = [True] * limit lowercase__ : Union[str, Any] = False lowercase__ : List[str] = False lowercase__ : List[str] = True for i in range(3 ,int(limit**0.5 + 1 ) ,2 ): lowercase__ : Dict = i * 2 while index < limit: lowercase__ : Union[str, Any] = False lowercase__ : str = index + i lowercase__ : Union[str, Any] = [2] for i in range(3 ,SCREAMING_SNAKE_CASE_ ,2 ): if is_prime[i]: primes.append(SCREAMING_SNAKE_CASE_ ) return primes def snake_case_ ( SCREAMING_SNAKE_CASE_ = 1_00_00_00 ) -> int: lowercase__ : Any = prime_sieve(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = 0 lowercase__ : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): for j in range(i + length ,len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ : Optional[Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase__ : Dict = j - i lowercase__ : Any = sol return largest if __name__ == "__main__": print(f'{solution() = }')
298
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Tuple = old_name if "patch_embed" in old_name: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__: Dict = old_name.split("." ) if layer == "0": UpperCAmelCase__: Optional[int] = old_name.replace("0" ,"convolution1" ) elif layer == "1": UpperCAmelCase__: Dict = old_name.replace("1" ,"batchnorm_before" ) elif layer == "3": UpperCAmelCase__: int = old_name.replace("3" ,"convolution2" ) else: UpperCAmelCase__: List[Any] = old_name.replace("4" ,"batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d" ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Optional[int] = R"\b\d{2}\b" if bool(re.search(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) ): UpperCAmelCase__: Union[str, Any] = re.search(R"\d\.\d\d." ,SCREAMING_SNAKE_CASE ).group() else: UpperCAmelCase__: Tuple = re.search(R"\d\.\d." ,SCREAMING_SNAKE_CASE ).group() if int(match[0] ) < 6: UpperCAmelCase__: Tuple = old_name.replace(SCREAMING_SNAKE_CASE ,"" ) UpperCAmelCase__: Any = trimmed_name.replace("network" ,match[0] + ".meta4D_layers.blocks." + match[2:-1] ) UpperCAmelCase__: Optional[Any] = "intermediate_stages." + trimmed_name else: UpperCAmelCase__: Optional[int] = old_name.replace(SCREAMING_SNAKE_CASE ,"" ) if int(match[2] ) < num_meta4D_last_stage: UpperCAmelCase__: Union[str, Any] = trimmed_name.replace("network" ,"meta4D_layers.blocks." + match[2] ) else: UpperCAmelCase__: Optional[int] = str(int(match[2] ) - num_meta4D_last_stage ) UpperCAmelCase__: Dict = trimmed_name.replace("network" ,"meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: UpperCAmelCase__: List[str] = trimmed_name.replace("norm1" ,"layernorm1" ) elif "norm2" in old_name: UpperCAmelCase__: Dict = trimmed_name.replace("norm2" ,"layernorm2" ) elif "fc1" in old_name: UpperCAmelCase__: Optional[Any] = trimmed_name.replace("fc1" ,"linear_in" ) elif "fc2" in old_name: UpperCAmelCase__: List[Any] = trimmed_name.replace("fc2" ,"linear_out" ) UpperCAmelCase__: List[Any] = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d." ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Optional[Any] = old_name.replace("network" ,"intermediate_stages" ) if "fc" in new_name: UpperCAmelCase__: Dict = new_name.replace("fc" ,"convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): UpperCAmelCase__: List[str] = new_name.replace("norm1" ,"batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): UpperCAmelCase__: Any = new_name.replace("norm2" ,"batchnorm_after" ) if "proj" in new_name: UpperCAmelCase__: Dict = new_name.replace("proj" ,"projection" ) if "dist_head" in new_name: UpperCAmelCase__: int = new_name.replace("dist_head" ,"distillation_classifier" ) elif "head" in new_name: UpperCAmelCase__: Optional[int] = new_name.replace("head" ,"classifier" ) elif "patch_embed" in new_name: UpperCAmelCase__: str = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": UpperCAmelCase__: Optional[Any] = new_name.replace("norm" ,"layernorm" ) UpperCAmelCase__: List[Any] = "efficientformer." + new_name else: UpperCAmelCase__: List[str] = "efficientformer.encoder." + new_name return new_name def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): for key in checkpoint.copy().keys(): UpperCAmelCase__: Union[str, Any] = checkpoint.pop(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Union[str, Any] = val return checkpoint def _A ( ): UpperCAmelCase__: Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase__: str = Image.open(requests.get(SCREAMING_SNAKE_CASE ,stream=SCREAMING_SNAKE_CASE ).raw ) return image def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Dict = torch.load(SCREAMING_SNAKE_CASE ,map_location="cpu" )["model"] UpperCAmelCase__: Tuple = EfficientFormerConfig.from_json_file(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Union[str, Any] = EfficientFormerForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Dict = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) UpperCAmelCase__: Union[str, Any] = config.depths[-1] - config.num_metaad_blocks + 1 UpperCAmelCase__: int = convert_torch_checkpoint(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase__: str = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image UpperCAmelCase__: int = prepare_img() UpperCAmelCase__: Optional[Any] = 2_5_6 UpperCAmelCase__: Dict = 2_2_4 UpperCAmelCase__: Optional[Any] = EfficientFormerImageProcessor( size={"shortest_edge": image_size} ,crop_size={"height": crop_size, "width": crop_size} ,resample=pillow_resamplings["bicubic"] ,) UpperCAmelCase__: Optional[Any] = processor(images=SCREAMING_SNAKE_CASE ,return_tensors="pt" ).pixel_values # original processing pipeline UpperCAmelCase__: int = Compose( [ Resize(SCREAMING_SNAKE_CASE ,interpolation=pillow_resamplings["bicubic"] ), CenterCrop(SCREAMING_SNAKE_CASE ), ToTensor(), Normalize(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ), ] ) UpperCAmelCase__: List[str] = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) assert torch.allclose(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Any = model(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Union[str, Any] = outputs.logits UpperCAmelCase__: int = (1, 1_0_0_0) if "l1" in model_name: UpperCAmelCase__: Optional[int] = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28] ) assert torch.allclose(logits[0, :1_0] ,SCREAMING_SNAKE_CASE ,atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: UpperCAmelCase__: List[Any] = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27] ) assert torch.allclose(logits[0, :1_0] ,SCREAMING_SNAKE_CASE ,atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: UpperCAmelCase__: Any = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78] ) assert logits.shape == expected_shape else: raise ValueError( f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) print(f"Processor successfuly saved at {pytorch_dump_path}" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}" ,commit_message="Add model" ,use_temp_dir=SCREAMING_SNAKE_CASE ,) processor.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}" ,commit_message="Add image processor" ,use_temp_dir=SCREAMING_SNAKE_CASE ,) if __name__ == "__main__": _lowerCAmelCase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _lowerCAmelCase : Tuple =parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
113
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput _lowerCAmelCase : int ="""scheduler_config.json""" class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = 1 __magic_name__ = 2 __magic_name__ = 3 __magic_name__ = 4 __magic_name__ = 5 __magic_name__ = 6 __magic_name__ = 7 __magic_name__ = 8 __magic_name__ = 9 __magic_name__ = 1_0 __magic_name__ = 1_1 __magic_name__ = 1_2 __magic_name__ = 1_3 __magic_name__ = 1_4 @dataclass class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = 42 class __UpperCamelCase : '''simple docstring''' __magic_name__ = SCHEDULER_CONFIG_NAME __magic_name__ = [] __magic_name__ = True @classmethod def _UpperCAmelCase ( cls , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__=False , **lowerCamelCase__ , ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__: Tuple = cls.load_config( pretrained_model_name_or_path=lowerCamelCase__ , subfolder=lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ , return_commit_hash=lowerCamelCase__ , **lowerCamelCase__ , ) return cls.from_config(lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = False , **lowerCamelCase__ ): self.save_config(save_directory=lowerCamelCase__ , push_to_hub=lowerCamelCase__ , **lowerCamelCase__ ) @property def _UpperCAmelCase ( self ): return self._get_compatibles() @classmethod def _UpperCAmelCase ( cls ): UpperCAmelCase__: List[str] = list(set([cls.__name__] + cls._compatibles ) ) UpperCAmelCase__: Union[str, Any] = importlib.import_module(__name__.split("." )[0] ) UpperCAmelCase__: int = [ getattr(lowerCamelCase__ , lowerCamelCase__ ) for c in compatible_classes_str if hasattr(lowerCamelCase__ , lowerCamelCase__ ) ] return compatible_classes
113
1
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __snake_case( unittest.TestCase ): '''simple docstring''' def _a ( self ): '''simple docstring''' __A : Any = inspect.getfile(accelerate.test_utils ) __A : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) __A : Union[str, Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) __A : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def _a ( self ): '''simple docstring''' print(F'Found {torch.cuda.device_count()} devices.' ) __A : int = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase , env=os.environ.copy() ) @require_multi_gpu def _a ( self ): '''simple docstring''' print(F'Found {torch.cuda.device_count()} devices.' ) __A : List[str] = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(F'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase , env=os.environ.copy() ) @require_multi_gpu def _a ( self ): '''simple docstring''' __A : Optional[int] = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase , env=os.environ.copy() ) @require_multi_gpu def _a ( self ): '''simple docstring''' print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' ) __A : List[str] = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(__lowerCamelCase , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase : Optional[Any] =Accelerator() lowerCamelCase : Union[str, Any] =(accelerator.state.process_index + 2, 10) lowerCamelCase : int =torch.randint(0, 10, shape).to(accelerator.device) lowerCamelCase : Optional[Any] ='''''' lowerCamelCase : Any =accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowerCamelCase : List[Any] =accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowerCamelCase : Dict =accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
708
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase : Optional[Any] ='''src/transformers''' lowerCamelCase : Optional[int] ='''docs/source/en''' lowerCamelCase : Dict ='''.''' def _lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str ) -> List[Any]: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __A : Optional[int] = f.readlines() # Find the start prompt. __A : List[str] = 0 while not lines[start_index].startswith(_SCREAMING_SNAKE_CASE ): start_index += 1 start_index += 1 __A : Optional[int] = start_index while not lines[end_index].startswith(_SCREAMING_SNAKE_CASE ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase : List[str] ='''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. lowerCamelCase : Optional[int] =re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') lowerCamelCase : Optional[int] =re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase : Optional[int] =re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : Optional[Any] =direct_transformers_import(TRANSFORMERS_PATH) def _lowercase ( _SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: '''simple docstring''' __A : int = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , _SCREAMING_SNAKE_CASE ) return [m.group(0 ) for m in matches] def _lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: '''simple docstring''' __A : Union[str, Any] = 2 if text == '✅' or text == '❌' else len(_SCREAMING_SNAKE_CASE ) __A : Optional[Any] = (width - text_length) // 2 __A : int = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _lowercase ( ) -> Optional[int]: '''simple docstring''' __A : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __A : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __A : List[str] = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __A : Tuple = collections.defaultdict(_SCREAMING_SNAKE_CASE ) __A : List[str] = collections.defaultdict(_SCREAMING_SNAKE_CASE ) __A : List[Any] = collections.defaultdict(_SCREAMING_SNAKE_CASE ) __A : List[Any] = collections.defaultdict(_SCREAMING_SNAKE_CASE ) __A : Optional[int] = collections.defaultdict(_SCREAMING_SNAKE_CASE ) # Let's lookup through all transformers object (once). for attr_name in dir(_SCREAMING_SNAKE_CASE ): __A : List[Any] = None if attr_name.endswith('Tokenizer' ): __A : List[str] = slow_tokenizers __A : Dict = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): __A : Dict = fast_tokenizers __A : List[Any] = attr_name[:-13] elif _re_tf_models.match(_SCREAMING_SNAKE_CASE ) is not None: __A : int = tf_models __A : Dict = _re_tf_models.match(_SCREAMING_SNAKE_CASE ).groups()[0] elif _re_flax_models.match(_SCREAMING_SNAKE_CASE ) is not None: __A : Tuple = flax_models __A : Union[str, Any] = _re_flax_models.match(_SCREAMING_SNAKE_CASE ).groups()[0] elif _re_pt_models.match(_SCREAMING_SNAKE_CASE ) is not None: __A : Optional[int] = pt_models __A : str = _re_pt_models.match(_SCREAMING_SNAKE_CASE ).groups()[0] if lookup_dict is not None: while len(_SCREAMING_SNAKE_CASE ) > 0: if attr_name in model_name_to_prefix.values(): __A : int = True break # Try again after removing the last word in the name __A : Any = ''.join(camel_case_split(_SCREAMING_SNAKE_CASE )[:-1] ) # Let's build that table! __A : Optional[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __A : Any = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __A : Tuple = [len(_SCREAMING_SNAKE_CASE ) + 2 for c in columns] __A : int = max([len(_SCREAMING_SNAKE_CASE ) for name in model_names] ) + 2 # Build the table per se __A : Any = '|' + '|'.join([_center_text(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for c, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" __A : int = {True: '✅', False: '❌'} for name in model_names: __A : str = model_name_to_prefix[name] __A : List[Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for l, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] ) + "|\n" return table def _lowercase ( _SCREAMING_SNAKE_CASE : List[str]=False ) -> Any: '''simple docstring''' __A , __A , __A , __A : Tuple = _find_text_in_file( filename=os.path.join(_SCREAMING_SNAKE_CASE , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) __A : Union[str, Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_SCREAMING_SNAKE_CASE , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": lowerCamelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCamelCase : Optional[Any] =parser.parse_args() check_model_table(args.fix_and_overwrite)
237
0
'''simple docstring''' __UpperCAmelCase = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
379
'''simple docstring''' def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): SCREAMING_SNAKE_CASE : Dict = n - k # Calculate C(n,k) for i in range(lowerCamelCase_ ): result *= n - i result //= i + 1 return result def __A ( lowerCamelCase_ ): """simple docstring""" return binomial_coefficient(2 * node_count , lowerCamelCase_ ) // (node_count + 1) def __A ( lowerCamelCase_ ): """simple docstring""" if n < 0: raise ValueError("""factorial() not defined for negative values""" ) SCREAMING_SNAKE_CASE : Dict = 1 for i in range(1 , n + 1 ): result *= i return result def __A ( lowerCamelCase_ ): """simple docstring""" return catalan_number(lowerCamelCase_ ) * factorial(lowerCamelCase_ ) if __name__ == "__main__": __UpperCAmelCase = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
379
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : str = XLNetTokenizer __lowerCAmelCase : List[Any] = XLNetTokenizerFast __lowerCAmelCase : int = True __lowerCAmelCase : str = True def lowercase__ ( self): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ : List[str] = XLNetTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = """<s>""" lowercase__ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__) , UpperCamelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__) , UpperCamelCase__) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<unk>""") self.assertEqual(vocab_keys[1] , """<s>""") self.assertEqual(vocab_keys[-1] , """<eod>""") self.assertEqual(len(UpperCamelCase__) , 10_06) def lowercase__ ( self): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = XLNetTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__) lowercase__ : List[Any] = tokenizer.tokenize("""This is a test""") self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__) , [2_85, 46, 10, 1_70, 3_82]) lowercase__ : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase__) self.assertListEqual(UpperCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4]) lowercase__ : Any = tokenizer.convert_ids_to_tokens(UpperCamelCase__) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = XLNetTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__) lowercase__ : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""▁he""", """ll""", """o"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = XLNetTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__) lowercase__ : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = XLNetTokenizer.from_pretrained("""xlnet-base-cased""") lowercase__ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase__) lowercase__ : str = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase__) lowercase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__) lowercase__ : str = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
700
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' if components is None: lowercase__ : List[str] = [] lowercase__ : Dict = list(SCREAMING_SNAKE_CASE_) def __len__( self): '''simple docstring''' return len(self.__components) def __str__( self): '''simple docstring''' return "(" + ",".join(map(SCREAMING_SNAKE_CASE_ , self.__components)) + ")" def __add__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[Any] = len(self) if size == len(SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = [self.__components[i] + other.component(SCREAMING_SNAKE_CASE_) for i in range(SCREAMING_SNAKE_CASE_)] return Vector(SCREAMING_SNAKE_CASE_) else: raise Exception("""must have the same size""") def __sub__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = len(self) if size == len(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = [self.__components[i] - other.component(SCREAMING_SNAKE_CASE_) for i in range(SCREAMING_SNAKE_CASE_)] return Vector(SCREAMING_SNAKE_CASE_) else: # error case raise Exception("""must have the same size""") @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , (float, int)): lowercase__ : Optional[int] = [c * other for c in self.__components] return Vector(SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and len(self) == len(SCREAMING_SNAKE_CASE_): lowercase__ : Dict = len(self) lowercase__ : Optional[Any] = [self.__components[i] * other.component(SCREAMING_SNAKE_CASE_) for i in range(SCREAMING_SNAKE_CASE_)] return sum(SCREAMING_SNAKE_CASE_) else: # error case raise Exception("""invalid operand!""") def lowercase__ ( self): '''simple docstring''' return Vector(self.__components) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and -len(self.__components) <= i < len(self.__components): return self.__components[i] else: raise Exception("""index out of range""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' assert -len(self.__components) <= pos < len(self.__components) lowercase__ : List[Any] = value def lowercase__ ( self): '''simple docstring''' if len(self.__components) == 0: raise Exception("""Vector is empty""") lowercase__ : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(SCREAMING_SNAKE_CASE_)) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False): '''simple docstring''' lowercase__ : Union[str, Any] = self * other lowercase__ : Optional[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den)) else: return math.acos(num / den) def UpperCamelCase ( lowercase_ ) -> Vector: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) return Vector([0] * dimension ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> Vector: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) and (isinstance(lowercase_ , lowercase_ )) lowercase__ : Union[str, Any] = [0] * dimension lowercase__ : Any = 1 return Vector(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Vector: '''simple docstring''' assert ( isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) and (isinstance(lowercase_ , (int, float) )) ) return x * scalar + y def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Vector: '''simple docstring''' random.seed(lowercase_ ) lowercase__ : int = [random.randint(lowercase_ , lowercase_ ) for _ in range(lowercase_ )] return Vector(lowercase_ ) class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = matrix lowercase__ : Any = w lowercase__ : Any = h def __str__( self): '''simple docstring''' lowercase__ : str = """""" for i in range(self.__height): ans += "|" for j in range(self.__width): if j < self.__width - 1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans def __add__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): lowercase__ : Tuple = [] for i in range(self.__height): lowercase__ : Tuple = [ self.__matrix[i][j] + other.component(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for j in range(self.__width) ] matrix.append(SCREAMING_SNAKE_CASE_) return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height) else: raise Exception("""matrix must have the same dimension!""") def __sub__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): lowercase__ : Optional[int] = [] for i in range(self.__height): lowercase__ : List[str] = [ self.__matrix[i][j] - other.component(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for j in range(self.__width) ] matrix.append(SCREAMING_SNAKE_CASE_) return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height) else: raise Exception("""matrices must have the same dimension!""") @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): # matrix-vector if len(SCREAMING_SNAKE_CASE_) == self.__width: lowercase__ : List[Any] = zero_vector(self.__height) for i in range(self.__height): lowercase__ : Union[str, Any] = [ self.__matrix[i][j] * other.component(SCREAMING_SNAKE_CASE_) for j in range(self.__width) ] ans.change_component(SCREAMING_SNAKE_CASE_ , sum(SCREAMING_SNAKE_CASE_)) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""") elif isinstance(SCREAMING_SNAKE_CASE_ , (int, float)): # matrix-scalar lowercase__ : Tuple = [ [self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height) ] return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height) return None def lowercase__ ( self): '''simple docstring''' return self.__height def lowercase__ ( self): '''simple docstring''' return self.__width def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: lowercase__ : Tuple = value else: raise Exception("""change_component: indices out of bounds""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""") lowercase__ : List[Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(SCREAMING_SNAKE_CASE_)): lowercase__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(SCREAMING_SNAKE_CASE_ , self.__width - 1 , self.__height - 1).determinant() def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""") if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else: raise Exception("""Indices out of bounds""") def lowercase__ ( self): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""") if self.__height < 1: raise Exception("""Matrix has no element""") elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowercase__ : Optional[int] = [ self.__matrix[0][y] * self.cofactor(0 , SCREAMING_SNAKE_CASE_) for y in range(self.__width) ] return sum(SCREAMING_SNAKE_CASE_) def UpperCamelCase ( lowercase_ ) -> Matrix: '''simple docstring''' lowercase__ : list[list[float]] = [[0] * n for _ in range(lowercase_ )] return Matrix(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Matrix: '''simple docstring''' random.seed(lowercase_ ) lowercase__ : list[list[float]] = [ [random.randint(lowercase_ , lowercase_ ) for _ in range(lowercase_ )] for _ in range(lowercase_ ) ] return Matrix(lowercase_ , lowercase_ , lowercase_ )
495
0
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def UpperCamelCase ( lowercase_ : Any , lowercase_ : int ) -> int: '''simple docstring''' lowercase =tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) lowercase =DatasetInfosDict.from_directory(lowercase_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=4_2 , ), ] , ) def UpperCamelCase ( lowercase_ : Tuple , lowercase_ : DatasetInfo ) -> List[str]: '''simple docstring''' lowercase =str(lowercase_ ) dataset_info.write_to_directory(lowercase_ ) lowercase =DatasetInfo.from_directory(lowercase_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowercase_ , '''dataset_info.json''' ) ) def UpperCamelCase ( ) -> str: '''simple docstring''' lowercase =DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) lowercase =dataset_info._to_yaml_dict() assert sorted(lowercase_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowercase =yaml.safe_dump(lowercase_ ) lowercase =yaml.safe_load(lowercase_ ) assert dataset_info_yaml_dict == reloaded def UpperCamelCase ( ) -> List[str]: '''simple docstring''' lowercase =DatasetInfo() lowercase =dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=4_2 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=4_2 ), '''v2''': DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : DatasetInfosDict ) -> Optional[int]: '''simple docstring''' lowercase =str(lowercase_ ) dataset_infos_dict.write_to_directory(lowercase_ ) lowercase =DatasetInfosDict.from_directory(lowercase_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowercase =config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowercase =DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowercase_ , '''README.md''' ) )
72
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''umt5''' __UpperCamelCase = ['''past_key_values'''] def __init__( self :int , snake_case :Optional[Any]=250_112 , snake_case :Optional[int]=512 , snake_case :Any=64 , snake_case :Union[str, Any]=1_024 , snake_case :Tuple=8 , snake_case :Optional[int]=None , snake_case :Union[str, Any]=6 , snake_case :List[Any]=32 , snake_case :Dict=128 , snake_case :List[str]=0.1 , snake_case :List[Any]=1e-6 , snake_case :Dict=1.0 , snake_case :Union[str, Any]="gated-gelu" , snake_case :Union[str, Any]=True , snake_case :Any=True , snake_case :List[str]="T5Tokenizer" , snake_case :Union[str, Any]=True , snake_case :Union[str, Any]=0 , snake_case :List[Any]=1 , snake_case :List[Any]=0 , **snake_case :Any , ): '''simple docstring''' super().__init__( is_encoder_decoder=snake_case , tokenizer_class=snake_case , tie_word_embeddings=snake_case , pad_token_id=snake_case , eos_token_id=snake_case , decoder_start_token_id=snake_case , **snake_case , ) A_ : Union[str, Any] = vocab_size A_ : Tuple = d_model A_ : List[str] = d_kv A_ : Union[str, Any] = d_ff A_ : Any = num_layers A_ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A_ : List[Any] = num_heads A_ : List[str] = relative_attention_num_buckets A_ : Dict = relative_attention_max_distance A_ : Optional[Any] = dropout_rate A_ : Any = layer_norm_epsilon A_ : List[Any] = initializer_factor A_ : Any = feed_forward_proj A_ : Optional[Any] = use_cache A_ : int = self.feed_forward_proj.split("-" ) A_ : Any = act_info[-1] A_ : Tuple = act_info[0] == "gated" if len(snake_case ) > 1 and act_info[0] != "gated" or len(snake_case ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) if feed_forward_proj == "gated-gelu": A_ : Optional[Any] = "gelu_new" @property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return self.d_model @property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return self.num_heads @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return self.num_layers class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: A_ : Any = "past_encoder_sequence + sequence" A_ : Union[str, Any] = {0: "batch"} A_ : Optional[int] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: A_ : Dict = {0: "batch", 1: "decoder_sequence"} A_ : str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(snake_case , direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' return 13 @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return 5e-4
454
0
"""simple docstring""" import socket def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : int = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCAmelCase : List[str] = socket.gethostname() UpperCAmelCase : Any = 1_23_12 sock.connect((host, port) ) sock.send(B"Hello server!" ) with open("Received_file" , "wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: UpperCAmelCase : int = sock.recv(10_24 ) if not data: break out_file.write(_lowercase ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
704
"""simple docstring""" snake_case_ : str = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
292
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCamelCase = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCamelCase = { """facebook/nllb-large-en-ro""": 1_0_2_4, """facebook/nllb-200-distilled-600M""": 1_0_2_4, } # fmt: off _UpperCamelCase = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : int = ['input_ids', 'attention_mask'] __UpperCamelCase : Union[str, Any] = NllbTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , snake_case=None , snake_case=None , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=None , snake_case=None , snake_case=None , snake_case=False , **snake_case , ): """simple docstring""" lowerCAmelCase__ : List[Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token lowerCAmelCase__ : Tuple = legacy_behaviour super().__init__( vocab_file=snake_case , tokenizer_file=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , src_lang=snake_case , tgt_lang=snake_case , additional_special_tokens=snake_case , legacy_behaviour=snake_case , **snake_case , ) lowerCAmelCase__ : Optional[int] = vocab_file lowerCAmelCase__ : int = False if not self.vocab_file else True lowerCAmelCase__ : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCAmelCase__ : Tuple = { lang_code: self.convert_tokens_to_ids(snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCAmelCase__ : Union[str, Any] = src_lang if src_lang is not None else "eng_Latn" lowerCAmelCase__ : List[str] = self.convert_tokens_to_ids(self._src_lang ) lowerCAmelCase__ : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = None ): """simple docstring""" lowerCAmelCase__ : Tuple = [self.sep_token_id] lowerCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case , snake_case , snake_case , **snake_case ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCAmelCase__ : Any = src_lang lowerCAmelCase__ : Optional[Any] = self(snake_case , add_special_tokens=snake_case , return_tensors=snake_case , **snake_case ) lowerCAmelCase__ : str = self.convert_tokens_to_ids(snake_case ) lowerCAmelCase__ : Any = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = "eng_Latn" , snake_case = None , snake_case = "fra_Latn" , **snake_case , ): """simple docstring""" lowerCAmelCase__ : int = src_lang lowerCAmelCase__ : str = tgt_lang return super().prepare_seqaseq_batch(snake_case , snake_case , **snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" lowerCAmelCase__ : Tuple = self.convert_tokens_to_ids(snake_case ) if self.legacy_behaviour: lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase__ : int = [self.cur_lang_code] lowerCAmelCase__ : List[str] = [self.eos_token_id] lowerCAmelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase__ : str = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase__ : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" lowerCAmelCase__ : List[Any] = self.convert_tokens_to_ids(snake_case ) if self.legacy_behaviour: lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : Dict = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase__ : str = [self.cur_lang_code] lowerCAmelCase__ : Tuple = [self.eos_token_id] lowerCAmelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCAmelCase__ : str = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ): copyfile(self.vocab_file , snake_case ) return (out_vocab_file,)
453
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __a ( __magic_name__ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , "width_multiplier" ) ) class __a : """simple docstring""" def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=2 , snake_case=3 , snake_case="swish" , snake_case=3 , snake_case=32 , snake_case=0.1 , snake_case=0.02 , snake_case=True , snake_case=True , snake_case=10 , snake_case=None , snake_case=0.25 , snake_case=0.0 , snake_case=0.0 , ): """simple docstring""" lowerCAmelCase__ : List[Any] = parent lowerCAmelCase__ : Optional[Any] = batch_size lowerCAmelCase__ : Optional[Any] = image_size lowerCAmelCase__ : Tuple = patch_size lowerCAmelCase__ : Any = num_channels lowerCAmelCase__ : Tuple = make_divisible(512 * width_multiplier , divisor=8 ) lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : Union[str, Any] = conv_kernel_size lowerCAmelCase__ : List[str] = output_stride lowerCAmelCase__ : List[Any] = classifier_dropout_prob lowerCAmelCase__ : List[Any] = use_labels lowerCAmelCase__ : Tuple = is_training lowerCAmelCase__ : Optional[int] = num_labels lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : str = scope lowerCAmelCase__ : Optional[Any] = width_multiplier lowerCAmelCase__ : Union[str, Any] = ffn_dropout lowerCAmelCase__ : Tuple = attn_dropout def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : List[str] = None if self.use_labels: lowerCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase__ : int = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lowerCAmelCase__ : Any = MobileViTVaModel(config=snake_case ) model.to(snake_case ) model.eval() lowerCAmelCase__ : int = model(snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lowerCAmelCase__ : Any = self.num_labels lowerCAmelCase__ : Any = MobileViTVaForImageClassification(snake_case ) model.to(snake_case ) model.eval() lowerCAmelCase__ : int = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lowerCAmelCase__ : List[Any] = self.num_labels lowerCAmelCase__ : Optional[int] = MobileViTVaForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() lowerCAmelCase__ : Any = model(snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCAmelCase__ : Tuple = model(snake_case , labels=snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = config_and_inputs lowerCAmelCase__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __a ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase : List[Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase : str = False __UpperCamelCase : int = False __UpperCamelCase : Tuple = False __UpperCamelCase : List[str] = False def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Tuple = MobileViTVaModelTester(self ) lowerCAmelCase__ : List[str] = MobileViTVaConfigTester(self , config_class=snake_case , has_text_modality=snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Union[str, Any] = model_class(snake_case ) lowerCAmelCase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : int = [*signature.parameters.keys()] lowerCAmelCase__ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" def check_hidden_states_output(snake_case , snake_case , snake_case ): lowerCAmelCase__ : List[str] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(**self._prepare_for_class(snake_case , snake_case ) ) lowerCAmelCase__ : str = outputs.hidden_states lowerCAmelCase__ : List[Any] = 5 self.assertEqual(len(snake_case ) , snake_case ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCAmelCase__ : str = 2 for i in range(len(snake_case ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Dict = True check_hidden_states_output(snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Dict = MobileViTVaModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: lowerCAmelCase__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Dict = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( snake_case ) lowerCAmelCase__ : Union[str, Any] = self.default_image_processor lowerCAmelCase__ : Union[str, Any] = prepare_img() lowerCAmelCase__ : List[str] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): lowerCAmelCase__ : str = model(**snake_case ) # verify the logits lowerCAmelCase__ : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) lowerCAmelCase__ : Optional[int] = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase__ : Tuple = model.to(snake_case ) lowerCAmelCase__ : Optional[Any] = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase__ : Union[str, Any] = prepare_img() lowerCAmelCase__ : str = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Any = model(**snake_case ) lowerCAmelCase__ : List[str] = outputs.logits # verify the logits lowerCAmelCase__ : Tuple = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , snake_case ) lowerCAmelCase__ : Dict = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase__ : List[Any] = model.to(snake_case ) lowerCAmelCase__ : str = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : List[Any] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(**snake_case ) lowerCAmelCase__ : List[Any] = outputs.logits.detach().cpu() lowerCAmelCase__ : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=snake_case , target_sizes=[(50, 60)] ) lowerCAmelCase__ : Union[str, Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , snake_case ) lowerCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case ) lowerCAmelCase__ : Optional[int] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , snake_case )
453
1
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = ['model.decoder.embed_positions.weights'] def UpperCamelCase ( UpperCAmelCase ) ->List[Any]: """simple docstring""" if "emb" in name: a_ = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: a_ = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: a_ = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: a_ = name.replace("linear1" , "fc1" ) if "linear2" in name: a_ = name.replace("linear2" , "fc2" ) if "norm1" in name: a_ = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: a_ = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: a_ = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: a_ = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: a_ = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: a_ = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Tuple[Dict, Dict]: """simple docstring""" a_ = list(state_dict.keys() ) a_ = {} for key in keys: a_ = state_dict.pop(UpperCAmelCase ) a_ = rename_keys(UpperCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj a_ = val[:hidden_size, :] a_ = val[hidden_size : 2 * hidden_size, :] a_ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: a_ = val else: a_ = val return state_dict, enc_dec_proj_state_dict def UpperCamelCase ( UpperCAmelCase ) ->MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values a_ = 1_024 a_ = 24 a_ = 16 elif checkpoint == "medium": a_ = 1_536 a_ = 48 a_ = 24 elif checkpoint == "large": a_ = 2_048 a_ = 48 a_ = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) a_ = MusicgenDecoderConfig( hidden_size=UpperCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCAmelCase , num_attention_heads=UpperCAmelCase , ) return config @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="cpu" ) ->Tuple: """simple docstring""" a_ = MusicGen.get_pretrained(UpperCAmelCase , device=UpperCAmelCase ) a_ = decoder_config_from_checkpoint(UpperCAmelCase ) a_ = fairseq_model.lm.state_dict() a_ , a_ = rename_state_dict( UpperCAmelCase , hidden_size=decoder_config.hidden_size ) a_ = TaEncoderModel.from_pretrained("t5-base" ) a_ = EncodecModel.from_pretrained("facebook/encodec_32khz" ) a_ = MusicgenForCausalLM(UpperCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection a_ , a_ = decoder.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(UpperCAmelCase ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model a_ = MusicgenForConditionalGeneration(text_encoder=UpperCAmelCase , audio_encoder=UpperCAmelCase , decoder=UpperCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCAmelCase ) # check we can do a forward pass a_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) a_ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): a_ = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor a_ = AutoTokenizer.from_pretrained("t5-base" ) a_ = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) a_ = MusicgenProcessor(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) # set the appropriate bos/pad token ids a_ = 2_048 a_ = 2_048 # set other default generation config params a_ = int(30 * audio_encoder.config.frame_rate ) a_ = True a_ = 3.0 if pytorch_dump_folder is not None: Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(UpperCAmelCase ) processor.push_to_hub(UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) UpperCamelCase_ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
707
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() a_ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase)))) a_ = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } a_ = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 1_60_00, "return_attention_mask": False, "do_normalize": True, } a_ = tempfile.mkdtemp() a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join(self.tmpdirname , __UpperCAmelCase) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__UpperCAmelCase) + "\n") with open(self.feature_extraction_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__UpperCAmelCase) + "\n") # load decoder from hub a_ = "hf-internal-testing/ngram-beam-search-decoder" def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->Optional[Any]: a_ = self.add_kwargs_tokens_map.copy() kwargs.update(__UpperCAmelCase) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase) def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->int: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__UpperCAmelCase) def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->Optional[int]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[Any]: shutil.rmtree(self.tmpdirname) def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.get_tokenizer() a_ = self.get_feature_extractor() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) processor.save_pretrained(self.tmpdirname) a_ = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , __UpperCAmelCase) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) processor.save_pretrained(self.tmpdirname) # make sure that error is thrown when decoder alphabet doesn't match a_ = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3) # decoder self.assertEqual(processor.language_model.alpha , 5.0) self.assertEqual(processor.language_model.beta , 3.0) self.assertEqual(processor.language_model.score_boundary , -7.0) self.assertEqual(processor.language_model.unk_score_offset , 3) def UpperCAmelCase__ ( self) ->Any: a_ = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"]) with self.assertRaisesRegex(__UpperCAmelCase , "include"): WavaVecaProcessorWithLM( tokenizer=__UpperCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) a_ = floats_list((3, 10_00)) a_ = feature_extractor(__UpperCAmelCase , return_tensors="np") a_ = processor(__UpperCAmelCase , return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) a_ = "This is a test string" a_ = processor(text=__UpperCAmelCase) a_ = tokenizer(__UpperCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCAmelCase__ ( self , __UpperCAmelCase=(2, 10, 16) , __UpperCAmelCase=77) ->Any: np.random.seed(__UpperCAmelCase) return np.random.rand(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) a_ = self._get_dummy_logits(shape=(10, 16) , seed=13) a_ = processor.decode(__UpperCAmelCase) a_ = decoder.decode_beams(__UpperCAmelCase)[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text) self.assertEqual("</s> <s> </s>" , decoded_processor.text) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score) @parameterized.expand([[None], ["fork"], ["spawn"]]) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) a_ = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: a_ = processor.batch_decode(__UpperCAmelCase) else: with get_context(__UpperCAmelCase).Pool() as pool: a_ = processor.batch_decode(__UpperCAmelCase , __UpperCAmelCase) a_ = list(__UpperCAmelCase) with get_context("fork").Pool() as p: a_ = decoder.decode_beams_batch(__UpperCAmelCase , __UpperCAmelCase) a_ , a_ , a_ = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0]) logit_scores_decoder.append(beams[0][-2]) lm_scores_decoder.append(beams[0][-1]) self.assertListEqual(__UpperCAmelCase , decoded_processor.text) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text) self.assertListEqual(__UpperCAmelCase , decoded_processor.logit_score) self.assertListEqual(__UpperCAmelCase , decoded_processor.lm_score) def UpperCAmelCase__ ( self) ->Optional[int]: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) a_ = self._get_dummy_logits() a_ = 15 a_ = -20.0 a_ = -4.0 a_ = processor.batch_decode( __UpperCAmelCase , beam_width=__UpperCAmelCase , beam_prune_logp=__UpperCAmelCase , token_min_logp=__UpperCAmelCase , ) a_ = decoded_processor_out.text a_ = list(__UpperCAmelCase) with get_context("fork").Pool() as pool: a_ = decoder.decode_beams_batch( __UpperCAmelCase , __UpperCAmelCase , beam_width=__UpperCAmelCase , beam_prune_logp=__UpperCAmelCase , token_min_logp=__UpperCAmelCase , ) a_ = [d[0][0] for d in decoded_decoder_out] a_ = [d[0][2] for d in decoded_decoder_out] a_ = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , __UpperCAmelCase) self.assertTrue(np.array_equal(__UpperCAmelCase , decoded_processor_out.logit_score)) self.assertTrue(np.allclose([-20.054, -18.447] , __UpperCAmelCase , atol=1E-3)) self.assertTrue(np.array_equal(__UpperCAmelCase , decoded_processor_out.lm_score)) self.assertTrue(np.allclose([-15.554, -13.9_474] , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) a_ = self._get_dummy_logits() a_ = 2.0 a_ = 5.0 a_ = -20.0 a_ = True a_ = processor.batch_decode( __UpperCAmelCase , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , unk_score_offset=__UpperCAmelCase , lm_score_boundary=__UpperCAmelCase , ) a_ = decoded_processor_out.text a_ = list(__UpperCAmelCase) decoder.reset_params( alpha=__UpperCAmelCase , beta=__UpperCAmelCase , unk_score_offset=__UpperCAmelCase , lm_score_boundary=__UpperCAmelCase , ) with get_context("fork").Pool() as pool: a_ = decoder.decode_beams_batch( __UpperCAmelCase , __UpperCAmelCase , ) a_ = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , __UpperCAmelCase) a_ = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0) self.assertEqual(lm_model.beta , 5.0) self.assertEqual(lm_model.unk_score_offset , -20.0) self.assertEqual(lm_model.score_boundary , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") a_ = processor.decoder.model_container[processor.decoder._model_key] a_ = Path(language_model._kenlm_model.path.decode("utf-8")).parent.parent.absolute() a_ = os.listdir(__UpperCAmelCase) a_ = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ = snapshot_download("hf-internal-testing/processor_with_lm") a_ = WavaVecaProcessorWithLM.from_pretrained(__UpperCAmelCase) a_ = processor.decoder.model_container[processor.decoder._model_key] a_ = Path(language_model._kenlm_model.path.decode("utf-8")).parent.parent.absolute() a_ = os.listdir(__UpperCAmelCase) a_ = os.listdir(__UpperCAmelCase) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Any: a_ = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") a_ = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm") a_ = floats_list((3, 10_00)) a_ = processor_wavaveca(__UpperCAmelCase , return_tensors="np") a_ = processor_auto(__UpperCAmelCase , return_tensors="np") for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2) a_ = self._get_dummy_logits() a_ = processor_wavaveca.batch_decode(__UpperCAmelCase) a_ = processor_auto.batch_decode(__UpperCAmelCase) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text) def UpperCAmelCase__ ( self) ->str: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def UpperCAmelCase__ ( __UpperCAmelCase , __UpperCAmelCase) ->Optional[int]: a_ = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") a_ = self._get_dummy_logits()[0] a_ = processor.decode(__UpperCAmelCase , output_word_offsets=__UpperCAmelCase) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue("text" in outputs) self.assertTrue("word_offsets" in outputs) self.assertTrue(isinstance(__UpperCAmelCase , __UpperCAmelCase)) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word")) , outputs.text) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word") , ["<s>", "<s>", "</s>"]) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset") , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset") , [1, 3, 5]) def UpperCAmelCase__ ( self) ->List[str]: a_ = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") a_ = self._get_dummy_logits() a_ = processor.batch_decode(__UpperCAmelCase , output_word_offsets=__UpperCAmelCase) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue("text" in outputs) self.assertTrue("word_offsets" in outputs) self.assertTrue(isinstance(__UpperCAmelCase , __UpperCAmelCase)) self.assertListEqual( [" ".join(self.get_from_offsets(__UpperCAmelCase , "word")) for o in outputs["word_offsets"]] , outputs.text) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word") , ["<s>", "<s>", "</s>"]) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset") , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset") , [1, 3, 5]) @slow @require_torch @require_torchaudio def UpperCAmelCase__ ( self) ->List[Any]: import torch a_ = load_dataset("common_voice" , "en" , split="train" , streaming=__UpperCAmelCase) a_ = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_60_00)) a_ = iter(__UpperCAmelCase) a_ = next(__UpperCAmelCase) a_ = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") a_ = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train a_ = processor(sample["audio"]["array"] , return_tensors="pt").input_values with torch.no_grad(): a_ = model(__UpperCAmelCase).logits.cpu().numpy() a_ = processor.decode(logits[0] , output_word_offsets=__UpperCAmelCase) a_ = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate a_ = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] a_ = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(__UpperCAmelCase , "word")) , __UpperCAmelCase) self.assertEqual(" ".join(self.get_from_offsets(__UpperCAmelCase , "word")) , output.text) # output times a_ = torch.tensor(self.get_from_offsets(__UpperCAmelCase , "start_time")) a_ = torch.tensor(self.get_from_offsets(__UpperCAmelCase , "end_time")) # fmt: off a_ = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599]) a_ = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94]) # fmt: on self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=0.01)) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=0.01))
210
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : BigBirdConfig _A : jnp.dtype = jnp.floataa _A : bool = True def A_ ( self ): super().setup() snake_case__ = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *lowerCamelCase , **lowerCamelCase ): snake_case__ = super().__call__(*lowerCamelCase , **lowerCamelCase ) snake_case__ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : List[str] = FlaxBigBirdForNaturalQuestionsModule def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): def cross_entropy(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): snake_case__ = logits.shape[-1] snake_case__ = (labels[..., None] == jnp.arange(__lowerCAmelCase )[None]).astype("f4" ) snake_case__ = jax.nn.log_softmax(__lowerCAmelCase , axis=-1 ) snake_case__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: snake_case__ = reduction(__lowerCAmelCase ) return loss snake_case__ = partial(__lowerCAmelCase , reduction=jnp.mean ) snake_case__ = cross_entropy(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = cross_entropy(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = cross_entropy(__lowerCAmelCase , __lowerCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _SCREAMING_SNAKE_CASE : _A : str = "google/bigbird-roberta-base" _A : int = 30_00 _A : int = 1_05_00 _A : int = 1_28 _A : int = 3 _A : int = 1 _A : int = 5 # tx_args _A : float = 3e-5 _A : float = 0.0 _A : int = 2_00_00 _A : float = 0.0_0_9_5 _A : str = "bigbird-roberta-natural-questions" _A : str = "training-expt" _A : str = "data/nq-training.jsonl" _A : str = "data/nq-validation.jsonl" def A_ ( self ): os.makedirs(self.base_dir , exist_ok=lowerCamelCase ) snake_case__ = os.path.join(self.base_dir , self.save_dir ) snake_case__ = self.batch_size_per_device * jax.device_count() @dataclass class _SCREAMING_SNAKE_CASE : _A : int _A : int = 40_96 # no dynamic padding on TPUs def __call__( self , lowerCamelCase ): snake_case__ = self.collate_fn(lowerCamelCase ) snake_case__ = jax.tree_util.tree_map(lowerCamelCase , lowerCamelCase ) return batch def A_ ( self , lowerCamelCase ): snake_case__ , snake_case__ = self.fetch_inputs(features["input_ids"] ) snake_case__ = { "input_ids": jnp.array(lowerCamelCase , dtype=jnp.intaa ), "attention_mask": jnp.array(lowerCamelCase , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def A_ ( self , lowerCamelCase ): snake_case__ = [self._fetch_inputs(lowerCamelCase ) for ids in input_ids] return zip(*lowerCamelCase ) def A_ ( self , lowerCamelCase ): snake_case__ = [1 for _ in range(len(lowerCamelCase ) )] while len(lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): if seed is not None: snake_case__ = dataset.shuffle(seed=__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) // batch_size ): snake_case__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__lowerCAmelCase ) @partial(jax.pmap , axis_name="batch" ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): def loss_fn(__lowerCAmelCase ): snake_case__ = model_inputs.pop("start_labels" ) snake_case__ = model_inputs.pop("end_labels" ) snake_case__ = model_inputs.pop("pooled_labels" ) snake_case__ = state.apply_fn(**__lowerCAmelCase , params=__lowerCAmelCase , dropout_rng=__lowerCAmelCase , train=__lowerCAmelCase ) snake_case__ , snake_case__ , snake_case__ = outputs return state.loss_fn( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) snake_case__ , snake_case__ = jax.random.split(__lowerCAmelCase ) snake_case__ = jax.value_and_grad(__lowerCAmelCase ) snake_case__ , snake_case__ = grad_fn(state.params ) snake_case__ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) snake_case__ = jax.lax.pmean(__lowerCAmelCase , "batch" ) snake_case__ = state.apply_gradients(grads=__lowerCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , **__lowerCAmelCase ): snake_case__ = model_inputs.pop("start_labels" ) snake_case__ = model_inputs.pop("end_labels" ) snake_case__ = model_inputs.pop("pooled_labels" ) snake_case__ = state.apply_fn(**__lowerCAmelCase , params=state.params , train=__lowerCAmelCase ) snake_case__ , snake_case__ , snake_case__ = outputs snake_case__ = state.loss_fn(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class _SCREAMING_SNAKE_CASE ( train_state.TrainState ): _A : Callable = struct.field(pytree_node=__UpperCamelCase ) @dataclass class _SCREAMING_SNAKE_CASE : _A : Args _A : Callable _A : Callable _A : Callable _A : Callable _A : wandb _A : Callable = None def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): snake_case__ = model.params snake_case__ = TrainState.create( apply_fn=model.__call__ , params=lowerCamelCase , tx=lowerCamelCase , loss_fn=lowerCamelCase , ) if ckpt_dir is not None: snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = restore_checkpoint(lowerCamelCase , lowerCamelCase ) snake_case__ = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } snake_case__ , snake_case__ = build_tx(**lowerCamelCase ) snake_case__ = train_state.TrainState( step=lowerCamelCase , apply_fn=model.__call__ , params=lowerCamelCase , tx=lowerCamelCase , opt_state=lowerCamelCase , ) snake_case__ = args snake_case__ = data_collator snake_case__ = lr snake_case__ = params snake_case__ = jax_utils.replicate(lowerCamelCase ) return state def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): snake_case__ = self.args snake_case__ = len(lowerCamelCase ) // args.batch_size snake_case__ = jax.random.PRNGKey(0 ) snake_case__ = jax.random.split(lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): snake_case__ = jnp.array(0 , dtype=jnp.floataa ) snake_case__ = get_batched_dataset(lowerCamelCase , args.batch_size , seed=lowerCamelCase ) snake_case__ = 0 for batch in tqdm(lowerCamelCase , total=lowerCamelCase , desc=F"""Running EPOCH-{epoch}""" ): snake_case__ = self.data_collator(lowerCamelCase ) snake_case__ , snake_case__ , snake_case__ = self.train_step_fn(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: snake_case__ = jax_utils.unreplicate(state.step ) snake_case__ = running_loss.item() / i snake_case__ = self.scheduler_fn(state_step - 1 ) snake_case__ = self.evaluate(lowerCamelCase , lowerCamelCase ) snake_case__ = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(lowerCamelCase ) ) self.logger.log(lowerCamelCase , commit=lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=lowerCamelCase ) def A_ ( self , lowerCamelCase , lowerCamelCase ): snake_case__ = get_batched_dataset(lowerCamelCase , self.args.batch_size ) snake_case__ = len(lowerCamelCase ) // self.args.batch_size snake_case__ = jnp.array(0 , dtype=jnp.floataa ) snake_case__ = 0 for batch in tqdm(lowerCamelCase , total=lowerCamelCase , desc="Evaluating ... " ): snake_case__ = self.data_collator(lowerCamelCase ) snake_case__ = self.val_step_fn(lowerCamelCase , **lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def A_ ( self , lowerCamelCase , lowerCamelCase ): snake_case__ = jax_utils.unreplicate(lowerCamelCase ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... " ) self.model_save_fn(lowerCamelCase , params=state.params ) with open(os.path.join(lowerCamelCase , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowerCamelCase , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(lowerCamelCase , "data_collator.joblib" ) ) with open(os.path.join(lowerCamelCase , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , lowerCamelCase ) print("DONE" ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): print(F"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(__lowerCAmelCase , "flax_model.msgpack" ) , "rb" ) as f: snake_case__ = from_bytes(state.params , f.read() ) with open(os.path.join(__lowerCAmelCase , "opt_state.msgpack" ) , "rb" ) as f: snake_case__ = from_bytes(state.opt_state , f.read() ) snake_case__ = joblib.load(os.path.join(__lowerCAmelCase , "args.joblib" ) ) snake_case__ = joblib.load(os.path.join(__lowerCAmelCase , "data_collator.joblib" ) ) with open(os.path.join(__lowerCAmelCase , "training_state.json" ) , "r" ) as f: snake_case__ = json.load(__lowerCAmelCase ) snake_case__ = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = num_train_steps - warmup_steps snake_case__ = optax.linear_schedule(init_value=__lowerCAmelCase , end_value=__lowerCAmelCase , transition_steps=__lowerCAmelCase ) snake_case__ = optax.linear_schedule(init_value=__lowerCAmelCase , end_value=1E-7 , transition_steps=__lowerCAmelCase ) snake_case__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): def weight_decay_mask(__lowerCAmelCase ): snake_case__ = traverse_util.flatten_dict(__lowerCAmelCase ) snake_case__ = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(__lowerCAmelCase ) snake_case__ = scheduler_fn(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ = optax.adamw(learning_rate=__lowerCAmelCase , weight_decay=__lowerCAmelCase , mask=__lowerCAmelCase ) return tx, lr
276
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class _SCREAMING_SNAKE_CASE ( Generic[T] ): def __init__( self , lowerCamelCase ): snake_case__ = data snake_case__ = None def __str__( self ): return F"""{self.data}""" class _SCREAMING_SNAKE_CASE ( Generic[T] ): def __init__( self ): snake_case__ = None def __iter__( self ): snake_case__ = self.top while node: yield node.data snake_case__ = node.next def __str__( self ): return "->".join([str(lowerCamelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def A_ ( self ): return self.top is None def A_ ( self , lowerCamelCase ): snake_case__ = Node(lowerCamelCase ) if not self.is_empty(): snake_case__ = self.top snake_case__ = node def A_ ( self ): if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase ) snake_case__ = self.top snake_case__ = self.top.next return pop_node.data def A_ ( self ): if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def A_ ( self ): snake_case__ = None if __name__ == "__main__": from doctest import testmod testmod()
276
1
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowercase = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") lowercase = parser.parse_args() if args.model_type == "roberta": lowercase = RobertaForMaskedLM.from_pretrained(args.model_name) lowercase = """roberta""" elif args.model_type == "gpt2": lowercase = GPTaLMHeadModel.from_pretrained(args.model_name) lowercase = """transformer""" lowercase = model.state_dict() lowercase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowercase = state_dict[f'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowercase = f'{prefix}.embeddings.{w}.weight' lowercase = state_dict[param_name] for w in ["weight", "bias"]: lowercase = f'{prefix}.embeddings.LayerNorm.{w}' lowercase = state_dict[param_name] # Transformer Blocks # lowercase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowercase = state_dict[ f'{prefix}.h.{teacher_idx}.{layer}.{w}' ] lowercase = state_dict[f'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowercase = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowercase = state_dict[f'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: lowercase = state_dict[f'lm_head.dense.{w}'] lowercase = state_dict[f'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowercase = state_dict[f'{prefix}.ln_f.{w}'] lowercase = state_dict["""lm_head.weight"""] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
591
def lowerCamelCase_ ( UpperCamelCase__ : int = 100 ): '''simple docstring''' UpperCamelCase__ = (n * (n + 1) // 2) ** 2 UpperCamelCase__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
591
1
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a = logging.get_logger(__name__) _a = {"vocab_file": "spiece.model"} _a = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _a = { "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase__ = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) lowerCamelCase__ = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCamelCase__ = "<|endoftext|>" if eos_token is None else eos_token lowerCamelCase__ = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCamelCase__ = unk_token if pad_token is None else pad_token lowerCamelCase__ = eos_token if bos_token is None else bos_token else: lowerCamelCase__ = "<pad>" if pad_token is None else pad_token lowerCamelCase__ = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=UpperCamelCase_ , remove_space=UpperCamelCase_ , keep_accents=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = remove_space lowerCamelCase__ = keep_accents lowerCamelCase__ = vocab_file lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) # Used for whitespace normalization in input texts # fmt : off lowerCamelCase__ = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCamelCase__ = re.compile( F'[{"".join(map(UpperCamelCase_ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self ): '''simple docstring''' lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.non_printing_characters_re.sub('''''' , UpperCamelCase_ ) # Normalize whitespaces lowerCamelCase__ = "".join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization lowerCamelCase__ = unicodedata.normalize('''NFC''' , UpperCamelCase_ ) return text def __lowerCamelCase ( self , __lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.preprocess_text(UpperCamelCase_ ) return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.PieceToId(UpperCamelCase_ ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.IdToPiece(UpperCamelCase_ ) @staticmethod def __lowerCamelCase ( __lowerCAmelCase ): '''simple docstring''' return out_string def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = "" lowerCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token lowerCamelCase__ = True lowerCamelCase__ = [] else: current_sub_tokens.append(UpperCamelCase_ ) lowerCamelCase__ = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = False ): '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCamelCase__ = self.preprocess_text(UpperCamelCase_ ) lowerCamelCase__ = self.sp_model.encode(UpperCamelCase_ ) else: lowerCamelCase__ = [self.preprocess_text(UpperCamelCase_ ) for t in text] lowerCamelCase__ = self.sp_model.encode(UpperCamelCase_ ) if return_tensors is True or return_tensors == "pt": lowerCamelCase__ = torch.tensor(UpperCamelCase_ ) return token_ids def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.decode(UpperCamelCase_ ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] lowerCamelCase__ = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(UpperCamelCase_ ) + F'{self.bos_token}Bot:' ) return self.encode(text=UpperCamelCase_ )
481
"""simple docstring""" from typing import Any class a__ : def __init__( self : List[str] , UpperCamelCase_ : Any): """simple docstring""" __UpperCAmelCase : str = data __UpperCAmelCase : Optional[Any] = None class a__ : def __init__( self : Any): """simple docstring""" __UpperCAmelCase : Optional[int] = None def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.head while temp is not None: print(temp.data , end=" ") __UpperCAmelCase : Tuple = temp.next print() def a_ ( self : int , UpperCamelCase_ : Any): """simple docstring""" __UpperCAmelCase : List[str] = Node(UpperCamelCase_) __UpperCAmelCase : str = self.head __UpperCAmelCase : Optional[int] = new_node def a_ ( self : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str): """simple docstring""" if node_data_a == node_data_a: return else: __UpperCAmelCase : int = self.head while node_a is not None and node_a.data != node_data_a: __UpperCAmelCase : Tuple = node_a.next __UpperCAmelCase : List[Any] = self.head while node_a is not None and node_a.data != node_data_a: __UpperCAmelCase : Optional[Any] = node_a.next if node_a is None or node_a is None: return __UpperCAmelCase , __UpperCAmelCase : Any = node_a.data, node_a.data if __name__ == "__main__": A = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
77
0
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __lowerCAmelCase : Dict = logging.get_logger(__name__) enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' snake_case__ : Optional[int] = UNetaDModel snake_case__ : Optional[Any] = 'sample' @property def _UpperCamelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' a__ = 4 a__ = 3 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__magic_name__ ) a__ = torch.tensor([10] ).to(__magic_name__ ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self :List[str] ) -> Tuple: '''simple docstring''' return (3, 32, 32) @property def _UpperCamelCase ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) def _UpperCamelCase ( self :Dict ) -> Optional[int]: '''simple docstring''' a__ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } a__ = self.dummy_input return init_dict, inputs_dict class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' snake_case__ : Tuple = UNetaDModel snake_case__ : Optional[int] = 'sample' @property def _UpperCamelCase ( self :List[str] ) -> Optional[Any]: '''simple docstring''' a__ = 4 a__ = 4 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__magic_name__ ) a__ = torch.tensor([10] ).to(__magic_name__ ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' return (4, 32, 32) @property def _UpperCamelCase ( self :Optional[Any] ) -> int: '''simple docstring''' return (4, 32, 32) def _UpperCamelCase ( self :Dict ) -> Dict: '''simple docstring''' a__ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } a__ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self :List[str] ) -> Tuple: '''simple docstring''' a__ , a__ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__magic_name__ ) a__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' a__ , a__ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=__magic_name__ ) model.to(__magic_name__ ) a__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' a__ , a__ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=__magic_name__ ) model_accelerate.to(__magic_name__ ) model_accelerate.eval() a__ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) a__ = noise.to(__magic_name__ ) a__ = torch.tensor([10] * noise.shape[0] ).to(__magic_name__ ) a__ = model_accelerate(__magic_name__ , __magic_name__ )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() a__ , a__ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=__magic_name__ , low_cpu_mem_usage=__magic_name__ ) model_normal_load.to(__magic_name__ ) model_normal_load.eval() a__ = model_normal_load(__magic_name__ , __magic_name__ )['''sample'''] assert torch_all_close(__magic_name__ , __magic_name__ , rtol=1e-3 ) def _UpperCamelCase ( self :Optional[Any] ) -> str: '''simple docstring''' a__ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(__magic_name__ ) a__ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) a__ = noise.to(__magic_name__ ) a__ = torch.tensor([10] * noise.shape[0] ).to(__magic_name__ ) with torch.no_grad(): a__ = model(__magic_name__ , __magic_name__ ).sample a__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off a__ = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(__magic_name__ , __magic_name__ , rtol=1e-3 ) ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' snake_case__ : int = UNetaDModel snake_case__ : str = 'sample' @property def _UpperCamelCase ( self :Dict , __magic_name__ :Any=(32, 32) ) -> Optional[int]: '''simple docstring''' a__ = 4 a__ = 3 a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__magic_name__ ) a__ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__magic_name__ ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self :int ) -> Tuple: '''simple docstring''' return (3, 32, 32) @property def _UpperCamelCase ( self :int ) -> str: '''simple docstring''' return (3, 32, 32) def _UpperCamelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' a__ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } a__ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self :str ) -> List[Any]: '''simple docstring''' a__ , a__ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__magic_name__ ) a__ = self.dummy_input a__ = floats_tensor((4, 3) + (256, 256) ).to(__magic_name__ ) a__ = noise a__ = model(**__magic_name__ ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self :int ) -> int: '''simple docstring''' a__ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(__magic_name__ ) a__ = 4 a__ = 3 a__ = (256, 256) a__ = torch.ones((batch_size, num_channels) + sizes ).to(__magic_name__ ) a__ = torch.tensor(batch_size * [1e-4] ).to(__magic_name__ ) with torch.no_grad(): a__ = model(__magic_name__ , __magic_name__ ).sample a__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off a__ = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(__magic_name__ , __magic_name__ , rtol=1e-2 ) ) def _UpperCamelCase ( self :List[str] ) -> str: '''simple docstring''' a__ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(__magic_name__ ) a__ = 4 a__ = 3 a__ = (32, 32) a__ = torch.ones((batch_size, num_channels) + sizes ).to(__magic_name__ ) a__ = torch.tensor(batch_size * [1e-4] ).to(__magic_name__ ) with torch.no_grad(): a__ = model(__magic_name__ , __magic_name__ ).sample a__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off a__ = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(__magic_name__ , __magic_name__ , rtol=1e-2 ) ) def _UpperCamelCase ( self :Optional[Any] ) -> Dict: '''simple docstring''' pass
158
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase = 4 ) -> list[list[int]]: """simple docstring""" a__ = abs(UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(UpperCamelCase )] for y in range(UpperCamelCase )] def __snake_case ( UpperCamelCase ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def __snake_case ( UpperCamelCase ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __snake_case ( UpperCamelCase ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def __snake_case ( UpperCamelCase ) -> list[list[int]]: """simple docstring""" a__ = [list(UpperCamelCase ) for x in zip(*UpperCamelCase )] return matrix def __snake_case ( UpperCamelCase ) -> list[list[int]]: """simple docstring""" a__ = matrix[::-1] return matrix def __snake_case ( UpperCamelCase ) -> list[list[int]]: """simple docstring""" a__ = [x[::-1] for x in matrix] return matrix def __snake_case ( UpperCamelCase ) -> None: """simple docstring""" for i in matrix: print(*UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Dict = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) __lowerCAmelCase : Optional[Any] = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) __lowerCAmelCase : Dict = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
158
1
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class snake_case ( UpperCamelCase_ ): """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = jnp.floataa _lowerCAmelCase = True def lowercase__ ( self ) -> List[str]: """simple docstring""" super().setup() snake_case__ : List[str] = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *lowerCamelCase , **lowerCamelCase ) -> Any: """simple docstring""" snake_case__ : List[str] = super().__call__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class snake_case ( UpperCamelCase_ ): """simple docstring""" _lowerCAmelCase = FlaxBigBirdForNaturalQuestionsModule def _A ( snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Optional[Any] ): def cross_entropy(snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Any=None ): snake_case__ : Tuple = logits.shape[-1] snake_case__ : Tuple = (labels[..., None] == jnp.arange(snake_case__ )[None]).astype('''f4''' ) snake_case__ : Dict = jax.nn.log_softmax(snake_case__ , axis=-1 ) snake_case__ : List[Any] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: snake_case__ : Any = reduction(snake_case__ ) return loss snake_case__ : Any = partial(snake_case__ , reduction=jnp.mean ) snake_case__ : List[Any] = cross_entropy(snake_case__ , snake_case__ ) snake_case__ : int = cross_entropy(snake_case__ , snake_case__ ) snake_case__ : str = cross_entropy(snake_case__ , snake_case__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = "google/bigbird-roberta-base" _lowerCAmelCase = 3_0_0_0 _lowerCAmelCase = 1_0_5_0_0 _lowerCAmelCase = 1_2_8 _lowerCAmelCase = 3 _lowerCAmelCase = 1 _lowerCAmelCase = 5 # tx_args _lowerCAmelCase = 3e-5 _lowerCAmelCase = 0.0 _lowerCAmelCase = 2_0_0_0_0 _lowerCAmelCase = 0.00_95 _lowerCAmelCase = "bigbird-roberta-natural-questions" _lowerCAmelCase = "training-expt" _lowerCAmelCase = "data/nq-training.jsonl" _lowerCAmelCase = "data/nq-validation.jsonl" def lowercase__ ( self ) -> List[str]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=__SCREAMING_SNAKE_CASE ) snake_case__ : int = os.path.join(self.base_dir , self.save_dir ) snake_case__ : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 4_0_9_6 # no dynamic padding on TPUs def __call__( self , lowerCamelCase ) -> Any: """simple docstring""" snake_case__ : List[str] = self.collate_fn(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = jax.tree_util.tree_map(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return batch def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ ,snake_case__ : Optional[int] = self.fetch_inputs(features['''input_ids'''] ) snake_case__ : int = { '''input_ids''': jnp.array(__SCREAMING_SNAKE_CASE , dtype=jnp.intaa ), '''attention_mask''': jnp.array(__SCREAMING_SNAKE_CASE , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : str = [self._fetch_inputs(__SCREAMING_SNAKE_CASE ) for ids in input_ids] return zip(*__SCREAMING_SNAKE_CASE ) def lowercase__ ( self , lowerCamelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Any = [1 for _ in range(len(__SCREAMING_SNAKE_CASE ) )] while len(__SCREAMING_SNAKE_CASE ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _A ( snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str]=None ): if seed is not None: snake_case__ : Dict = dataset.shuffle(seed=snake_case__ ) for i in range(len(snake_case__ ) // batch_size ): snake_case__ : Tuple = dataset[i * batch_size : (i + 1) * batch_size] yield dict(snake_case__ ) @partial(jax.pmap , axis_name='''batch''' ) def _A ( snake_case__ : List[Any] , snake_case__ : Optional[Any] , **snake_case__ : Dict ): def loss_fn(snake_case__ : Tuple ): snake_case__ : List[str] = model_inputs.pop('''start_labels''' ) snake_case__ : Optional[int] = model_inputs.pop('''end_labels''' ) snake_case__ : List[str] = model_inputs.pop('''pooled_labels''' ) snake_case__ : Optional[int] = state.apply_fn(**snake_case__ , params=snake_case__ , dropout_rng=snake_case__ , train=snake_case__ ) snake_case__ ,snake_case__ ,snake_case__ : List[Any] = outputs return state.loss_fn( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) snake_case__ ,snake_case__ : int = jax.random.split(snake_case__ ) snake_case__ : Union[str, Any] = jax.value_and_grad(snake_case__ ) snake_case__ ,snake_case__ : Any = grad_fn(state.params ) snake_case__ : int = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) snake_case__ : Tuple = jax.lax.pmean(snake_case__ , '''batch''' ) snake_case__ : List[str] = state.apply_gradients(grads=snake_case__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def _A ( snake_case__ : int , **snake_case__ : str ): snake_case__ : Dict = model_inputs.pop('''start_labels''' ) snake_case__ : int = model_inputs.pop('''end_labels''' ) snake_case__ : str = model_inputs.pop('''pooled_labels''' ) snake_case__ : Union[str, Any] = state.apply_fn(**snake_case__ , params=state.params , train=snake_case__ ) snake_case__ ,snake_case__ ,snake_case__ : Tuple = outputs snake_case__ : List[str] = state.loss_fn(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) snake_case__ : List[str] = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class snake_case ( train_state.TrainState ): """simple docstring""" _lowerCAmelCase = struct.field(pytree_node=UpperCamelCase_ ) @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple = model.params snake_case__ : List[Any] = TrainState.create( apply_fn=model.__call__ , params=__SCREAMING_SNAKE_CASE , tx=__SCREAMING_SNAKE_CASE , loss_fn=__SCREAMING_SNAKE_CASE , ) if ckpt_dir is not None: snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ : Union[str, Any] = restore_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } snake_case__ ,snake_case__ : List[str] = build_tx(**__SCREAMING_SNAKE_CASE ) snake_case__ : str = train_state.TrainState( step=__SCREAMING_SNAKE_CASE , apply_fn=model.__call__ , params=__SCREAMING_SNAKE_CASE , tx=__SCREAMING_SNAKE_CASE , opt_state=__SCREAMING_SNAKE_CASE , ) snake_case__ : Dict = args snake_case__ : Optional[int] = data_collator snake_case__ : int = lr snake_case__ : Tuple = params snake_case__ : Tuple = jax_utils.replicate(__SCREAMING_SNAKE_CASE ) return state def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : List[str] = self.args snake_case__ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) // args.batch_size snake_case__ : Any = jax.random.PRNGKey(0 ) snake_case__ : Union[str, Any] = jax.random.split(__SCREAMING_SNAKE_CASE , jax.device_count() ) for epoch in range(args.max_epochs ): snake_case__ : List[str] = jnp.array(0 , dtype=jnp.floataa ) snake_case__ : int = get_batched_dataset(__SCREAMING_SNAKE_CASE , args.batch_size , seed=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = 0 for batch in tqdm(__SCREAMING_SNAKE_CASE , total=__SCREAMING_SNAKE_CASE , desc=f'''Running EPOCH-{epoch}''' ): snake_case__ : int = self.data_collator(__SCREAMING_SNAKE_CASE ) snake_case__ ,snake_case__ ,snake_case__ : List[Any] = self.train_step_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: snake_case__ : Optional[int] = jax_utils.unreplicate(state.step ) snake_case__ : str = running_loss.item() / i snake_case__ : Optional[int] = self.scheduler_fn(state_step - 1 ) snake_case__ : Union[str, Any] = self.evaluate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Any = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(__SCREAMING_SNAKE_CASE ) ) self.logger.log(__SCREAMING_SNAKE_CASE , commit=__SCREAMING_SNAKE_CASE ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__SCREAMING_SNAKE_CASE ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = get_batched_dataset(__SCREAMING_SNAKE_CASE , self.args.batch_size ) snake_case__ : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) // self.args.batch_size snake_case__ : Optional[Any] = jnp.array(0 , dtype=jnp.floataa ) snake_case__ : Dict = 0 for batch in tqdm(__SCREAMING_SNAKE_CASE , total=__SCREAMING_SNAKE_CASE , desc='''Evaluating ... ''' ): snake_case__ : str = self.data_collator(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = self.val_step_fn(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : Optional[int] = jax_utils.unreplicate(__SCREAMING_SNAKE_CASE ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=''' ... ''' ) self.model_save_fn(__SCREAMING_SNAKE_CASE , params=state.params ) with open(os.path.join(__SCREAMING_SNAKE_CASE , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__SCREAMING_SNAKE_CASE , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(__SCREAMING_SNAKE_CASE , '''data_collator.joblib''' ) ) with open(os.path.join(__SCREAMING_SNAKE_CASE , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , __SCREAMING_SNAKE_CASE ) print('''DONE''' ) def _A ( snake_case__ : int , snake_case__ : Dict ): print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=''' ... ''' ) with open(os.path.join(snake_case__ , '''flax_model.msgpack''' ) , '''rb''' ) as f: snake_case__ : str = from_bytes(state.params , f.read() ) with open(os.path.join(snake_case__ , '''opt_state.msgpack''' ) , '''rb''' ) as f: snake_case__ : List[Any] = from_bytes(state.opt_state , f.read() ) snake_case__ : List[str] = joblib.load(os.path.join(snake_case__ , '''args.joblib''' ) ) snake_case__ : Tuple = joblib.load(os.path.join(snake_case__ , '''data_collator.joblib''' ) ) with open(os.path.join(snake_case__ , '''training_state.json''' ) , '''r''' ) as f: snake_case__ : Any = json.load(snake_case__ ) snake_case__ : List[Any] = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def _A ( snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : str ): snake_case__ : int = num_train_steps - warmup_steps snake_case__ : Dict = optax.linear_schedule(init_value=snake_case__ , end_value=snake_case__ , transition_steps=snake_case__ ) snake_case__ : Union[str, Any] = optax.linear_schedule(init_value=snake_case__ , end_value=1E-7 , transition_steps=snake_case__ ) snake_case__ : str = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _A ( snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] ): def weight_decay_mask(snake_case__ : Any ): snake_case__ : Optional[Any] = traverse_util.flatten_dict(snake_case__ ) snake_case__ : Dict = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(snake_case__ ) snake_case__ : Optional[int] = scheduler_fn(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) snake_case__ : Tuple = optax.adamw(learning_rate=snake_case__ , weight_decay=snake_case__ , mask=snake_case__ ) return tx, lr
261
from timeit import timeit def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> int: if number < 0: raise ValueError('''the value of input must not be negative''' ) lowerCAmelCase = 0 while number: number &= number - 1 result += 1 return result def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> int: if number < 0: raise ValueError('''the value of input must not be negative''' ) lowerCAmelCase = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def SCREAMING_SNAKE_CASE_ ( ) -> None: def do_benchmark(snake_case__ ) -> None: lowerCAmelCase = '''import __main__ as z''' print(f"Benchmark when {number = }:" ) print(f"{get_set_bits_count_using_modulo_operator(snake_case__ ) = }" ) lowerCAmelCase = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=snake_case__ ) print(f"timeit() runs in {timing} seconds" ) print(f"{get_set_bits_count_using_brian_kernighans_algorithm(snake_case__ ) = }" ) lowerCAmelCase = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=snake_case__ , ) print(f"timeit() runs in {timing} seconds" ) for number in (2_5, 3_7, 5_8, 0): do_benchmark(snake_case__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
312
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _snake_case : List[str] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =["""pixel_values"""] def __init__( self, _a = True, _a = None, _a = PIL.Image.BICUBIC, _a = True, _a = None, _a = 1 / 2_55, _a = True, _a = True, _a = None, _a = None, **_a, ) -> None: super().__init__(**_a ) __SCREAMING_SNAKE_CASE = size if size is not None else {"height": 2_56, "width": 2_56} __SCREAMING_SNAKE_CASE = get_size_dict(_a ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} __SCREAMING_SNAKE_CASE = get_size_dict(_a, param_name="crop_size" ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self, _a, _a, _a = PIL.Image.BICUBIC, _a = None, **_a, ) -> np.ndarray: __SCREAMING_SNAKE_CASE = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( _a, size=(size["height"], size["width"]), resample=_a, data_format=_a, **_a ) def __lowerCAmelCase ( self, _a, _a, _a = None, **_a, ) -> np.ndarray: __SCREAMING_SNAKE_CASE = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_a, size=(size["height"], size["width"]), data_format=_a, **_a ) def __lowerCAmelCase ( self, _a, _a, _a = None, **_a, ) -> List[Any]: return rescale(_a, scale=_a, data_format=_a, **_a ) def __lowerCAmelCase ( self, _a, _a, _a, _a = None, **_a, ) -> np.ndarray: return normalize(_a, mean=_a, std=_a, data_format=_a, **_a ) def __lowerCAmelCase ( self, _a, _a = None, _a = None, _a=None, _a = None, _a = None, _a = None, _a = None, _a = None, _a = None, _a = None, _a = None, _a = ChannelDimension.FIRST, **_a, ) -> PIL.Image.Image: __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(_a ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE = get_size_dict(_a, param_name="crop_size" ) __SCREAMING_SNAKE_CASE = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(_a ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=_a, size=_a, resample=_a ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE = [self.center_crop(image=_a, size=_a ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=_a, scale=_a ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=_a, mean=_a, std=_a ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(_a, _a ) for image in images] __SCREAMING_SNAKE_CASE = {"pixel_values": images} return BatchFeature(data=_a, tensor_type=_a )
710
from typing import List import numpy as np def _A ( __snake_case :dict ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = {key: len(__snake_case ) for key, value in gen_kwargs.items() if isinstance(__snake_case , __snake_case )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) __SCREAMING_SNAKE_CASE = max(lists_lengths.values() , default=0 ) return max(1 , __snake_case ) def _A ( __snake_case :int , __snake_case :int ) -> List[range]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for group_idx in range(__snake_case ): __SCREAMING_SNAKE_CASE = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break __SCREAMING_SNAKE_CASE = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 __SCREAMING_SNAKE_CASE = range(__snake_case , start + num_shards_to_add ) shards_indices_per_group.append(__snake_case ) return shards_indices_per_group def _A ( __snake_case :dict , __snake_case :int ) -> List[dict]: """simple docstring""" __SCREAMING_SNAKE_CASE = _number_of_shards_in_gen_kwargs(__snake_case ) if num_shards == 1: return [dict(__snake_case )] else: __SCREAMING_SNAKE_CASE = _distribute_shards(num_shards=__snake_case , max_num_jobs=__snake_case ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__snake_case , __snake_case ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__snake_case ) ) ] def _A ( __snake_case :List[dict] ) -> dict: """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __snake_case ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _A ( __snake_case :np.random.Generator , __snake_case :dict ) -> dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {len(__snake_case ) for value in gen_kwargs.values() if isinstance(__snake_case , __snake_case )} __SCREAMING_SNAKE_CASE = {} for size in list_sizes: __SCREAMING_SNAKE_CASE = list(range(__snake_case ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes __SCREAMING_SNAKE_CASE = dict(__snake_case ) for key, value in shuffled_kwargs.items(): if isinstance(__snake_case , __snake_case ): __SCREAMING_SNAKE_CASE = [value[i] for i in indices_per_size[len(__snake_case )]] return shuffled_kwargs
214
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class A__( unittest.TestCase ): def _a ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) __SCREAMING_SNAKE_CASE = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __SCREAMING_SNAKE_CASE = {'''unk_token''': '''<unk>'''} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) __SCREAMING_SNAKE_CASE = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) def _a ( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def _a ( self : int , **__SCREAMING_SNAKE_CASE : Any ) -> List[str]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def _a ( self : str , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : Tuple ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCamelCase ) __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCamelCase ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__UpperCamelCase , padding_value=1.0 ) __SCREAMING_SNAKE_CASE = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def _a ( self : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(__UpperCamelCase , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE = processor(images=__UpperCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __SCREAMING_SNAKE_CASE = '''lower newer''' __SCREAMING_SNAKE_CASE = processor(text=__UpperCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __SCREAMING_SNAKE_CASE = '''lower newer''' __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _a ( self : Any ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(images=__UpperCamelCase , visual_prompt=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _a ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(__UpperCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
482
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __A : List[str] = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __A : List[Any] = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __A : int = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' def remove_articles(_SCREAMING_SNAKE_CASE : Optional[int] ): _UpperCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 100 def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _UpperCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _UpperCAmelCase = scount * numref _UpperCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _UpperCAmelCase = ccount * numref # KEEP _UpperCAmelCase = sgramcounter_rep & cgramcounter_rep _UpperCAmelCase = keepgramcounter_rep & rgramcounter _UpperCAmelCase = sgramcounter_rep & rgramcounter _UpperCAmelCase = 0 _UpperCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase = 1 _UpperCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _UpperCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _UpperCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _UpperCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _UpperCAmelCase = sgramcounter_rep - cgramcounter_rep _UpperCAmelCase = delgramcounter_rep - rgramcounter _UpperCAmelCase = sgramcounter_rep - rgramcounter _UpperCAmelCase = 0 _UpperCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase = 1 _UpperCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _UpperCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ssent.split(''' ''' ) _UpperCAmelCase = csent.split(''' ''' ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for rsent in rsents: _UpperCAmelCase = rsent.split(''' ''' ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _UpperCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _UpperCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _UpperCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _UpperCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _UpperCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _UpperCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _UpperCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _UpperCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _UpperCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True ): '''simple docstring''' if lowercase: _UpperCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _UpperCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _UpperCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _UpperCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = sentence if not return_str: _UpperCAmelCase = normalized_sent.split() return normalized_sent def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _UpperCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _UpperCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 100 * sari_score def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str="exp" , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : List[str]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , ): '''simple docstring''' _UpperCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _UpperCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def lowercase__ ( self : Dict )->Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def lowercase__ ( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] )->Any: _UpperCAmelCase = {} result.update({'''sari''': compute_sari(sources=__UpperCamelCase , predictions=__UpperCamelCase , references=__UpperCamelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCamelCase , references=__UpperCamelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCamelCase , references=__UpperCamelCase )} ) return result
602
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase_ = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''CLIPFeatureExtractor'''] lowerCamelCase_ = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
161
from itertools import count def UpperCamelCase( lowercase_ = 50 ) -> int: '''simple docstring''' snake_case_ = [1] * min_block_length for n in count(lowercase_ ): fill_count_functions.append(1 ) for block_length in range(lowercase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(f"""{solution() = }""")
161
1
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule __lowerCamelCase : Tuple = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
653
'''simple docstring''' from collections import deque from .hash_table import HashTable class A_ (a_ ): """simple docstring""" def __init__( self :List[str] , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Dict ) -> Union[str, Any]: '''simple docstring''' super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowerCAmelCase__ ) snake_case_ : Tuple = self.values[key] def _A ( self :int ) -> Dict: '''simple docstring''' return ( sum(self.charge_factor - len(lowerCAmelCase__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def _A ( self :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple=None ) -> Any: '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowerCAmelCase__ ) == 0 ): return key return super()._collision_resolution(lowerCAmelCase__ , lowerCAmelCase__ )
653
1
from math import asin, atan, cos, radians, sin, sqrt, tan _lowerCamelCase = 6378137.0 _lowerCamelCase = 6356752.314245 _lowerCamelCase = 6378137 def _lowerCAmelCase ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = (AXIS_A - AXIS_B) / AXIS_A __SCREAMING_SNAKE_CASE : Dict = atan((1 - flattening) * tan(radians(__lowerCamelCase ) ) ) __SCREAMING_SNAKE_CASE : List[Any] = atan((1 - flattening) * tan(radians(__lowerCamelCase ) ) ) __SCREAMING_SNAKE_CASE : Optional[int] = radians(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = radians(__lowerCamelCase ) # Equation __SCREAMING_SNAKE_CASE : Union[str, Any] = sin((phi_a - phi_a) / 2 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __SCREAMING_SNAKE_CASE : List[str] = sqrt(sin_sq_phi + (cos(__lowerCamelCase ) * cos(__lowerCamelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
709
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _lowerCAmelCase ( __lowerCamelCase : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = botoa.client("iam" ) __SCREAMING_SNAKE_CASE : List[Any] = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__lowerCamelCase , AssumeRolePolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) ) __SCREAMING_SNAKE_CASE : str = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=__lowerCamelCase , PolicyName=F"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def _lowerCAmelCase ( __lowerCamelCase : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = botoa.client("iam" ) return iam_client.get_role(RoleName=__lowerCamelCase )["Role"]["Arn"] def _lowerCAmelCase ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = _ask_options( "How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , __lowerCamelCase , ) __SCREAMING_SNAKE_CASE : str = None if credentials_configuration == 0: __SCREAMING_SNAKE_CASE : List[str] = _ask_field("Enter your AWS Profile name: [default] " , default="default" ) __SCREAMING_SNAKE_CASE : Any = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) __SCREAMING_SNAKE_CASE : Dict = _ask_field("AWS Access Key ID: " ) __SCREAMING_SNAKE_CASE : Union[str, Any] = aws_access_key_id __SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_field("AWS Secret Access Key: " ) __SCREAMING_SNAKE_CASE : Optional[int] = aws_secret_access_key __SCREAMING_SNAKE_CASE : List[Any] = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1" ) __SCREAMING_SNAKE_CASE : Any = aws_region __SCREAMING_SNAKE_CASE : int = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , __lowerCamelCase , ) if role_management == 0: __SCREAMING_SNAKE_CASE : List[str] = _ask_field("Enter your IAM role name: " ) else: __SCREAMING_SNAKE_CASE : Any = "accelerate_sagemaker_execution_role" print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) __SCREAMING_SNAKE_CASE : Tuple = None if is_custom_docker_image: __SCREAMING_SNAKE_CASE : List[Any] = _ask_field("Enter your Docker image: " , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() ) __SCREAMING_SNAKE_CASE : Dict = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) __SCREAMING_SNAKE_CASE : List[Any] = None if is_sagemaker_inputs_enabled: __SCREAMING_SNAKE_CASE : List[str] = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , ) __SCREAMING_SNAKE_CASE : Dict = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) __SCREAMING_SNAKE_CASE : int = None if is_sagemaker_metrics_enabled: __SCREAMING_SNAKE_CASE : Dict = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , ) __SCREAMING_SNAKE_CASE : Any = _ask_options( "What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , ) __SCREAMING_SNAKE_CASE : Tuple = {} __SCREAMING_SNAKE_CASE : str = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) if use_dynamo: __SCREAMING_SNAKE_CASE : Optional[Any] = "dynamo_" __SCREAMING_SNAKE_CASE : Optional[Any] = _ask_options( "Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) if use_custom_options: __SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_options( "Which mode do you want to use?" , __lowerCamelCase , lambda __lowerCamelCase : TORCH_DYNAMO_MODES[int(__lowerCamelCase )] , default="default" , ) __SCREAMING_SNAKE_CASE : str = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) __SCREAMING_SNAKE_CASE : Any = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) __SCREAMING_SNAKE_CASE : Optional[int] = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: __SCREAMING_SNAKE_CASE : List[Any] = _ask_options( __lowerCamelCase , __lowerCamelCase , lambda __lowerCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__lowerCamelCase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_field(__lowerCamelCase , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , default="ml.p3.2xlarge" ) __SCREAMING_SNAKE_CASE : List[Any] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __SCREAMING_SNAKE_CASE : Any = _ask_field( "How many machines do you want use? [1]: " , __lowerCamelCase , default=1 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=__lowerCamelCase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__lowerCamelCase , use_cpu=__lowerCamelCase , dynamo_config=__lowerCamelCase , eca_instance_type=__lowerCamelCase , profile=__lowerCamelCase , region=__lowerCamelCase , iam_role_name=__lowerCamelCase , mixed_precision=__lowerCamelCase , num_machines=__lowerCamelCase , sagemaker_inputs_file=__lowerCamelCase , sagemaker_metrics_file=__lowerCamelCase , )
447
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A_ : lowerCAmelCase__ = 42 lowerCAmelCase__ = None lowerCAmelCase__ = None _lowerCAmelCase : List[str] = namedtuple('''CoinsDistribResult''', '''moves excess''') def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_lowerCamelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_lowerCamelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_lowerCamelCase ) != count_coins(_lowerCamelCase ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_lowerCamelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _lowerCamelCase, _lowerCamelCase : Dict = get_distrib(node.left ) _lowerCamelCase, _lowerCamelCase : str = get_distrib(node.right ) _lowerCamelCase : Any = 1 - left_distrib_excess _lowerCamelCase : Dict = 1 - right_distrib_excess _lowerCamelCase : Union[str, Any] = ( left_distrib_moves + right_distrib_moves + abs(_lowerCamelCase ) + abs(_lowerCamelCase ) ) _lowerCamelCase : str = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_lowerCamelCase , _lowerCamelCase ) return get_distrib(_lowerCamelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
46
from __future__ import annotations def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> int: if len(lowercase ) < k or k < 0: raise ValueError("Invalid Input" ) __snake_case : Tuple = sum(array[:k] ) for i in range(len(lowercase ) - k ): __snake_case : str = current_sum - array[i] + array[i + k] __snake_case : List[str] = max(lowercase , lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() _UpperCamelCase = [randint(-1000, 1000) for i in range(100)] _UpperCamelCase = randint(0, 110) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
243
0
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase_ : def __init__( self , lowercase_ , lowercase_=13 , lowercase_=30 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.02 , lowercase_=3 , lowercase_=None , lowercase_=2 , ): snake_case_ : Union[str, Any] = parent snake_case_ : Optional[int] = batch_size snake_case_ : Dict = image_size snake_case_ : Tuple = patch_size snake_case_ : Union[str, Any] = num_channels snake_case_ : int = is_training snake_case_ : Tuple = use_labels snake_case_ : int = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : List[str] = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Any = hidden_act snake_case_ : Optional[int] = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : str = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = scope snake_case_ : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) snake_case_ : Optional[Any] = (image_size // patch_size) ** 2 snake_case_ : Union[str, Any] = num_patches + 2 def snake_case__ ( self): snake_case_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) snake_case_ : Optional[int] = None if self.use_labels: snake_case_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) snake_case_ : Tuple = self.get_config() return config, pixel_values, labels def snake_case__ ( self): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_): snake_case_ : Tuple = DeiTModel(config=lowercase_) model.to(lowercase_) model.eval() snake_case_ : Optional[Any] = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_): snake_case_ : Union[str, Any] = DeiTForMaskedImageModeling(config=lowercase_) model.to(lowercase_) model.eval() snake_case_ : Union[str, Any] = model(lowercase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images snake_case_ : Optional[int] = 1 snake_case_ : Any = DeiTForMaskedImageModeling(lowercase_) model.to(lowercase_) model.eval() snake_case_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) snake_case_ : List[str] = model(lowercase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_): snake_case_ : Any = self.type_sequence_label_size snake_case_ : str = DeiTForImageClassification(lowercase_) model.to(lowercase_) model.eval() snake_case_ : Optional[Any] = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images snake_case_ : int = 1 snake_case_ : str = DeiTForImageClassification(lowercase_) model.to(lowercase_) model.eval() snake_case_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) snake_case_ : Optional[Any] = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def snake_case__ ( self): snake_case_ : Dict = self.prepare_config_and_inputs() ( snake_case_ ) : Any = config_and_inputs snake_case_ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ): UpperCAmelCase_ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCAmelCase_ = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def snake_case__ ( self): snake_case_ : Tuple = DeiTModelTester(self) snake_case_ : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37) def snake_case__ ( self): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds") def snake_case__ ( self): pass def snake_case__ ( self): snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : int = model_class(lowercase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) snake_case_ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear)) def snake_case__ ( self): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(lowercase_) snake_case_ : Optional[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : List[str] = [*signature.parameters.keys()] snake_case_ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_) def snake_case__ ( self): snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def snake_case__ ( self): snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_) def snake_case__ ( self): snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_=False): snake_case_ : List[Any] = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case__ ( self): if not self.model_tester.is_training: return snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : List[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase_) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue snake_case_ : Tuple = model_class(lowercase_) model.to(lowercase_) model.train() snake_case_ : List[Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) snake_case_ : Optional[int] = model(**lowercase_).loss loss.backward() def snake_case__ ( self): snake_case_ : str = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case_ : List[Any] = False snake_case_ : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(lowercase_) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue snake_case_ : int = model_class(lowercase_) model.gradient_checkpointing_enable() model.to(lowercase_) model.train() snake_case_ : int = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) snake_case_ : Union[str, Any] = model(**lowercase_).loss loss.backward() def snake_case__ ( self): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase_), *get_values(lowercase_), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}'): snake_case_ : Optional[int] = problem_type["title"] snake_case_ : List[Any] = problem_type["num_labels"] snake_case_ : List[Any] = model_class(lowercase_) model.to(lowercase_) model.train() snake_case_ : Dict = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if problem_type["num_labels"] > 1: snake_case_ : str = inputs["labels"].unsqueeze(1).repeat(1 , problem_type["num_labels"]) snake_case_ : List[str] = inputs["labels"].to(problem_type["dtype"]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase_) as warning_list: snake_case_ : Union[str, Any] = model(**lowercase_).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}') loss.backward() @slow def snake_case__ ( self): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[int] = DeiTModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def UpperCamelCase_ ( ): """simple docstring""" snake_case_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case__ ( self): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") if is_vision_available() else None ) @slow def snake_case__ ( self): snake_case_ : int = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224").to( lowercase_) snake_case_ : Dict = self.default_image_processor snake_case_ : Optional[Any] = prepare_img() snake_case_ : Optional[Any] = image_processor(images=lowercase_ , return_tensors="pt").to(lowercase_) # forward pass with torch.no_grad(): snake_case_ : Any = model(**lowercase_) # verify the logits snake_case_ : int = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , lowercase_) snake_case_ : Optional[int] = torch.tensor([-1.0_266, 0.1_912, -1.2_861]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def snake_case__ ( self): snake_case_ : Any = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto") snake_case_ : List[str] = self.default_image_processor snake_case_ : Dict = prepare_img() snake_case_ : List[Any] = image_processor(images=lowercase_ , return_tensors="pt") snake_case_ : List[Any] = inputs.pixel_values.to(lowercase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case_ : Optional[Any] = model(lowercase_)
716
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : List[Any] = 0.00 snake_case_ : int = 0 for resistor in resistors: if resistor <= 0: snake_case_ : Dict = f'Resistor at index {index} has a negative or zero value!' raise ValueError(__SCREAMING_SNAKE_CASE ) first_sum += 1 / float(__SCREAMING_SNAKE_CASE ) index += 1 return 1 / first_sum def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Union[str, Any] = 0.00 snake_case_ : List[Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: snake_case_ : str = f'Resistor at index {index} has a negative value!' raise ValueError(__SCREAMING_SNAKE_CASE ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
92
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase : str = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def __init__( self: Tuple , UpperCamelCase: Dict , UpperCamelCase: List[str]=7 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: Dict=18 , UpperCamelCase: Any=30 , UpperCamelCase: List[str]=4_00 , UpperCamelCase: List[Any]=None , UpperCamelCase: List[Any]=True , UpperCamelCase: int=True , UpperCamelCase: Union[str, Any]=None , ) -> int: snake_case__ = size if size is not None else {'height': 20, 'width': 20} snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = image_size snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = size snake_case__ = do_normalize snake_case__ = do_convert_rgb snake_case__ = [5_12, 10_24, 20_48, 40_96] snake_case__ = patch_size if patch_size is not None else {'height': 16, 'width': 16} def lowerCAmelCase_ ( self: List[str] ) -> Dict: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCAmelCase_ ( self: Any ) -> Union[str, Any]: snake_case__ = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' snake_case__ = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self: Optional[int] ) -> Union[str, Any]: snake_case__ = PixaStructImageProcessingTester(self ) @property def lowerCAmelCase_ ( self: int ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self: Any ) -> Tuple: snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_convert_rgb' ) ) def lowerCAmelCase_ ( self: List[Any] ) -> str: snake_case__ = self.image_processor_tester.prepare_dummy_image() snake_case__ = self.image_processing_class(**self.image_processor_dict ) snake_case__ = 20_48 snake_case__ = image_processor(UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_606 ) , atol=1e-3 , rtol=1e-3 ) ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[Any]: snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input snake_case__ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case__ = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase_ ( self: Any ) -> Union[str, Any]: snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input snake_case__ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 snake_case__ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(UpperCamelCase ): snake_case__ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches snake_case__ = 'Hello' snake_case__ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase , header_text=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case__ = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase , header_text=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[int]: snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) snake_case__ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case__ = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase_ ( self: int ) -> str: snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input snake_case__ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case__ = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self: Any ) -> Any: snake_case__ = PixaStructImageProcessingTester(self , num_channels=4 ) snake_case__ = 3 @property def lowerCAmelCase_ ( self: List[str] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self: Dict ) -> Dict: snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_convert_rgb' ) ) def lowerCAmelCase_ ( self: int ) -> Any: snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input snake_case__ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case__ = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
328
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() a_ : Optional[Any] = logging.get_logger("""transformers.models.encodec""") a_ : List[str] = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } a_ : Optional[int] = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } a_ : Tuple = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } a_ : Union[str, Any] = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } a_ : Union[str, Any] = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } a_ : Optional[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } a_ : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } a_ : Any = [] a_ : str = [] def __snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ): for attribute in key.split("." ): lowerCamelCase_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: lowerCamelCase_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: lowerCamelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase_ = value elif weight_type == "weight_g": lowerCamelCase_ = value elif weight_type == "weight_v": lowerCamelCase_ = value elif weight_type == "bias": lowerCamelCase_ = value elif weight_type == "running_mean": lowerCamelCase_ = value elif weight_type == "running_var": lowerCamelCase_ = value elif weight_type == "num_batches_tracked": lowerCamelCase_ = value elif weight_type == "weight_ih_l0": lowerCamelCase_ = value elif weight_type == "weight_hh_l0": lowerCamelCase_ = value elif weight_type == "bias_ih_l0": lowerCamelCase_ = value elif weight_type == "bias_hh_l0": lowerCamelCase_ = value elif weight_type == "weight_ih_l1": lowerCamelCase_ = value elif weight_type == "weight_hh_l1": lowerCamelCase_ = value elif weight_type == "bias_ih_l1": lowerCamelCase_ = value elif weight_type == "bias_hh_l1": lowerCamelCase_ = value else: lowerCamelCase_ = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def __snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCamelCase_ ,lowerCamelCase_ = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ): lowerCamelCase_ = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCamelCase_ = MAPPING_24K elif model_name == "encodec_48khz": lowerCamelCase_ = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(UpperCAmelCase_ , UpperCAmelCase_ ): logger.info(F'''{name} was ignored''' ) continue lowerCamelCase_ = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCamelCase_ ,lowerCamelCase_ = key.split(".*." ) if prefix in name and suffix in name: lowerCamelCase_ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue lowerCamelCase_ = True if "*" in mapped_key: lowerCamelCase_ = name.split(UpperCAmelCase_ )[0].split("." )[-2] lowerCamelCase_ = mapped_key.replace("*" , UpperCAmelCase_ ) if "weight_g" in name: lowerCamelCase_ = "weight_g" elif "weight_v" in name: lowerCamelCase_ = "weight_v" elif "weight_ih_l0" in name: lowerCamelCase_ = "weight_ih_l0" elif "weight_hh_l0" in name: lowerCamelCase_ = "weight_hh_l0" elif "bias_ih_l0" in name: lowerCamelCase_ = "bias_ih_l0" elif "bias_hh_l0" in name: lowerCamelCase_ = "bias_hh_l0" elif "weight_ih_l1" in name: lowerCamelCase_ = "weight_ih_l1" elif "weight_hh_l1" in name: lowerCamelCase_ = "weight_hh_l1" elif "bias_ih_l1" in name: lowerCamelCase_ = "bias_ih_l1" elif "bias_hh_l1" in name: lowerCamelCase_ = "bias_hh_l1" elif "bias" in name: lowerCamelCase_ = "bias" elif "weight" in name: lowerCamelCase_ = "weight" elif "running_mean" in name: lowerCamelCase_ = "running_mean" elif "running_var" in name: lowerCamelCase_ = "running_var" elif "num_batches_tracked" in name: lowerCamelCase_ = "num_batches_tracked" else: lowerCamelCase_ = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def __snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , ): if config_path is not None: lowerCamelCase_ = EncodecConfig.from_pretrained(UpperCAmelCase_ ) else: lowerCamelCase_ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCamelCase_ = [8, 5, 4, 4] lowerCamelCase_ = [2.2] lowerCamelCase_ = 64 lowerCamelCase_ = 32000 lowerCamelCase_ = 2048 lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False elif model_name == "encodec_48khz": lowerCamelCase_ = [8, 5, 4, 2] lowerCamelCase_ = [3.0, 6.0, 12.0, 24.0] lowerCamelCase_ = 48000 lowerCamelCase_ = 2 lowerCamelCase_ = False lowerCamelCase_ = "time_group_norm" lowerCamelCase_ = True lowerCamelCase_ = 1.0 lowerCamelCase_ = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) lowerCamelCase_ = EncodecModel(UpperCAmelCase_ ) lowerCamelCase_ = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(UpperCAmelCase_ ) lowerCamelCase_ = torch.load(UpperCAmelCase_ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCamelCase_ = original_checkpoint["best_state"] recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(UpperCAmelCase_ ) model.push_to_hub(UpperCAmelCase_ ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) a_ : str = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
675
0
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets a_ = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' a_ = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' a_ = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __magic_name__ ( self : Optional[int] ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def __magic_name__ ( self : int , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ : int =0.0 for i, j in zip(__lowercase , __lowercase ): n_correct += 1.0 if math_equivalence.is_equiv(__lowercase , __lowercase ) else 0.0 SCREAMING_SNAKE_CASE__ : str =n_correct / len(__lowercase ) return { "accuracy": accuracy, }
665
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
665
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Tuple: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) _UpperCAmelCase = torch.permute(__snake_case , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__snake_case ): # linear layer _UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) _UpperCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> List[str]: if "metadata" in layer: _UpperCAmelCase = layer.split("""metadata""" ) _UpperCAmelCase = """""".join(split_layer[0] )[:-1] _UpperCAmelCase = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: _UpperCAmelCase = layer.split("""kvstore""" ) _UpperCAmelCase = """""".join(split_layer[0] )[:-1] _UpperCAmelCase = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: _UpperCAmelCase = layer.split("""/""" ) _UpperCAmelCase = """/""".join(split_layer[:-1] ) _UpperCAmelCase = (split_layer[-1],) if "kvstore/path" in layer: _UpperCAmelCase = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: _UpperCAmelCase = """file""" else: _UpperCAmelCase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Optional[Any]: _UpperCAmelCase = rename_keys(__snake_case ) _UpperCAmelCase = {} for k, v in current_block.items(): _UpperCAmelCase = v _UpperCAmelCase = new_current_block torch.save(__snake_case , __snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = WEIGHTS_NAME ) -> Any: _UpperCAmelCase = convert_file_size_to_int(__snake_case ) _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 os.makedirs(__snake_case , exist_ok=__snake_case ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: _UpperCAmelCase = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] _UpperCAmelCase = flatten_dict(__snake_case , sep="""/""" ) _UpperCAmelCase = {} for layer in checkpoint_info.keys(): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = get_key_and_tensorstore_dict( __snake_case , __snake_case , __snake_case ) if curr_real_layer_name in all_layers: _UpperCAmelCase = content else: _UpperCAmelCase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _UpperCAmelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _UpperCAmelCase = torch.tensor(__snake_case ) _UpperCAmelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _UpperCAmelCase , _UpperCAmelCase = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __snake_case ) _UpperCAmelCase = """/""".join(__snake_case ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _UpperCAmelCase = os.path.join( __snake_case , weights_name.replace(""".bin""" , f"""-{len(__snake_case )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__snake_case , __snake_case ) sharded_state_dicts.append(current_block.keys() ) del current_block _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = raw_weights.to(getattr(__snake_case , __snake_case ) ) current_block_size += weight_size total_size += weight_size # Add the last block _UpperCAmelCase = os.path.join(__snake_case , weights_name.replace(""".bin""" , f"""-{len(__snake_case )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__snake_case , __snake_case ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__snake_case ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _UpperCAmelCase = {} _UpperCAmelCase = {} for idx, shard in enumerate(__snake_case ): _UpperCAmelCase = weights_name.replace( """.bin""" , f"""-{idx+1:05d}-of-{len(__snake_case ):05d}.bin""" ) # len(sharded_state_dicts):05d} _UpperCAmelCase = os.path.join(__snake_case , weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) _UpperCAmelCase = shard for key in shard: _UpperCAmelCase = shard_file # Add the metadata _UpperCAmelCase = {"""total_size""": total_size} _UpperCAmelCase = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__snake_case , __snake_case ) , """w""" , encoding="""utf-8""" ) as f: _UpperCAmelCase = json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + """\n""" f.write(__snake_case ) return metadata, index if __name__ == "__main__": __a: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) __a: int = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _UpperCAmelCase = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) _UpperCAmelCase = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) _UpperCAmelCase = TaTokenizer.from_pretrained("""t5-small""" ) _UpperCAmelCase = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" _UpperCAmelCase = tokenizer(__snake_case , return_tensors="""pt""" ).input_ids _UpperCAmelCase = model.generate(__snake_case , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
108
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __magic_name__ = logging.get_logger(__name__) def _lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' a__ = os.getenv('SM_HP_MP_PARAMETERS','{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. a__ = json.loads(UpperCAmelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. a__ = os.getenv('SM_FRAMEWORK_PARAMS','{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". a__ = json.loads(UpperCAmelCase__ ) if not mpi_options.get('sagemaker_mpi_enabled',UpperCAmelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class SCREAMING_SNAKE_CASE ( a ): """simple docstring""" a_ : str =field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , _snake_case , ) @cached_property def _lowerCAmelCase ( self : Optional[Any] ) -> "torch.device": '''simple docstring''' logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: a__ = torch.device('cpu' ) a__ = 0 elif is_sagemaker_model_parallel_available(): a__ = smp.local_rank() a__ = torch.device('cuda' , _snake_case ) a__ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) a__ = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) a__ = torch.device('cuda' , self.local_rank ) a__ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 a__ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. a__ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) a__ = torch.device('cuda' , self.local_rank ) a__ = 1 if device.type == "cuda": torch.cuda.set_device(_snake_case ) return device @property def _lowerCAmelCase ( self : str ) -> Tuple: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def _lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' return False
232
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase (_UpperCAmelCase ): """simple docstring""" lowerCamelCase__ = ['''input_features'''] def __init__( self : Dict , __magic_name__ : str=80 , __magic_name__ : List[Any]=16_000 , __magic_name__ : Optional[int]=160 , __magic_name__ : List[Any]=30 , __magic_name__ : Dict=400 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Optional[Any]=False , **__magic_name__ : Tuple , ) -> int: super().__init__( feature_size=lowercase__ , sampling_rate=lowercase__ , padding_value=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) SCREAMING_SNAKE_CASE_ = n_fft SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = chunk_length SCREAMING_SNAKE_CASE_ = chunk_length * sampling_rate SCREAMING_SNAKE_CASE_ = self.n_samples // hop_length SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowercase__ , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=lowercase__ , norm="slaney" , mel_scale="slaney" , ) def __A ( self : Optional[Any] , __magic_name__ : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = spectrogram( lowercase__ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) SCREAMING_SNAKE_CASE_ = log_spec[:, :-1] SCREAMING_SNAKE_CASE_ = np.maximum(lowercase__ , log_spec.max() - 8.0 ) SCREAMING_SNAKE_CASE_ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __A ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] = 0.0 ) -> List[Any]: if attention_mask is not None: SCREAMING_SNAKE_CASE_ = np.array(lowercase__ , np.intaa ) SCREAMING_SNAKE_CASE_ = [] for vector, length in zip(lowercase__ , attention_mask.sum(-1 ) ): SCREAMING_SNAKE_CASE_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: SCREAMING_SNAKE_CASE_ = padding_value normed_input_values.append(lowercase__ ) else: SCREAMING_SNAKE_CASE_ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] = True , __magic_name__ : Any = None , __magic_name__ : List[str] = None , __magic_name__ : Optional[Any] = None , __magic_name__ : Any = "max_length" , __magic_name__ : List[str] = None , __magic_name__ : Optional[Any] = None , __magic_name__ : Optional[int] = None , **__magic_name__ : Tuple , ) -> Tuple: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) SCREAMING_SNAKE_CASE_ = isinstance(lowercase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(lowercase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowercase__ , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(lowercase__ , dtype=np.floataa ) elif isinstance(lowercase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray([raw_speech] ).T] SCREAMING_SNAKE_CASE_ = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding SCREAMING_SNAKE_CASE_ = self.pad( lowercase__ , padding=lowercase__ , max_length=max_length if max_length else self.n_samples , truncation=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: SCREAMING_SNAKE_CASE_ = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) SCREAMING_SNAKE_CASE_ = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format SCREAMING_SNAKE_CASE_ = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) SCREAMING_SNAKE_CASE_ = [self._np_extract_fbank_features(lowercase__ ) for waveform in input_features[0]] if isinstance(input_features[0] , lowercase__ ): SCREAMING_SNAKE_CASE_ = [np.asarray(lowercase__ , dtype=np.floataa ) for feature in input_features] else: SCREAMING_SNAKE_CASE_ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) SCREAMING_SNAKE_CASE_ = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: SCREAMING_SNAKE_CASE_ = padded_inputs.convert_to_tensors(lowercase__ ) return padded_inputs def __A ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
702
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A : str = logging.getLogger(__name__) @dataclass class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''whether to use adafactor'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) lowerCamelCase__ = field( default='''linear''' , metadata={'''help''': f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
356
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : torch.FloatTensor class a ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , snake_case_ = 3 , snake_case_ = 3 , snake_case_ = ("DownEncoderBlock2D",) , snake_case_ = ("UpDecoderBlock2D",) , snake_case_ = (64,) , snake_case_ = 1 , snake_case_ = "silu" , snake_case_ = 3 , snake_case_ = 32 , snake_case_ = 256 , snake_case_ = 32 , snake_case_ = None , snake_case_ = 0.1_82_15 , snake_case_ = "group" , ) -> Optional[Any]: super().__init__() # pass init params to Encoder _UpperCAmelCase = Encoder( in_channels=snake_case_ , out_channels=snake_case_ , down_block_types=snake_case_ , block_out_channels=snake_case_ , layers_per_block=snake_case_ , act_fn=snake_case_ , norm_num_groups=snake_case_ , double_z=snake_case_ , ) _UpperCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels _UpperCAmelCase = nn.Convad(snake_case_ , snake_case_ , 1 ) _UpperCAmelCase = VectorQuantizer(snake_case_ , snake_case_ , beta=0.25 , remap=snake_case_ , sane_index_shape=snake_case_ ) _UpperCAmelCase = nn.Convad(snake_case_ , snake_case_ , 1 ) # pass init params to Decoder _UpperCAmelCase = Decoder( in_channels=snake_case_ , out_channels=snake_case_ , up_block_types=snake_case_ , block_out_channels=snake_case_ , layers_per_block=snake_case_ , act_fn=snake_case_ , norm_num_groups=snake_case_ , norm_type=snake_case_ , ) @apply_forward_hook def __A ( self , snake_case_ , snake_case_ = True ) -> VQEncoderOutput: _UpperCAmelCase = self.encoder(snake_case_ ) _UpperCAmelCase = self.quant_conv(snake_case_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=snake_case_ ) @apply_forward_hook def __A ( self , snake_case_ , snake_case_ = False , snake_case_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.quantize(snake_case_ ) else: _UpperCAmelCase = h _UpperCAmelCase = self.post_quant_conv(snake_case_ ) _UpperCAmelCase = self.decoder(snake_case_ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case_ ) def __A ( self , snake_case_ , snake_case_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: _UpperCAmelCase = sample _UpperCAmelCase = self.encode(snake_case_ ).latents _UpperCAmelCase = self.decode(snake_case_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case_ )
426
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A__ ( A__ , A__ ) -> Optional[int]: '''simple docstring''' assert isinstance(A__ , A__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A__ ( A__ , A__ , A__ ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader(A__ , cache_dir=A__ , keep_in_memory=A__ ).read() _check_json_dataset(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def A__ ( A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(A__ , features=A__ , cache_dir=A__ ).read() _check_json_dataset(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] , ) def A__ ( A__ , A__ , A__ ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_3": "float64", "col_1": "string", "col_2": "int64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(A__ , features=A__ , cache_dir=A__ ).read() assert isinstance(A__ , A__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def A__ ( A__ , A__ ) -> List[str]: '''simple docstring''' _UpperCAmelCase = {"col_2": "int64", "col_3": "float64", "col_1": "string"} _UpperCAmelCase = features.copy() _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = JsonDatasetReader(A__ , features=A__ , cache_dir=A__ ).read() assert isinstance(A__ , A__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A__ ( A__ , A__ , A__ ) -> str: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = JsonDatasetReader(A__ , cache_dir=A__ , split=A__ ).read() _check_json_dataset(A__ , A__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def A__ ( A__ , A__ , A__ ) -> Dict: '''simple docstring''' if issubclass(A__ , A__ ): _UpperCAmelCase = jsonl_path elif issubclass(A__ , A__ ): _UpperCAmelCase = [jsonl_path] _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = JsonDatasetReader(A__ , cache_dir=A__ ).read() _check_json_dataset(A__ , A__ ) def A__ ( A__ , A__ , A__=("train",) ) -> List[str]: '''simple docstring''' assert isinstance(A__ , A__ ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A__ ( A__ , A__ , A__ ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader({"train": jsonl_path} , cache_dir=A__ , keep_in_memory=A__ ).read() _check_json_datasetdict(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def A__ ( A__ , A__ , A__ ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader({"train": jsonl_path} , features=A__ , cache_dir=A__ ).read() _check_json_datasetdict(A__ , A__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A__ ( A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' if split: _UpperCAmelCase = {split: jsonl_path} else: _UpperCAmelCase = "train" _UpperCAmelCase = {"train": jsonl_path, "test": jsonl_path} _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = JsonDatasetReader(A__ , cache_dir=A__ ).read() _check_json_datasetdict(A__ , A__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A__ ( A__ ) -> List[Any]: '''simple docstring''' return json.load(A__ ) def A__ ( A__ ) -> int: '''simple docstring''' return [json.loads(A__ ) for line in buffer] class a : """simple docstring""" @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def __A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(snake_case_ ) assert isinstance(snake_case_ , snake_case_ ) assert isinstance(exported_content[0] , snake_case_ ) assert len(snake_case_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ , orient=snake_case_ ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(snake_case_ ) assert isinstance(snake_case_ , snake_case_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(snake_case_ ) == 10 @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def __A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(snake_case_ ) assert isinstance(snake_case_ , snake_case_ ) assert isinstance(exported_content[0] , snake_case_ ) assert len(snake_case_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ , orient=snake_case_ , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(snake_case_ ) assert isinstance(snake_case_ , snake_case_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(snake_case_ ) == 10 def __A ( self , snake_case_ ) -> Any: with pytest.raises(snake_case_ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , num_proc=0 ) @pytest.mark.parametrize("compression, extension" , [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: _UpperCAmelCase = tmp_path_factory.mktemp("data" ) / F"""test.json.{extension}""" _UpperCAmelCase = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(snake_case_ , snake_case_ , compression=snake_case_ ).write() with fsspec.open(snake_case_ , "rb" , compression="infer" ) as f: _UpperCAmelCase = f.read() with fsspec.open(snake_case_ , "rb" , compression="infer" ) as f: _UpperCAmelCase = f.read() assert exported_content == original_content
426
1
import sys _lowerCamelCase : Optional[Any] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def _UpperCAmelCase (UpperCamelCase_ : str = N ): '''simple docstring''' _lowerCAmelCase : List[str] = -sys.maxsize - 1 for i in range(len(UpperCamelCase_ ) - 12 ): _lowerCAmelCase : List[str] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _lowerCAmelCase : Any = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
196
def _UpperCAmelCase (UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : List[str] = [int(UpperCamelCase_ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(UpperCamelCase_ ) == 4 and all(0 <= int(UpperCamelCase_ ) <= 254 for octet in octets ) if __name__ == "__main__": _lowerCamelCase : List[str] = input().strip() _lowerCamelCase : int = "valid" if is_ip_va_address_valid(ip) else "invalid" print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
196
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ : Dict ={ "configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"], "tokenization_mvp": ["MvpTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[Any] =["MvpTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Tuple =[ "MVP_PRETRAINED_MODEL_ARCHIVE_LIST", "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowerCAmelCase__ : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
101
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __lowercase : str = "pt" elif is_tf_available(): __lowercase : str = "tf" else: __lowercase : Dict = "jax" class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = PerceiverTokenizer UpperCamelCase_ : str = False def lowercase ( self : Any ) -> str: super().setUp() __snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self : Tuple ) -> Dict: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def lowercase ( self : str , **A_ : Any ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def lowercase ( self : Union[str, Any] , A_ : Tuple , A_ : List[str]=False , A_ : List[Any]=20 , A_ : Union[str, Any]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case = [] for i in range(len(A_ ) ): try: __snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=A_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case = list(filter(lambda A_ : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , A_ ) ) __snake_case = list(filter(lambda A_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=A_ ) , A_ ) ) if max_length is not None and len(A_ ) > max_length: __snake_case = toks[:max_length] if min_length is not None and len(A_ ) < min_length and len(A_ ) > 0: while len(A_ ) < min_length: __snake_case = toks + toks # toks_str = [t[1] for t in toks] __snake_case = [t[0] for t in toks] # Ensure consistency __snake_case = tokenizer.decode(A_ , clean_up_tokenization_spaces=A_ ) if " " not in output_txt and len(A_ ) > 1: __snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=A_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=A_ ) ) if with_prefix_space: __snake_case = ''' ''' + output_txt __snake_case = tokenizer.encode(A_ , add_special_tokens=A_ ) return output_txt, output_ids def lowercase ( self : Optional[int] ) -> List[Any]: __snake_case = self.perceiver_tokenizer __snake_case = '''Unicode €.''' __snake_case = tokenizer(A_ ) __snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , A_ ) # decoding __snake_case = tokenizer.decode(A_ ) self.assertEqual(A_ , '''[CLS]Unicode €.[SEP]''' ) __snake_case = tokenizer('''e è é ê ë''' ) __snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , A_ ) # decoding __snake_case = tokenizer.decode(A_ ) self.assertEqual(A_ , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def lowercase ( self : str ) -> int: __snake_case = self.perceiver_tokenizer __snake_case = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case = tokenizer(A_ , padding=A_ , return_tensors=A_ ) self.assertIsInstance(A_ , A_ ) if FRAMEWORK != "jax": __snake_case = list(batch.input_ids.numpy()[0] ) else: __snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(A_ , A_ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase ( self : Dict ) -> Union[str, Any]: __snake_case = self.perceiver_tokenizer __snake_case = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __snake_case = tokenizer(A_ , padding=A_ , return_tensors=A_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , A_ ) self.assertIn('''attention_mask''' , A_ ) self.assertNotIn('''decoder_input_ids''' , A_ ) self.assertNotIn('''decoder_attention_mask''' , A_ ) def lowercase ( self : List[str] ) -> str: __snake_case = self.perceiver_tokenizer __snake_case = [ '''Summary of the text.''', '''Another summary.''', ] __snake_case = tokenizer( text_target=A_ , max_length=32 , padding='''max_length''' , truncation=A_ , return_tensors=A_ ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: # safety check on max_len default value so we are sure the test works __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case = tempfile.mkdtemp() __snake_case = ''' He is very happy, UNwant\u00E9d,running''' __snake_case = tokenizer.encode(A_ , add_special_tokens=A_ ) tokenizer.save_pretrained(A_ ) __snake_case = tokenizer.__class__.from_pretrained(A_ ) __snake_case = after_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) shutil.rmtree(A_ ) __snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case = tempfile.mkdtemp() __snake_case = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __snake_case = tokenizer.encode(A_ , add_special_tokens=A_ ) tokenizer.save_pretrained(A_ ) __snake_case = tokenizer.__class__.from_pretrained(A_ ) __snake_case = after_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case = tokenizer.__class__.from_pretrained(A_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(A_ ) def lowercase ( self : Optional[Any] ) -> str: __snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A_ ) with open(os.path.join(A_ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __snake_case = json.load(A_ ) with open(os.path.join(A_ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __snake_case = json.load(A_ ) __snake_case = [f"<extra_id_{i}>" for i in range(125 )] __snake_case = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __snake_case = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(A_ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(A_ , A_ ) with open(os.path.join(A_ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(A_ , A_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case = tokenizer_class.from_pretrained( A_ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=A_ )] __snake_case = tokenizer_class.from_pretrained( A_ , additional_special_tokens=A_ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def lowercase ( self : int ) -> Optional[int]: __snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def lowercase ( self : Dict ) -> List[Any]: pass def lowercase ( self : Tuple ) -> Dict: pass def lowercase ( self : Optional[int] ) -> List[str]: pass def lowercase ( self : int ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case = self.get_tokenizers(fast=A_ , do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __snake_case = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] __snake_case = tokenizer.convert_tokens_to_string(A_ ) self.assertIsInstance(A_ , A_ )
564
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["YolosFeatureExtractor"] UpperCAmelCase_ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
490
'''simple docstring''' def SCREAMING_SNAKE_CASE ( a_ : str ): __a = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def SCREAMING_SNAKE_CASE ( a_ : str ): __a = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __a = remove_duplicates(key.upper() ) __a = len(a_ ) # First fill cipher with key characters __a = {alphabet[i]: char for i, char in enumerate(a_ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(a_ ) , 26 ): __a = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __a = alphabet[i - offset] __a = char return cipher_alphabet def SCREAMING_SNAKE_CASE ( a_ : str , a_ : dict[str, str] ): return "".join(cipher_map.get(a_ , a_ ) for ch in message.upper() ) def SCREAMING_SNAKE_CASE ( a_ : str , a_ : dict[str, str] ): __a = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(a_ , a_ ) for ch in message.upper() ) def SCREAMING_SNAKE_CASE ( ): __a = input('Enter message to encode or decode: ' ).strip() __a = input('Enter keyword: ' ).strip() __a = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: __a = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) __a = create_cipher_map(a_ ) print(func(a_ , a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
490
1
def snake_case (UpperCAmelCase__ ) -> List[str]: if len(__snake_case ) <= 1: return lst UpperCamelCase_: Union[str, Any] = 1 while i < len(__snake_case ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCamelCase_: Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCamelCase_: str = 1 return lst if __name__ == "__main__": A_ : Optional[int] = input('Enter numbers separated by a comma:\n').strip() A_ : Optional[int] = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
57
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( A__ ): '''simple docstring''' def __init__( self : Optional[int] ): UpperCAmelCase_ :int = [] def snake_case_ ( self : Tuple , snake_case : Dict , snake_case : Optional[int] , snake_case : Union[str, Any] , **snake_case : Optional[Any] ): self.events.append('''on_init_end''' ) def snake_case_ ( self : Optional[Any] , snake_case : List[Any] , snake_case : int , snake_case : int , **snake_case : Dict ): self.events.append('''on_train_begin''' ) def snake_case_ ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , **snake_case : Any ): self.events.append('''on_train_end''' ) def snake_case_ ( self : Tuple , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Union[str, Any] , **snake_case : Optional[int] ): self.events.append('''on_epoch_begin''' ) def snake_case_ ( self : Optional[int] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , **snake_case : Optional[int] ): self.events.append('''on_epoch_end''' ) def snake_case_ ( self : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Union[str, Any] , **snake_case : Optional[int] ): self.events.append('''on_step_begin''' ) def snake_case_ ( self : int , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Any , **snake_case : str ): self.events.append('''on_step_end''' ) def snake_case_ ( self : Union[str, Any] , snake_case : List[str] , snake_case : Any , snake_case : List[Any] , **snake_case : str ): self.events.append('''on_evaluate''' ) def snake_case_ ( self : List[Any] , snake_case : str , snake_case : List[str] , snake_case : List[Any] , **snake_case : Dict ): self.events.append('''on_predict''' ) def snake_case_ ( self : Optional[int] , snake_case : Any , snake_case : int , snake_case : Tuple , **snake_case : int ): self.events.append('''on_save''' ) def snake_case_ ( self : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Any , **snake_case : Tuple ): self.events.append('''on_log''' ) def snake_case_ ( self : Optional[int] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : List[str] , **snake_case : Optional[Any] ): self.events.append('''on_prediction_step''' ) @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self : Optional[Any] ): UpperCAmelCase_ :Any = tempfile.mkdtemp() def snake_case_ ( self : Optional[Any] ): shutil.rmtree(self.output_dir ) def snake_case_ ( self : Optional[Any] , snake_case : Tuple=0 , snake_case : Union[str, Any]=0 , snake_case : Optional[int]=64 , snake_case : Dict=64 , snake_case : Optional[Any]=None , snake_case : List[Any]=False , **snake_case : str ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. UpperCAmelCase_ :str = RegressionDataset(length=snake_case ) UpperCAmelCase_ :Optional[Any] = RegressionDataset(length=snake_case ) UpperCAmelCase_ :List[Any] = RegressionModelConfig(a=snake_case , b=snake_case ) UpperCAmelCase_ :str = RegressionPreTrainedModel(snake_case ) UpperCAmelCase_ :Optional[int] = TrainingArguments(self.output_dir , disable_tqdm=snake_case , report_to=[] , **snake_case ) return Trainer( snake_case , snake_case , train_dataset=snake_case , eval_dataset=snake_case , callbacks=snake_case , ) def snake_case_ ( self : str , snake_case : Tuple , snake_case : List[Any] ): self.assertEqual(len(snake_case ) , len(snake_case ) ) # Order doesn't matter UpperCAmelCase_ :Dict = sorted(snake_case , key=lambda snake_case : cb.__name__ if isinstance(snake_case , snake_case ) else cb.__class__.__name__ ) UpperCAmelCase_ :Union[str, Any] = sorted(snake_case , key=lambda snake_case : cb.__name__ if isinstance(snake_case , snake_case ) else cb.__class__.__name__ ) for cba, cba in zip(snake_case , snake_case ): if isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): self.assertEqual(snake_case , snake_case ) elif isinstance(snake_case , snake_case ) and not isinstance(snake_case , snake_case ): self.assertEqual(snake_case , cba.__class__ ) elif not isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): self.assertEqual(cba.__class__ , snake_case ) else: self.assertEqual(snake_case , snake_case ) def snake_case_ ( self : Any , snake_case : Dict ): UpperCAmelCase_ :List[Any] = ['''on_init_end''', '''on_train_begin'''] UpperCAmelCase_ :Dict = 0 UpperCAmelCase_ :Tuple = len(trainer.get_eval_dataloader() ) UpperCAmelCase_ :Dict = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(snake_case ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def snake_case_ ( self : int ): UpperCAmelCase_ :Dict = self.get_trainer() UpperCAmelCase_ :int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # Callbacks passed at init are added to the default callbacks UpperCAmelCase_ :Any = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback UpperCAmelCase_ :Union[str, Any] = self.get_trainer(disable_tqdm=snake_case ) UpperCAmelCase_ :Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) def snake_case_ ( self : List[str] ): UpperCAmelCase_ :List[Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] UpperCAmelCase_ :int = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(snake_case ) expected_callbacks.remove(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) UpperCAmelCase_ :Optional[int] = self.get_trainer() UpperCAmelCase_ :Dict = trainer.pop_callback(snake_case ) self.assertEqual(cb.__class__ , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) trainer.add_callback(snake_case ) expected_callbacks.insert(0 , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # We can also add, pop, or remove by instance UpperCAmelCase_ :List[Any] = self.get_trainer() UpperCAmelCase_ :Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(snake_case ) expected_callbacks.remove(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) UpperCAmelCase_ :Dict = self.get_trainer() UpperCAmelCase_ :int = trainer.callback_handler.callbacks[0] UpperCAmelCase_ :List[str] = trainer.pop_callback(snake_case ) self.assertEqual(snake_case , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) trainer.add_callback(snake_case ) expected_callbacks.insert(0 , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) def snake_case_ ( self : Tuple ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' , category=snake_case ) UpperCAmelCase_ :Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() UpperCAmelCase_ :int = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # Independent log/save/eval UpperCAmelCase_ :Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() UpperCAmelCase_ :Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) UpperCAmelCase_ :Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() UpperCAmelCase_ :List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) UpperCAmelCase_ :Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' ) trainer.train() UpperCAmelCase_ :List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) UpperCAmelCase_ :Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' ) trainer.train() UpperCAmelCase_ :Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # A bit of everything UpperCAmelCase_ :List[str] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , ) trainer.train() UpperCAmelCase_ :Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: UpperCAmelCase_ :str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(snake_case ) in warn_mock.call_args[0][0]
608
0
def _UpperCamelCase ( lowercase__ = 10 , lowercase__ = 22 ): __SCREAMING_SNAKE_CASE : Optional[int] = range(1 , lowercase__ ) __SCREAMING_SNAKE_CASE : int = range(1 , lowercase__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"""{solution(1_0, 2_2) = }""")
717
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[Any]=None , **lowerCAmelCase__ :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = parent __SCREAMING_SNAKE_CASE : Union[str, Any] = config_class __SCREAMING_SNAKE_CASE : List[str] = has_text_modality __SCREAMING_SNAKE_CASE : int = kwargs __SCREAMING_SNAKE_CASE : List[Any] = common_properties def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : int = self.config_class(**self.inputs_dict ) __SCREAMING_SNAKE_CASE : str = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(lowerCAmelCase__ ): try: setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.parent.assertEqual( getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , msg=f'''`{name} value {idx} expected, but was {getattr(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : int = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , msg=f'''`{name} value {idx} expected, but was {getattr(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = self.config_class(**self.inputs_dict ) __SCREAMING_SNAKE_CASE : str = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : List[str] = os.path.join(lowerCAmelCase__ , '''config.json''' ) config_first.to_json_file(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.config_class.from_json_file(lowerCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.config_class.from_pretrained(lowerCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __magic_name__( self :Optional[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = self.config_class(**self.inputs_dict ) __SCREAMING_SNAKE_CASE : int = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : List[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) config_first.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = self.config_class.from_pretrained(lowerCAmelCase__ , subfolder=lowerCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __SCREAMING_SNAKE_CASE : Optional[Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __magic_name__( self :Optional[int] ) -> Optional[int]: if self.config_class.is_composition: return __SCREAMING_SNAKE_CASE : Tuple = self.config_class() self.parent.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.config_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(lowerCAmelCase__ , lowerCAmelCase__ ) != value: wrong_values.append((key, getattr(lowerCAmelCase__ , lowerCAmelCase__ ), value) ) if len(lowerCAmelCase__ ) > 0: __SCREAMING_SNAKE_CASE : Any = '''\n'''.join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def __magic_name__( self :str ) -> Optional[int]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
260
0
def __A ( _A ): """simple docstring""" if not isinstance(_A , _A ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(_A ) == 0: raise ValueError("Input list must be a non empty list" ) if len(_A ) == 1: return True __a = series[1] - series[0] for index in range(len(_A ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __A ( _A ): """simple docstring""" if not isinstance(_A , _A ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(_A ) == 0: raise ValueError("Input list must be a non empty list" ) __a = 0 for val in series: answer += val return answer / len(_A ) if __name__ == "__main__": import doctest doctest.testmod()
197
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = """T5Config""" class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """mt5""" _SCREAMING_SNAKE_CASE = MTaConfig class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """mt5""" _SCREAMING_SNAKE_CASE = MTaConfig class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """mt5""" _SCREAMING_SNAKE_CASE = MTaConfig
197
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase = 13 , lowerCamelCase = 64 , lowerCamelCase = 2 , lowerCamelCase = 3 , lowerCamelCase = 3 , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = 128 , lowerCamelCase=[16, 32, 64, 128] , lowerCamelCase = 7 , lowerCamelCase = 4 , lowerCamelCase = 37 , lowerCamelCase = "gelu" , lowerCamelCase = 0.1 , lowerCamelCase = 0.1 , lowerCamelCase = 10 , lowerCamelCase = 0.0_2 , lowerCamelCase = 2 , lowerCamelCase = 1 , lowerCamelCase = 128 , lowerCamelCase = [2, 2, 2, 2] , lowerCamelCase = 2 , lowerCamelCase = 2 , ): '''simple docstring''' a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = type_sequence_label_size a__ = initializer_range a__ = encoder_stride a__ = num_attention_outputs a__ = embed_dim a__ = embed_dim + 1 a__ = resolution a__ = depths a__ = hidden_sizes a__ = dim a__ = mlp_expansion_ratio def _A ( self ): '''simple docstring''' a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = self.get_config() return config, pixel_values, labels def _A ( self ): '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = TFEfficientFormerModel(config=lowerCamelCase ) a__ = model(lowerCamelCase , training=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.type_sequence_label_size a__ = TFEfficientFormerForImageClassification(lowerCamelCase ) a__ = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ = 1 a__ = TFEfficientFormerForImageClassification(lowerCamelCase ) a__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A ( self ): '''simple docstring''' a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase_ ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) A_ : Union[str, Any] = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) A_ : int = False A_ : List[str] = False A_ : int = False A_ : Optional[int] = False A_ : List[Any] = False def _A ( self ): '''simple docstring''' a__ = TFEfficientFormerModelTester(self ) a__ = ConfigTester( self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def _A ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _A ( self ): '''simple docstring''' pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _A ( self ): '''simple docstring''' pass def _A ( self ): '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(lowerCamelCase ) a__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def _A ( self ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ): a__ = model_class(lowerCamelCase ) a__ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) , training=lowerCamelCase ) a__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__ = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): a__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: a__ = seq_length * self.model_tester.chunk_length else: a__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: a__ = outputs.decoder_hidden_states self.asseretIsInstance(lowerCamelCase , (list, tuple) ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) a__ = getattr(self.model_tester , """seq_length""" , lowerCamelCase ) a__ = getattr(self.model_tester , """decoder_seq_length""" , lowerCamelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' a__ = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _A ( self ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _A ( self ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase ) def _A ( self ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def _A ( self ): '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = TFEfficientFormerModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _A ( self ): '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = True a__ = getattr(self.model_tester , """seq_length""" , lowerCamelCase ) a__ = getattr(self.model_tester , """encoder_seq_length""" , lowerCamelCase ) a__ = getattr(self.model_tester , """key_length""" , lowerCamelCase ) a__ = getattr(self.model_tester , """chunk_length""" , lowerCamelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): a__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: a__ = True a__ = False a__ = True a__ = model_class(lowerCamelCase ) a__ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) , training=lowerCamelCase ) a__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__ = True a__ = model_class(lowerCamelCase ) a__ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) , training=lowerCamelCase ) a__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _A ( self ): '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model a__ = model_class(lowerCamelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes a__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCamelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } a__ = model(lowerCamelCase ) self.assertTrue(outputs_dict is not None ) def UpperCAmelCase ( ): '''simple docstring''' a__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self ): '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _A ( self ): '''simple docstring''' a__ = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=lowerCamelCase , return_tensors="""tf""" ) # forward pass a__ = model(**lowerCamelCase , training=lowerCamelCase ) # verify the logits a__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) a__ = tf.constant([-0.0_5_5_5, 0.4_8_2_5, -0.0_8_5_2] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def _A ( self ): '''simple docstring''' a__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=lowerCamelCase , return_tensors="""tf""" ) # forward pass a__ = model(**lowerCamelCase , training=lowerCamelCase ) # verify the logits a__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) a__ = tf.constant([-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) )
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : List[str] ={"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] =["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int =["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] =[ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =[ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =[ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
412
0
from __future__ import annotations from typing import Generic, TypeVar _lowerCAmelCase = TypeVar("""T""") class _UpperCAmelCase ( Generic[T] ): def __init__( self , a__ ): A_ : Tuple = data A_ : List[str] = self A_ : List[str] = 0 class _UpperCAmelCase ( Generic[T] ): def __init__( self ): A_ : dict[T, DisjointSetTreeNode[T]] = {} def _lowerCamelCase ( self , a__ ): A_ : List[Any] = DisjointSetTreeNode(lowercase__ ) def _lowerCamelCase ( self , a__ ): A_ : Tuple = self.map[data] if elem_ref != elem_ref.parent: A_ : Any = self.find_set(elem_ref.parent.data ) return elem_ref.parent def _lowerCamelCase ( self , a__ , a__ ): if nodea.rank > nodea.rank: A_ : Dict = nodea else: A_ : int = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def _lowerCamelCase ( self , a__ , a__ ): self.link(self.find_set(lowercase__ ) , self.find_set(lowercase__ ) ) class _UpperCAmelCase ( Generic[T] ): def __init__( self ): A_ : dict[T, dict[T, int]] = {} def _lowerCamelCase ( self , a__ ): if node not in self.connections: A_ : List[Any] = {} def _lowerCamelCase ( self , a__ , a__ , a__ ): self.add_node(lowercase__ ) self.add_node(lowercase__ ) A_ : int = weight A_ : List[Any] = weight def _lowerCamelCase ( self ): A_ : Optional[int] = [] A_ : Union[str, Any] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda a__ : x[2] ) # creating the disjoint set A_ : int = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(lowercase__ ) # MST generation A_ : List[Any] = 0 A_ : List[str] = 0 A_ : int = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: A_ : Optional[Any] = edges[index] index += 1 A_ : Any = disjoint_set.find_set(lowercase__ ) A_ : str = disjoint_set.find_set(lowercase__ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(lowercase__ , lowercase__ , lowercase__ ) disjoint_set.union(lowercase__ , lowercase__ ) return graph
569
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin snake_case_ = False @skip_mps class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase,_UpperCAmelCase,_UpperCAmelCase,unittest.TestCase ): _A = StableDiffusionAttendAndExcitePipeline _A = False _A = TEXT_TO_IMAGE_PARAMS _A = TEXT_TO_IMAGE_BATCH_PARAMS.union({"token_indices"} ) _A = TEXT_TO_IMAGE_IMAGE_PARAMS _A = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __lowerCamelCase ( cls ): """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(lowercase__ ) @classmethod def __lowerCamelCase ( cls ): """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(lowercase__ ) def __lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowercase__ , ) SCREAMING_SNAKE_CASE_ : Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextModel(lowercase__ ) SCREAMING_SNAKE_CASE_ : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE_ : int = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __lowerCamelCase ( self , lowercase__ , lowercase__=0 ): """simple docstring""" if str(lowercase__ ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(lowercase__ ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) SCREAMING_SNAKE_CASE_ : str = { "prompt": "a cat and a frog", "token_indices": [2, 5], "generator": generator, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", "max_iter_to_alter": 2, "thresholds": {0: 0.7}, } return inputs def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = "cpu" SCREAMING_SNAKE_CASE_ : str = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_dummy_inputs(lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**lowercase__ ).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase__ , 1e-3 ) def __lowerCamelCase ( self ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def __lowerCamelCase ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCamelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def __lowerCamelCase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCamelCase ( self ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def __lowerCamelCase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=5e-4 ) def __lowerCamelCase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @classmethod def __lowerCamelCase ( cls ): """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(lowercase__ ) @classmethod def __lowerCamelCase ( cls ): """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(lowercase__ ) def __lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(51 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionAttendAndExcitePipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , safety_checker=lowercase__ , torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : Optional[int] = "a painting of an elephant with glasses" SCREAMING_SNAKE_CASE_ : Any = [5, 7] SCREAMING_SNAKE_CASE_ : Any = pipe( prompt=lowercase__ , token_indices=lowercase__ , guidance_scale=7.5 , generator=lowercase__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="numpy" , ).images[0] SCREAMING_SNAKE_CASE_ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy" ) assert np.abs((expected_image - image).max() ) < 5e-1
421
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : NestedDataStructureLike[PathLike] , lowerCamelCase : Optional[NamedSplit] = None , lowerCamelCase : Optional[Features] = None , lowerCamelCase : str = None , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : Optional[str] = None , lowerCamelCase : Optional[int] = None , **lowerCamelCase : str , ) -> Optional[int]: super().__init__( lowerCamelCase , split=lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase , streaming=lowerCamelCase , num_proc=lowerCamelCase , **lowerCamelCase , ) __snake_case : int = field __snake_case : str = path_or_paths if isinstance(lowerCamelCase , lowerCamelCase ) else {self.split: path_or_paths} __snake_case : Dict = Json( cache_dir=lowerCamelCase , data_files=lowerCamelCase , features=lowerCamelCase , field=lowerCamelCase , **lowerCamelCase , ) def __snake_case ( self : str ) -> str: # Build iterable dataset if self.streaming: __snake_case : Dict = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __snake_case : Union[str, Any] = None __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : str = None self.builder.download_and_prepare( download_config=lowerCamelCase , download_mode=lowerCamelCase , verification_mode=lowerCamelCase , base_path=lowerCamelCase , num_proc=self.num_proc , ) __snake_case : Dict = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase , in_memory=self.keep_in_memory ) return dataset class a : """simple docstring""" def __init__( self : int , lowerCamelCase : Dataset , lowerCamelCase : Union[PathLike, BinaryIO] , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[int] = None , **lowerCamelCase : List[str] , ) -> List[str]: if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) __snake_case : Optional[Any] = dataset __snake_case : Tuple = path_or_buf __snake_case : Optional[int] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Optional[int] = num_proc __snake_case : Union[str, Any] = "utf-8" __snake_case : List[str] = to_json_kwargs def __snake_case ( self : Dict ) -> int: __snake_case : Any = self.to_json_kwargs.pop("path_or_buf" , lowerCamelCase ) __snake_case : Optional[Any] = self.to_json_kwargs.pop("orient" , "records" ) __snake_case : Union[str, Any] = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) __snake_case : str = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) __snake_case : Dict = self.to_json_kwargs.pop("compression" , lowerCamelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=lowerCamelCase ) as buffer: __snake_case : int = self._write(file_obj=lowerCamelCase , orient=lowerCamelCase , lines=lowerCamelCase , index=lowerCamelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' " was passed. Please provide a local path instead." ) __snake_case : Optional[Any] = self._write( file_obj=self.path_or_buf , orient=lowerCamelCase , lines=lowerCamelCase , index=lowerCamelCase , **self.to_json_kwargs ) return written def __snake_case ( self : Optional[Any] , lowerCamelCase : str ) -> List[str]: __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Dict = args __snake_case : List[str] = query_table( table=self.dataset.data , key=slice(lowerCamelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : str = batch.to_pandas().to_json( path_or_buf=lowerCamelCase , orient=lowerCamelCase , lines=lowerCamelCase , index=lowerCamelCase , **lowerCamelCase ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def __snake_case ( self : List[str] , lowerCamelCase : BinaryIO , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : int , **lowerCamelCase : Union[str, Any] , ) -> int: __snake_case : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): __snake_case : str = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowerCamelCase ) else: __snake_case , __snake_case : str = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCamelCase , lowerCamelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(lowerCamelCase ) return written
203
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _snake_case : int = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } _snake_case : Dict = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=False ): __snake_case , __snake_case : Any = create_model( "HTSAT-tiny" , "roberta" , __lowerCamelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=__lowerCamelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : int = {} __snake_case : List[Any] = R".*sequential.(\d+).*" __snake_case : Any = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : Optional[int] = key.replace(__lowerCamelCase , __lowerCamelCase ) if re.match(__lowerCamelCase , __lowerCamelCase ): # replace sequential layers with list __snake_case : List[Any] = re.match(__lowerCamelCase , __lowerCamelCase ).group(1 ) __snake_case : str = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(__lowerCamelCase )//3}.linear.' ) elif re.match(__lowerCamelCase , __lowerCamelCase ): __snake_case : Any = int(re.match(__lowerCamelCase , __lowerCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : List[str] = 1 if projecton_layer == 0 else 2 __snake_case : Tuple = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : List[str] = value __snake_case : Optional[int] = mixed_qkv.size(0 ) // 3 __snake_case : List[str] = mixed_qkv[:qkv_dim] __snake_case : int = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : str = mixed_qkv[qkv_dim * 2 :] __snake_case : int = query_layer __snake_case : Tuple = key_layer __snake_case : List[str] = value_layer else: __snake_case : Tuple = value return model_state_dict def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ): __snake_case , __snake_case : List[str] = init_clap(__lowerCamelCase , enable_fusion=__lowerCamelCase ) clap_model.eval() __snake_case : Union[str, Any] = clap_model.state_dict() __snake_case : Any = rename_state_dict(__lowerCamelCase ) __snake_case : Dict = ClapConfig() __snake_case : Dict = enable_fusion __snake_case : Optional[Any] = ClapModel(__lowerCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) transformers_config.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") _snake_case : Tuple = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
203
1
'''simple docstring''' import argparse import os import re import packaging.version _UpperCAmelCase : Tuple = '''examples/''' _UpperCAmelCase : Union[str, Any] = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } _UpperCAmelCase : Tuple = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } _UpperCAmelCase : List[str] = '''README.md''' def UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : int ) -> Any: '''simple docstring''' with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase =f.read() lowercase , lowercase =REPLACE_PATTERNS[pattern] lowercase =replace.replace('''VERSION''' , lowercase_ ) lowercase =re_pattern.sub(lowercase_ , lowercase_ ) with open(lowercase_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(lowercase_ ) def UpperCamelCase ( lowercase_ : Tuple ) -> int: '''simple docstring''' for folder, directories, fnames in os.walk(lowercase_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(lowercase_ , lowercase_ ) , lowercase_ , pattern='''examples''' ) def UpperCamelCase ( lowercase_ : int , lowercase_ : Any=False ) -> Optional[Any]: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase_ , lowercase_ , lowercase_ ) if not patch: update_version_in_examples(lowercase_ ) def UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' lowercase ='''🤗 Transformers currently provides the following architectures''' lowercase ='''1. Want to contribute a new model?''' with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase =f.readlines() # Find the start of the list. lowercase =0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase =start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowercase =lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(lowercase_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowercase_ ) def UpperCamelCase ( ) -> List[str]: '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: lowercase =f.read() lowercase =REPLACE_PATTERNS['''init'''][0].search(lowercase_ ).groups()[0] return packaging.version.parse(lowercase_ ) def UpperCamelCase ( lowercase_ : int=False ) -> Dict: '''simple docstring''' lowercase =get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowercase =default_version.base_version elif patch: lowercase =f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowercase =f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowercase =input(f'Which version are you releasing? [{default_version}]' ) if len(lowercase_ ) == 0: lowercase =default_version print(f'Updating version to {version}.' ) global_version_update(lowercase_ , patch=lowercase_ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def UpperCamelCase ( ) -> int: '''simple docstring''' lowercase =get_version() lowercase =f'{current_version.major}.{current_version.minor + 1}.0.dev0' lowercase =current_version.base_version # Check with the user we got that right. lowercase =input(f'Which version are we developing now? [{dev_version}]' ) if len(lowercase_ ) == 0: lowercase =dev_version print(f'Updating version to {version}.' ) global_version_update(lowercase_ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') _UpperCAmelCase : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
72
import argparse import os import re SCREAMING_SNAKE_CASE__ : Any = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.compile(R"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings SCREAMING_SNAKE_CASE__ : Optional[int] = re.compile(R"""\s*\(\s*\"(\S[^\"]+)\"""") def _A ( lowerCamelCase , lowerCamelCase = False ): with open(lowerCamelCase , "r" , encoding="utf-8" ) as f: a__ : Optional[int] = f.read() a__ : Optional[Any] = content.split("\n" ) a__ : Optional[int] = [] a__ : Optional[Any] = 0 while line_idx < len(lowerCamelCase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: a__ : str = len(re.search(r"^(\s*)\S" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 a__ : Union[str, Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": a__ : int = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers a__ : Optional[Any] = sorted(lowerCamelCase , key=lambda lowerCamelCase : _re_identifier.search(lowerCamelCase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write("\n".join(lowerCamelCase ) ) elif "\n".join(lowerCamelCase ) != content: return True def _A ( lowerCamelCase = False ): a__ : List[str] = [os.path.join(lowerCamelCase , lowerCamelCase ) for f in os.listdir(lowerCamelCase ) if f.endswith(".py" )] a__ : Any = [sort_auto_mapping(lowerCamelCase , overwrite=lowerCamelCase ) for fname in fnames] if not overwrite and any(lowerCamelCase ): a__ : Dict = [f for f, d in zip(lowerCamelCase , lowerCamelCase ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {", ".join(lowerCamelCase )}. Run `make style` to fix""" " this." ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Dict = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
112
0
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowerCAmelCase : int = logging.get_logger('transformers.models.speecht5') lowerCAmelCase : Tuple = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } lowerCAmelCase : List[str] = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } lowerCAmelCase : Dict = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } lowerCAmelCase : Optional[Any] = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } lowerCAmelCase : Any = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } lowerCAmelCase : Optional[int] = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } lowerCAmelCase : List[Any] = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } lowerCAmelCase : str = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } lowerCAmelCase : Dict = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowerCAmelCase : int = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCAmelCase : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[Any] = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] lowerCAmelCase : int = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] lowerCAmelCase : Optional[int] = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] lowerCAmelCase : Any = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def A_( A : Optional[Any] , A : Dict , A : str , A : Optional[int] , A : List[str]): for attribute in key.split('.'): UpperCamelCase = getattr(A , A) if weight_type is not None: UpperCamelCase = getattr(A , A).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''') if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value elif weight_type == "running_mean": UpperCamelCase = value elif weight_type == "running_var": UpperCamelCase = value elif weight_type == "num_batches_tracked": UpperCamelCase = value else: UpperCamelCase = value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''') def A_( A : List[str] , A : Tuple): for key in ignore_keys: if key.endswith('.*'): if name.startswith(key[:-1]): return True elif ".*." in key: UpperCamelCase , UpperCamelCase = key.split('.*.') if prefix in name and suffix in name: return True elif key in name: return True return False def A_( A : Union[str, Any] , A : List[str] , A : Optional[int]): UpperCamelCase = [] if task == "s2t": UpperCamelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCamelCase = MAPPING_S2T UpperCamelCase = IGNORE_KEYS_S2T elif task == "t2s": UpperCamelCase = None UpperCamelCase = MAPPING_T2S UpperCamelCase = IGNORE_KEYS_T2S elif task == "s2s": UpperCamelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCamelCase = MAPPING_S2S UpperCamelCase = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''') for name, value in fairseq_dict.items(): if should_ignore(A , A): logger.info(f'''{name} was ignored''') continue UpperCamelCase = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCamelCase , UpperCamelCase = key.split('.*.') if prefix in name and suffix in name: UpperCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(A)[0].split('.')[-2] UpperCamelCase = mapped_key.replace('*' , A) if "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: UpperCamelCase = 'weight' elif "running_mean" in name: UpperCamelCase = 'running_mean' elif "running_var" in name: UpperCamelCase = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase = 'num_batches_tracked' else: UpperCamelCase = None set_recursively(A , A , A , A , A) continue if not is_used: unused_weights.append(A) logger.warning(f'''Unused weights: {unused_weights}''') def A_( A : Dict , A : Optional[int] , A : str , A : Dict , A : Any): UpperCamelCase = full_name.split('conv_layers.')[-1] UpperCamelCase = name.split('.') UpperCamelCase = int(items[0]) UpperCamelCase = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(A) @torch.no_grad() def A_( A : Optional[Any] , A : List[str] , A : Tuple , A : Optional[Any]=None , A : Any=None , A : Optional[int]=None , ): if config_path is not None: UpperCamelCase = SpeechTaConfig.from_pretrained(A) else: UpperCamelCase = SpeechTaConfig() if task == "s2t": UpperCamelCase = config.max_text_positions UpperCamelCase = SpeechTaForSpeechToText(A) elif task == "t2s": UpperCamelCase = 1876 UpperCamelCase = 600 UpperCamelCase = config.max_speech_positions UpperCamelCase = SpeechTaForTextToSpeech(A) elif task == "s2s": UpperCamelCase = 1876 UpperCamelCase = config.max_speech_positions UpperCamelCase = SpeechTaForSpeechToSpeech(A) else: raise ValueError(f'''Unknown task name: {task}''') if vocab_path: UpperCamelCase = SpeechTaTokenizer(A , model_max_length=config.max_text_positions) # Mask token behaves like a normal word, i.e. include the space before it UpperCamelCase = AddedToken('<mask>' , lstrip=A , rstrip=A) UpperCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token}) tokenizer.add_tokens(['<ctc_blank>']) UpperCamelCase = SpeechTaFeatureExtractor() UpperCamelCase = SpeechTaProcessor(tokenizer=A , feature_extractor=A) processor.save_pretrained(A) UpperCamelCase = torch.load(A) recursively_load_weights(fairseq_checkpoint['model'] , A , A) model.save_pretrained(A) if repo_id: print('Pushing to the hub...') processor.push_to_hub(A) model.push_to_hub(A) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowerCAmelCase : int = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
432
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' ) UpperCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) UpperCamelCase = tokenizer('Hello there' , return_tensors='np' ).input_ids UpperCamelCase = tokenizer('Hi I am' , return_tensors='np' ).input_ids UpperCamelCase = shift_tokens_right(A_ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCamelCase = model(A_ , decoder_input_ids=A_ ).logits UpperCamelCase = optax.softmax_cross_entropy(A_ , onehot(A_ , logits.shape[-1] ) ).mean() UpperCamelCase = -(labels.shape[-1] * loss.item()) UpperCamelCase = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
432
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class A : '''simple docstring''' def __init__( self : List[str] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=13 , _UpperCamelCase : Union[str, Any]=7 , _UpperCamelCase : List[str]=True , _UpperCamelCase : Tuple=True , _UpperCamelCase : Dict=True , _UpperCamelCase : Any=True , _UpperCamelCase : Union[str, Any]=99 , _UpperCamelCase : Tuple=32 , _UpperCamelCase : List[Any]=5 , _UpperCamelCase : Tuple=4 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Any=0.0 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=512 , _UpperCamelCase : str=16 , _UpperCamelCase : str=2 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : int=4 , _UpperCamelCase : Tuple=None , ): _lowercase: Any = parent _lowercase: int = batch_size _lowercase: Tuple = seq_length _lowercase: Any = is_training _lowercase: Any = use_input_mask _lowercase: Union[str, Any] = use_token_type_ids _lowercase: int = use_labels _lowercase: int = vocab_size _lowercase: int = hidden_size _lowercase: Any = num_hidden_layers _lowercase: Tuple = num_attention_heads _lowercase: List[str] = intermediate_multiple_size _lowercase: Dict = hidden_act _lowercase: Optional[int] = hidden_dropout _lowercase: Optional[int] = attention_dropout _lowercase: Dict = weight_tying _lowercase: Union[str, Any] = max_position_embeddings _lowercase: str = type_vocab_size _lowercase: str = type_sequence_label_size _lowercase: Optional[int] = initializer_range _lowercase: List[Any] = num_labels _lowercase: Any = num_choices _lowercase: Optional[Any] = scope def UpperCAmelCase__ ( self : Optional[Any]): _lowercase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowercase: Optional[Any] = None if self.use_input_mask: _lowercase: List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowercase: Dict = None if self.use_labels: _lowercase: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _lowercase: Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self : Optional[int]): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : int): _lowercase , _lowercase , _lowercase , _lowercase: int = self.prepare_config_and_inputs() _lowercase: str = True return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict): _lowercase: Dict = GPTNeoXJapaneseModel(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowercase: Optional[Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase) _lowercase: Optional[int] = model(_UpperCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any): _lowercase: Tuple = True _lowercase: Optional[int] = GPTNeoXJapaneseModel(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowercase: int = model(_UpperCamelCase , attention_mask=_UpperCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str): _lowercase: Union[str, Any] = GPTNeoXJapaneseForCausalLM(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowercase: Optional[int] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any): _lowercase: Tuple = True _lowercase: Optional[Any] = GPTNeoXJapaneseForCausalLM(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() # first forward pass _lowercase: int = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase) _lowercase: str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowercase: List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) _lowercase: Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and _lowercase: List[Any] = torch.cat([input_ids, next_tokens] , dim=-1) _lowercase: List[Any] = torch.cat([input_mask, next_mask] , dim=-1) _lowercase: Union[str, Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , output_hidden_states=_UpperCamelCase) _lowercase: Optional[int] = output_from_no_past["hidden_states"][0] _lowercase: Tuple = model( _UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , output_hidden_states=_UpperCamelCase , )["hidden_states"][0] # select random slice _lowercase: Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1]).item() _lowercase: Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _lowercase: Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3)) def UpperCAmelCase__ ( self : Dict): _lowercase: Union[str, Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase: Tuple = config_and_inputs _lowercase: Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase : List[str] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase : Optional[int] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase : List[Any] = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase : int = False lowerCamelCase : Optional[int] = False lowerCamelCase : int = False lowerCamelCase : List[str] = False def UpperCAmelCase__ ( self : Tuple): _lowercase: Optional[int] = GPTNeoXJapaneseModelTester(self) _lowercase: List[str] = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37) def UpperCAmelCase__ ( self : Optional[Any]): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str]): _lowercase , _lowercase , _lowercase , _lowercase: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def UpperCAmelCase__ ( self : Optional[int]): _lowercase , _lowercase , _lowercase , _lowercase: int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def UpperCAmelCase__ ( self : Optional[Any]): # This regression test was failing with PyTorch < 1.3 _lowercase , _lowercase , _lowercase , _lowercase: Any = self.model_tester.prepare_config_and_inputs_for_decoder() _lowercase: int = None self.model_tester.create_and_check_model_as_decoder(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def UpperCAmelCase__ ( self : Optional[Any]): _lowercase , _lowercase , _lowercase , _lowercase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def UpperCAmelCase__ ( self : str): _lowercase: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_UpperCamelCase) @slow def UpperCAmelCase__ ( self : Any): _lowercase: List[str] = "abeja/gpt-neox-japanese-2.7b" _lowercase: Dict = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] _lowercase: Union[str, Any] = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] _lowercase: str = GPTNeoXJapaneseTokenizer.from_pretrained(_UpperCamelCase) _lowercase: Dict = GPTNeoXJapaneseForCausalLM.from_pretrained(_UpperCamelCase) _lowercase: List[Any] = [] for prompt in prompts: _lowercase: List[str] = tokenizer(_UpperCamelCase , return_tensors="pt").input_ids _lowercase: List[Any] = model.generate(_UpperCamelCase , max_length=50) _lowercase: str = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase) predicted_outputs += generated_string self.assertListEqual(_UpperCamelCase , _UpperCamelCase)
226
def __lowerCAmelCase ( __magic_name__ = 1_0_0 ): _lowercase: Dict = set() _lowercase: List[Any] = 0 _lowercase: List[Any] = n + 1 # maximum limit for a in range(2 , __magic_name__ ): for b in range(2 , __magic_name__ ): _lowercase: int = a**b # calculates the current power collect_powers.add(__magic_name__ ) # adds the result to the set return len(__magic_name__ ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
226
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = {} class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Tuple = """llama""" _A : List[str] = ["""past_key_values"""] def __init__(self , lowercase__=3_20_00 , lowercase__=40_96 , lowercase__=1_10_08 , lowercase__=32 , lowercase__=32 , lowercase__=None , lowercase__="silu" , lowercase__=20_48 , lowercase__=0.02 , lowercase__=1e-6 , lowercase__=True , lowercase__=0 , lowercase__=1 , lowercase__=2 , lowercase__=1 , lowercase__=False , lowercase__=None , **lowercase__ , ): snake_case_ : Tuple = vocab_size snake_case_ : Dict = max_position_embeddings snake_case_ : List[Any] = hidden_size snake_case_ : List[Any] = intermediate_size snake_case_ : int = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: snake_case_ : int = num_attention_heads snake_case_ : Tuple = num_key_value_heads snake_case_ : Optional[Any] = hidden_act snake_case_ : Any = initializer_range snake_case_ : Any = rms_norm_eps snake_case_ : Tuple = pretraining_tp snake_case_ : List[Any] = use_cache snake_case_ : str = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , tie_word_embeddings=lowercase__ , **lowercase__ , ) def __UpperCamelCase (self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'got {self.rope_scaling}' ) snake_case_ : int = self.rope_scaling.get("""type""" , lowercase__ ) snake_case_ : Optional[Any] = self.rope_scaling.get("""factor""" , lowercase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(lowercase__ , lowercase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
48
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def snake_case (UpperCAmelCase__ ) -> Any: UpperCamelCase_: Optional[int] = args.pruning_method UpperCamelCase_: Any = args.threshold UpperCamelCase_: Any = args.model_name_or_path.rstrip('/' ) UpperCamelCase_: List[Any] = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) UpperCamelCase_: List[Any] = torch.load(os.path.join(UpperCAmelCase__ , 'pytorch_model.bin' ) ) UpperCamelCase_: List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: UpperCamelCase_: Optional[Any] = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: UpperCamelCase_: List[Any] = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: UpperCamelCase_: Tuple = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": UpperCamelCase_: Tuple = MagnitudeBinarizer.apply(inputs=UpperCAmelCase__ , threshold=UpperCAmelCase__ ) UpperCamelCase_: int = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue UpperCamelCase_: Union[str, Any] = name[:-6] UpperCamelCase_: List[Any] = model[F'''{prefix_}mask_scores'''] UpperCamelCase_: Union[str, Any] = TopKBinarizer.apply(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Any = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue UpperCamelCase_: Any = name[:-6] UpperCamelCase_: List[Any] = model[F'''{prefix_}mask_scores'''] UpperCamelCase_: Any = ThresholdBinarizer.apply(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: int = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue UpperCamelCase_: Any = name[:-6] UpperCamelCase_: Tuple = model[F'''{prefix_}mask_scores'''] UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = -0.1, 1.1 UpperCamelCase_: int = torch.sigmoid(UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = s * (r - l) + l UpperCamelCase_: Dict = s_bar.clamp(min=0.0 , max=1.0 ) UpperCamelCase_: Optional[Any] = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: UpperCamelCase_: Any = os.path.join( os.path.dirname(UpperCAmelCase__ ) , F'''bertarized_{os.path.basename(UpperCAmelCase__ )}''' ) if not os.path.isdir(UpperCAmelCase__ ): shutil.copytree(UpperCAmelCase__ , UpperCAmelCase__ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) A_ : List[str] = parser.parse_args() main(args)
57
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowercase : Any = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Any = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Optional[Any] = list(s_dict.keys() ) for key in keys: lowercase : Any = key for k, v in WHISPER_MAPPING.items(): if k in key: lowercase : Dict = new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f"{key} -> {new_key}" ) lowercase : Dict = s_dict.pop(SCREAMING_SNAKE_CASE__ ) return s_dict def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase , lowercase : Optional[Any] = emb.weight.shape lowercase : Dict = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) lowercase : str = emb.weight.data return lin_layer def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> bytes: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = os.path.basename(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = url.split("""/""" )[-2] lowercase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ) and not os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise RuntimeError(f"{download_target} exists and is not a regular file" ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): lowercase : Any = open(SCREAMING_SNAKE_CASE__ , """rb""" ).read() if hashlib.shaaaa(SCREAMING_SNAKE_CASE__ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(SCREAMING_SNAKE_CASE__ ) as source, open(SCREAMING_SNAKE_CASE__ , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=SCREAMING_SNAKE_CASE__ , unit_divisor=1_024 ) as loop: while True: lowercase : Any = source.read(8_192 ) if not buffer: break output.write(SCREAMING_SNAKE_CASE__ ) loop.update(len(SCREAMING_SNAKE_CASE__ ) ) lowercase : Dict = open(SCREAMING_SNAKE_CASE__ , """rb""" ).read() if hashlib.shaaaa(SCREAMING_SNAKE_CASE__ ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if ".pt" not in checkpoint_path: lowercase : Any = _download(_MODELS[checkpoint_path] ) else: lowercase : Tuple = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) lowercase : Tuple = original_checkpoint["""dims"""] lowercase : str = original_checkpoint["""model_state_dict"""] lowercase : Tuple = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) rename_keys(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = True lowercase : str = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] lowercase : Tuple = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=SCREAMING_SNAKE_CASE__ , decoder_ffn_dim=SCREAMING_SNAKE_CASE__ , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) lowercase : Any = WhisperForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Union[str, Any] = model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0 and not set(SCREAMING_SNAKE_CASE__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f" but all the following weights are missing {missing}" ) if tie_embeds: lowercase : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowercase : str = proj_out_weights model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowercase : Optional[int] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
336
0
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def a ( UpperCamelCase_ : Dict ) -> int: snake_case__ =torch.exp(_lowercase ) snake_case__ =torch.sum(_lowercase , dim=1 ) # sum of exp(x_i) snake_case__ =torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowercase ) - B / A class a__( nn.Module ): def __init__( self , _UpperCAmelCase ) -> Tuple: super().__init__() snake_case__ =config.output_attentions snake_case__ =config.output_hidden_states snake_case__ =nn.ModuleList([BertLayer(lowerCAmelCase__ ) for _ in range(config.num_hidden_layers )] ) snake_case__ =nn.ModuleList([BertHighway(lowerCAmelCase__ ) for _ in range(config.num_hidden_layers )] ) snake_case__ =[-1 for _ in range(config.num_hidden_layers )] def _lowercase ( self , _UpperCAmelCase ) -> Any: if (type(lowerCAmelCase__ ) is float) or (type(lowerCAmelCase__ ) is int): for i in range(len(self.early_exit_entropy ) ): snake_case__ =x else: snake_case__ =x def _lowercase ( self , _UpperCAmelCase ) -> int: snake_case__ =pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ) -> Dict: snake_case__ =() snake_case__ =() snake_case__ =() for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: snake_case__ =all_hidden_states + (hidden_states,) snake_case__ =layer_module( lowerCAmelCase__ , lowerCAmelCase__ , head_mask[i] , lowerCAmelCase__ , lowerCAmelCase__ ) snake_case__ =layer_outputs[0] if self.output_attentions: snake_case__ =all_attentions + (layer_outputs[1],) snake_case__ =(hidden_states,) if self.output_hidden_states: snake_case__ =current_outputs + (all_hidden_states,) if self.output_attentions: snake_case__ =current_outputs + (all_attentions,) snake_case__ =self.highway[i](lowerCAmelCase__ ) # logits, pooled_output if not self.training: snake_case__ =highway_exit[0] snake_case__ =entropy(lowerCAmelCase__ ) snake_case__ =highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy snake_case__ =all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: snake_case__ =(highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowerCAmelCase__ , i + 1 ) else: snake_case__ =all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: snake_case__ =all_hidden_states + (hidden_states,) snake_case__ =(hidden_states,) if self.output_hidden_states: snake_case__ =outputs + (all_hidden_states,) if self.output_attentions: snake_case__ =outputs + (all_attentions,) snake_case__ =outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , a__ , ) class a__( a__ ): def __init__( self , _UpperCAmelCase ) -> Any: super().__init__(lowerCAmelCase__ ) snake_case__ =config snake_case__ =BertEmbeddings(lowerCAmelCase__ ) snake_case__ =DeeBertEncoder(lowerCAmelCase__ ) snake_case__ =BertPooler(lowerCAmelCase__ ) self.init_weights() def _lowercase ( self ) -> List[Any]: self.encoder.init_highway_pooler(self.pooler ) def _lowercase ( self ) -> Union[str, Any]: return self.embeddings.word_embeddings def _lowercase ( self , _UpperCAmelCase ) -> Any: snake_case__ =value def _lowercase ( self , _UpperCAmelCase ) -> Union[str, Any]: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowerCAmelCase__ ) @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) def _lowercase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ) -> List[Any]: if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: snake_case__ =input_ids.size() elif inputs_embeds is not None: snake_case__ =inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) snake_case__ =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case__ =torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ ) if encoder_attention_mask is None: snake_case__ =torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ ) if token_type_ids is None: snake_case__ =torch.zeros(lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case__ =self.get_extended_attention_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: snake_case__ =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: snake_case__ =encoder_attention_mask[:, None, None, :] snake_case__ =encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility snake_case__ =(1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case__ =self.get_head_mask(lowerCAmelCase__ , self.config.num_hidden_layers ) snake_case__ =self.embeddings( input_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ ) snake_case__ =self.encoder( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) snake_case__ =encoder_outputs[0] snake_case__ =self.pooler(lowerCAmelCase__ ) snake_case__ =( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class a__( a__ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: snake_case__ =message snake_case__ =exit_layer # start from 1! class a__( nn.Module ): def __init__( self , _UpperCAmelCase ) -> Dict: super().__init__() snake_case__ =BertPooler(lowerCAmelCase__ ) snake_case__ =nn.Dropout(config.hidden_dropout_prob ) snake_case__ =nn.Linear(config.hidden_size , config.num_labels ) def _lowercase ( self , _UpperCAmelCase ) -> Union[str, Any]: # Pooler snake_case__ =encoder_outputs[0] snake_case__ =self.pooler(lowerCAmelCase__ ) # "return" pooler_output # BertModel snake_case__ =(pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification snake_case__ =bmodel_output[1] snake_case__ =self.dropout(lowerCAmelCase__ ) snake_case__ =self.classifier(lowerCAmelCase__ ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , a__ , ) class a__( a__ ): def __init__( self , _UpperCAmelCase ) -> Optional[int]: super().__init__(lowerCAmelCase__ ) snake_case__ =config.num_labels snake_case__ =config.num_hidden_layers snake_case__ =DeeBertModel(lowerCAmelCase__ ) snake_case__ =nn.Dropout(config.hidden_dropout_prob ) snake_case__ =nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) def _lowercase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=-1 , _UpperCAmelCase=False , ) -> Optional[int]: snake_case__ =self.num_layers try: snake_case__ =self.bert( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits snake_case__ =outputs[1] snake_case__ =self.dropout(lowerCAmelCase__ ) snake_case__ =self.classifier(lowerCAmelCase__ ) snake_case__ =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case__ =e.message snake_case__ =e.exit_layer snake_case__ =outputs[0] if not self.training: snake_case__ =entropy(lowerCAmelCase__ ) snake_case__ =[] snake_case__ =[] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case__ =MSELoss() snake_case__ =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case__ =CrossEntropyLoss() snake_case__ =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case__ =[] for highway_exit in outputs[-1]: snake_case__ =highway_exit[0] if not self.training: highway_logits_all.append(lowerCAmelCase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case__ =MSELoss() snake_case__ =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case__ =CrossEntropyLoss() snake_case__ =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCAmelCase__ ) if train_highway: snake_case__ =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case__ =(loss,) + outputs if not self.training: snake_case__ =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case__ =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
709
'''simple docstring''' from __future__ import annotations def a ( UpperCamelCase_ : list[float] , UpperCamelCase_ : list[float] ) -> float: snake_case__ =sorted(numsa + numsa ) snake_case__ , snake_case__ =divmod(len(UpperCamelCase_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ : Optional[Any] = [float(x) for x in input('''Enter the elements of first array: ''').split()] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
581
0
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _a : Dict = 4 _a : Union[str, Any] = 3 class lowercase_ ( _lowercase ): '''simple docstring''' pass def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : List[str] ): for shard in shards: for i in range(SCREAMING_SNAKE_CASE ): yield {"i": i, "shard": shard} def lowerCamelCase__ ( ): UpperCAmelCase = int(os.environ['RANK'] ) UpperCAmelCase = int(os.environ['WORLD_SIZE'] ) UpperCAmelCase = ArgumentParser() parser.add_argument('--streaming' , type=SCREAMING_SNAKE_CASE ) parser.add_argument('--local_rank' , type=SCREAMING_SNAKE_CASE ) parser.add_argument('--num_workers' , type=SCREAMING_SNAKE_CASE , default=0 ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = args.streaming UpperCAmelCase = args.num_workers UpperCAmelCase = {'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(SCREAMING_SNAKE_CASE )]} UpperCAmelCase = IterableDataset.from_generator(SCREAMING_SNAKE_CASE , gen_kwargs=SCREAMING_SNAKE_CASE ) if not streaming: UpperCAmelCase = Dataset.from_list(list(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase = split_dataset_by_node(SCREAMING_SNAKE_CASE , rank=SCREAMING_SNAKE_CASE , world_size=SCREAMING_SNAKE_CASE ) UpperCAmelCase = torch.utils.data.DataLoader(SCREAMING_SNAKE_CASE , num_workers=SCREAMING_SNAKE_CASE ) UpperCAmelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
447
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __lowerCAmelCase ( UpperCamelCase ) -> List[str]: lowerCAmelCase__ : int = R'''\w+[.]\d+''' lowerCAmelCase__ : Tuple = re.findall(UpperCamelCase , UpperCamelCase ) for pat in pats: lowerCAmelCase__ : List[str] = key.replace(UpperCamelCase , '''_'''.join(pat.split('''.''' ) ) ) return key def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: lowerCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase__ : List[str] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase__ : str = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase__ : str = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase__ : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase__ : Dict = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase__ : List[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": lowerCAmelCase__ : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase__ : Any = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase=42 ) -> Any: # Step 1: Convert pytorch tensor to numpy lowerCAmelCase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase__ : Tuple = flax_model.init_weights(PRNGKey(UpperCamelCase ) ) lowerCAmelCase__ : Any = flatten_dict(UpperCamelCase ) lowerCAmelCase__ : List[Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase__ : str = rename_key(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters lowerCAmelCase__ , lowerCAmelCase__ : List[str] = rename_key_and_reshape_tensor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown lowerCAmelCase__ : List[str] = jnp.asarray(UpperCamelCase ) return unflatten_dict(UpperCamelCase )
678
0
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Any = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : Optional[Any] ): print("""Loading config file...""" ) def flatten_yaml_as_dict(__lowerCAmelCase : Any , __lowerCAmelCase : str="" , __lowerCAmelCase : Dict="." ): lowerCamelCase__ = [] for k, v in d.items(): lowerCamelCase__ = parent_key + sep + k if parent_key else k if isinstance(__lowerCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__lowerCAmelCase , __lowerCAmelCase , sep=__lowerCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(__lowerCAmelCase ) lowerCamelCase__ = argparse.Namespace() with open(__lowerCAmelCase , """r""" ) as yaml_file: try: lowerCamelCase__ = yaml.load(__lowerCAmelCase , Loader=yaml.FullLoader ) lowerCamelCase__ = flatten_yaml_as_dict(__lowerCAmelCase ) for k, v in flat_cfg.items(): setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(__lowerCAmelCase , str(__lowerCAmelCase ) ) ) return config def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = MobileViTVaConfig() lowerCamelCase__ = False # dataset if task_name.startswith("""imagenet1k_""" ): lowerCamelCase__ = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: lowerCamelCase__ = 384 else: lowerCamelCase__ = 256 lowerCamelCase__ = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): lowerCamelCase__ = 2_1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: lowerCamelCase__ = 384 else: lowerCamelCase__ = 256 lowerCamelCase__ = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): lowerCamelCase__ = 151 lowerCamelCase__ = 512 lowerCamelCase__ = """ade20k-id2label.json""" lowerCamelCase__ = True elif task_name.startswith("""voc_""" ): lowerCamelCase__ = 21 lowerCamelCase__ = 512 lowerCamelCase__ = """pascal-voc-id2label.json""" lowerCamelCase__ = True # orig_config lowerCamelCase__ = load_orig_config_file(__lowerCAmelCase ) assert getattr(__lowerCAmelCase , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" lowerCamelCase__ = getattr(__lowerCAmelCase , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(__lowerCAmelCase , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowerCamelCase__ = getattr(__lowerCAmelCase , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowerCamelCase__ = getattr(__lowerCAmelCase , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: lowerCamelCase__ = getattr(__lowerCAmelCase , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) lowerCamelCase__ = getattr(__lowerCAmelCase , """model.segmentation.deeplabv3.aspp_out_channels""" , 512 ) lowerCamelCase__ = getattr(__lowerCAmelCase , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label lowerCamelCase__ = """huggingface/label-files""" lowerCamelCase__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} return config def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): lowerCamelCase__ = dct.pop(__lowerCAmelCase ) lowerCamelCase__ = val def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple=False ): if base_model: lowerCamelCase__ = """""" else: lowerCamelCase__ = """mobilevitv2.""" lowerCamelCase__ = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowerCamelCase__ = k[8:] else: lowerCamelCase__ = k if ".block." in k: lowerCamelCase__ = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: lowerCamelCase__ = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: lowerCamelCase__ = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: lowerCamelCase__ = k_new.replace("""conv_1.""" , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: lowerCamelCase__ = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: lowerCamelCase__ = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: lowerCamelCase__ = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: lowerCamelCase__ = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: lowerCamelCase__ = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: lowerCamelCase__ = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: lowerCamelCase__ = [0, 1] elif i == 4: lowerCamelCase__ = [0, 1, 2, 3] elif i == 5: lowerCamelCase__ = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: lowerCamelCase__ = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: lowerCamelCase__ = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: lowerCamelCase__ = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: lowerCamelCase__ = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: lowerCamelCase__ = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: lowerCamelCase__ = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: lowerCamelCase__ = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: lowerCamelCase__ = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: lowerCamelCase__ = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: lowerCamelCase__ = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: lowerCamelCase__ = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: lowerCamelCase__ = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def A__ ( __lowerCAmelCase : Dict ): lowerCamelCase__ = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(__lowerCAmelCase ) for k in keys_to_ignore: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : str ): lowerCamelCase__ = get_mobilevitva_config(__lowerCAmelCase , __lowerCAmelCase ) # load original state_dict lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): lowerCamelCase__ = MobileViTVaForSemanticSegmentation(__lowerCAmelCase ).eval() lowerCamelCase__ = False else: lowerCamelCase__ = MobileViTVaForImageClassification(__lowerCAmelCase ).eval() lowerCamelCase__ = False # remove and rename some keys of load the original model lowerCamelCase__ = checkpoint remove_unused_keys(__lowerCAmelCase ) lowerCamelCase__ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load modified state_dict model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase__ = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCamelCase__ = model(**__lowerCAmelCase ) # verify classification model if task_name.startswith("""imagenet""" ): lowerCamelCase__ = outputs.logits lowerCamelCase__ = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant lowerCamelCase__ = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ) assert torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase : Dict = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
9
'''simple docstring''' from math import factorial UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 100_0000 ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowerCamelCase__ = 0 # the cached sizes of the previous chains lowerCamelCase__ = {} for start_chain_element in range(1 , __lowerCAmelCase ): # The temporary set will contain the elements of the chain lowerCamelCase__ = set() lowerCamelCase__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__lowerCAmelCase ) chain_set_length += 1 lowerCamelCase__ = digit_factorial_sum(__lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
9
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A_ ( lowercase_ ) -> int: _snake_case : Dict = filter(lambda lowercase_ : p.requires_grad , model.parameters() ) _snake_case : int = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ = logging.getLogger(__name__) def A_ ( lowercase_ , lowercase_ ) -> Dict: if metric == "rouge2": _snake_case : int = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _snake_case : Optional[int] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _snake_case : Optional[Any] = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) _snake_case : List[Any] = ModelCheckpoint( dirpath=lowercase_ , filename=lowercase_ , monitor=f'''val_{metric}''' , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def A_ ( lowercase_ , lowercase_ ) -> List[str]: return EarlyStopping( monitor=f'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=lowercase_ , verbose=lowercase_ , ) class A (pl.Callback ): def __a ( self , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' _snake_case : List[Any] = {F'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowercase_ ) @rank_zero_only def __a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=True ) -> None: '''simple docstring''' logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _snake_case : Union[str, Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _snake_case : int = Path(pl_module.hparams.output_dir ) if type_path == "test": _snake_case : List[str] = od / '''test_results.txt''' _snake_case : List[str] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _snake_case : Any = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _snake_case : Optional[Any] = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=lowercase_ ) generations_file.parent.mkdir(exist_ok=lowercase_ ) with open(lowercase_ , '''a+''' ) as writer: for key in sorted(lowercase_ ): if key in ["log", "progress_bar", "preds"]: continue _snake_case : List[str] = metrics[key] if isinstance(lowercase_ , torch.Tensor ): _snake_case : Tuple = val.item() _snake_case : Optional[Any] = F'''{key}: {val:.6f}\n''' writer.write(lowercase_ ) if not save_generations: return if "preds" in metrics: _snake_case : str = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(lowercase_ ) @rank_zero_only def __a ( self , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' try: _snake_case : Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: _snake_case : Any = pl_module.model.num_parameters() _snake_case : str = count_trainable_parameters(lowercase_ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def __a ( self , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowercase_ , lowercase_ , '''test''' ) @rank_zero_only def __a ( self , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
326
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def A_ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: # Initialise PyTorch model _snake_case : List[str] = FunnelConfig.from_json_file(lowercase_ ) print(f'''Building PyTorch model from configuration: {config}''' ) _snake_case : str = FunnelBaseModel(lowercase_ ) if base_model else FunnelModel(lowercase_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase_ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
326
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : Optional[int] = 10**-10 ): snake_case__ : int = a while True: snake_case__ : List[Any] = Decimal(UpperCamelCase__ ) - ( Decimal(eval(UpperCamelCase__ ) ) / Decimal(eval(str(diff(UpperCamelCase__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(UpperCamelCase__ ) ) < precision: # noqa: S307 return float(UpperCamelCase__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
702
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
0
from manim import * class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : Any ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = Rectangle(height=0.5 ,width=0.5 ) lowerCAmelCase_ : int = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCAmelCase_ : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase_ : List[str] = [mem.copy() for i in range(6 )] lowerCAmelCase_ : Dict = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0 ) lowerCAmelCase_ : Tuple = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0 ) lowerCAmelCase_ : List[Any] = VGroup(__lowerCAmelCase ,__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0 ) lowerCAmelCase_ : Optional[Any] = Text("CPU" ,font_size=24 ) lowerCAmelCase_ : List[Any] = Group(__lowerCAmelCase ,__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0.5 ,aligned_edge=__lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCAmelCase ) lowerCAmelCase_ : Dict = [mem.copy() for i in range(1 )] lowerCAmelCase_ : Any = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0 ) lowerCAmelCase_ : Union[str, Any] = Text("GPU" ,font_size=24 ) lowerCAmelCase_ : Dict = Group(__lowerCAmelCase ,__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0.5 ,aligned_edge=__lowerCAmelCase ) gpu.align_to(__lowerCAmelCase ,__lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(__lowerCAmelCase ) lowerCAmelCase_ : Dict = [mem.copy() for i in range(6 )] lowerCAmelCase_ : int = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0 ) lowerCAmelCase_ : Any = Text("Model" ,font_size=24 ) lowerCAmelCase_ : str = Group(__lowerCAmelCase ,__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0.5 ,aligned_edge=__lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(__lowerCAmelCase ,run_time=1 ) ,Create(__lowerCAmelCase ,run_time=1 ) ,Create(__lowerCAmelCase ,run_time=1 ) ,) lowerCAmelCase_ : Optional[int] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) lowerCAmelCase_ : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase_ : Any = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase ,run_time=2.5 ) ,Write(__lowerCAmelCase ) ,Write(__lowerCAmelCase ) ) self.add(__lowerCAmelCase ) lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : Dict = [] for i, rect in enumerate(__lowerCAmelCase ): lowerCAmelCase_ : Tuple = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase ,opacity=0.7 ) cpu_target.move_to(__lowerCAmelCase ) cpu_target.generate_target() lowerCAmelCase_ : Tuple = 0.46 / 4 lowerCAmelCase_ : Union[str, Any] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=__lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=__lowerCAmelCase ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=__lowerCAmelCase ,buff=0.0 ) cpu_targs.append(__lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__lowerCAmelCase ) ) second_animations.append(MoveToTarget(__lowerCAmelCase ,run_time=1.5 ) ) self.play(*__lowerCAmelCase ) self.play(*__lowerCAmelCase ) self.wait()
659
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
481
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging SCREAMING_SNAKE_CASE__ : Tuple =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any ={ 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """marian""" __snake_case = ["""past_key_values"""] __snake_case = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , _lowercase=58101 , _lowercase=None , _lowercase=1024 , _lowercase=12 , _lowercase=4096 , _lowercase=16 , _lowercase=12 , _lowercase=4096 , _lowercase=16 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=True , _lowercase=True , _lowercase="gelu" , _lowercase=1024 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=58100 , _lowercase=False , _lowercase=58100 , _lowercase=0 , _lowercase=0 , _lowercase=True , **_lowercase , ) -> Dict: _lowerCamelCase : Dict = vocab_size _lowerCamelCase : List[str] = decoder_vocab_size or vocab_size _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : str = d_model _lowerCamelCase : int = encoder_ffn_dim _lowerCamelCase : Optional[int] = encoder_layers _lowerCamelCase : Union[str, Any] = encoder_attention_heads _lowerCamelCase : Any = decoder_ffn_dim _lowerCamelCase : Dict = decoder_layers _lowerCamelCase : Optional[int] = decoder_attention_heads _lowerCamelCase : Any = dropout _lowerCamelCase : Tuple = attention_dropout _lowerCamelCase : Any = activation_dropout _lowerCamelCase : List[Any] = activation_function _lowerCamelCase : Optional[int] = init_std _lowerCamelCase : str = encoder_layerdrop _lowerCamelCase : List[str] = decoder_layerdrop _lowerCamelCase : Tuple = use_cache _lowerCamelCase : Optional[int] = encoder_layers _lowerCamelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : int = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) class _UpperCAmelCase ( a_ ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _lowerCamelCase : List[str] = {0: '''batch'''} _lowerCamelCase : Optional[int] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _lowerCamelCase : Tuple = {0: '''batch''', 1: '''decoder_sequence'''} _lowerCamelCase : List[str] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCamelCase : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _lowerCamelCase, _lowerCamelCase : Tuple = self.num_layers for i in range(_lowercase ): _lowerCamelCase : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} _lowerCamelCase : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _lowerCamelCase : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Tuple = super().outputs else: _lowerCamelCase : str = super(_lowercase , self ).outputs if self.use_past: _lowerCamelCase, _lowerCamelCase : Optional[int] = self.num_layers for i in range(_lowercase ): _lowerCamelCase : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} _lowerCamelCase : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def a__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Mapping[str, Any]: _lowerCamelCase : Optional[int] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Generate decoder inputs _lowerCamelCase : Optional[Any] = seq_length if not self.use_past else 1 _lowerCamelCase : Union[str, Any] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) _lowerCamelCase : Tuple = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCamelCase : Tuple = dict(**_lowercase , **_lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _lowerCamelCase, _lowerCamelCase : List[Any] = common_inputs['''input_ids'''].shape _lowerCamelCase : Dict = common_inputs['''decoder_input_ids'''].shape[1] _lowerCamelCase, _lowerCamelCase : Optional[int] = self.num_attention_heads _lowerCamelCase : Any = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : List[Any] = decoder_seq_length + 3 _lowerCamelCase : List[str] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCamelCase : Any = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowercase , _lowercase )] , dim=1 ) _lowerCamelCase : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCamelCase, _lowerCamelCase : str = self.num_layers _lowerCamelCase : Any = min(_lowercase , _lowercase ) _lowerCamelCase : Optional[Any] = max(_lowercase , _lowercase ) - min_num_layers _lowerCamelCase : str = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), ) ) # TODO: test this. _lowerCamelCase : List[str] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowercase , _lowercase ): common_inputs["past_key_values"].append((torch.zeros(_lowercase ), torch.zeros(_lowercase )) ) return common_inputs def a__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Mapping[str, Any]: _lowerCamelCase : List[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _lowerCamelCase, _lowerCamelCase : Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _lowerCamelCase : Union[str, Any] = seqlen + 2 _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.num_layers _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.num_attention_heads _lowerCamelCase : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : Union[str, Any] = common_inputs['''attention_mask'''].dtype _lowerCamelCase : str = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) _lowerCamelCase : int = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(_lowercase ) ] return common_inputs def a__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCamelCase : int = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCamelCase : Any = tokenizer.num_special_tokens_to_add(_lowercase ) _lowerCamelCase : Any = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence _lowerCamelCase : int = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCamelCase : str = dict(tokenizer(_lowercase , return_tensors=_lowercase ) ) return common_inputs def a__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) else: _lowerCamelCase : Union[str, Any] = self._generate_dummy_inputs_for_causal_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) return common_inputs def a__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : List[str] = super()._flatten_past_key_values_(_lowercase , _lowercase , _lowercase , _lowercase ) else: _lowerCamelCase : Optional[Any] = super(_lowercase , self )._flatten_past_key_values_( _lowercase , _lowercase , _lowercase , _lowercase ) @property def a__ ( self ) -> float: return 1E-4
558
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _UpperCAmelCase ( a_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=0 ) -> List[Any]: _lowerCamelCase : Tuple = 1.0 if scale is None else scale _lowerCamelCase : int = 0.0 if loc is None else loc super().__init__(_lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_lowercase )] ) @property def a__ ( self ) -> Dict: return self.base_dist.mean * self.scale + self.loc @property def a__ ( self ) -> List[str]: return self.base_dist.variance * self.scale**2 @property def a__ ( self ) -> Union[str, Any]: return self.variance.sqrt() class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> None: super().__init__(**_lowercase ) _lowerCamelCase : Union[str, Any] = args_dim _lowerCamelCase : Union[str, Any] = nn.ModuleList([nn.Linear(_lowercase , _lowercase ) for dim in args_dim.values()] ) _lowerCamelCase : str = domain_map def a__ ( self , _lowercase ) -> Tuple[torch.Tensor]: _lowerCamelCase : Any = [proj(_lowercase ) for proj in self.proj] return self.domain_map(*_lowercase ) class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: super().__init__() _lowerCamelCase : Optional[Any] = function def a__ ( self , _lowercase , *_lowercase ) -> str: return self.function(_lowercase , *_lowercase ) class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = 42 __snake_case = 42 def __init__( self , _lowercase = 1 ) -> None: _lowerCamelCase : int = dim _lowerCamelCase : Optional[int] = {k: dim * self.args_dim[k] for k in self.args_dim} def a__ ( self , _lowercase ) -> Dict: if self.dim == 1: return self.distribution_class(*_lowercase ) else: return Independent(self.distribution_class(*_lowercase ) , 1 ) def a__ ( self , _lowercase , _lowercase = None , _lowercase = None , ) -> Distribution: _lowerCamelCase : Any = self._base_distribution(_lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(_lowercase , loc=_lowercase , scale=_lowercase , event_dim=self.event_dim ) @property def a__ ( self ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def a__ ( self ) -> int: return len(self.event_shape ) @property def a__ ( self ) -> float: return 0.0 def a__ ( self , _lowercase ) -> nn.Module: return ParameterProjection( in_features=_lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def a__ ( self , *_lowercase ) -> int: raise NotImplementedError() @staticmethod def a__ ( _lowercase ) -> torch.Tensor: return (x + torch.sqrt(torch.square(_lowercase ) + 4.0 )) / 2.0 class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = {"df": 1, "loc": 1, "scale": 1} __snake_case = StudentT @classmethod def a__ ( cls , _lowercase , _lowercase , _lowercase ) -> List[Any]: _lowerCamelCase : int = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) _lowerCamelCase : List[Any] = 2.0 + cls.squareplus(_lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = {"loc": 1, "scale": 1} __snake_case = Normal @classmethod def a__ ( cls , _lowercase , _lowercase ) -> List[Any]: _lowerCamelCase : str = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = {"total_count": 1, "logits": 1} __snake_case = NegativeBinomial @classmethod def a__ ( cls , _lowercase , _lowercase ) -> int: _lowerCamelCase : str = cls.squareplus(_lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def a__ ( self , _lowercase ) -> Distribution: _lowerCamelCase, _lowerCamelCase : int = distr_args if self.dim == 1: return self.distribution_class(total_count=_lowercase , logits=_lowercase ) else: return Independent(self.distribution_class(total_count=_lowercase , logits=_lowercase ) , 1 ) def a__ ( self , _lowercase , _lowercase = None , _lowercase = None ) -> Distribution: _lowerCamelCase, _lowerCamelCase : Optional[int] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
558
1
import argparse import copy def _A ( _lowercase ) -> List[str]: """simple docstring""" __UpperCamelCase = {} with open(_lowercase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __UpperCamelCase = [] _list.append([line.split()[1], line.split()[2]] ) __UpperCamelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __UpperCamelCase = [] _list.append([line.split()[0], line.split()[2]] ) __UpperCamelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" with open(_lowercase ) as f: __UpperCamelCase = f.read(1 ) __UpperCamelCase = start_node __UpperCamelCase = [] __UpperCamelCase = start_node __UpperCamelCase = 0 while visiting not in first_solution: __UpperCamelCase = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_lowercase ) and k[0] not in first_solution: __UpperCamelCase = k[1] __UpperCamelCase = k[0] first_solution.append(_lowercase ) __UpperCamelCase = distance_of_first_solution + int(_lowercase ) __UpperCamelCase = best_node first_solution.append(_lowercase ) __UpperCamelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __UpperCamelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def _A ( _lowercase , _lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = [] for n in solution[1:-1]: __UpperCamelCase = solution.index(_lowercase ) for kn in solution[1:-1]: __UpperCamelCase = solution.index(_lowercase ) if n == kn: continue __UpperCamelCase = copy.deepcopy(_lowercase ) __UpperCamelCase = kn __UpperCamelCase = n __UpperCamelCase = 0 for k in _tmp[:-1]: __UpperCamelCase = _tmp[_tmp.index(_lowercase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __UpperCamelCase = distance + int(i[1] ) _tmp.append(_lowercase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __UpperCamelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _lowercase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: """simple docstring""" __UpperCamelCase = 1 __UpperCamelCase = first_solution __UpperCamelCase = [] __UpperCamelCase = distance_of_first_solution __UpperCamelCase = solution while count <= iters: __UpperCamelCase = find_neighborhood(_lowercase , _lowercase ) __UpperCamelCase = 0 __UpperCamelCase = neighborhood[index_of_best_solution] __UpperCamelCase = len(_lowercase ) - 1 __UpperCamelCase = False while not found: __UpperCamelCase = 0 while i < len(_lowercase ): if best_solution[i] != solution[i]: __UpperCamelCase = best_solution[i] __UpperCamelCase = solution[i] break __UpperCamelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __UpperCamelCase = True __UpperCamelCase = best_solution[:-1] __UpperCamelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __UpperCamelCase = cost __UpperCamelCase = solution else: __UpperCamelCase = index_of_best_solution + 1 __UpperCamelCase = neighborhood[index_of_best_solution] if len(_lowercase ) >= size: tabu_list.pop(0 ) __UpperCamelCase = count + 1 return best_solution_ever, best_cost def _A ( _lowercase=None ) -> Tuple: """simple docstring""" __UpperCamelCase = generate_neighbours(args.File ) __UpperCamelCase, __UpperCamelCase = generate_first_solution( args.File , _lowercase ) __UpperCamelCase, __UpperCamelCase = tabu_search( _lowercase , _lowercase , _lowercase , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
1
'''simple docstring''' from __future__ import annotations lowerCamelCase : List[str] = [] def _SCREAMING_SNAKE_CASE (A , A , A ) -> bool: """simple docstring""" for i in range(len(A ) ): if board[row][i] == 1: return False for i in range(len(A ) ): if board[i][column] == 1: return False for i, j in zip(range(A , -1 , -1 ) , range(A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(A , -1 , -1 ) , range(A , len(A ) ) ): if board[i][j] == 1: return False return True def _SCREAMING_SNAKE_CASE (A , A ) -> bool: """simple docstring""" if row >= len(A ): solution.append(A ) printboard(A ) print() return True for i in range(len(A ) ): if is_safe(A , A , A ): lowercase__ = 1 solve(A , row + 1 ) lowercase__ = 0 return False def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in range(len(A ) ): for j in range(len(A ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) lowerCamelCase : Optional[Any] = 8 lowerCamelCase : Optional[int] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
460
0
"""simple docstring""" a :Union[str, Any] = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } a :Union[str, Any] = {value: key for key, value in encode_dict.items()} def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Union[str, Any] = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def _lowercase ( __lowerCAmelCase ) -> str: if set(__lowerCAmelCase ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) SCREAMING_SNAKE_CASE__ : Tuple = """""" for word in coded.split(): while len(__lowerCAmelCase ) != 0: decoded += decode_dict[word[:5]] SCREAMING_SNAKE_CASE__ : str = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
12
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Any: # Format the message. if name is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = None else: SCREAMING_SNAKE_CASE__ : str = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" SCREAMING_SNAKE_CASE__ : Dict = fmt.format(__lowerCAmelCase ) # Print and recurse (if needed). if isinstance(__lowerCAmelCase , __lowerCAmelCase ): if msg is not None: print(__lowerCAmelCase ) for k in val.keys(): recursive_print(__lowerCAmelCase , val[k] , spaces + 2 ) elif isinstance(__lowerCAmelCase , torch.Tensor ): print(__lowerCAmelCase , """:""" , val.size() ) else: print(__lowerCAmelCase , """:""" , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. SCREAMING_SNAKE_CASE__ : Tuple = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] SCREAMING_SNAKE_CASE__ : int = (num_heads, hidden_size, num_splits) + input_shape[1:] SCREAMING_SNAKE_CASE__ : List[str] = param.view(*__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = param.transpose(0 , 2 ) SCREAMING_SNAKE_CASE__ : List[Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] SCREAMING_SNAKE_CASE__ : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:] SCREAMING_SNAKE_CASE__ : Dict = param.view(*__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = param.transpose(0 , 1 ).contiguous() SCREAMING_SNAKE_CASE__ : Any = param.view(*__lowerCAmelCase ) return param def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: # The converted output model. SCREAMING_SNAKE_CASE__ : List[str] = {} # old versions did not store training args SCREAMING_SNAKE_CASE__ : List[str] = input_state_dict.get("""args""" , __lowerCAmelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.padded_vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = ds_args.max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = ds_args.num_layers SCREAMING_SNAKE_CASE__ : Dict = ds_args.num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. SCREAMING_SNAKE_CASE__ : List[str] = config.n_head # The hidden_size per head. SCREAMING_SNAKE_CASE__ : str = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_state_dict["""checkpoint_version"""] else: SCREAMING_SNAKE_CASE__ : Tuple = 0.0 # The model. SCREAMING_SNAKE_CASE__ : Any = input_state_dict["""model"""] # The language model. SCREAMING_SNAKE_CASE__ : Any = model["""language_model"""] # The embeddings. SCREAMING_SNAKE_CASE__ : str = lm["""embedding"""] # The word embeddings. SCREAMING_SNAKE_CASE__ : int = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. SCREAMING_SNAKE_CASE__ : Any = word_embeddings[: config.vocab_size, :] SCREAMING_SNAKE_CASE__ : Optional[int] = word_embeddings # The position embeddings. SCREAMING_SNAKE_CASE__ : Any = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] SCREAMING_SNAKE_CASE__ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. SCREAMING_SNAKE_CASE__ : List[Any] = pos_embeddings # The transformer. SCREAMING_SNAKE_CASE__ : Union[str, Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. SCREAMING_SNAKE_CASE__ : str = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. SCREAMING_SNAKE_CASE__ : Optional[int] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. SCREAMING_SNAKE_CASE__ : str = layer_re.match(__lowerCAmelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. SCREAMING_SNAKE_CASE__ : Dict = int(m.group(1 ) ) # The name of the operation. SCREAMING_SNAKE_CASE__ : Optional[Any] = m.group(2 ) # Is it a weight or a bias? SCREAMING_SNAKE_CASE__ : str = m.group(3 ) # The name of the layer. SCREAMING_SNAKE_CASE__ : List[Any] = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): SCREAMING_SNAKE_CASE__ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" SCREAMING_SNAKE_CASE__ : List[Any] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. SCREAMING_SNAKE_CASE__ : Any = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = causal_mask # Insert a "dummy" tensor for masked_bias. SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor(-1E4 , dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : List[str] = masked_bias SCREAMING_SNAKE_CASE__ : List[str] = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. SCREAMING_SNAKE_CASE__ : str = out_val.transpose(0 , 1 ).contiguous() # Store. SCREAMING_SNAKE_CASE__ : Dict = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": SCREAMING_SNAKE_CASE__ : Any = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase ) # Store. No change of shape. SCREAMING_SNAKE_CASE__ : str = out_val # Transpose the weights. elif weight_or_bias == "weight": SCREAMING_SNAKE_CASE__ : str = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE__ : int = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": SCREAMING_SNAKE_CASE__ : int = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE__ : Dict = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. SCREAMING_SNAKE_CASE__ : Union[str, Any] = transformer["""final_layernorm.weight"""] SCREAMING_SNAKE_CASE__ : str = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. SCREAMING_SNAKE_CASE__ : Tuple = word_embeddings # It should be done! return output_state_dict def _lowercase ( ) -> List[Any]: # Create the argument parser. SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__lowerCAmelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__lowerCAmelCase , help="""An optional config json file describing the pre-trained model.""" , ) SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args() # Extract the basename. SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: SCREAMING_SNAKE_CASE__ : List[Any] = torch.load(__lowerCAmelCase , map_location="""cpu""" ) else: SCREAMING_SNAKE_CASE__ : str = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ : int = input_state_dict.get("""args""" , __lowerCAmelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: SCREAMING_SNAKE_CASE__ : Dict = """gelu_fast""" elif ds_args.openai_gelu: SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu_new""" else: SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" SCREAMING_SNAKE_CASE__ : Any = """gelu_new""" # Spell out all parameters in case the defaults change. SCREAMING_SNAKE_CASE__ : Union[str, Any] = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__lowerCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__lowerCAmelCase , summary_activation=__lowerCAmelCase , summary_proj_to_labels=__lowerCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=__lowerCAmelCase , use_cache=__lowerCAmelCase , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: SCREAMING_SNAKE_CASE__ : List[Any] = GPTaConfig.from_json_file(args.config_file ) SCREAMING_SNAKE_CASE__ : Tuple = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = convert_megatron_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__lowerCAmelCase , __lowerCAmelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: SCREAMING_SNAKE_CASE__ : Tuple = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": SCREAMING_SNAKE_CASE__ : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": SCREAMING_SNAKE_CASE__ : Any = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = """gpt2""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = type(__lowerCAmelCase ).__name__ SCREAMING_SNAKE_CASE__ : Dict = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__lowerCAmelCase ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(__lowerCAmelCase ) # Store the state_dict to file. SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , """pytorch_model.bin""" ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
12
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase=3 , lowerCamelCase=32 , lowerCamelCase=3 , lowerCamelCase=10 , lowerCamelCase=[10, 20, 30, 40] , lowerCamelCase=[1, 1, 2, 1] , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase="relu" , lowerCamelCase=3 , lowerCamelCase=None , ): __a = parent __a = batch_size __a = image_size __a = num_channels __a = embeddings_size __a = hidden_sizes __a = depths __a = is_training __a = use_labels __a = hidden_act __a = num_labels __a = scope __a = len(lowerCamelCase ) def a__ ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels def a__ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = TFRegNetModel(config=lowerCamelCase ) __a = model(lowerCamelCase , training=lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = self.num_labels __a = TFRegNetForImageClassification(lowerCamelCase ) __a = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case__ ( snake_case_, snake_case_, unittest.TestCase ): _snake_case : List[str] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _snake_case : List[str] = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) _snake_case : Optional[Any] = False _snake_case : Any = False _snake_case : Optional[int] = False _snake_case : Optional[int] = False _snake_case : int = False def a__ ( self ): __a = TFRegNetModelTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def a__ ( self ): return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def a__ ( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def a__ ( self ): super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def a__ ( self ): pass def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(lowerCamelCase ) __a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def a__ ( self ): def check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = model_class(lowerCamelCase ) __a = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) , training=lowerCamelCase ) __a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: __a = layer_type __a = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase={} ): __a = model(lowerCamelCase , return_dict=lowerCamelCase , **lowerCamelCase ) __a = model(lowerCamelCase , return_dict=lowerCamelCase , **lowerCamelCase ).to_tuple() def recursive_check(lowerCamelCase , lowerCamelCase ): if isinstance(lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCamelCase , lowerCamelCase ): recursive_check(lowerCamelCase , lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(lowerCamelCase , lowerCamelCase ) ) , msg=( "Tuple and dict output are not equal. Difference:" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(lowerCamelCase , lowerCamelCase ) for model_class in self.all_model_classes: __a = model_class(lowerCamelCase ) __a = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) __a = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __a = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) __a = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __a = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) __a = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase , {"output_hidden_states": True} ) __a = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) __a = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase , {"output_hidden_states": True} ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def a__ ( self ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFRegNetModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _lowerCamelCase( ): __a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def a__ ( self ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a__ ( self ): __a = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=lowerCamelCase , return_tensors="tf" ) # forward pass __a = model(**lowerCamelCase , training=lowerCamelCase ) # verify the logits __a = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __a = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 )
528
"""simple docstring""" def _lowerCamelCase( a ): return " ".join( "".join(word[::-1] ) if len(a ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
528
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''', # See all SEW models at https://huggingface.co/models?filter=sew } class __UpperCAmelCase ( _UpperCamelCase ): __lowerCamelCase : List[str] = "sew" def __init__( self : List[str] , a_ : List[str]=32 , a_ : List[str]=7_68 , a_ : Dict=12 , a_ : Tuple=12 , a_ : Optional[Any]=30_72 , a_ : Optional[Any]=2 , a_ : Union[str, Any]="gelu" , a_ : Dict=0.1 , a_ : Dict=0.1 , a_ : Tuple=0.1 , a_ : int=0.0 , a_ : Tuple=0.1 , a_ : Tuple=0.1 , a_ : Tuple=0.02 , a_ : str=1E-5 , a_ : int="group" , a_ : Dict="gelu" , a_ : Tuple=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , a_ : str=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , a_ : Any=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , a_ : Optional[Any]=False , a_ : Optional[int]=1_28 , a_ : Optional[int]=16 , a_ : str=True , a_ : Optional[int]=0.05 , a_ : str=10 , a_ : Dict=2 , a_ : Union[str, Any]=0.0 , a_ : Dict=10 , a_ : str=0 , a_ : Dict="mean" , a_ : Any=False , a_ : List[str]=False , a_ : Optional[int]=2_56 , a_ : List[Any]=0 , a_ : Tuple=1 , a_ : Union[str, Any]=2 , **a_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__(**a_ , pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ ) a__ : Any = hidden_size a__ : Optional[int] = feat_extract_norm a__ : Dict = feat_extract_activation a__ : str = list(a_ ) a__ : Tuple = list(a_ ) a__ : List[Any] = list(a_ ) a__ : Union[str, Any] = conv_bias a__ : Dict = num_conv_pos_embeddings a__ : Dict = num_conv_pos_embedding_groups a__ : int = len(self.conv_dim ) a__ : Any = num_hidden_layers a__ : Optional[Any] = intermediate_size a__ : int = squeeze_factor a__ : List[str] = hidden_act a__ : List[str] = num_attention_heads a__ : List[Any] = hidden_dropout a__ : str = attention_dropout a__ : Optional[Any] = activation_dropout a__ : Any = feat_proj_dropout a__ : Optional[int] = final_dropout a__ : Optional[int] = layerdrop a__ : List[str] = layer_norm_eps a__ : int = initializer_range a__ : List[Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a__ : Optional[int] = apply_spec_augment a__ : Tuple = mask_time_prob a__ : Tuple = mask_time_length a__ : int = mask_time_min_masks a__ : Any = mask_feature_prob a__ : Dict = mask_feature_length a__ : Optional[int] = mask_feature_min_masks # ctc loss a__ : int = ctc_loss_reduction a__ : List[str] = ctc_zero_infinity # sequence classification a__ : Union[str, Any] = use_weighted_layer_sum a__ : List[str] = classifier_proj_size @property def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
709
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowercase__ ( lowerCAmelCase__ : str ) -> str: '''simple docstring''' return EnvironmentCommand() class __UpperCAmelCase ( _UpperCamelCase ): @staticmethod def UpperCAmelCase ( a_ : ArgumentParser ) -> List[str]: '''simple docstring''' a__ : List[Any] = parser.add_parser("env" ) download_parser.set_defaults(func=a_ ) def UpperCAmelCase ( self : Optional[Any] ) -> str: '''simple docstring''' a__ : Tuple = huggingface_hub.__version__ a__ : Optional[Any] = "not installed" a__ : List[str] = "NA" if is_torch_available(): import torch a__ : List[str] = torch.__version__ a__ : List[str] = torch.cuda.is_available() a__ : Union[str, Any] = "not installed" if is_transformers_available(): import transformers a__ : List[Any] = transformers.__version__ a__ : str = "not installed" if is_accelerate_available(): import accelerate a__ : List[Any] = accelerate.__version__ a__ : str = "not installed" if is_xformers_available(): import xformers a__ : List[Any] = xformers.__version__ a__ : List[Any] = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": F"{pt_version} ({pt_cuda_available})", "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a_ ) ) return info @staticmethod def UpperCAmelCase ( a_ : Tuple ) -> Optional[int]: '''simple docstring''' return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
251
0
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): def __init__( self , snake_case="sayef/fsner-bert-base-uncased" ): super(__UpperCamelCase , self ).__init__() snake_case_ = AutoModel.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase ) snake_case_ = torch.nn.CosineSimilarity(3 , 1e-0_8 ) snake_case_ = torch.nn.Softmax(dim=1 ) def a ( self , **snake_case ): return self.bert(**__UpperCamelCase ).last_hidden_state def a ( self , snake_case ): return token_embeddings.sum(2 , keepdim=__UpperCamelCase ) def a ( self , snake_case , snake_case , snake_case=1 ): return self.softmax(T * self.cos(__UpperCamelCase , __UpperCamelCase ) ) def a ( self , snake_case , snake_case ): snake_case_ = W_supports['sizes'].tolist() snake_case_ = W_supports['start_token_id'].item() snake_case_ = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] snake_case_ = self.BERT(**__UpperCamelCase ) snake_case_ = self.BERT(**__UpperCamelCase ) snake_case_ = None snake_case_ = None snake_case_ = W_supports['input_ids'] == start_token_id snake_case_ = W_supports['input_ids'] == end_token_id for i, size in enumerate(__UpperCamelCase ): if i == 0: snake_case_ = 0 else: snake_case_ = support_sizes[i - 1] snake_case_ = S[s : s + size][start_token_masks[s : s + size]] snake_case_ = S[s : s + size][end_token_masks[s : s + size]] snake_case_ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) snake_case_ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: snake_case_ = torch.vstack((p_starts, p_start) ) snake_case_ = torch.vstack((p_ends, p_end) ) else: snake_case_ = p_start snake_case_ = p_end return p_starts, p_ends
362
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase : List[Any] = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : int = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : Optional[int] = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : str = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } lowerCamelCase : List[str] = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } lowerCamelCase : Union[str, Any] = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } lowerCamelCase : Dict = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase : Union[str, Any] = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase : Optional[Any] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _UpperCamelCase (a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRContextEncoderTokenizer class _UpperCamelCase (a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRQuestionEncoderTokenizer lowerCamelCase : Dict = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCamelCase : int = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCamelCase : Optional[int] = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(a_ ) class _UpperCamelCase : def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> BatchEncoding: if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: __lowerCAmelCase = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) __lowerCAmelCase = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] __lowerCAmelCase = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages assert len(__UpperCamelCase ) == len( __UpperCamelCase ), F"""There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.""" __lowerCAmelCase = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["input_ids"] __lowerCAmelCase = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["input_ids"] __lowerCAmelCase = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: __lowerCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowerCAmelCase = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1_6 , __UpperCamelCase = 6_4 , __UpperCamelCase = 4 , )-> List[DPRSpanPrediction]: __lowerCAmelCase = reader_input["input_ids"] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reader_output[:3] __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) __lowerCAmelCase = [] for doc_id in sorted_docs: __lowerCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowerCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowerCAmelCase = sequence_ids.index(self.pad_token_id ) else: __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> List[DPRSpanPrediction]: __lowerCAmelCase = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowerCAmelCase = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) __lowerCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" __lowerCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a_ ) class _UpperCamelCase (a_ , a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = READER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = READER_PRETRAINED_INIT_CONFIGURATION snake_case_ = ["""input_ids""", """attention_mask"""] snake_case_ = DPRReaderTokenizer
367
0
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCamelCase : Optional[Any] = 'src/diffusers' # Matches is_xxx_available() UpperCamelCase : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') UpperCamelCase : Optional[int] = '\n{0} = None\n' UpperCamelCase : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' UpperCamelCase : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def A__ ( __lowerCAmelCase ): lowerCamelCase__ = _re_backend.findall(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None return "_and_".join(__lowerCAmelCase ) def A__ ( ): with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase__ = 0 lowerCamelCase__ = {} # Go through the end of the file while line_index < len(__lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1: lowerCamelCase__ = lines[line_index] lowerCamelCase__ = _re_single_line_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = objects else: line_index += 1 return backend_specific_objects def A__ ( __lowerCAmelCase , __lowerCAmelCase ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase ) else: return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase=None ): if backend_specific_objects is None: lowerCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase__ = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase__ = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" lowerCamelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] ) lowerCamelCase__ = dummy_file return dummy_files def A__ ( __lowerCAmelCase=False ): lowerCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase__ = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCamelCase__ = os.path.join(__lowerCAmelCase , """utils""" ) lowerCamelCase__ = { backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase : Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
710
'''simple docstring''' UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCamelCase : list[bool | None] = [None] * 10_00_00_00 UpperCamelCase : Tuple = True UpperCamelCase : Optional[int] = False def A__ ( __lowerCAmelCase : int ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) ) lowerCamelCase__ = number_chain while number < 1000_0000: lowerCamelCase__ = number_chain number *= 10 return number_chain def A__ ( __lowerCAmelCase : int = 1000_0000 ): for i in range(1 , __lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
9
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowercase__ , lowercase__ ): if b == 0: return (1, 0) ((UpperCAmelCase__) , (UpperCAmelCase__)) : Optional[Any] = extended_euclid(lowercase__ , a % b ) UpperCAmelCase__ : List[str] = a // b return (y, x - k * y) def snake_case_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): ((UpperCAmelCase__) , (UpperCAmelCase__)) : int = extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase__ : Optional[int] = na * na UpperCAmelCase__ : Any = ra * x * na + ra * y * na return (n % m + m) % m def snake_case_ ( lowercase__ , lowercase__ ): ((UpperCAmelCase__) , (UpperCAmelCase__)) : Tuple = extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase__ : int = (b % n + n) % n return b def snake_case_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): UpperCAmelCase__ , UpperCAmelCase__ : Any = invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase__ : str = na * na UpperCAmelCase__ : Optional[Any] = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
199
'''simple docstring''' import operator as op def snake_case_ ( lowercase__ ): UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Any = lambda lowercase__ , lowercase__ : int(x / y ) # noqa: E731 integer division operation UpperCAmelCase__ : Any = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(1_2 ) , "Stack" , sep=" | " ) print("-" * (3_0 + len(lowercase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(1_2 ) , ",".join(lowercase__ ) , sep=" | " ) else: UpperCAmelCase__ : str = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(1_2 ) , ",".join(lowercase__ ) , sep=" | " ) UpperCAmelCase__ : List[Any] = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(1_2 ) , ",".join(lowercase__ ) , sep=" | " ) stack.append( str(opr[x](int(lowercase__ ) , int(lowercase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(1_2 ) , ",".join(lowercase__ ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
199
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class UpperCamelCase__ ( snake_case__ ): _SCREAMING_SNAKE_CASE : List[Any] = """realm""" def __init__(self : Optional[int] , snake_case_ : str=3_0_5_2_2 , snake_case_ : Any=7_6_8 , snake_case_ : Optional[Any]=1_2_8 , snake_case_ : int=1_2 , snake_case_ : List[str]=1_2 , snake_case_ : Union[str, Any]=8 , snake_case_ : Optional[Any]=3_0_7_2 , snake_case_ : str="gelu_new" , snake_case_ : Optional[Any]=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : Optional[Any]=5_1_2 , snake_case_ : Optional[int]=2 , snake_case_ : Dict=0.02 , snake_case_ : List[Any]=1E-12 , snake_case_ : Optional[int]=2_5_6 , snake_case_ : Optional[Any]=1_0 , snake_case_ : Any=1E-3 , snake_case_ : Tuple=5 , snake_case_ : Optional[int]=3_2_0 , snake_case_ : Dict=1_3_3_5_3_7_1_8 , snake_case_ : List[str]=5_0_0_0 , snake_case_ : Union[str, Any]=1 , snake_case_ : Optional[Any]=0 , snake_case_ : Tuple=2 , **snake_case_ : List[Any] , ): super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) # Common config __a : str = vocab_size __a : List[Any] = max_position_embeddings __a : List[Any] = hidden_size __a : Optional[int] = retriever_proj_size __a : Optional[int] = num_hidden_layers __a : Optional[Any] = num_attention_heads __a : Optional[int] = num_candidates __a : int = intermediate_size __a : Any = hidden_act __a : Tuple = hidden_dropout_prob __a : int = attention_probs_dropout_prob __a : Optional[Any] = initializer_range __a : Any = type_vocab_size __a : str = layer_norm_eps # Reader config __a : Any = span_hidden_size __a : Tuple = max_span_width __a : Tuple = reader_layer_norm_eps __a : List[str] = reader_beam_size __a : Any = reader_seq_len # Retrieval config __a : List[Any] = num_block_records __a : int = searcher_beam_size
702
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ ={ 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Sequence[float] , _UpperCAmelCase : float ): return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Sequence[float] , _UpperCAmelCase : float ): lowerCAmelCase = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase = result * x + coeff return result if __name__ == "__main__": __UpperCamelCase : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) __UpperCamelCase : int = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
4
'''simple docstring''' from math import factorial def __lowerCamelCase ( A__ , A__ , A__ ) -> float: """simple docstring""" if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(A__ , A__ ) or not isinstance(A__ , A__ ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) UpperCamelCase = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! UpperCamelCase = float(factorial(A__ ) ) coefficient /= factorial(A__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
430
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
721
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" snake_case_ = 'xlm-prophetnet' snake_case_ = ['past_key_values'] snake_case_ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self : Tuple , snake_case : Optional[float] = 0.1 , snake_case : Optional[Union[str, Callable]] = "gelu" , snake_case : Optional[int] = 3_0522 , snake_case : Optional[int] = 1024 , snake_case : Optional[int] = 4096 , snake_case : Optional[int] = 12 , snake_case : Optional[int] = 16 , snake_case : Optional[int] = 4096 , snake_case : Optional[int] = 12 , snake_case : Optional[int] = 16 , snake_case : Optional[float] = 0.1 , snake_case : Optional[float] = 0.1 , snake_case : Optional[int] = 512 , snake_case : Optional[float] = 0.02 , snake_case : Optional[bool] = True , snake_case : Optional[bool] = True , snake_case : Optional[int] = 0 , snake_case : Optional[int] = 2 , snake_case : Optional[int] = 32 , snake_case : Optional[int] = 128 , snake_case : Optional[bool] = False , snake_case : Optional[float] = 0.0 , snake_case : Optional[bool] = True , snake_case : Optional[int] = 0 , snake_case : Optional[int] = 1 , snake_case : Optional[int] = 2 , **snake_case : List[str] , ) -> str: '''simple docstring''' __magic_name__ : List[str] = vocab_size __magic_name__ : Optional[int] = hidden_size __magic_name__ : Any = encoder_ffn_dim __magic_name__ : str = num_encoder_layers __magic_name__ : List[str] = num_encoder_attention_heads __magic_name__ : Dict = decoder_ffn_dim __magic_name__ : int = num_decoder_layers __magic_name__ : str = num_decoder_attention_heads __magic_name__ : Tuple = max_position_embeddings __magic_name__ : Optional[int] = init_std # Normal(0, this parameter) __magic_name__ : Optional[int] = activation_function # parameters for xlmprophetnet __magic_name__ : int = ngram __magic_name__ : List[Any] = num_buckets __magic_name__ : int = relative_max_distance __magic_name__ : List[str] = disable_ngram_loss __magic_name__ : Union[str, Any] = eps # 3 Types of Dropout __magic_name__ : Tuple = attention_dropout __magic_name__ : List[Any] = activation_dropout __magic_name__ : Optional[int] = dropout __magic_name__ : Dict = use_cache super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , add_cross_attention=snake_case , decoder_start_token_id=snake_case , **snake_case , ) @property def _UpperCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _UpperCAmelCase ( self : List[Any] , snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
147
0
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Tuple = ['''pixel_values'''] def __init__( self : int , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _UpperCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_UpperCAmelCase : Any , ): super().__init__(**_UpperCAmelCase ) _A = size if size is not None else {'shortest_edge': 224} _A = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _A = crop_size if crop_size is not None else {'height': 224, 'width': 224} _A = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) _A = do_resize _A = size _A = resample _A = do_center_crop _A = crop_size _A = do_rescale _A = rescale_factor _A = do_normalize _A = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _A = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Dict , ): _A = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _A = int((256 / 224) * size['shortest_edge'] ) _A = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _A = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _UpperCAmelCase , size=(size_dict['height'], size_dict['width']) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[Any] , ): _A = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ): return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ): return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, Iterable[float]]] = None , _UpperCAmelCase : Optional[Union[float, Iterable[float]]] = None , _UpperCAmelCase : Optional[TensorType] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Dict , ): _A = do_resize if do_resize is not None else self.do_resize _A = resample if resample is not None else self.resample _A = do_center_crop if do_center_crop is not None else self.do_center_crop _A = do_rescale if do_rescale is not None else self.do_rescale _A = rescale_factor if rescale_factor is not None else self.rescale_factor _A = do_normalize if do_normalize is not None else self.do_normalize _A = image_mean if image_mean is not None else self.image_mean _A = image_std if image_std is not None else self.image_std _A = size if size is not None else self.size _A = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _A = crop_size if crop_size is not None else self.crop_size _A = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) _A = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _A = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: _A = [self.resize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for image in images] if do_center_crop: _A = [self.center_crop(_UpperCAmelCase , _UpperCAmelCase ) for image in images] if do_rescale: _A = [self.rescale(_UpperCAmelCase , _UpperCAmelCase ) for image in images] if do_normalize: _A = [self.normalize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for image in images] _A = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] _A = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
7
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __a( _a ): """simple docstring""" lowerCAmelCase = '''wav2vec2''' def __init__( self ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE="group" ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 512, 512, 512) ,_SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) ,_SCREAMING_SNAKE_CASE=(10, 3, 3, 3, 3, 2, 2) ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=0.05 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=320 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=100 ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE="sum" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 1_500) ,_SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) ,_SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,**_SCREAMING_SNAKE_CASE ,) -> Optional[int]: super().__init__(**_SCREAMING_SNAKE_CASE ,pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Tuple = feat_extract_norm UpperCAmelCase_ : List[Any] = feat_extract_activation UpperCAmelCase_ : str = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = conv_bias UpperCAmelCase_ : str = num_conv_pos_embeddings UpperCAmelCase_ : Any = num_conv_pos_embedding_groups UpperCAmelCase_ : Tuple = len(self.conv_dim ) UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : str = hidden_dropout UpperCAmelCase_ : int = attention_dropout UpperCAmelCase_ : Tuple = activation_dropout UpperCAmelCase_ : List[str] = feat_proj_dropout UpperCAmelCase_ : int = final_dropout UpperCAmelCase_ : Union[str, Any] = layerdrop UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Optional[int] = do_stable_layer_norm UpperCAmelCase_ : Optional[int] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : Optional[int] = apply_spec_augment UpperCAmelCase_ : Tuple = mask_time_prob UpperCAmelCase_ : Optional[Any] = mask_time_length UpperCAmelCase_ : Union[str, Any] = mask_time_min_masks UpperCAmelCase_ : Optional[Any] = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Union[str, Any] = num_codevectors_per_group UpperCAmelCase_ : Any = num_codevector_groups UpperCAmelCase_ : Union[str, Any] = contrastive_logits_temperature UpperCAmelCase_ : List[str] = feat_quantizer_dropout UpperCAmelCase_ : Dict = num_negatives UpperCAmelCase_ : List[str] = codevector_dim UpperCAmelCase_ : List[str] = proj_codevector_dim UpperCAmelCase_ : str = diversity_loss_weight # ctc loss UpperCAmelCase_ : List[Any] = ctc_loss_reduction UpperCAmelCase_ : List[str] = ctc_zero_infinity # adapter UpperCAmelCase_ : Optional[Any] = add_adapter UpperCAmelCase_ : Any = adapter_kernel_size UpperCAmelCase_ : Optional[int] = adapter_stride UpperCAmelCase_ : List[Any] = num_adapter_layers UpperCAmelCase_ : Optional[Any] = output_hidden_size or hidden_size UpperCAmelCase_ : Optional[int] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : List[str] = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = xvector_output_dim @property def a__ ( self ) -> Any: return functools.reduce(operator.mul ,self.conv_stride ,1 )
30
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") A : Optional[int] = logging.getLogger(__name__) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) lowerCamelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def a__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , __UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) datasets.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: SCREAMING_SNAKE_CASE_ = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: SCREAMING_SNAKE_CASE_ = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ = train_dataset.features["label"].names if training_args.do_eval: SCREAMING_SNAKE_CASE_ = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ = eval_dataset.features["label"].names if training_args.do_predict: SCREAMING_SNAKE_CASE_ = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ = predict_dataset.features["label"].names # Labels SCREAMING_SNAKE_CASE_ = len(__UpperCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCamelCase , idalabel={str(__UpperCamelCase ): label for i, label in enumerate(__UpperCamelCase )} , labelaid={label: i for i, label in enumerate(__UpperCamelCase )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE_ = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch SCREAMING_SNAKE_CASE_ = False def preprocess_function(__UpperCamelCase ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=__UpperCamelCase , max_length=data_args.max_seq_length , truncation=__UpperCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE_ = min(len(__UpperCamelCase ) , data_args.max_train_samples ) SCREAMING_SNAKE_CASE_ = train_dataset.select(range(__UpperCamelCase ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): SCREAMING_SNAKE_CASE_ = train_dataset.map( __UpperCamelCase , batched=__UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(__UpperCamelCase ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE_ = min(len(__UpperCamelCase ) , data_args.max_eval_samples ) SCREAMING_SNAKE_CASE_ = eval_dataset.select(range(__UpperCamelCase ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): SCREAMING_SNAKE_CASE_ = eval_dataset.map( __UpperCamelCase , batched=__UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: SCREAMING_SNAKE_CASE_ = min(len(__UpperCamelCase ) , data_args.max_predict_samples ) SCREAMING_SNAKE_CASE_ = predict_dataset.select(range(__UpperCamelCase ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): SCREAMING_SNAKE_CASE_ = predict_dataset.map( __UpperCamelCase , batched=__UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function SCREAMING_SNAKE_CASE_ = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = p.predictions[0] if isinstance(p.predictions , __UpperCamelCase ) else p.predictions SCREAMING_SNAKE_CASE_ = np.argmax(__UpperCamelCase , axis=1 ) return metric.compute(predictions=__UpperCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE_ = default_data_collator elif training_args.fpaa: SCREAMING_SNAKE_CASE_ = DataCollatorWithPadding(__UpperCamelCase , pad_to_multiple_of=8 ) else: SCREAMING_SNAKE_CASE_ = None # Initialize our Trainer SCREAMING_SNAKE_CASE_ = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCamelCase , tokenizer=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE_ = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE_ = last_checkpoint SCREAMING_SNAKE_CASE_ = trainer.train(resume_from_checkpoint=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = train_result.metrics SCREAMING_SNAKE_CASE_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = min(__UpperCamelCase , len(__UpperCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , __UpperCamelCase ) trainer.save_metrics("train" , __UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE_ = trainer.evaluate(eval_dataset=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = min(__UpperCamelCase , len(__UpperCamelCase ) ) trainer.log_metrics("eval" , __UpperCamelCase ) trainer.save_metrics("eval" , __UpperCamelCase ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = trainer.predict(__UpperCamelCase , metric_key_prefix="predict" ) SCREAMING_SNAKE_CASE_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = min(__UpperCamelCase , len(__UpperCamelCase ) ) trainer.log_metrics("predict" , __UpperCamelCase ) trainer.save_metrics("predict" , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.argmax(__UpperCamelCase , axis=1 ) SCREAMING_SNAKE_CASE_ = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(__UpperCamelCase , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = label_list[item] writer.write(F'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
356
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowerCamelCase (yaml.SafeLoader ): """simple docstring""" def __A ( self : str , __magic_name__ : str ) -> str: SCREAMING_SNAKE_CASE_ = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ = [tuple(__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else key for key in keys] SCREAMING_SNAKE_CASE_ = Counter(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' ) def __A ( self : int , __magic_name__ : int , __magic_name__ : List[str]=False ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = super().construct_mapping(__magic_name__ , deep=__magic_name__ ) self._check_no_duplicates_on_constructed_node(__magic_name__ ) return mapping def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__UpperCamelCase ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def __A ( cls : Dict , __magic_name__ : Path ) -> "DatasetMetadata": with open(__magic_name__ , encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__magic_name__ ) else: return cls() def __A ( self : str , __magic_name__ : Path ) -> List[str]: if path.exists(): with open(__magic_name__ , encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ = readme_file.read() else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = self._to_readme(__magic_name__ ) with open(__magic_name__ , "w" , encoding="utf-8" ) as readme_file: readme_file.write(__magic_name__ ) def __A ( self : Any , __magic_name__ : Optional[str] = None ) -> str: if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _split_yaml_from_readme(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __A ( cls : List[Any] , __magic_name__ : str ) -> "DatasetMetadata": SCREAMING_SNAKE_CASE_ = yaml.load(__magic_name__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ = { (key.replace("-" , "_" ) if key.replace("-" , "_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__magic_name__ ) def __A ( self : Optional[Any] ) -> str: return yaml.safe_dump( { (key.replace("_" , "-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__magic_name__ , allow_unicode=__magic_name__ , encoding="utf-8" , ).decode("utf-8" ) A : List[Any] = { "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser A : Optional[Any] = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") A : Union[str, Any] = ap.parse_args() A : Union[str, Any] = Path(args.readme_filepath) A : List[Any] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
356
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = state_dict.pop(_lowercase ) UpperCamelCase = val def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace('''backbone.0.body''' ,'''backbone.conv_encoder.model''' ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) UpperCamelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCamelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) UpperCamelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCamelCase = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) UpperCamelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCamelCase = in_proj_weight_cross_attn[:256, :] UpperCamelCase = in_proj_bias_cross_attn[:256] UpperCamelCase = in_proj_weight_cross_attn[256:512, :] UpperCamelCase = in_proj_bias_cross_attn[256:512] UpperCamelCase = in_proj_weight_cross_attn[-256:, :] UpperCamelCase = in_proj_bias_cross_attn[-256:] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = image.size UpperCamelCase = max(_lowercase ,_lowercase ) UpperCamelCase = 800 if '''detection''' in checkpoint_url else 1000 UpperCamelCase = target_max_size / current_max_size UpperCamelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = F.to_tensor(_lowercase ) UpperCamelCase = F.normalize(_lowercase ,mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" logger.info('''Converting model...''' ) # load original state dict UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(_lowercase ,_lowercase ,_lowercase ) UpperCamelCase = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCamelCase = state_dict.pop(_lowercase ) UpperCamelCase = val # create HuggingFace model and load state dict UpperCamelCase = TableTransformerConfig( backbone='''resnet18''' ,mask_loss_coefficient=1 ,dice_loss_coefficient=1 ,ce_loss_coefficient=1 ,bbox_loss_coefficient=5 ,giou_loss_coefficient=2 ,eos_coefficient=0.4 ,class_cost=1 ,bbox_cost=5 ,giou_cost=2 ,) if "detection" in checkpoint_url: UpperCamelCase = 15 UpperCamelCase = 2 UpperCamelCase = {0: '''table''', 1: '''table rotated'''} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} else: UpperCamelCase = 125 UpperCamelCase = 6 UpperCamelCase = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = DetrImageProcessor( format='''coco_detection''' ,max_size=800 if '''detection''' in checkpoint_url else 1000 ) UpperCamelCase = TableTransformerForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # verify our conversion UpperCamelCase = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' UpperCamelCase = hf_hub_download(repo_id='''nielsr/example-pdf''' ,repo_type='''dataset''' ,filename=_lowercase ) UpperCamelCase = Image.open(_lowercase ).convert('''RGB''' ) UpperCamelCase = normalize(resize(_lowercase ,_lowercase ) ).unsqueeze(0 ) UpperCamelCase = model(_lowercase ) if "detection" in checkpoint_url: UpperCamelCase = (1, 15, 3) UpperCamelCase = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) UpperCamelCase = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: UpperCamelCase = (1, 125, 7) UpperCamelCase = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) UpperCamelCase = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] ,_lowercase ,atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) UpperCamelCase = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(_lowercase ) image_processor.push_to_hub(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
34
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
715
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCamelCase__ ( __A :str ,__A :str ,__A :Optional[str] = None ): """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(__A ) return hfh.hf_hub_url(__A ,__A ,repo_type="""dataset""" ,revision=__A )
268
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase__ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCamelCase__ = { '''allenai/led-base-16384''': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase__ ( ): """simple docstring""" __snake_case = ( list(range(ord("""!""" ) ,ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) ,ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) ,ord("""ÿ""" ) + 1 ) ) ) __snake_case = bs[:] __snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 __snake_case = [chr(__A ) for n in cs] return dict(zip(__A ,__A ) ) def lowerCamelCase__ ( __A :Dict ): """simple docstring""" __snake_case = set() __snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="replace" , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase=False , **_UpperCamelCase , ) -> Optional[int]: """simple docstring""" __snake_case = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token __snake_case = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token __snake_case = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token __snake_case = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token __snake_case = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token __snake_case = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __snake_case = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token super().__init__( errors=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""" ) as vocab_handle: __snake_case = json.load(_UpperCamelCase ) __snake_case = {v: k for k, v in self.encoder.items()} __snake_case = errors # how to handle errors in decoding __snake_case = bytes_to_unicode() __snake_case = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCamelCase , encoding="""utf-8""" ) as merges_handle: __snake_case = merges_handle.read().split("""\n""" )[1:-1] __snake_case = [tuple(merge.split() ) for merge in bpe_merges] __snake_case = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) __snake_case = {} __snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __snake_case = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def a ( self ) -> List[Any]: """simple docstring""" return len(self.encoder ) def a ( self ) -> List[str]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a ( self , _UpperCamelCase ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] __snake_case = tuple(_UpperCamelCase ) __snake_case = get_pairs(_UpperCamelCase ) if not pairs: return token while True: __snake_case = min(_UpperCamelCase , key=lambda _UpperCamelCase : self.bpe_ranks.get(_UpperCamelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __snake_case , __snake_case = bigram __snake_case = [] __snake_case = 0 while i < len(_UpperCamelCase ): try: __snake_case = word.index(_UpperCamelCase , _UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case = j if word[i] == first and i < len(_UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case = tuple(_UpperCamelCase ) __snake_case = new_word if len(_UpperCamelCase ) == 1: break else: __snake_case = get_pairs(_UpperCamelCase ) __snake_case = """ """.join(_UpperCamelCase ) __snake_case = word return word def a ( self , _UpperCamelCase ) -> List[Any]: """simple docstring""" __snake_case = [] for token in re.findall(self.pat , _UpperCamelCase ): __snake_case = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCamelCase ).split(""" """ ) ) return bpe_tokens def a ( self , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token ) ) def a ( self , _UpperCamelCase ) -> Any: """simple docstring""" return self.decoder.get(_UpperCamelCase ) def a ( self , _UpperCamelCase ) -> str: """simple docstring""" __snake_case = """""".join(_UpperCamelCase ) __snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def a ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __snake_case = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase ) + """\n""" ) __snake_case = 0 with open(_UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __snake_case = token_index writer.write(""" """.join(_UpperCamelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def a ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def a ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , _UpperCamelCase , _UpperCamelCase=False , **_UpperCamelCase ) -> List[str]: """simple docstring""" __snake_case = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCamelCase ) > 0 and not text[0].isspace()): __snake_case = """ """ + text return (text, kwargs) def a ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = PaddingStrategy.DO_NOT_PAD , _UpperCamelCase = None , _UpperCamelCase = None , ) -> dict: """simple docstring""" __snake_case = super()._pad( encoded_inputs=_UpperCamelCase , max_length=_UpperCamelCase , padding_strategy=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) # Load from model defaults if return_attention_mask is None: __snake_case = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __snake_case = len(encoded_inputs["""global_attention_mask"""] ) != len(_UpperCamelCase ) if needs_to_be_padded: __snake_case = len(_UpperCamelCase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __snake_case = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": __snake_case = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
268
1
import re def A ( __UpperCAmelCase ) -> bool: '''simple docstring''' UpperCAmelCase_ = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": UpperCamelCase_ = "0094702343221" print(is_sri_lankan_phone_number(phone))
716
def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(__UpperCAmelCase , x % y ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(__UpperCAmelCase , __UpperCAmelCase ) def A ( __UpperCAmelCase = 20 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(__UpperCAmelCase , __UpperCAmelCase ) return g if __name__ == "__main__": print(f"{solution() = }")
561
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor A_: List[Any] = logging.get_logger(__name__) class _lowercase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
398
# using dfs for finding eulerian path traversal def __lowerCAmelCase ( _A ,_A ,_A ,_A=None ): """simple docstring""" _lowercase = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _lowercase , _lowercase = True, True _lowercase = dfs(_A ,_A ,_A ,_A ) return path def __lowerCAmelCase ( _A ,_A ): """simple docstring""" _lowercase = 0 _lowercase = -1 for i in range(_A ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _lowercase = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __lowerCAmelCase ( _A ,_A ): """simple docstring""" _lowercase = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _lowercase , _lowercase = check_circuit_or_path(_A ,_A ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return _lowercase = 1 if check == 2: _lowercase = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) _lowercase = dfs(_A ,_A ,_A ) print(_A ) def __lowerCAmelCase ( ): """simple docstring""" _lowercase = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _lowercase = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _lowercase = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _lowercase = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _lowercase = { 1: [], 2: [] # all degree is zero } _lowercase = 10 check_euler(_A ,_A ) check_euler(_A ,_A ) check_euler(_A ,_A ) check_euler(_A ,_A ) check_euler(_A ,_A ) if __name__ == "__main__": main()
398
1
def A__ ( __A ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) _lowerCamelCase : str = sorted(string.lower() ) return len(__A ) == len(set(__A ) ) if __name__ == "__main__": lowerCAmelCase : Tuple =input("Enter a string ").strip() lowerCAmelCase : Optional[Any] =is_isogram(input_str) print(F"""{input_str} is {"an" if isogram else "not an"} isogram.""")
15
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Any = BertTokenizer __a : Tuple = BertTokenizerFast __a : Union[str, Any] = True __a : int = True __a : Union[str, Any] = filter_non_english def snake_case ( self ): super().setUp() SCREAMING_SNAKE_CASE_ : Any = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE_ : List[str] = 'unwanted, running' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(snake_case__ ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,[9, 6, 7, 12, 10, 11] ) def snake_case ( self ): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : int = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : str = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE_ : str = tokenizer.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = rust_tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.encode(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # With lower casing SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer(do_lower_case=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_rust_tokenizer(do_lower_case=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = rust_tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.encode(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) ,['ah', '\u535A', '\u63A8', 'zz'] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = BasicTokenizer(do_lower_case=snake_case__ ,strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['h\u00E9llo'] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = BasicTokenizer(do_lower_case=snake_case__ ,strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = BasicTokenizer(do_lower_case=snake_case__ ,strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = BasicTokenizer(do_lower_case=snake_case__ ,strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = BasicTokenizer(do_lower_case=snake_case__ ,never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = BasicTokenizer() SCREAMING_SNAKE_CASE_ : Any = 'a\n\'ll !!to?\'d of, can\'t.' SCREAMING_SNAKE_CASE_ : Tuple = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(snake_case__ ) ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] SCREAMING_SNAKE_CASE_ : List[str] = {} for i, token in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = i SCREAMING_SNAKE_CASE_ : List[str] = WordpieceTokenizer(vocab=snake_case__ ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) ,['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) ,['[UNK]', 'runn', '##ing'] ) def snake_case ( self ): self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def snake_case ( self ): self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def snake_case ( self ): self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(snake_case__ ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(snake_case__ ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer_class.from_pretrained('bert-base-uncased' ) SCREAMING_SNAKE_CASE_ : str = tokenizer.encode('sequence builders' ,add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.encode('multi-sequence build' ,add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = tokenizer.build_inputs_with_special_tokens(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer.build_inputs_with_special_tokens(snake_case__ ,snake_case__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : int = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.encode_plus( snake_case__ ,return_attention_mask=snake_case__ ,return_token_type_ids=snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Any = tokenizer_r.do_lower_case if hasattr(snake_case__ ,'do_lower_case' ) else False SCREAMING_SNAKE_CASE_ : Any = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens['offset_mapping'] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ['的', '人', '有'] SCREAMING_SNAKE_CASE_ : List[Any] = ''.join(snake_case__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : str = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_p.encode(snake_case__ ,add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer_r.encode(snake_case__ ,add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer_r.convert_ids_to_tokens(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_p.convert_ids_to_tokens(snake_case__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(snake_case__ ,snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Dict = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_r.encode(snake_case__ ,add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_p.encode(snake_case__ ,add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = tokenizer_r.convert_ids_to_tokens(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer_p.convert_ids_to_tokens(snake_case__ ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE_ : List[Any] = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(snake_case__ ) ] self.assertListEqual(snake_case__ ,snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ )
105
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType A_ = get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=0 )-> List[str]: '''simple docstring''' os.makedirs(UpperCAmelCase ,exist_ok=UpperCAmelCase ) with FSDP.state_dict_type( UpperCAmelCase ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE_ = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,UpperCAmelCase ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE_ = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(UpperCAmelCase ,exist_ok=UpperCAmelCase ) logger.info(f'''Saving model to {ckpt_dir}''' ) SCREAMING_SNAKE_CASE_ = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=UpperCAmelCase ,storage_writer=dist_cp.FileSystemWriter(UpperCAmelCase ) ,planner=DefaultSavePlanner() ,) logger.info(f'''Model saved to {ckpt_dir}''' ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=0 )-> List[str]: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( UpperCAmelCase ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return SCREAMING_SNAKE_CASE_ = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Loading model from {input_model_file}''' ) SCREAMING_SNAKE_CASE_ = torch.load(UpperCAmelCase ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE_ = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Loading model from {input_model_file}''' ) SCREAMING_SNAKE_CASE_ = torch.load(UpperCAmelCase ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE_ = ( os.path.join(UpperCAmelCase ,f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) SCREAMING_SNAKE_CASE_ = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=UpperCAmelCase ,storage_reader=dist_cp.FileSystemReader(UpperCAmelCase ) ,planner=DefaultLoadPlanner() ,) SCREAMING_SNAKE_CASE_ = state_dict['''model'''] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=0 )-> int: '''simple docstring''' os.makedirs(UpperCAmelCase ,exist_ok=UpperCAmelCase ) with FSDP.state_dict_type( UpperCAmelCase ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE_ = FSDP.optim_state_dict(UpperCAmelCase ,UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: SCREAMING_SNAKE_CASE_ = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(UpperCAmelCase ,exist_ok=UpperCAmelCase ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} ,storage_writer=dist_cp.FileSystemWriter(UpperCAmelCase ) ,planner=DefaultSavePlanner() ,) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=0 )-> Any: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( UpperCAmelCase ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: SCREAMING_SNAKE_CASE_ = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) SCREAMING_SNAKE_CASE_ = torch.load(UpperCAmelCase ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: SCREAMING_SNAKE_CASE_ = ( os.path.join(UpperCAmelCase ,f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) SCREAMING_SNAKE_CASE_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() ,optimizer_key='''optimizer''' ,storage_reader=dist_cp.FileSystemReader(UpperCAmelCase ) ,) SCREAMING_SNAKE_CASE_ = optim_state['''optimizer'''] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) SCREAMING_SNAKE_CASE_ = FSDP.optim_state_dict_to_load(UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) optimizer.load_state_dict(UpperCAmelCase )
393
0
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase = 200 ) -> int: '''simple docstring''' lowerCamelCase__ =[1, 2, 5, 10, 20, 50, 100, 200] lowerCamelCase__ =[0] * (pence + 1) lowerCamelCase__ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a =logging.get_logger(__name__) class __UpperCAmelCase ( __lowerCAmelCase ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
132
0
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() _lowercase : Optional[int] = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def lowerCamelCase__ ( A : str , A : str , A : Union[str, Any] , A : List[str] , A : Optional[int]=False , A : Optional[Any]=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: UpperCAmelCase = cached_file(A , A , force_download=not use_cached_models ) UpperCAmelCase = config_class.from_json_file(A ) UpperCAmelCase = True UpperCAmelCase = True print(f"""Building TensorFlow model from configuration: {config}""" ) UpperCAmelCase = model_class(A ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): UpperCAmelCase = cached_file( A , A , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: UpperCAmelCase = load_pytorch_checkpoint_in_tfa_model(A , A ) if compare_with_pt_model: UpperCAmelCase = tf_model(tf_model.dummy_inputs , training=A ) # build the network UpperCAmelCase = torch.load(A , map_location='''cpu''' ) UpperCAmelCase = pt_model_class.from_pretrained( pretrained_model_name_or_path=A , config=A , state_dict=A ) with torch.no_grad(): UpperCAmelCase = pt_model(**pt_model.dummy_inputs ) UpperCAmelCase = pto[0].numpy() UpperCAmelCase = tfo[0].numpy() UpperCAmelCase = np.amax(np.abs(np_pt - np_tf ) ) print(f"""Max absolute difference between models outputs {diff}""" ) assert diff <= 2E-2, f"""Error, model absolute difference is >2e-2: {diff}""" # Save pytorch-model print(f"""Save TensorFlow model to {tf_dump_path}""" ) tf_model.save_weights(A , save_format='''h5''' ) def lowerCamelCase__ ( A : Any , A : Dict , A : List[Any]=None , A : int=None , A : List[Any]=False , A : Optional[Any]=False , A : str=False , A : Optional[int]=False , ): '''simple docstring''' if args_model_type is None: UpperCAmelCase = list(MODEL_CLASSES.keys() ) else: UpperCAmelCase = [args_model_type] for j, model_type in enumerate(A , start=1 ): print('''=''' * 1_00 ) print(f""" Converting model type {j}/{len(A )}: {model_type}""" ) print('''=''' * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: UpperCAmelCase = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: UpperCAmelCase = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(A , A ) , start=1 ): print('''-''' * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f""" Skipping finetuned checkpoint {model_shortcut_name}""" ) continue UpperCAmelCase = model_shortcut_name elif only_convert_finetuned_models: print(f""" Skipping not finetuned checkpoint {model_shortcut_name}""" ) continue print( f""" Converting checkpoint {i}/{len(A )}: {model_shortcut_name} - model_type {model_type}""" ) print('''-''' * 1_00 ) if config_shortcut_name in aws_config_map: UpperCAmelCase = cached_file(A , A , force_download=not use_cached_models ) else: UpperCAmelCase = config_shortcut_name if model_shortcut_name in aws_model_maps: UpperCAmelCase = cached_file(A , A , force_download=not use_cached_models ) else: UpperCAmelCase = model_shortcut_name if os.path.isfile(A ): UpperCAmelCase = '''converted_model''' convert_pt_checkpoint_to_tf( model_type=A , pytorch_checkpoint_path=A , config_file=A , tf_dump_path=os.path.join(A , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=A , ) if remove_cached_files: os.remove(A ) os.remove(A ) if __name__ == "__main__": _lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") _lowercase : int = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
210
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _a : List[Any] = logging.getLogger(__name__) @dataclass class lowercase_ : '''simple docstring''' __lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __lowerCAmelCase : Optional[str] = field( default=a , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __lowerCAmelCase : Optional[str] = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) __lowerCAmelCase : Optional[str] = field( default=a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __lowerCAmelCase : bool = field(default=a , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowerCAmelCase : Optional[str] = field( default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class lowercase_ : '''simple docstring''' __lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) __lowerCAmelCase : Optional[str] = field( default=a , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) __lowerCAmelCase : int = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __lowerCAmelCase : bool = field( default=a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCamelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) UpperCAmelCase = import_module('tasks' ) try: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE , model_args.task_type ) UpperCAmelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task UpperCAmelCase = token_classification_task.get_labels(data_args.labels ) UpperCAmelCase = dict(enumerate(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) UpperCAmelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> Tuple[List[int], List[int]]: UpperCAmelCase = np.argmax(SCREAMING_SNAKE_CASE , axis=2 ) UpperCAmelCase , UpperCAmelCase = preds.shape UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(SCREAMING_SNAKE_CASE : EvalPrediction ) -> Dict: UpperCAmelCase , UpperCAmelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "precision": precision_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "recall": recall_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "f1": fa_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), } # Data collator UpperCAmelCase = DataCollatorWithPadding(SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , compute_metrics=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) results.update(SCREAMING_SNAKE_CASE ) # Predict if training_args.do_predict: UpperCAmelCase = TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = trainer.predict(SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase = align_predictions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCAmelCase = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) # Save predictions UpperCAmelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
447
0
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> list: _lowercase : List[str] = len(lowerCamelCase_ ) _lowercase : List[Any] = [[0] * n for i in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ ): _lowercase : int = y_points[i] for i in range(2 , lowerCamelCase_ ): for j in range(lowerCamelCase_ , lowerCamelCase_ ): _lowercase : str = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
354
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = tf.convert_to_tensor( [ [ 8.2_2_2_0_9_9_1, # 3rd highest value; idx. 0 -0.5_6_2_0_0_4_4, 5.2_3_2_2_9_7_5_2, 4.0_3_8_6_3_9_3, -6.8_7_9_8_3_7_8, -0.5_4_7_8_5_8_0_2, -3.2_0_1_2_1_5_3, 2.9_2_7_7_7_1_7_6, 1.8_8_1_7_1_9_5_3, 7.3_5_3_4_1_2_7_6, # 5th highest value; idx. 9 8.4_3_2_0_7_8_3_3, # 2nd highest value; idx. 10 -9.8_5_7_1_1_8_3_6, -5.9_6_2_0_9_2_3_6, -1.1_3_0_3_9_1_6_1, -7.1_1_1_5_2_9_4, -0.8_3_6_9_6_3_3, -5.3_1_8_6_4_0_8, 7.0_6_4_2_7_4_0_7, 0.8_1_3_6_9_3_4_4, -0.8_2_0_2_3_8_1_7, -5.9_1_7_9_7_9_6, 0.5_8_8_1_3_4_4_3, -6.9_9_7_7_8_4_3_8, 4.7_1_5_5_1_1_8_9, -0.1_8_7_7_1_6_3_7, 7.4_4_0_2_0_7_5_9, # 4th highest value; idx. 25 9.3_8_4_5_0_9_8_7, # 1st highest value; idx. 26 2.1_2_6_6_2_9_4_1, -9.3_2_5_6_2_0_3_8, 2.3_5_6_5_2_5_2_2, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5_8_4_2_5_5_1_8, 4.5_3_1_3_9_2_3_8, -5.5_7_5_1_0_4_6_4, -6.2_8_0_3_0_6_9_9, -7.1_9_5_2_9_5_0_3, -4.0_2_1_2_2_5_5_1, 1.3_9_3_3_7_0_3_7, -6.0_6_7_0_7_0_5_7, 1.5_9_4_8_0_5_1_7, -9.6_4_3_1_1_9, 0.0_3_9_0_7_7_9_9, 0.6_7_2_3_1_7_6_2, -8.8_8_2_0_6_7_2_6, 6.2_7_1_1_5_9_2_2, # 4th highest value; idx. 13 2.2_8_5_2_0_7_2_3, 4.8_2_7_6_7_5_0_6, 4.3_0_4_2_1_3_6_8, 8.8_2_7_5_3_1_3, # 2nd highest value; idx. 17 5.4_4_0_2_9_9_5_8, # 5th highest value; idx. 18 -4.4_7_3_5_7_9_4, 7.3_8_5_7_9_5_3_6, # 3rd highest value; idx. 20 -2.9_1_0_5_1_6_6_3, 2.6_1_9_4_6_0_7_7, -2.5_6_7_4_7_6_2, -9.4_8_9_5_9_3_0_2, -4.0_2_9_2_2_6_4_5, -1.3_5_4_1_6_9_1_8, 9.6_7_7_0_2_3_2_3, # 1st highest value; idx. 27 -5.8_9_4_7_8_5_5_3, 1.8_5_3_7_0_4_6_7, ], # cummulative prob of 5 highest values <= 0.6 ], dtype=tf.floataa, ) _lowercase : Dict = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]], dtype=tf.intaa, ) # expected non filtered idx as noted above _lowercase : Optional[Any] = tf.convert_to_tensor( [8.2_2_2_0_9_9, 7.3_5_3_4_1_2_6, 8.4_3_2_0_7_8, 7.4_4_0_2_0_7_5, 9.3_8_4_5_1, 6.2_7_1_1_5_9, 8.8_2_7_5_3_1, 5.4_4_0_2_9_9_5, 7.3_8_5_7_9_5_6, 9.6_7_7_0_2_3], dtype=tf.floataa, ) # expected non filtered values as noted above _lowercase : Optional[int] = tf_top_k_top_p_filtering(lowerCamelCase, top_k=10, top_p=0.6, min_tokens_to_keep=4) _lowercase : int = output[output != -float('inf')] _lowercase : List[str] = tf.cast( tf.where(tf.not_equal(lowerCamelCase, tf.constant(-float('inf'), dtype=tf.floataa))), dtype=tf.intaa, ) tf.debugging.assert_near(lowerCamelCase, lowerCamelCase, rtol=1E-12) tf.debugging.assert_equal(lowerCamelCase, lowerCamelCase) @require_tf class _lowerCamelCase( unittest.TestCase, _a ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase_ : Optional[Any] = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2') _lowercase : Any = 2 _lowercase : Tuple = 2 class _lowerCamelCase( tf.Module ): def __init__( self, lowerCamelCase) -> int: """simple docstring""" super(lowerCamelCase, self).__init__() _lowercase : int = model @tf.function( input_signature=( tf.TensorSpec((None, input_length), tf.intaa, name='input_ids'), tf.TensorSpec((None, input_length), tf.intaa, name='attention_mask'), ), jit_compile=lowerCamelCase, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : List[str] = self.model.generate( input_ids=lowerCamelCase, attention_mask=lowerCamelCase, max_new_tokens=lowerCamelCase, return_dict_in_generate=lowerCamelCase, ) return {"sequences": outputs["sequences"]} _lowercase : List[Any] = [[2, 0], [1_02, 1_03]] _lowercase : Tuple = [[1, 0], [1, 1]] _lowercase : Dict = DummyModel(model=lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCamelCase, lowerCamelCase, signatures={'serving_default': dummy_model.serving}) _lowercase : Dict = tf.saved_model.load(lowerCamelCase).signatures['serving_default'] for batch_size in range(1, len(lowerCamelCase) + 1): _lowercase : int = { 'input_ids': tf.constant(dummy_input_ids[:batch_size]), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size]), } _lowercase : Optional[int] = serving_func(**lowerCamelCase)['sequences'] _lowercase : Optional[Any] = test_model.generate(**lowerCamelCase, max_new_tokens=lowerCamelCase) tf.debugging.assert_equal(lowerCamelCase, lowerCamelCase) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2') _lowercase : List[str] = 1 _lowercase : Tuple = 2 class _lowerCamelCase( tf.Module ): def __init__( self, lowerCamelCase) -> Any: """simple docstring""" super(lowerCamelCase, self).__init__() _lowercase : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None), tf.intaa, name='input_ids'), tf.TensorSpec((batch_size, None), tf.intaa, name='attention_mask'), ), jit_compile=lowerCamelCase, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Optional[int] = self.model.generate( input_ids=lowerCamelCase, attention_mask=lowerCamelCase, max_new_tokens=lowerCamelCase, return_dict_in_generate=lowerCamelCase, ) return {"sequences": outputs["sequences"]} _lowercase : Optional[int] = [[2], [1_02, 1_03]] _lowercase : List[Any] = [[1], [1, 1]] _lowercase : Tuple = DummyModel(model=lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCamelCase, lowerCamelCase, signatures={'serving_default': dummy_model.serving}) _lowercase : Optional[int] = tf.saved_model.load(lowerCamelCase).signatures['serving_default'] for input_row in range(len(lowerCamelCase)): _lowercase : Dict = { 'input_ids': tf.constant([dummy_input_ids[input_row]]), 'attention_mask': tf.constant([dummy_attention_masks[input_row]]), } _lowercase : List[Any] = serving_func(**lowerCamelCase)['sequences'] _lowercase : List[str] = test_model.generate(**lowerCamelCase, max_new_tokens=lowerCamelCase) tf.debugging.assert_equal(lowerCamelCase, lowerCamelCase) @slow @require_tensorflow_text def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small', filename='spiece.model', local_dir=lowerCamelCase) class _lowerCamelCase( tf.keras.layers.Layer ): def __init__( self) -> Dict: """simple docstring""" super().__init__() _lowercase : Union[str, Any] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(lowerCamelCase, 'spiece.model'), 'rb').read()) _lowercase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5') def UpperCamelCase ( self, lowerCamelCase, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Tuple = self.tokenizer.tokenize(lowerCamelCase) _lowercase , _lowercase : Tuple = text.pad_model_inputs( lowerCamelCase, max_seq_length=64, pad_value=self.model.config.pad_token_id) _lowercase : Tuple = self.model.generate(input_ids=lowerCamelCase, attention_mask=lowerCamelCase) return self.tokenizer.detokenize(lowerCamelCase) _lowercase : Tuple = CompleteSentenceTransformer() _lowercase : Optional[Any] = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name='inputs') _lowercase : Tuple = complete_model(lowerCamelCase) _lowercase : Union[str, Any] = tf.keras.Model(lowerCamelCase, lowerCamelCase) keras_model.save(lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : int = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } _lowercase : Tuple = 14 _lowercase : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') _lowercase : Any = 'Hello, my dog is cute and' _lowercase : List[Any] = tokenizer(lowerCamelCase, return_tensors='tf') _lowercase : Optional[int] = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2') _lowercase : Union[str, Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0'): tf.random.set_seed(0) _lowercase : Tuple = model.generate(**lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase) self.assertTrue(expectation == len(generated_tokens[0])) _lowercase : Tuple = [6_38, 1_98] with tf.device(':/CPU:0'): tf.random.set_seed(0) _lowercase : Optional[Any] = model.generate(**lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase) self.assertTrue(expectation == len(generated_tokens[0])) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart') _lowercase : Any = 'Hugging Face is a technology company based in New York and Paris.' _lowercase : Optional[int] = bart_tokenizer(lowerCamelCase, return_tensors='tf').input_ids _lowercase : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart') _lowercase : Union[str, Any] = bart_model.generate(lowerCamelCase).numpy() class _lowerCamelCase( _a ): def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> int: """simple docstring""" return super().call(lowerCamelCase, **lowerCamelCase) _lowercase : Any = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart') _lowercase : Optional[int] = bart_model.generate(lowerCamelCase, foo='bar').numpy() self.assertTrue(np.array_equal(lowerCamelCase, lowerCamelCase)) class _lowerCamelCase( bart_model.model.encoder.__class__ ): def UpperCamelCase ( self, lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return super().call(lowerCamelCase, **lowerCamelCase) _lowercase : List[Any] = FakeEncoder(bart_model.config, bart_model.model.shared) _lowercase : int = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) _lowercase : Dict = bart_model.generate(lowerCamelCase).numpy() with self.assertRaises(lowerCamelCase): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(lowerCamelCase, foo='bar')
354
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionPanoramaPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase__ : Optional[Any] = DDIMScheduler() torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase__ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCAmelCase__ : Any = CLIPTextModel(_A ) UpperCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase__ : Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase_ ( self : Any , _A : Optional[Any] , _A : Dict=0 ): '''simple docstring''' UpperCAmelCase__ : Tuple = torch.manual_seed(_A ) UpperCAmelCase__ : Optional[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Tuple = self.get_dummy_components() UpperCAmelCase__ : str = StableDiffusionPanoramaPipeline(**_A ) UpperCAmelCase__ : int = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : List[Any] = self.get_dummy_inputs(_A ) UpperCAmelCase__ : int = sd_pipe(**_A ).images UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Dict = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Tuple ): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self : int ): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Optional[int] = self.get_dummy_components() UpperCAmelCase__ : Dict = StableDiffusionPanoramaPipeline(**_A ) UpperCAmelCase__ : Optional[Any] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase__ : List[Any] = '''french fries''' UpperCAmelCase__ : Tuple = sd_pipe(**_A , negative_prompt=_A ) UpperCAmelCase__ : Tuple = output.images UpperCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : List[Any] = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase__ : str = StableDiffusionPanoramaPipeline(**_A ) UpperCAmelCase__ : Optional[int] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : str = self.get_dummy_inputs(_A ) UpperCAmelCase__ : int = sd_pipe(**_A , view_batch_size=2 ) UpperCAmelCase__ : Optional[int] = output.images UpperCAmelCase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : int = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Optional[Any] = self.get_dummy_components() UpperCAmelCase__ : List[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' ) UpperCAmelCase__ : List[str] = StableDiffusionPanoramaPipeline(**_A ) UpperCAmelCase__ : Union[str, Any] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : List[Any] = self.get_dummy_inputs(_A ) UpperCAmelCase__ : Optional[int] = sd_pipe(**_A ).images UpperCAmelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : List[Any] = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Tuple = self.get_dummy_components() UpperCAmelCase__ : List[str] = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , skip_prk_steps=_A ) UpperCAmelCase__ : Optional[int] = StableDiffusionPanoramaPipeline(**_A ) UpperCAmelCase__ : str = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase__ : Optional[int] = sd_pipe(**_A ).images UpperCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : int = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : int , _A : Tuple=0 ): '''simple docstring''' UpperCAmelCase__ : str = torch.manual_seed(_A ) UpperCAmelCase__ : str = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = '''stabilityai/stable-diffusion-2-base''' UpperCAmelCase__ : Optional[Any] = DDIMScheduler.from_pretrained(_A , subfolder='''scheduler''' ) UpperCAmelCase__ : Dict = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase__ : Tuple = self.get_inputs() UpperCAmelCase__ : Dict = pipe(**_A ).images UpperCAmelCase__ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) UpperCAmelCase__ : Optional[Any] = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Any = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_A ) UpperCAmelCase__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase__ : Union[str, Any] = self.get_inputs() UpperCAmelCase__ : Any = pipe(**_A ).images UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) UpperCAmelCase__ : int = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = 0 def callback_fn(_A : int , _A : int , _A : torch.FloatTensor ) -> None: UpperCAmelCase__ : str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase__ : List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) UpperCAmelCase__ : str = latents[0, -3:, -3:, -1] UpperCAmelCase__ : Tuple = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: UpperCAmelCase__ : Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) UpperCAmelCase__ : int = latents[0, -3:, -3:, -1] UpperCAmelCase__ : Union[str, Any] = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Dict = '''stabilityai/stable-diffusion-2-base''' UpperCAmelCase__ : List[Any] = DDIMScheduler.from_pretrained(_A , subfolder='''scheduler''' ) UpperCAmelCase__ : List[str] = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A ) UpperCAmelCase__ : Tuple = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase__ : Optional[Any] = self.get_inputs() pipe(**_A , callback=_A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase_ ( self : Tuple ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase__ : Tuple = '''stabilityai/stable-diffusion-2-base''' UpperCAmelCase__ : List[Any] = DDIMScheduler.from_pretrained(_A , subfolder='''scheduler''' ) UpperCAmelCase__ : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A ) UpperCAmelCase__ : Tuple = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase__ : Dict = self.get_inputs() UpperCAmelCase__ : Optional[Any] = pipe(**_A ) UpperCAmelCase__ : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
75
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( lowercase_ , unittest.TestCase): '''simple docstring''' lowerCamelCase : List[str] = GPTaTokenizer lowerCamelCase : Optional[int] = GPTaTokenizerFast lowerCamelCase : List[Any] = True lowerCamelCase : List[str] = {"add_prefix_space": True} lowerCamelCase : Optional[int] = False def __lowercase ( self ) -> int: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case :Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] __snake_case :Dict = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case :List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __snake_case :List[str] = {"""unk_token""": """<unk>"""} __snake_case :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case :Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __lowercase ( self , **a__ ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __lowercase ( self , **a__ ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __lowercase ( self , a__ ) -> Optional[int]: '''simple docstring''' __snake_case :List[Any] = """lower newer""" __snake_case :Any = """lower newer""" return input_text, output_text def __lowercase ( self ) -> Optional[int]: '''simple docstring''' __snake_case :Optional[int] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case :List[Any] = """lower newer""" __snake_case :int = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __snake_case :Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) __snake_case :List[Any] = tokens + [tokenizer.unk_token] __snake_case :List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case :Union[str, Any] = self.get_tokenizer() __snake_case :Optional[Any] = self.get_rust_tokenizer(add_prefix_space=a__ ) __snake_case :Optional[int] = """lower newer""" # Testing tokenization __snake_case :List[Any] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) __snake_case :int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens __snake_case :List[str] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) __snake_case :int = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens __snake_case :Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=a__ ) __snake_case :Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) __snake_case :Optional[int] = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token __snake_case :Dict = tokens + [rust_tokenizer.unk_token] __snake_case :Optional[int] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __lowercase ( self , *a__ , **a__ ) -> Any: '''simple docstring''' pass def __lowercase ( self , a__=15 ) -> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case :Optional[int] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input __snake_case :List[str] = """This is a simple input""" __snake_case :List[str] = ["""This is a simple input 1""", """This is a simple input 2"""] __snake_case :Tuple = ("""This is a simple input""", """This is a pair""") __snake_case :Union[str, Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __lowercase ( self ) -> int: '''simple docstring''' __snake_case :Union[str, Any] = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input __snake_case :Tuple = """This is a simple input""" __snake_case :Optional[int] = ["""This is a simple input looooooooong""", """This is a simple input"""] __snake_case :List[str] = ("""This is a simple input""", """This is a pair""") __snake_case :List[str] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] __snake_case :Tuple = tokenizer.pad_token_id __snake_case :int = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) __snake_case :Optional[Any] = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) __snake_case :List[Any] = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) __snake_case :Optional[int] = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Optional[int] = """$$$""" __snake_case :Optional[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) __snake_case :List[Any] = """This is a simple input""" __snake_case :Tuple = ["""This is a simple input 1""", """This is a simple input 2"""] __snake_case :Tuple = tokenizer.bos_token_id __snake_case :List[str] = tokenizer(a__ ) __snake_case :Any = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __snake_case :int = tokenizer.decode(out_s.input_ids ) __snake_case :Tuple = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __lowercase ( self ) -> str: '''simple docstring''' pass def __lowercase ( self ) -> Optional[int]: '''simple docstring''' __snake_case :List[str] = [self.get_tokenizer(do_lower_case=a__ , add_bos_token=a__ )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __snake_case :Tuple = """Encode this.""" __snake_case :Tuple = """This one too please.""" __snake_case :Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ ) encoded_sequence += tokenizer.encode(a__ , add_special_tokens=a__ ) __snake_case :List[str] = tokenizer.encode_plus( a__ , a__ , add_special_tokens=a__ , return_special_tokens_mask=a__ , ) __snake_case :Union[str, Any] = encoded_sequence_dict["""input_ids"""] __snake_case :Optional[Any] = encoded_sequence_dict["""special_tokens_mask"""] self.assertEqual(len(a__ ) , len(a__ ) ) __snake_case :Optional[int] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(a__ ) ] __snake_case :str = [x for x in filtered_sequence if x is not None] self.assertEqual(a__ , a__ ) @require_tokenizers class snake_case__ ( unittest.TestCase): '''simple docstring''' def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Union[str, Any] = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=a__ ) __snake_case :Union[str, Any] = """A photo of a cat""" __snake_case :int = tokenizer.encode( a__ , ) self.assertEqual(a__ , [2, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("""test_opt""" ) __snake_case :int = AutoTokenizer.from_pretrained("""./test_opt""" ) __snake_case :Tuple = tokenizer.encode( a__ , ) self.assertEqual(a__ , [2, 2_50, 13_45, 9, 10, 47_58] ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Tuple = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , use_slow=a__ ) __snake_case :str = """A photo of a cat""" __snake_case :List[str] = tokenizer.encode( a__ , ) # Same as above self.assertEqual(a__ , [2, 2_50, 13_45, 9, 10, 47_58] ) @unittest.skip("""This test is failing because of a bug in the fast tokenizer""" ) def __lowercase ( self ) -> List[Any]: '''simple docstring''' __snake_case :int = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=a__ ) __snake_case :Optional[Any] = """bos""" __snake_case :int = tokenizer.get_vocab()["""bos"""] __snake_case :str = """A photo of a cat""" __snake_case :int = tokenizer.encode( a__ , ) # We changed the bos token self.assertEqual(a__ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("""./tok""" ) __snake_case :Dict = AutoTokenizer.from_pretrained("""./tok""" ) self.assertTrue(tokenizer.is_fast ) __snake_case :List[Any] = tokenizer.encode( a__ , ) self.assertEqual(a__ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
455
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowercase : int = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class _A ( snake_case , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = AlbertTokenizer __lowerCamelCase : Tuple = AlbertTokenizerFast __lowerCamelCase : Any = True __lowerCamelCase : Dict = True __lowerCamelCase : Dict = True def snake_case_ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case : Dict = AlbertTokenizer(SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[str] = 'this is a test' snake_case : List[str] = 'this is a test' return input_text, output_text def snake_case_ ( self ): '''simple docstring''' snake_case : int = '<pad>' snake_case : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<pad>""" ) self.assertEqual(vocab_keys[1] ,"""<unk>""" ) self.assertEqual(vocab_keys[-1] ,"""▁eloquent""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,30000 ) def snake_case_ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,30000 ) def snake_case_ ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return snake_case : List[str] = self.get_tokenizer() snake_case : List[str] = self.get_rust_tokenizer() snake_case : Optional[int] = 'I was born in 92000, and this is falsé.' snake_case : Dict = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : Any = tokenizer.encode(SCREAMING_SNAKE_CASE_ ,add_special_tokens=SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ,add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = self.get_rust_tokenizer() snake_case : Dict = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = AlbertTokenizer(SCREAMING_SNAKE_CASE_ ,keep_accents=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ ,["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) ,[48, 25, 21, 1289] ) snake_case : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( SCREAMING_SNAKE_CASE_ ,["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) snake_case : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ ,[31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ ,["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] ,) def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[Any] = AlbertTokenizer(SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = tokenizer.encode("""sequence builders""" ) snake_case : str = tokenizer.encode("""multi-sequence build""" ) snake_case : Any = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ ,model_name="""albert-base-v2""" ,revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" ,)
703
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowercase ( __A : Optional[Any] ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def lowercase ( __A : Tuple , __A : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def lowercase ( __A : str ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", """stage2.cls_token""") ) return token def lowercase ( ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def lowercase ( __A : int , __A : Union[str, Any] , __A : Dict , __A : Dict ) -> int: '''simple docstring''' snake_case : Dict = """imagenet-1k-id2label.json""" snake_case : Tuple = 1000 snake_case : List[Any] = """huggingface/label-files""" snake_case : List[str] = num_labels snake_case : Optional[Any] = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type="""dataset""" ) ) , """r""" ) ) snake_case : str = {int(__A ): v for k, v in idalabel.items()} snake_case : Union[str, Any] = idalabel snake_case : Any = {v: k for k, v in idalabel.items()} snake_case : Optional[Any] = CvtConfig(num_labels=__A , idalabel=__A , labelaid=__A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case : Any = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case : Dict = [2, 2, 20] snake_case : List[str] = [3, 12, 16] snake_case : int = [192, 768, 1024] snake_case : Union[str, Any] = CvtForImageClassification(__A ) snake_case : int = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case : Union[str, Any] = image_size snake_case : Dict = torch.load(__A , map_location=torch.device("""cpu""" ) ) snake_case : List[str] = OrderedDict() snake_case : Optional[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case : Optional[int] = list_of_state_dict + cls_token(__A ) snake_case : Dict = list_of_state_dict + embeddings(__A ) for cnt in range(config.depth[idx] ): snake_case : Any = list_of_state_dict + attention(__A , __A ) snake_case : Tuple = list_of_state_dict + final() for gg in list_of_state_dict: print(__A ) for i in range(len(__A ) ): snake_case : List[str] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__A ) model.save_pretrained(__A ) image_processor.save_pretrained(__A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowercase : List[Any] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
315
0