code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
_lowercase = logging.get_logger(__name__)
@add_end_docstrings(_SCREAMING_SNAKE_CASE )
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , **_lowercase ):
"""simple docstring"""
super().__init__(**_lowercase )
if self.framework != "pt":
raise ValueError(F'The {self.__class__} is only available in PyTorch.' )
# No specific FOR_XXX available yet
def __call__( self , _lowercase , **_lowercase ):
"""simple docstring"""
return super().__call__(_lowercase , **_lowercase )
def _lowercase ( self , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = {}
if "candidate_labels" in kwargs:
_lowerCAmelCase = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
_lowerCAmelCase = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ):
"""simple docstring"""
if isinstance(_lowercase , _lowercase ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
_lowerCAmelCase = requests.get(_lowercase ).content
else:
with open(_lowercase , """rb""" ) as f:
_lowerCAmelCase = f.read()
if isinstance(_lowercase , _lowercase ):
_lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate )
if not isinstance(_lowercase , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
_lowerCAmelCase = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
_lowerCAmelCase = candidate_labels
_lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels]
_lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase )
_lowerCAmelCase = [text_inputs]
return inputs
def _lowercase ( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = model_inputs.pop("""candidate_labels""" )
_lowerCAmelCase = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , _lowercase ):
_lowerCAmelCase = text_inputs[0]
else:
# Batching case.
_lowerCAmelCase = text_inputs[0][0]
_lowerCAmelCase = self.model(**_lowercase , **_lowercase )
_lowerCAmelCase = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def _lowercase ( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = model_outputs.pop("""candidate_labels""" )
_lowerCAmelCase = model_outputs["""logits"""][0]
if self.framework == "pt":
_lowerCAmelCase = logits.softmax(dim=0 )
_lowerCAmelCase = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
_lowerCAmelCase = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] )
]
return result
| 5 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCAmelCase ( metaclass=_snake_case ):
UpperCAmelCase = ["note_seq"]
def __init__( self : List[str] , *__lowerCamelCase : int , **__lowerCamelCase : Optional[int] ):
requires_backends(self , ['''note_seq'''] )
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *__lowerCamelCase : Dict , **__lowerCamelCase : Optional[Any] ):
requires_backends(cls , ['''note_seq'''] )
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : str , *__lowerCamelCase : Any , **__lowerCamelCase : Optional[Any] ):
requires_backends(cls , ['''note_seq'''] )
| 467 | 0 |
import json
import os
import unittest
from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
"""simple docstring"""
_a = OpenAIGPTTokenizer
_a = OpenAIGPTTokenizerFast
_a = True
_a = False
def __A ( self ) -> str:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__magic_name__ = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
__magic_name__ = dict(zip(A , range(len(A ) ) ) )
__magic_name__ = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', '''''']
__magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' ) as fp:
fp.write(json.dumps(A ) )
with open(self.merges_file , '''w''' ) as fp:
fp.write('''\n'''.join(A ) )
def __A ( self , A ) -> str:
'''simple docstring'''
return "lower newer", "lower newer"
def __A ( self ) -> Dict:
'''simple docstring'''
__magic_name__ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file )
__magic_name__ = '''lower'''
__magic_name__ = ['''low''', '''er</w>''']
__magic_name__ = tokenizer.tokenize(A )
self.assertListEqual(A , A )
__magic_name__ = tokens + ['''<unk>''']
__magic_name__ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
def __A ( self , A=15 ) -> List[str]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
__magic_name__ = self.rust_tokenizer_class.from_pretrained(A , **A )
# Simple input
__magic_name__ = '''This is a simple input'''
__magic_name__ = ['''This is a simple input 1''', '''This is a simple input 2''']
__magic_name__ = ('''This is a simple input''', '''This is a pair''')
__magic_name__ = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding='''max_length''' )
# Simple input
self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding='''max_length''' )
# Simple input
self.assertRaises(
A , tokenizer_r.batch_encode_plus , A , max_length=A , padding='''max_length''' , )
# Pair input
self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding='''max_length''' )
# Pair input
self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding='''max_length''' )
# Pair input
self.assertRaises(
A , tokenizer_r.batch_encode_plus , A , max_length=A , padding='''max_length''' , )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@require_ftfy
@require_spacy
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
pass
| 678 |
def _SCREAMING_SNAKE_CASE ( ):
__magic_name__ = []
__magic_name__ = 1
while len(snake_case_ ) < 1E6:
constant.append(str(snake_case_ ) )
i += 1
__magic_name__ = ''''''.join(snake_case_ )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[999] )
* int(constant[9999] )
* int(constant[9_9999] )
* int(constant[99_9999] )
)
if __name__ == "__main__":
print(solution())
| 678 | 1 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
lowerCAmelCase__ = (3, 9, -1_1, 0, 7, 5, 1, -1)
lowerCAmelCase__ = (4, 6, 2, 0, 8, 1_0, 3, -2)
@dataclass
class a__ :
"""simple docstring"""
__lowerCamelCase = 42
__lowerCamelCase = 42
class a__ :
"""simple docstring"""
def __init__( self , lowercase ) -> None:
'''simple docstring'''
A__ = None
for i in sorted(lowercase , reverse=lowercase ):
A__ = Node(lowercase , self.head )
def __iter__( self ) -> Iterator[int]:
'''simple docstring'''
A__ = self.head
while node:
yield node.data
A__ = node.next_node
def __len__( self ) -> int:
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self ) -> str:
'''simple docstring'''
return " -> ".join([str(lowercase ) for node in self] )
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Tuple:
'''simple docstring'''
return SortedLinkedList(list(__A ) + list(__A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 514 |
'''simple docstring'''
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def lowerCAmelCase (__A , __A , __A):
"""simple docstring"""
if isinstance(__A , torch.Tensor):
return image
elif isinstance(__A , PIL.Image.Image):
_a = [image]
if isinstance(image[0] , PIL.Image.Image):
_a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image]
_a = np.concatenate(__A , axis=0)
_a = np.array(__A).astype(np.floataa) / 2_55.0
_a = image.transpose(0 , 3 , 1 , 2)
_a = 2.0 * image - 1.0
_a = torch.from_numpy(__A)
elif isinstance(image[0] , torch.Tensor):
_a = torch.cat(__A , dim=0)
return image
def lowerCAmelCase (__A , __A , __A , __A=0.99_95):
"""simple docstring"""
if not isinstance(__A , np.ndarray):
_a = True
_a = va.device
_a = va.cpu().numpy()
_a = va.cpu().numpy()
_a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A)))
if np.abs(__A) > DOT_THRESHOLD:
_a = (1 - t) * va + t * va
else:
_a = np.arccos(__A)
_a = np.sin(__A)
_a = theta_a * t
_a = np.sin(__A)
_a = np.sin(theta_a - theta_t) / sin_theta_a
_a = sin_theta_t / sin_theta_a
_a = sa * va + sa * va
if inputs_are_torch:
_a = torch.from_numpy(__A).to(__A)
return va
def lowerCAmelCase (__A , __A):
"""simple docstring"""
_a = F.normalize(__A , dim=-1)
_a = F.normalize(__A , dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def lowerCAmelCase (__A , __A):
"""simple docstring"""
for param in model.parameters():
_a = value
class __A ( A ):
'''simple docstring'''
def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(
vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , )
_a = (
feature_extractor.size
if isinstance(feature_extractor.size , A )
else feature_extractor.size['''shortest_edge''']
)
_a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , A )
set_requires_grad(self.clip_model , A )
def a__ (self , A = "auto" ) -> Union[str, Any]:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_a = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(A )
def a__ (self ) -> Optional[Any]:
"""simple docstring"""
self.enable_attention_slicing(A )
def a__ (self ) -> int:
"""simple docstring"""
set_requires_grad(self.vae , A )
def a__ (self ) -> Union[str, Any]:
"""simple docstring"""
set_requires_grad(self.vae , A )
def a__ (self ) -> Dict:
"""simple docstring"""
set_requires_grad(self.unet , A )
def a__ (self ) -> str:
"""simple docstring"""
set_requires_grad(self.unet , A )
def a__ (self , A , A , A ) -> Optional[Any]:
"""simple docstring"""
_a = min(int(num_inference_steps * strength ) , A )
_a = max(num_inference_steps - init_timestep , 0 )
_a = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def a__ (self , A , A , A , A , A , A=None ) -> List[str]:
"""simple docstring"""
if not isinstance(A , torch.Tensor ):
raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' )
_a = image.to(device=A , dtype=A )
if isinstance(A , A ):
_a = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A )
]
_a = torch.cat(A , dim=0 )
else:
_a = self.vae.encode(A ).latent_dist.sample(A )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_a = 0.18215 * init_latents
_a = init_latents.repeat_interleave(A , dim=0 )
_a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A )
# get latents
_a = self.scheduler.add_noise(A , A , A )
_a = init_latents
return latents
def a__ (self , A ) -> Tuple:
"""simple docstring"""
_a = self.coca_transform(A ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
_a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
_a = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' )
def a__ (self , A , A ) -> List[Any]:
"""simple docstring"""
_a = self.feature_extractor.preprocess(A )
_a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half()
_a = self.clip_model.get_image_features(A )
_a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A )
_a = image_embeddings_clip.repeat_interleave(A , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]:
"""simple docstring"""
_a = latents.detach().requires_grad_()
_a = self.scheduler.scale_model_input(A , A )
# predict the noise residual
_a = self.unet(A , A , encoder_hidden_states=A ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
_a = self.scheduler.alphas_cumprod[timestep]
_a = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
_a = torch.sqrt(A )
_a = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , A ):
_a = self.scheduler.sigmas[index]
_a = latents - sigma * noise_pred
else:
raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_a = 1 / 0.18215 * sample
_a = self.vae.decode(A ).sample
_a = (image / 2 + 0.5).clamp(0 , 1 )
_a = transforms.Resize(self.feature_extractor_size )(A )
_a = self.normalize(A ).to(latents.dtype )
_a = self.clip_model.get_image_features(A )
_a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A )
_a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale
_a = -torch.autograd.grad(A , A )[0]
if isinstance(self.scheduler , A ):
_a = latents.detach() + grads * (sigma**2)
_a = noise_pred_original
else:
_a = noise_pred_original - torch.sqrt(A ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str:
"""simple docstring"""
if isinstance(A , A ) and len(A ) != batch_size:
raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if isinstance(A , torch.Generator ) and batch_size > 1:
_a = [generator] + [None] * (batch_size - 1)
_a = [
('''model''', self.coca_model is None),
('''tokenizer''', self.coca_tokenizer is None),
('''transform''', self.coca_transform is None),
]
_a = [x[0] for x in coca_is_none if x[1]]
_a = ''', '''.join(A )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(A ):
raise ValueError(
f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.'''
f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' )
_a = self.get_image_description(A )
if style_prompt is None:
if len(A ):
raise ValueError(
f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.'''
f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' )
_a = self.get_image_description(A )
# get prompt text embeddings for content and style
_a = self.tokenizer(
A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , )
_a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
_a = self.tokenizer(
A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , )
_a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
_a = slerp(A , A , A )
# duplicate text embeddings for each generation per prompt
_a = text_embeddings.repeat_interleave(A , dim=0 )
# set timesteps
_a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
_a = {}
if accepts_offset:
_a = 1
self.scheduler.set_timesteps(A , **A )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
_a , _a = self.get_timesteps(A , A , self.device )
_a = timesteps[:1].repeat(A )
# Preprocess image
_a = preprocess(A , A , A )
_a = self.prepare_latents(
A , A , A , text_embeddings.dtype , self.device , A )
_a = preprocess(A , A , A )
_a = self.prepare_latents(
A , A , A , text_embeddings.dtype , self.device , A )
_a = slerp(A , A , A )
if clip_guidance_scale > 0:
_a = self.get_clip_image_embeddings(A , A )
_a = self.get_clip_image_embeddings(A , A )
_a = slerp(
A , A , A )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_a = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_a = content_text_input.input_ids.shape[-1]
_a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' )
_a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
_a = uncond_embeddings.repeat_interleave(A , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_a = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_a = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
_a = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
_a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to(
self.device )
else:
_a = torch.randn(A , generator=A , device=self.device , dtype=A )
else:
if latents.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
_a = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_a = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_a = {}
if accepts_eta:
_a = eta
# check if the scheduler accepts generator
_a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
_a = generator
with self.progress_bar(total=A ):
for i, t in enumerate(A ):
# expand the latents if we are doing classifier free guidance
_a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_a = self.scheduler.scale_model_input(A , A )
# predict the noise residual
_a = self.unet(A , A , encoder_hidden_states=A ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
_a , _a = noise_pred.chunk(2 )
_a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
_a = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
_a , _a = self.cond_fn(
A , A , A , A , A , A , A , )
# compute the previous noisy sample x_t -> x_t-1
_a = self.scheduler.step(A , A , A , **A ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_a = 1 / 0.18215 * latents
_a = self.vae.decode(A ).sample
_a = (image / 2 + 0.5).clamp(0 , 1 )
_a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_a = self.numpy_to_pil(A )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
| 11 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCAmelCase : List[Any] = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 716 |
from ..utils import DummyObject, requires_backends
class UpperCAmelCase_ ( metaclass=_A ):
'''simple docstring'''
a__ = ["""note_seq"""]
def __init__( self : Any , *UpperCamelCase__ : str , **UpperCamelCase__ : List[Any] ) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""note_seq"""] )
@classmethod
def _lowercase ( cls : str , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Tuple ) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""note_seq"""] )
@classmethod
def _lowercase ( cls : List[str] , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Tuple ) -> int:
"""simple docstring"""
requires_backends(cls , ["""note_seq"""] )
| 76 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class A__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
UpperCAmelCase = StableDiffusionInpaintPipeline
UpperCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
UpperCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
UpperCAmelCase = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCAmelCase = frozenset([] )
def __UpperCamelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
torch.manual_seed(0 )
_SCREAMING_SNAKE_CASE =UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , )
_SCREAMING_SNAKE_CASE =PNDMScheduler(skip_prk_steps=_a )
torch.manual_seed(0 )
_SCREAMING_SNAKE_CASE =AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
_SCREAMING_SNAKE_CASE =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , )
_SCREAMING_SNAKE_CASE =CLIPTextModel(_a )
_SCREAMING_SNAKE_CASE =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_SCREAMING_SNAKE_CASE ={
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __UpperCamelCase ( self : Tuple , _a : List[Any] , _a : Any=0 ) -> Any:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
_SCREAMING_SNAKE_CASE =image.cpu().permute(0 , 2 , 3 , 1 )[0]
_SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) )
_SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) )
if str(_a ).startswith('''mps''' ):
_SCREAMING_SNAKE_CASE =torch.manual_seed(_a )
else:
_SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a )
_SCREAMING_SNAKE_CASE ={
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': init_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE ='''cpu''' # ensure determinism for the device-dependent torch.Generator
_SCREAMING_SNAKE_CASE =self.get_dummy_components()
_SCREAMING_SNAKE_CASE =StableDiffusionInpaintPipeline(**_a )
_SCREAMING_SNAKE_CASE =sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
_SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a )
_SCREAMING_SNAKE_CASE =sd_pipe(**_a ).images
_SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_SCREAMING_SNAKE_CASE =np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class A__ ( unittest.TestCase ):
def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : Any ) -> Tuple:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
_SCREAMING_SNAKE_CASE =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
_SCREAMING_SNAKE_CASE =load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench.npy''' )
_SCREAMING_SNAKE_CASE ='''stabilityai/stable-diffusion-2-inpainting'''
_SCREAMING_SNAKE_CASE =StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
_SCREAMING_SNAKE_CASE ='''Face of a yellow cat, high resolution, sitting on a park bench'''
_SCREAMING_SNAKE_CASE =torch.manual_seed(0 )
_SCREAMING_SNAKE_CASE =pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , )
_SCREAMING_SNAKE_CASE =output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def __UpperCamelCase ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
_SCREAMING_SNAKE_CASE =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
_SCREAMING_SNAKE_CASE =load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' )
_SCREAMING_SNAKE_CASE ='''stabilityai/stable-diffusion-2-inpainting'''
_SCREAMING_SNAKE_CASE =StableDiffusionInpaintPipeline.from_pretrained(
_a , torch_dtype=torch.floataa , safety_checker=_a , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
_SCREAMING_SNAKE_CASE ='''Face of a yellow cat, high resolution, sitting on a park bench'''
_SCREAMING_SNAKE_CASE =torch.manual_seed(0 )
_SCREAMING_SNAKE_CASE =pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , )
_SCREAMING_SNAKE_CASE =output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def __UpperCamelCase ( self : List[str] ) -> Any:
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_SCREAMING_SNAKE_CASE =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
_SCREAMING_SNAKE_CASE =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
_SCREAMING_SNAKE_CASE ='''stabilityai/stable-diffusion-2-inpainting'''
_SCREAMING_SNAKE_CASE =PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' )
_SCREAMING_SNAKE_CASE =StableDiffusionInpaintPipeline.from_pretrained(
_a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_SCREAMING_SNAKE_CASE ='''Face of a yellow cat, high resolution, sitting on a park bench'''
_SCREAMING_SNAKE_CASE =torch.manual_seed(0 )
_SCREAMING_SNAKE_CASE =pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , )
_SCREAMING_SNAKE_CASE =torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 691 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
snake_case_ : str = logging.getLogger(__name__)
def lowerCamelCase( a__ ,a__):
return (preds == labels).mean()
@dataclass
class A__ :
UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCAmelCase = field(
default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
UpperCAmelCase = field(
default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
UpperCAmelCase = field(
default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class A__ :
UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} )
UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} )
UpperCAmelCase = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
UpperCAmelCase = field(
default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def lowerCamelCase( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_SCREAMING_SNAKE_CASE =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''')
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,)
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1) ,training_args.fpaa ,)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' ,a__)
# Set seed
set_seed(training_args.seed)
try:
_SCREAMING_SNAKE_CASE =processors[data_args.task_name]()
_SCREAMING_SNAKE_CASE =processor.get_labels()
_SCREAMING_SNAKE_CASE =len(a__)
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name))
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=a__ ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,)
_SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,)
_SCREAMING_SNAKE_CASE =AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path) ,config=a__ ,cache_dir=model_args.cache_dir ,)
# Get datasets
_SCREAMING_SNAKE_CASE =(
MultipleChoiceDataset(
data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,)
if training_args.do_train
else None
)
_SCREAMING_SNAKE_CASE =(
MultipleChoiceDataset(
data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,)
if training_args.do_eval
else None
)
def compute_metrics(a__) -> Dict:
_SCREAMING_SNAKE_CASE =np.argmax(p.predictions ,axis=1)
return {"acc": simple_accuracy(a__ ,p.label_ids)}
# Data collator
_SCREAMING_SNAKE_CASE =DataCollatorWithPadding(a__ ,pad_to_multiple_of=8) if training_args.fpaa else None
# Initialize our Trainer
_SCREAMING_SNAKE_CASE =Trainer(
model=a__ ,args=a__ ,train_dataset=a__ ,eval_dataset=a__ ,compute_metrics=a__ ,data_collator=a__ ,)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
_SCREAMING_SNAKE_CASE ={}
if training_args.do_eval:
logger.info('''*** Evaluate ***''')
_SCREAMING_SNAKE_CASE =trainer.evaluate()
_SCREAMING_SNAKE_CASE =os.path.join(training_args.output_dir ,'''eval_results.txt''')
if trainer.is_world_master():
with open(a__ ,'''w''') as writer:
logger.info('''***** Eval results *****''')
for key, value in result.items():
logger.info(''' %s = %s''' ,a__ ,a__)
writer.write('''%s = %s\n''' % (key, value))
results.update(a__)
return results
def lowerCamelCase( a__):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 691 | 1 |
def A_ ( snake_case : int = 100 ) -> int:
'''simple docstring'''
__UpperCamelCase = (n * (n + 1) // 2) ** 2
__UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(F"{solution() = }")
| 715 |
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def A_ ( snake_case : str , snake_case : str , **snake_case : List[str] ) -> Dict:
'''simple docstring'''
__UpperCamelCase = AutoConfig.from_pretrained(snake_case , **snake_case )
__UpperCamelCase = AutoModelForSeqaSeqLM.from_config(snake_case )
model.save_pretrained(snake_case )
AutoTokenizer.from_pretrained(snake_case ).save_pretrained(snake_case )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 451 | 0 |
from __future__ import annotations
lowercase_ = 'Muhammad Umer Farooq'
lowercase_ = 'MIT'
lowercase_ = '1.0.0'
lowercase_ = 'Muhammad Umer Farooq'
lowercase_ = 'contact@muhammadumerfarooq.me'
lowercase_ = 'Alpha'
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class A_ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self: Optional[Any] , a: str ):
super().__init__()
__lowerCamelCase : list[str] = []
__lowerCamelCase : Any = domain
def _snake_case ( self: Optional[Any] , a: str , a: list[tuple[str, str | None]] ):
# Only parse the 'anchor' tag.
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
__lowerCamelCase : int = parse.urljoin(self.domain , a )
self.urls.append(a )
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ):
return ".".join(get_sub_domain_name(SCREAMING_SNAKE_CASE__ ).split('.' )[-2:] )
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ):
return parse.urlparse(SCREAMING_SNAKE_CASE__ ).netloc
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ = "https://github.com" ):
__lowerCamelCase : Optional[int] = get_domain_name(SCREAMING_SNAKE_CASE__ )
# Initialize the parser
__lowerCamelCase : str = Parser(SCREAMING_SNAKE_CASE__ )
try:
# Open URL
__lowerCamelCase : List[Any] = requests.get(SCREAMING_SNAKE_CASE__ )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
__lowerCamelCase : str = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
__lowerCamelCase : str = requests.get(SCREAMING_SNAKE_CASE__ )
# Get the valid email.
__lowerCamelCase : str = re.findall('[a-zA-Z0-9]+@' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(SCREAMING_SNAKE_CASE__ )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowercase_ = emails_from_url('https://github.com')
print(F"""{len(emails)} emails found:""")
print('\n'.join(sorted(emails)))
| 669 |
import numpy as np
class A_ :
'''simple docstring'''
def __init__( self: Optional[int] ):
__lowerCamelCase : int = (0, 0)
__lowerCamelCase : List[str] = None
__lowerCamelCase : int = 0
__lowerCamelCase : int = 0
__lowerCamelCase : Union[str, Any] = 0
def __eq__( self: Optional[int] , a: List[Any] ):
return self.position == cell.position
def _snake_case ( self: Any ):
print(self.position )
class A_ :
'''simple docstring'''
def __init__( self: str , a: List[str]=(5, 5) ):
__lowerCamelCase : Optional[Any] = np.zeros(a )
__lowerCamelCase : List[str] = world_size[0]
__lowerCamelCase : Optional[int] = world_size[1]
def _snake_case ( self: List[Any] ):
print(self.w )
def _snake_case ( self: Optional[int] , a: str ):
__lowerCamelCase : Tuple = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
__lowerCamelCase : Optional[int] = cell.position[0]
__lowerCamelCase : List[str] = cell.position[1]
__lowerCamelCase : Dict = []
for n in neughbour_cord:
__lowerCamelCase : Dict = current_x + n[0]
__lowerCamelCase : Optional[Any] = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
__lowerCamelCase : Optional[Any] = Cell()
__lowerCamelCase : Any = (x, y)
__lowerCamelCase : Dict = cell
neighbours.append(a )
return neighbours
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : str = []
__lowerCamelCase : int = []
_open.append(SCREAMING_SNAKE_CASE__ )
while _open:
__lowerCamelCase : Union[str, Any] = np.argmin([n.f for n in _open] )
__lowerCamelCase : int = _open[min_f]
_closed.append(_open.pop(SCREAMING_SNAKE_CASE__ ) )
if current == goal:
break
for n in world.get_neigbours(SCREAMING_SNAKE_CASE__ ):
for c in _closed:
if c == n:
continue
__lowerCamelCase : Optional[int] = current.g + 1
__lowerCamelCase , __lowerCamelCase : int = n.position
__lowerCamelCase , __lowerCamelCase : Tuple = goal.position
__lowerCamelCase : Dict = (ya - ya) ** 2 + (xa - xa) ** 2
__lowerCamelCase : str = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase : Optional[int] = []
while current.parent is not None:
path.append(current.position )
__lowerCamelCase : int = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
lowercase_ = Gridworld()
# Start position and goal
lowercase_ = Cell()
lowercase_ = (0, 0)
lowercase_ = Cell()
lowercase_ = (4, 4)
print(F"""path from {start.position} to {goal.position}""")
lowercase_ = astar(world, start, goal)
# Just for visual reasons.
for i in s:
lowercase_ = 1
print(world.w)
| 669 | 1 |
import unittest
from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
__A =get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase__ ( __UpperCamelCase ,unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = XLNetTokenizer
UpperCamelCase = XLNetTokenizerFast
UpperCamelCase = True
UpperCamelCase = True
def snake_case__ ( self : str ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase : Dict = XLNetTokenizer(a_ , keep_accents=a_ )
tokenizer.sanitize_special_tokens()
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = '''<s>'''
__UpperCAmelCase : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ )
def snake_case__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''<eod>''' )
self.assertEqual(len(a_ ) , 10_06 )
def snake_case__ ( self : List[str] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def snake_case__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : str = XLNetTokenizer(a_ , keep_accents=a_ )
__UpperCAmelCase : Any = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(a_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [2_85, 46, 10, 1_70, 3_82] )
__UpperCAmelCase : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
__UpperCAmelCase : Dict = tokenizer.convert_tokens_to_ids(a_ )
self.assertListEqual(a_ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] )
__UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(a_ )
self.assertListEqual(
a_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def snake_case__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = XLNetTokenizer(a_ , do_lower_case=a_ )
__UpperCAmelCase : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a_ , [
SPIECE_UNDERLINE + '''''',
'''i''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''se''',
'''.''',
] , )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] )
def snake_case__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : Dict = XLNetTokenizer(a_ , do_lower_case=a_ )
__UpperCAmelCase : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''se''',
'''.''',
] , )
@slow
def snake_case__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : Tuple = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=a_ )
__UpperCAmelCase : Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a_ )
__UpperCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(a_ )
__UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(a_ , a_ )
assert encoded_sentence == text + [4, 3]
assert encoded_pair == text + [4] + text_a + [4, 3]
@slow
def snake_case__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Any = {'''input_ids''': [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a_ , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
| 241 |
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase__ :
'''simple docstring'''
def __init__( self : Dict , a_ : Optional[int] , a_ : List[str]=2 , a_ : Optional[Any]=3 , a_ : str=4 , a_ : Optional[Any]=2 , a_ : List[Any]=7 , a_ : int=True , a_ : Optional[int]=True , a_ : List[Any]=True , a_ : Any=True , a_ : List[Any]=99 , a_ : Dict=36 , a_ : Any=2 , a_ : Any=4 , a_ : List[str]=37 , a_ : int="gelu" , a_ : str=0.1 , a_ : Tuple=0.1 , a_ : Any=5_12 , a_ : int=16 , a_ : List[str]=2 , a_ : Optional[int]=0.0_2 , a_ : Dict=6 , a_ : List[Any]=6 , a_ : Union[str, Any]=3 , a_ : Dict=4 , a_ : Union[str, Any]=None , a_ : Any=10_00 , ):
'''simple docstring'''
__UpperCAmelCase : str = parent
__UpperCAmelCase : Tuple = batch_size
__UpperCAmelCase : Union[str, Any] = num_channels
__UpperCAmelCase : Dict = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : List[str] = use_input_mask
__UpperCAmelCase : int = use_token_type_ids
__UpperCAmelCase : List[Any] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : Optional[int] = intermediate_size
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Optional[int] = hidden_dropout_prob
__UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : int = type_vocab_size
__UpperCAmelCase : str = type_sequence_label_size
__UpperCAmelCase : List[str] = initializer_range
__UpperCAmelCase : Tuple = coordinate_size
__UpperCAmelCase : Any = shape_size
__UpperCAmelCase : Tuple = num_labels
__UpperCAmelCase : Tuple = num_choices
__UpperCAmelCase : Union[str, Any] = scope
__UpperCAmelCase : int = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__UpperCAmelCase : Tuple = text_seq_length
__UpperCAmelCase : int = (image_size // patch_size) ** 2 + 1
__UpperCAmelCase : Optional[Any] = self.text_seq_length + self.image_seq_length
def snake_case__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : int = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__UpperCAmelCase : Tuple = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__UpperCAmelCase : Any = bbox[i, j, 3]
__UpperCAmelCase : int = bbox[i, j, 1]
__UpperCAmelCase : Union[str, Any] = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__UpperCAmelCase : List[Any] = bbox[i, j, 2]
__UpperCAmelCase : List[str] = bbox[i, j, 0]
__UpperCAmelCase : List[str] = tmp_coordinate
__UpperCAmelCase : Any = tf.constant(a_ )
__UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Optional[int] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length] )
__UpperCAmelCase : Dict = None
if self.use_token_type_ids:
__UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
if self.use_labels:
__UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def snake_case__ ( self : str , a_ : List[Any] , a_ : int , a_ : Any , a_ : Tuple , a_ : str , a_ : int ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = TFLayoutLMvaModel(config=a_ )
# text + image
__UpperCAmelCase : Optional[Any] = model(a_ , pixel_values=a_ , training=a_ )
__UpperCAmelCase : Optional[Any] = model(
a_ , bbox=a_ , pixel_values=a_ , attention_mask=a_ , token_type_ids=a_ , training=a_ , )
__UpperCAmelCase : Optional[Any] = model(a_ , bbox=a_ , pixel_values=a_ , training=a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__UpperCAmelCase : Union[str, Any] = model(a_ , training=a_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__UpperCAmelCase : Tuple = model({'''pixel_values''': pixel_values} , training=a_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def snake_case__ ( self : str , a_ : Dict , a_ : int , a_ : str , a_ : Optional[Any] , a_ : Tuple , a_ : Union[str, Any] , a_ : List[str] ):
'''simple docstring'''
__UpperCAmelCase : str = self.num_labels
__UpperCAmelCase : List[str] = TFLayoutLMvaForSequenceClassification(config=a_ )
__UpperCAmelCase : List[Any] = model(
a_ , bbox=a_ , pixel_values=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , training=a_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : Union[str, Any] , a_ : Optional[Any] , a_ : List[Any] , a_ : Tuple , a_ : List[Any] , a_ : Optional[Any] , a_ : Optional[int] , a_ : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = self.num_labels
__UpperCAmelCase : Dict = TFLayoutLMvaForTokenClassification(config=a_ )
__UpperCAmelCase : List[Any] = model(
a_ , bbox=a_ , pixel_values=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , training=a_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def snake_case__ ( self : Dict , a_ : Tuple , a_ : Optional[int] , a_ : List[str] , a_ : List[str] , a_ : List[Any] , a_ : Optional[int] , a_ : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Dict = 2
__UpperCAmelCase : List[str] = TFLayoutLMvaForQuestionAnswering(config=a_ )
__UpperCAmelCase : Tuple = model(
a_ , bbox=a_ , pixel_values=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , training=a_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) : List[str] = config_and_inputs
__UpperCAmelCase : List[str] = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''pixel_values''': pixel_values,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase__ ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
UpperCamelCase = (
{"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel}
if is_tf_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def snake_case__ ( self : List[Any] , a_ : Tuple , a_ : Tuple , a_ : Optional[int] , a_ : Optional[int] , a_ : Optional[int] ):
'''simple docstring'''
return True
def snake_case__ ( self : Optional[Any] , a_ : Any , a_ : Union[str, Any] , a_ : Dict=False ):
'''simple docstring'''
__UpperCAmelCase : str = copy.deepcopy(a_ )
if model_class in get_values(a_ ):
__UpperCAmelCase : Dict = {
k: tf.tile(tf.expand_dims(a_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(a_ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(a_ ):
__UpperCAmelCase : List[Any] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(a_ ):
__UpperCAmelCase : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__UpperCAmelCase : Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(a_ ):
__UpperCAmelCase : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(a_ ):
__UpperCAmelCase : str = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def snake_case__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = TFLayoutLMvaModelTester(self )
__UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=a_ , hidden_size=37 )
def snake_case__ ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def snake_case__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(a_ )
if getattr(a_ , '''hf_compute_loss''' , a_ ):
# The number of elements in the loss should be the same as the number of elements in the label
__UpperCAmelCase : List[str] = self._prepare_for_class(inputs_dict.copy() , a_ , return_labels=a_ )
__UpperCAmelCase : Optional[int] = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=a_ )[0]
]
__UpperCAmelCase : int = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__UpperCAmelCase : List[str] = self._prepare_for_class(inputs_dict.copy() , a_ , return_labels=a_ )
__UpperCAmelCase : List[Any] = prepared_for_class.pop('''input_ids''' )
__UpperCAmelCase : Dict = model(a_ , **a_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__UpperCAmelCase : List[Any] = self._prepare_for_class(inputs_dict.copy() , a_ , return_labels=a_ )
__UpperCAmelCase : int = prepared_for_class.pop('''input_ids''' )
if "labels" in prepared_for_class:
__UpperCAmelCase : int = prepared_for_class['''labels'''].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__UpperCAmelCase : int = -1_00
__UpperCAmelCase : Any = tf.convert_to_tensor(a_ )
__UpperCAmelCase : Optional[int] = model(a_ , **a_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__UpperCAmelCase : Optional[int] = self._prepare_for_class(inputs_dict.copy() , a_ , return_labels=a_ )
__UpperCAmelCase : Any = model(a_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__UpperCAmelCase : Dict = self._prepare_for_class(inputs_dict.copy() , a_ , return_labels=a_ )
# Get keys that were added with the _prepare_for_class function
__UpperCAmelCase : Union[str, Any] = prepared_for_class.keys() - inputs_dict.keys()
__UpperCAmelCase : Dict = inspect.signature(model.call ).parameters
__UpperCAmelCase : Any = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__UpperCAmelCase : List[str] = {0: '''input_ids'''}
for label_key in label_keys:
__UpperCAmelCase : str = signature_names.index(a_ )
__UpperCAmelCase : str = label_key
__UpperCAmelCase : List[str] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__UpperCAmelCase : Optional[int] = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__UpperCAmelCase : str = prepared_for_class[value]
__UpperCAmelCase : Union[str, Any] = tuple(a_ )
# Send to model
__UpperCAmelCase : int = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def snake_case__ ( self : List[str] ):
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(a_ , a_ , a_ , a_ , a_ , a_ )
def snake_case__ ( self : Optional[int] ):
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Optional[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(a_ , a_ , a_ , a_ , a_ , a_ )
def snake_case__ ( self : Dict ):
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
a_ , a_ , a_ , a_ , a_ , a_ , a_ )
def snake_case__ ( self : Union[str, Any] ):
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
a_ , a_ , a_ , a_ , a_ , a_ , a_ )
def snake_case__ ( self : List[str] ):
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
a_ , a_ , a_ , a_ , a_ , a_ , a_ )
@slow
def snake_case__ ( self : Optional[Any] ):
'''simple docstring'''
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : int = TFLayoutLMvaModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def a ( ):
'''simple docstring'''
__UpperCAmelCase : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
class UpperCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def snake_case__ ( self : Dict ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=a_ ) if is_vision_available() else None
@slow
def snake_case__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' )
__UpperCAmelCase : Any = self.default_image_processor
__UpperCAmelCase : Dict = prepare_img()
__UpperCAmelCase : List[str] = image_processor(images=a_ , return_tensors='''tf''' ).pixel_values
__UpperCAmelCase : List[Any] = tf.constant([[1, 2]] )
__UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__UpperCAmelCase : List[str] = model(input_ids=a_ , bbox=a_ , pixel_values=a_ , training=a_ )
# verify the logits
__UpperCAmelCase : List[Any] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , a_ )
__UpperCAmelCase : Any = tf.constant(
[[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , a_ , atol=1e-4 ) )
| 241 | 1 |
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
UpperCAmelCase_ = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase_ = logging.getLogger()
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("""-f""" )
UpperCAmelCase__ = parser.parse_args()
return args.f
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int]="eval" ):
'''simple docstring'''
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''{split}_results.json''' )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
with open(SCREAMING_SNAKE_CASE__ , """r""" ) as f:
return json.load(SCREAMING_SNAKE_CASE__ )
raise ValueError(F'''can\'t find {path}''' )
UpperCAmelCase_ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ = f'''
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
'''.split()
with patch.object(_UpperCAmelCase , """argv""" , _UpperCAmelCase ):
run_flax_glue.main()
UpperCAmelCase__ = get_results(_UpperCAmelCase )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 )
@slow
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ = f'''
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
'''.split()
with patch.object(_UpperCAmelCase , """argv""" , _UpperCAmelCase ):
run_clm_flax.main()
UpperCAmelCase__ = get_results(_UpperCAmelCase )
self.assertLess(result["""eval_perplexity"""] , 1_00 )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ = f'''
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
'''.split()
with patch.object(_UpperCAmelCase , """argv""" , _UpperCAmelCase ):
run_summarization_flax.main()
UpperCAmelCase__ = get_results(_UpperCAmelCase , split="""test""" )
self.assertGreaterEqual(result["""test_rouge1"""] , 10 )
self.assertGreaterEqual(result["""test_rouge2"""] , 2 )
self.assertGreaterEqual(result["""test_rougeL"""] , 7 )
self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ = f'''
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
'''.split()
with patch.object(_UpperCAmelCase , """argv""" , _UpperCAmelCase ):
run_mlm_flax.main()
UpperCAmelCase__ = get_results(_UpperCAmelCase )
self.assertLess(result["""eval_perplexity"""] , 42 )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ = f'''
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
'''.split()
with patch.object(_UpperCAmelCase , """argv""" , _UpperCAmelCase ):
run_ta_mlm_flax.main()
UpperCAmelCase__ = get_results(_UpperCAmelCase )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.42 )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = 7 if get_gpu_count() > 1 else 2
UpperCAmelCase__ = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ = f'''
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
'''.split()
with patch.object(_UpperCAmelCase , """argv""" , _UpperCAmelCase ):
run_flax_ner.main()
UpperCAmelCase__ = get_results(_UpperCAmelCase )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 )
self.assertGreaterEqual(result["""eval_f1"""] , 0.3 )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ = f'''
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
'''.split()
with patch.object(_UpperCAmelCase , """argv""" , _UpperCAmelCase ):
run_qa.main()
UpperCAmelCase__ = get_results(_UpperCAmelCase )
self.assertGreaterEqual(result["""eval_f1"""] , 30 )
self.assertGreaterEqual(result["""eval_exact"""] , 30 )
| 603 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase_ = {
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 603 | 1 |
from collections.abc import Generator
from math import sin
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]:
if len(__A ) != 32:
raise ValueError('''Input must be of length 32''' )
snake_case__ = B''''''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]:
if i < 0:
raise ValueError('''Input must be non-negative''' )
snake_case__ = format(__A , '''08x''' )[-8:]
snake_case__ = B''''''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' )
return little_endian_hex
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str:
snake_case__ = B''''''
for char in message:
bit_string += format(__A , '''08b''' ).encode('''utf-8''' )
snake_case__ = format(len(__A ) , '''064b''' ).encode('''utf-8''' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(__A ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]:
if len(__A ) % 512 != 0:
raise ValueError('''Input must have length that\'s a multiple of 512''' )
for pos in range(0 , len(__A ) , 512 ):
snake_case__ = bit_string[pos : pos + 512]
snake_case__ = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Tuple:
if i < 0:
raise ValueError('''Input must be non-negative''' )
snake_case__ = format(__A , '''032b''' )
snake_case__ = ''''''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(__A , 2 )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
return (a + b) % 2**32
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
if i < 0:
raise ValueError('''Input must be non-negative''' )
if shift < 0:
raise ValueError('''Shift must be non-negative''' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]:
snake_case__ = preprocess(__A )
snake_case__ = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
snake_case__ = 0x67_452_301
snake_case__ = 0xef_cda_b89
snake_case__ = 0x98_bad_cfe
snake_case__ = 0x10_325_476
snake_case__ = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(__A ):
snake_case__ = aa
snake_case__ = ba
snake_case__ = ca
snake_case__ = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
snake_case__ = d ^ (b & (c ^ d))
snake_case__ = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
snake_case__ = c ^ (d & (b ^ c))
snake_case__ = (5 * i + 1) % 16
elif i <= 47:
snake_case__ = b ^ c ^ d
snake_case__ = (3 * i + 5) % 16
else:
snake_case__ = c ^ (b | not_aa(__A ))
snake_case__ = (7 * i) % 16
snake_case__ = (f + a + added_consts[i] + block_words[g]) % 2**32
snake_case__ = d
snake_case__ = c
snake_case__ = b
snake_case__ = sum_aa(__A , left_rotate_aa(__A , shift_amounts[i] ) )
# Add hashed chunk to running total
snake_case__ = sum_aa(__A , __A )
snake_case__ = sum_aa(__A , __A )
snake_case__ = sum_aa(__A , __A )
snake_case__ = sum_aa(__A , __A )
snake_case__ = reformat_hex(__A ) + reformat_hex(__A ) + reformat_hex(__A ) + reformat_hex(__A )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 701 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
snake_case__ = abs(__lowerCAmelCase )
snake_case__ = 0
while n > 0:
res += n % 10
n //= 10
return res
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
snake_case__ = abs(__lowerCAmelCase )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) )
def SCREAMING_SNAKE_CASE ( ) -> None:
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) -> None:
snake_case__ = F"""{func.__name__}({value})"""
snake_case__ = timeit(F"""__main__.{call}""" , setup='''import __main__''' )
print(F"""{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds""" )
for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 208 | 0 |
import os
from collections import deque
import torch
from torch.utils.data import Dataset
class lowerCamelCase__ ( lowerCamelCase__):
'''simple docstring'''
def __init__(self ,__lowerCamelCase="" ,__lowerCamelCase="train" ) -> Optional[Any]:
"""simple docstring"""
assert os.path.isdir(__lowerCamelCase )
lowerCAmelCase__ : List[str] = []
lowerCAmelCase__ : List[Any] = os.listdir(__lowerCamelCase )
for story_filename in story_filenames_list:
if "summary" in story_filename:
continue
lowerCAmelCase__ : str = os.path.join(__lowerCamelCase ,__lowerCamelCase )
if not os.path.isfile(__lowerCamelCase ):
continue
self.documents.append(__lowerCamelCase )
def __len__(self ) -> Optional[Any]:
"""simple docstring"""
return len(self.documents )
def __getitem__(self ,__lowerCamelCase ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : List[str] = self.documents[idx]
lowerCAmelCase__ : Dict = document_path.split('''/''' )[-1]
with open(__lowerCamelCase ,encoding='''utf-8''' ) as source:
lowerCAmelCase__ : List[str] = source.read()
lowerCAmelCase__ , lowerCAmelCase__ : List[str] = process_story(__lowerCamelCase )
return document_name, story_lines, summary_lines
def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any]):
'''simple docstring'''
lowerCAmelCase__ : Tuple = list(filter(lambda lowerCamelCase_: len(lowerCamelCase_) != 0 ,[line.strip() for line in raw_story.split('''\n''')]))
# for some unknown reason some lines miss a period, add it
lowerCAmelCase__ : List[str] = [_add_missing_period(lowerCamelCase_) for line in nonempty_lines]
# gather article lines
lowerCAmelCase__ : List[Any] = []
lowerCAmelCase__ : Union[str, Any] = deque(lowerCamelCase_)
while True:
try:
lowerCAmelCase__ : Optional[int] = lines.popleft()
if element.startswith('''@highlight'''):
break
story_lines.append(lowerCamelCase_)
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None, raising an exception.
return story_lines, []
# gather summary lines
lowerCAmelCase__ : Any = list(filter(lambda lowerCamelCase_: not t.startswith('''@highlight''') ,lowerCamelCase_))
return story_lines, summary_lines
def lowerCAmelCase__ ( lowerCamelCase_ : Any):
'''simple docstring'''
lowerCAmelCase__ : int = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')''']
if line.startswith('''@highlight'''):
return line
if line[-1] in END_TOKENS:
return line
return line + "."
def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : List[str] ,lowerCamelCase_ : str):
'''simple docstring'''
if len(lowerCamelCase_) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token_id] * (block_size - len(lowerCamelCase_)))
return sequence
def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : int):
'''simple docstring'''
lowerCAmelCase__ : Tuple = torch.ones_like(lowerCamelCase_)
lowerCAmelCase__ : Optional[int] = sequence == pad_token_id
lowerCAmelCase__ : int = 0
return mask
def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : int ,lowerCamelCase_ : Tuple):
'''simple docstring'''
lowerCAmelCase__ : List[str] = [tokenizer.encode(lowerCamelCase_) for line in story_lines]
lowerCAmelCase__ : Union[str, Any] = [token for sentence in story_lines_token_ids for token in sentence]
lowerCAmelCase__ : Dict = [tokenizer.encode(lowerCamelCase_) for line in summary_lines]
lowerCAmelCase__ : List[Any] = [token for sentence in summary_lines_token_ids for token in sentence]
return story_token_ids, summary_token_ids
def lowerCAmelCase__ ( lowerCamelCase_ : Tuple ,lowerCamelCase_ : Optional[int]):
'''simple docstring'''
lowerCAmelCase__ : str = []
for sequence in batch:
lowerCAmelCase__ : Dict = -1
lowerCAmelCase__ : List[str] = []
for s in sequence:
if s == separator_token_id:
sentence_num += 1
embeddings.append(sentence_num % 2)
batch_embeddings.append(lowerCamelCase_)
return torch.tensor(lowerCamelCase_)
| 647 |
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class lowerCamelCase__ ( lowerCamelCase__):
'''simple docstring'''
def __init__(self ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = True ,__lowerCamelCase = None ,__lowerCamelCase = False ,__lowerCamelCase = None ,__lowerCamelCase = True ,__lowerCamelCase = "arrow" ,**__lowerCamelCase ,) -> Dict:
"""simple docstring"""
super().__init__(
split=__lowerCamelCase ,features=__lowerCamelCase ,cache_dir=__lowerCamelCase ,keep_in_memory=__lowerCamelCase ,streaming=__lowerCamelCase ,**__lowerCamelCase ,)
lowerCAmelCase__ : List[Any] = load_from_cache_file
lowerCAmelCase__ : Any = file_format
lowerCAmelCase__ : Dict = Spark(
df=__lowerCamelCase ,features=__lowerCamelCase ,cache_dir=__lowerCamelCase ,working_dir=__lowerCamelCase ,**__lowerCamelCase ,)
def lowerCAmelCase__ (self ) -> str:
"""simple docstring"""
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
lowerCAmelCase__ : List[str] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=__lowerCamelCase ,file_format=self._file_format ,)
return self.builder.as_dataset(split=self.split )
| 647 | 1 |
"""simple docstring"""
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def lowerCAmelCase__ ( ) -> int:
A = {
'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'],
'path': ['test_1.py', 'test_2.py', 'unit_test.py'],
'content': ['a ' * 20, 'a ' * 30, 'b ' * 7],
}
A = Dataset.from_dict(lowerCamelCase__ )
return dataset
class UpperCAmelCase__ ( UpperCamelCase__ ):
def A_ ( self : str ) -> Optional[int]:
'''simple docstring'''
A = get_dataset()
A = make_duplicate_clusters(snake_case , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def A_ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A = get_dataset()
A , A = deduplicate_dataset(snake_case )
self.assertEqual(len(snake_case ) , 2 )
print(snake_case )
self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 )
self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , snake_case )
| 717 |
"""simple docstring"""
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
A = logging.get_logger(__name__)
A = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
A = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class UpperCAmelCase__ :
lowerCAmelCase_ : str = field(
default=UpperCamelCase ,metadata={"""help""": """Model type selected in the list: """ + """, """.join(UpperCamelCase )} )
lowerCAmelCase_ : str = field(
default=UpperCamelCase ,metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} )
lowerCAmelCase_ : int = field(
default=1_28 ,metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} ,)
lowerCAmelCase_ : int = field(
default=1_28 ,metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} ,)
lowerCAmelCase_ : int = field(
default=64 ,metadata={
"""help""": (
"""The maximum number of tokens for the question. Questions longer than this will """
"""be truncated to this length."""
)
} ,)
lowerCAmelCase_ : int = field(
default=30 ,metadata={
"""help""": (
"""The maximum length of an answer that can be generated. This is needed because the start """
"""and end predictions are not conditioned on one another."""
)
} ,)
lowerCAmelCase_ : bool = field(
default=UpperCamelCase ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
lowerCAmelCase_ : bool = field(
default=UpperCamelCase ,metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} )
lowerCAmelCase_ : float = field(
default=0.0 ,metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
lowerCAmelCase_ : int = field(
default=20 ,metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
lowerCAmelCase_ : int = field(
default=0 ,metadata={
"""help""": (
"""language id of input for language-specific xlm models (see"""
""" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"""
)
} ,)
lowerCAmelCase_ : int = field(default=1 ,metadata={"""help""": """multiple threads for converting example to features"""} )
class UpperCAmelCase__ ( UpperCamelCase ):
lowerCAmelCase_ : str = """train"""
lowerCAmelCase_ : Union[str, Any] = """dev"""
class UpperCAmelCase__ ( UpperCamelCase ):
lowerCAmelCase_ : SquadDataTrainingArguments
lowerCAmelCase_ : List[SquadFeatures]
lowerCAmelCase_ : Split
lowerCAmelCase_ : bool
def __init__( self : List[Any] , snake_case : SquadDataTrainingArguments , snake_case : PreTrainedTokenizer , snake_case : Optional[int] = None , snake_case : Union[str, Split] = Split.train , snake_case : Optional[bool] = False , snake_case : Optional[str] = None , snake_case : Optional[str] = "pt" , ) -> Optional[Any]:
'''simple docstring'''
A = args
A = is_language_sensitive
A = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(snake_case , snake_case ):
try:
A = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
A = mode
# Load data features from cache or dataset file
A = 'v2' if args.version_2_with_negative else 'v1'
A = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
A = cached_features_file + '.lock'
with FileLock(snake_case ):
if os.path.exists(snake_case ) and not args.overwrite_cache:
A = time.time()
A = torch.load(snake_case )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
A = self.old_features['features']
A = self.old_features.get('dataset' , snake_case )
A = self.old_features.get('examples' , snake_case )
logger.info(
f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"""
' future run' )
else:
if mode == Split.dev:
A = self.processor.get_dev_examples(args.data_dir )
else:
A = self.processor.get_train_examples(args.data_dir )
A , A = squad_convert_examples_to_features(
examples=self.examples , tokenizer=snake_case , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=snake_case , )
A = time.time()
torch.save(
{'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , snake_case , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" )
def __len__( self : Any ) -> Dict:
'''simple docstring'''
return len(self.features )
def __getitem__( self : Union[str, Any] , snake_case : List[str] ) -> Dict[str, torch.Tensor]:
'''simple docstring'''
A = self.features[i]
A = torch.tensor(feature.input_ids , dtype=torch.long )
A = torch.tensor(feature.attention_mask , dtype=torch.long )
A = torch.tensor(feature.token_type_ids , dtype=torch.long )
A = torch.tensor(feature.cls_index , dtype=torch.long )
A = torch.tensor(feature.p_mask , dtype=torch.float )
A = torch.tensor(feature.is_impossible , dtype=torch.float )
A = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'token_type_ids': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'cls_index': cls_index, 'p_mask': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'is_impossible': is_impossible} )
if self.is_language_sensitive:
inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
A = torch.tensor(feature.start_position , dtype=torch.long )
A = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({'start_positions': start_positions, 'end_positions': end_positions} )
return inputs
| 109 | 0 |
'''simple docstring'''
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@staticmethod
@abstractmethod
def snake_case__ ( lowerCAmelCase__ : ArgumentParser ) -> Tuple:
'''simple docstring'''
raise NotImplementedError()
@abstractmethod
def snake_case__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError()
| 98 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def a__ ( _UpperCamelCase : List[str] ):
__lowerCamelCase = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__lowerCamelCase = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
__lowerCamelCase = 4
__lowerCamelCase = 48
__lowerCamelCase = '''pixelshuffle_aux'''
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__lowerCamelCase = [6, 6, 6, 6]
__lowerCamelCase = 60
__lowerCamelCase = [6, 6, 6, 6]
__lowerCamelCase = '''pixelshuffledirect'''
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__lowerCamelCase = 4
__lowerCamelCase = '''nearest+conv'''
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
__lowerCamelCase = 1
__lowerCamelCase = 1
__lowerCamelCase = 1_26
__lowerCamelCase = 7
__lowerCamelCase = 255.0
__lowerCamelCase = ''''''
return config
def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : List[str] ):
if "patch_embed.proj" in name and "layers" not in name:
__lowerCamelCase = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
__lowerCamelCase = name.replace('''patch_embed.norm''' ,'''embeddings.patch_embeddings.layernorm''' )
if "layers" in name:
__lowerCamelCase = name.replace('''layers''' ,'''encoder.stages''' )
if "residual_group.blocks" in name:
__lowerCamelCase = name.replace('''residual_group.blocks''' ,'''layers''' )
if "attn.proj" in name:
__lowerCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' )
if "attn" in name:
__lowerCamelCase = name.replace('''attn''' ,'''attention.self''' )
if "norm1" in name:
__lowerCamelCase = name.replace('''norm1''' ,'''layernorm_before''' )
if "norm2" in name:
__lowerCamelCase = name.replace('''norm2''' ,'''layernorm_after''' )
if "mlp.fc1" in name:
__lowerCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' )
if "mlp.fc2" in name:
__lowerCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' )
if "q_bias" in name:
__lowerCamelCase = name.replace('''q_bias''' ,'''query.bias''' )
if "k_bias" in name:
__lowerCamelCase = name.replace('''k_bias''' ,'''key.bias''' )
if "v_bias" in name:
__lowerCamelCase = name.replace('''v_bias''' ,'''value.bias''' )
if "cpb_mlp" in name:
__lowerCamelCase = name.replace('''cpb_mlp''' ,'''continuous_position_bias_mlp''' )
if "patch_embed.proj" in name:
__lowerCamelCase = name.replace('''patch_embed.proj''' ,'''patch_embed.projection''' )
if name == "norm.weight":
__lowerCamelCase = '''layernorm.weight'''
if name == "norm.bias":
__lowerCamelCase = '''layernorm.bias'''
if "conv_first" in name:
__lowerCamelCase = name.replace('''conv_first''' ,'''first_convolution''' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
__lowerCamelCase = name.replace('''conv_last''' ,'''final_convolution''' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
__lowerCamelCase = name.replace('''conv_before_upsample.0''' ,'''conv_before_upsample''' )
if "upsample.0" in name:
__lowerCamelCase = name.replace('''upsample.0''' ,'''upsample.convolution_0''' )
if "upsample.2" in name:
__lowerCamelCase = name.replace('''upsample.2''' ,'''upsample.convolution_1''' )
__lowerCamelCase = '''upsample.''' + name
elif config.upsampler == "pixelshuffledirect":
__lowerCamelCase = name.replace('''upsample.0.weight''' ,'''upsample.conv.weight''' )
__lowerCamelCase = name.replace('''upsample.0.bias''' ,'''upsample.conv.bias''' )
else:
pass
else:
__lowerCamelCase = '''swin2sr.''' + name
return name
def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Union[str, Any] ):
for key in orig_state_dict.copy().keys():
__lowerCamelCase = orig_state_dict.pop(_UpperCamelCase )
if "qkv" in key:
__lowerCamelCase = key.split('''.''' )
__lowerCamelCase = int(key_split[1] )
__lowerCamelCase = int(key_split[4] )
__lowerCamelCase = config.embed_dim
if "weight" in key:
__lowerCamelCase = val[:dim, :]
__lowerCamelCase = val[dim : dim * 2, :]
__lowerCamelCase = val[-dim:, :]
else:
__lowerCamelCase = val[:dim]
__lowerCamelCase = val[dim : dim * 2]
__lowerCamelCase = val[-dim:]
pass
else:
__lowerCamelCase = val
return orig_state_dict
def a__ ( _UpperCamelCase : str ,_UpperCamelCase : int ,_UpperCamelCase : Any ):
__lowerCamelCase = get_config(_UpperCamelCase )
__lowerCamelCase = SwinaSRForImageSuperResolution(_UpperCamelCase )
model.eval()
__lowerCamelCase = torch.hub.load_state_dict_from_url(_UpperCamelCase ,map_location='''cpu''' )
__lowerCamelCase = convert_state_dict(_UpperCamelCase ,_UpperCamelCase )
__lowerCamelCase ,__lowerCamelCase = model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase )
if len(_UpperCamelCase ) > 0:
raise ValueError('''Missing keys when converting: {}'''.format(_UpperCamelCase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F"""Unexpected key {key} in state_dict""" )
# verify values
__lowerCamelCase = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'''
__lowerCamelCase = Image.open(requests.get(_UpperCamelCase ,stream=_UpperCamelCase ).raw ).convert('''RGB''' )
__lowerCamelCase = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
__lowerCamelCase = 1_26 if '''Jpeg''' in checkpoint_url else 2_56
__lowerCamelCase = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ),
] )
__lowerCamelCase = transforms(_UpperCamelCase ).unsqueeze(0 )
if config.num_channels == 1:
__lowerCamelCase = pixel_values[:, 0, :, :].unsqueeze(1 )
__lowerCamelCase = model(_UpperCamelCase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
__lowerCamelCase = torch.Size([1, 3, 5_12, 5_12] )
__lowerCamelCase = torch.tensor(
[[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__lowerCamelCase = torch.Size([1, 3, 10_24, 10_24] )
__lowerCamelCase = torch.tensor(
[[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
__lowerCamelCase = torch.Size([1, 3, 10_24, 10_24] )
__lowerCamelCase = torch.tensor(
[[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__lowerCamelCase = torch.Size([1, 3, 5_12, 5_12] )
__lowerCamelCase = torch.tensor(
[[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__lowerCamelCase = torch.Size([1, 3, 10_24, 10_24] )
__lowerCamelCase = torch.tensor(
[[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}"""
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] ,_UpperCamelCase ,atol=1e-3 )
print('''Looks ok!''' )
__lowerCamelCase = {
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': (
'''swin2SR-classical-sr-x2-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': (
'''swin2SR-classical-sr-x4-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': (
'''swin2SR-compressed-sr-x4-48'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': (
'''swin2SR-lightweight-x2-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': (
'''swin2SR-realworld-sr-x4-64-bsrgan-psnr'''
),
}
__lowerCamelCase = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_UpperCamelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(_UpperCamelCase )
if push_to_hub:
model.push_to_hub(F"""caidas/{model_name}""" )
processor.push_to_hub(F"""caidas/{model_name}""" )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""",
type=str,
help="""URL of the original Swin2SR checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""")
a_ = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 175 | 0 |
'''simple docstring'''
def _A ( A = 1_0_0 ) -> Tuple:
lowercase : Dict = (n * (n + 1) // 2) ** 2
lowercase : Union[str, Any] = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(F'''{solution() = }''')
| 715 |
'''simple docstring'''
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
lowerCAmelCase : Any = 1.054571817E-34 # unit of ℏ : J * s
lowerCAmelCase : List[str] = 3E8 # unit of c : m * s^-1
def _A ( A ,A ,A ) -> dict[str, float]:
if (force, area, distance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if force < 0:
raise ValueError("Magnitude of force can not be negative" )
if distance < 0:
raise ValueError("Distance can not be negative" )
if area < 0:
raise ValueError("Area can not be negative" )
if force == 0:
lowercase : Dict = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
2_4_0 * (distance) ** 4
)
return {"force": force}
elif area == 0:
lowercase : Optional[int] = (2_4_0 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
lowercase : List[str] = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError("One and only one argument must be 0" )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 425 | 0 |
from __future__ import annotations
def snake_case (UpperCAmelCase__ ) -> float:
if not nums:
raise ValueError('List is empty' )
return sum(UpperCAmelCase__ ) / len(UpperCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 57 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
A_ : Tuple = logging.get_logger(__name__)
A_ : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
A_ : int = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def snake_case (UpperCAmelCase__ ) -> str:
UpperCamelCase_: Tuple = {}
with open(UpperCAmelCase__ , 'r' ) as file:
for line_number, line in enumerate(UpperCAmelCase__ ):
UpperCamelCase_: List[Any] = line.strip()
if line:
UpperCamelCase_: List[Any] = line.split()
UpperCamelCase_: Optional[Any] = line_number
UpperCamelCase_: Any = words[0]
UpperCamelCase_: List[Any] = value
return result
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
for attribute in key.split('.' ):
UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: str = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase__ ):
UpperCamelCase_: Any = PARAM_MAPPING[full_name.split('.' )[-1]]
UpperCamelCase_: Dict = 'param'
if weight_type is not None and weight_type != "param":
UpperCamelCase_: Optional[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCamelCase_: Optional[Any] = hf_pointer
for attribute in hf_param_name.split('.' ):
UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Tuple = shape_pointer.shape
# let's reduce dimension
UpperCamelCase_: int = value[0]
else:
UpperCamelCase_: Union[str, Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCamelCase_: Optional[int] = value
elif weight_type == "weight_g":
UpperCamelCase_: Any = value
elif weight_type == "weight_v":
UpperCamelCase_: Union[str, Any] = value
elif weight_type == "bias":
UpperCamelCase_: Union[str, Any] = value
elif weight_type == "param":
for attribute in hf_param_name.split('.' ):
UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = value
else:
UpperCamelCase_: int = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
UpperCamelCase_: Union[str, Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase__ ):
UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split('.' )[-1]]
UpperCamelCase_: List[Any] = 'param'
if weight_type is not None and weight_type != "param":
UpperCamelCase_: List[Any] = '.'.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCamelCase_: Any = '.'.join([key, hf_param_name] )
else:
UpperCamelCase_: Union[str, Any] = key
UpperCamelCase_: Any = value if 'lm_head' in full_key else value[0]
A_ : str = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any:
UpperCamelCase_: Optional[int] = False
for key, mapped_key in MAPPING.items():
UpperCamelCase_: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
UpperCamelCase_: Optional[Any] = True
if "*" in mapped_key:
UpperCamelCase_: Optional[int] = name.split(UpperCAmelCase__ )[0].split('.' )[-2]
UpperCamelCase_: Any = mapped_key.replace('*' , UpperCAmelCase__ )
if "weight_g" in name:
UpperCamelCase_: Union[str, Any] = 'weight_g'
elif "weight_v" in name:
UpperCamelCase_: Dict = 'weight_v'
elif "bias" in name:
UpperCamelCase_: int = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase_: str = 'weight'
else:
UpperCamelCase_: Union[str, Any] = None
if hf_dict is not None:
rename_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
else:
set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
return is_used
return is_used
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
UpperCamelCase_: List[Any] = []
UpperCamelCase_: Dict = fairseq_model.state_dict()
UpperCamelCase_: Optional[Any] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase_: Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase_: List[Any] = True
else:
UpperCamelCase_: Tuple = load_wavaveca_layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
if not is_used:
unused_weights.append(UpperCAmelCase__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1]
UpperCamelCase_: int = name.split('.' )
UpperCamelCase_: int = int(items[0] )
UpperCamelCase_: Union[str, Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCamelCase_: Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCamelCase_: int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCamelCase_: Union[str, Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCamelCase_: List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(UpperCAmelCase__ )
@torch.no_grad()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False ) -> Dict:
if config_path is not None:
UpperCamelCase_: Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase__ )
else:
UpperCamelCase_: List[str] = WavaVecaConfig()
if is_seq_class:
UpperCamelCase_: int = read_txt_into_dict(UpperCAmelCase__ )
UpperCamelCase_: Tuple = idalabel
UpperCamelCase_: str = WavaVecaForSequenceClassification(UpperCAmelCase__ )
UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , )
feature_extractor.save_pretrained(UpperCAmelCase__ )
elif is_finetuned:
if dict_path:
UpperCamelCase_: List[Any] = Dictionary.load(UpperCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase_: Dict = target_dict.pad_index
UpperCamelCase_: Tuple = target_dict.bos_index
UpperCamelCase_: Optional[Any] = target_dict.eos_index
UpperCamelCase_: Union[str, Any] = len(target_dict.symbols )
UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'vocab.json' )
if not os.path.isdir(UpperCAmelCase__ ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) )
return
os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ )
UpperCamelCase_: str = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase_: List[str] = 0
UpperCamelCase_: List[Any] = 1
with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = WavaVecaCTCTokenizer(
UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , )
UpperCamelCase_: Any = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase_: Tuple = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , )
UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ )
processor.save_pretrained(UpperCAmelCase__ )
UpperCamelCase_: Any = WavaVecaForCTC(UpperCAmelCase__ )
else:
UpperCamelCase_: Any = WavaVecaForPreTraining(UpperCAmelCase__ )
if is_finetuned or is_seq_class:
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
UpperCamelCase_: List[str] = argparse.Namespace(task='audio_pretraining' )
UpperCamelCase_: Any = fairseq.tasks.setup_task(UpperCAmelCase__ )
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase__ )
UpperCamelCase_: str = model[0].eval()
recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
A_ : str = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
A_ : int = parser.parse_args()
A_ : str = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 57 | 1 |
"""simple docstring"""
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
_lowerCamelCase : int = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n'
_lowerCamelCase : List[str] = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n'
_lowerCamelCase : List[str] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class lowercase ( datasets.Metric):
def a_ ( self : Tuple ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[
'''https://arxiv.org/abs/2102.01454''',
'''https://github.com/krishnap25/mauve''',
] , )
def a_ ( self : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : List[str]="auto" , _lowerCamelCase : Tuple=-1 , _lowerCamelCase : Union[str, Any]=0.9 , _lowerCamelCase : Tuple=5 , _lowerCamelCase : Any=5_00 , _lowerCamelCase : Dict="gpt2-large" , _lowerCamelCase : Union[str, Any]=-1 , _lowerCamelCase : Optional[Any]=10_24 , _lowerCamelCase : List[Any]=25 , _lowerCamelCase : str=5 , _lowerCamelCase : Any=True , _lowerCamelCase : Optional[int]=25 , ):
"""simple docstring"""
A_ : Any = compute_mauve(
p_text=_lowerCamelCase , q_text=_lowerCamelCase , p_features=_lowerCamelCase , q_features=_lowerCamelCase , p_tokens=_lowerCamelCase , q_tokens=_lowerCamelCase , num_buckets=_lowerCamelCase , pca_max_data=_lowerCamelCase , kmeans_explained_var=_lowerCamelCase , kmeans_num_redo=_lowerCamelCase , kmeans_max_iter=_lowerCamelCase , featurize_model_name=_lowerCamelCase , device_id=_lowerCamelCase , max_text_length=_lowerCamelCase , divergence_curve_discretization_size=_lowerCamelCase , mauve_scaling_factor=_lowerCamelCase , verbose=_lowerCamelCase , seed=_lowerCamelCase , )
return out
| 702 |
"""simple docstring"""
from __future__ import annotations
from collections import namedtuple
def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
A_ : int = namedtuple('''result''' , '''name value''' )
if (voltage, current, power).count(0 ) != 1:
raise ValueError('''Only one argument must be 0''' )
elif power < 0:
raise ValueError(
'''Power cannot be negative in any electrical/electronics system''' )
elif voltage == 0:
return result('''voltage''' , power / current )
elif current == 0:
return result('''current''' , power / voltage )
elif power == 0:
return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) )
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361 | 0 |
"""simple docstring"""
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class __A :
@staticmethod
def lowerCamelCase__ ( *__snake_case : Tuple , **__snake_case : List[Any] ) -> Tuple:
pass
def a ( __UpperCAmelCase : Image ) -> str:
__magic_name__: Tuple = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __A ( unittest.TestCase ):
UpperCAmelCase__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Dict ) -> Any:
__magic_name__: Optional[int] = DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def lowerCamelCase__ ( self : List[str] , __snake_case : Any , __snake_case : List[str] ) -> Tuple:
__magic_name__: Optional[int] = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , __snake_case )
import datasets
__magic_name__: Optional[Any] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" )
__magic_name__: Union[str, Any] = depth_estimator(
[
Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
# RGBA
dataset[0]["""file"""],
# LA
dataset[1]["""file"""],
# L
dataset[2]["""file"""],
] )
self.assertEqual(
[
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
] , __snake_case , )
@require_tf
@unittest.skip("""Depth estimation is not implemented in TF""" )
def lowerCamelCase__ ( self : List[str] ) -> str:
pass
@slow
@require_torch
def lowerCamelCase__ ( self : Dict ) -> List[Any]:
__magic_name__: Optional[Any] = """Intel/dpt-large"""
__magic_name__: Any = pipeline("""depth-estimation""" , model=__snake_case )
__magic_name__: Optional[int] = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
__magic_name__: Optional[int] = hashimage(outputs["""depth"""] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 )
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 )
@require_torch
def lowerCamelCase__ ( self : Any ) -> Optional[Any]:
# This is highly irregular to have no small tests.
self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
| 96 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def lowerCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ) ->List[Any]:
_SCREAMING_SNAKE_CASE = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append(
(F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""module.cls_token""", """vit.embeddings.cls_token"""),
("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""module.pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""module.norm.weight""", """layernorm.weight"""),
("""module.norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def lowerCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int]=False ) ->Optional[int]:
for i in range(config.num_hidden_layers ):
if base_model:
_SCREAMING_SNAKE_CASE = """"""
else:
_SCREAMING_SNAKE_CASE = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_SCREAMING_SNAKE_CASE = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' )
_SCREAMING_SNAKE_CASE = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
_SCREAMING_SNAKE_CASE = in_proj_weight[
: config.hidden_size, :
]
_SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size]
_SCREAMING_SNAKE_CASE = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_SCREAMING_SNAKE_CASE = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_SCREAMING_SNAKE_CASE = in_proj_weight[
-config.hidden_size :, :
]
_SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :]
def lowerCamelCase ( __lowerCamelCase : Dict ) ->Dict:
_SCREAMING_SNAKE_CASE = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCamelCase , __lowerCamelCase )
def lowerCamelCase ( __lowerCamelCase : Union[str, Any] ) ->Union[str, Any]:
# projection head is used in the self-supervised pre-training in MSN,
# for downstream task it's not needed.
_SCREAMING_SNAKE_CASE = [
"""module.fc.fc1.weight""",
"""module.fc.fc1.bias""",
"""module.fc.bn1.weight""",
"""module.fc.bn1.bias""",
"""module.fc.bn1.running_mean""",
"""module.fc.bn1.running_var""",
"""module.fc.bn1.num_batches_tracked""",
"""module.fc.fc2.weight""",
"""module.fc.fc2.bias""",
"""module.fc.bn2.weight""",
"""module.fc.bn2.bias""",
"""module.fc.bn2.running_mean""",
"""module.fc.bn2.running_var""",
"""module.fc.bn2.num_batches_tracked""",
"""module.fc.fc3.weight""",
"""module.fc.fc3.bias""",
]
for k in ignore_keys:
state_dict.pop(__lowerCamelCase , __lowerCamelCase )
def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ) ->Optional[Any]:
_SCREAMING_SNAKE_CASE = dct.pop(__lowerCamelCase )
_SCREAMING_SNAKE_CASE = val
def lowerCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Tuple ) ->List[str]:
_SCREAMING_SNAKE_CASE = ViTMSNConfig()
_SCREAMING_SNAKE_CASE = 1000
_SCREAMING_SNAKE_CASE = """datasets/huggingface/label-files"""
_SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json"""
_SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase ) , """r""" ) )
_SCREAMING_SNAKE_CASE = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
_SCREAMING_SNAKE_CASE = idalabel
_SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
_SCREAMING_SNAKE_CASE = 384
_SCREAMING_SNAKE_CASE = 1536
_SCREAMING_SNAKE_CASE = 6
elif "l16" in checkpoint_url:
_SCREAMING_SNAKE_CASE = 1024
_SCREAMING_SNAKE_CASE = 4096
_SCREAMING_SNAKE_CASE = 24
_SCREAMING_SNAKE_CASE = 16
_SCREAMING_SNAKE_CASE = 0.1
elif "b4" in checkpoint_url:
_SCREAMING_SNAKE_CASE = 4
elif "l7" in checkpoint_url:
_SCREAMING_SNAKE_CASE = 7
_SCREAMING_SNAKE_CASE = 1024
_SCREAMING_SNAKE_CASE = 4096
_SCREAMING_SNAKE_CASE = 24
_SCREAMING_SNAKE_CASE = 16
_SCREAMING_SNAKE_CASE = 0.1
_SCREAMING_SNAKE_CASE = ViTMSNModel(__lowerCamelCase )
_SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""target_encoder"""]
_SCREAMING_SNAKE_CASE = ViTImageProcessor(size=config.image_size )
remove_projection_head(__lowerCamelCase )
_SCREAMING_SNAKE_CASE = create_rename_keys(__lowerCamelCase , base_model=__lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , base_model=__lowerCamelCase )
model.load_state_dict(__lowerCamelCase )
model.eval()
_SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_SCREAMING_SNAKE_CASE = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
_SCREAMING_SNAKE_CASE = ViTImageProcessor(
size=config.image_size , image_mean=__lowerCamelCase , image_std=__lowerCamelCase )
_SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
_SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )
_SCREAMING_SNAKE_CASE = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
_SCREAMING_SNAKE_CASE = torch.tensor([[-1.0915, -1.4876, -1.1809]] )
elif "b16" in checkpoint_url:
_SCREAMING_SNAKE_CASE = torch.tensor([[14.2889, -18.9045, 11.7281]] )
elif "l16" in checkpoint_url:
_SCREAMING_SNAKE_CASE = torch.tensor([[41.5028, -22.8681, 45.6475]] )
elif "b4" in checkpoint_url:
_SCREAMING_SNAKE_CASE = torch.tensor([[-4.3868, 5.2932, -0.4137]] )
else:
_SCREAMING_SNAKE_CASE = torch.tensor([[-0.1792, -0.6465, 2.4263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCamelCase , atol=1e-4 )
print(F'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(__lowerCamelCase )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""",
type=str,
help="""URL of the checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
lowercase_ = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 314 | 0 |
'''simple docstring'''
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
__a = logging.getLogger(__name__)
__a = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
__a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.'''
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCamelCase )} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Override some existing default config settings when a model is trained from scratch. Example: '''
'''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'''
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCamelCase_ : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path" )
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
UpperCamelCase_ : Optional[int] = field(
default=5 , metadata={
'''help''': '''The percentage of the train set used as validation set in case there\'s no validation split'''
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated. Default to the max input length of the model.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCamelCase_ : float = field(
default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Whether to pad all samples to `max_seq_length`. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch.'''
)
} , )
def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
if self.train_file is not None:
_UpperCAmelCase : int = self.train_file.split("." )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
_UpperCAmelCase : List[Any] = self.validation_file.split("." )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def __UpperCAmelCase ( a_: int, a_: List[Any] ):
with open(a_, "r", encoding="utf-8" ) as f:
_UpperCAmelCase : Tuple = [json.loads(a_ ) for line in f.read().splitlines() if (len(a_ ) > 0 and not line.isspace())]
assert len(a_ ) == len(a_ )
_UpperCAmelCase : str = {c: dataset[c] for c in dataset.column_names}
_UpperCAmelCase : Optional[int] = refs
return Dataset.from_dict(a_ )
def __UpperCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
_UpperCAmelCase : Union[str, Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase : Tuple = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", a_ )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
_UpperCAmelCase : Optional[int] = load_dataset(data_args.dataset_name, data_args.dataset_config_name )
if "validation" not in datasets.keys():
_UpperCAmelCase : Optional[Any] = load_dataset(
data_args.dataset_name, data_args.dataset_config_name, split=f"""train[:{data_args.validation_split_percentage}%]""", )
_UpperCAmelCase : Union[str, Any] = load_dataset(
data_args.dataset_name, data_args.dataset_config_name, split=f"""train[{data_args.validation_split_percentage}%:]""", )
else:
_UpperCAmelCase : Union[str, Any] = {}
if data_args.train_file is not None:
_UpperCAmelCase : Optional[Any] = data_args.train_file
if data_args.validation_file is not None:
_UpperCAmelCase : Optional[Any] = data_args.validation_file
_UpperCAmelCase : Optional[Any] = data_args.train_file.split("." )[-1]
if extension == "txt":
_UpperCAmelCase : Optional[int] = "text"
_UpperCAmelCase : Optional[Any] = load_dataset(a_, data_files=a_ )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase : Dict = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
_UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name, **a_ )
elif model_args.model_name_or_path:
_UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path, **a_ )
else:
_UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch." )
if model_args.config_overrides is not None:
logger.info(f"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(f"""New config: {config}""" )
_UpperCAmelCase : List[Any] = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
_UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **a_ )
elif model_args.model_name_or_path:
_UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **a_ )
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name." )
if model_args.model_name_or_path:
_UpperCAmelCase : List[Any] = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
else:
logger.info("Training new model from scratch" )
_UpperCAmelCase : Tuple = AutoModelForMaskedLM.from_config(a_ )
model.resize_token_embeddings(len(a_ ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
_UpperCAmelCase : str = datasets["train"].column_names
else:
_UpperCAmelCase : Tuple = datasets["validation"].column_names
_UpperCAmelCase : Optional[Any] = "text" if "text" in column_names else column_names[0]
_UpperCAmelCase : Tuple = "max_length" if data_args.pad_to_max_length else False
def tokenize_function(a_: Tuple ):
# Remove empty lines
_UpperCAmelCase : str = [line for line in examples["text"] if len(a_ ) > 0 and not line.isspace()]
return tokenizer(examples["text"], padding=a_, truncation=a_, max_length=data_args.max_seq_length )
_UpperCAmelCase : Union[str, Any] = datasets.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
_UpperCAmelCase : List[str] = add_chinese_references(tokenized_datasets["train"], data_args.train_ref_file )
if data_args.validation_ref_file is not None:
_UpperCAmelCase : Dict = add_chinese_references(
tokenized_datasets["validation"], data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
_UpperCAmelCase : Tuple = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
_UpperCAmelCase : Optional[Any] = False
# Data collator
# This one will take care of randomly masking the tokens.
_UpperCAmelCase : str = DataCollatorForWholeWordMask(tokenizer=a_, mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
_UpperCAmelCase : Optional[Any] = Trainer(
model=a_, args=a_, train_dataset=tokenized_datasets["train"] if training_args.do_train else None, eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None, tokenizer=a_, data_collator=a_, )
# Training
if training_args.do_train:
if last_checkpoint is not None:
_UpperCAmelCase : int = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
_UpperCAmelCase : Union[str, Any] = model_args.model_name_or_path
else:
_UpperCAmelCase : str = None
_UpperCAmelCase : List[str] = trainer.train(resume_from_checkpoint=a_ )
trainer.save_model() # Saves the tokenizer too for easy upload
_UpperCAmelCase : Optional[Any] = os.path.join(training_args.output_dir, "train_results.txt" )
if trainer.is_world_process_zero():
with open(a_, "w" ) as writer:
logger.info("***** Train results *****" )
for key, value in sorted(train_result.metrics.items() ):
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json" ) )
# Evaluation
_UpperCAmelCase : Union[str, Any] = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_UpperCAmelCase : Union[str, Any] = trainer.evaluate()
_UpperCAmelCase : str = math.exp(eval_output["eval_loss"] )
_UpperCAmelCase : str = perplexity
_UpperCAmelCase : str = os.path.join(training_args.output_dir, "eval_results_mlm_wwm.txt" )
if trainer.is_world_process_zero():
with open(a_, "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in sorted(results.items() ):
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
return results
def __UpperCAmelCase ( a_: Optional[Any] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 257 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__a = {
'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TimesformerModel',
'TimesformerForVideoClassification',
'TimesformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timesformer import (
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimesformerForVideoClassification,
TimesformerModel,
TimesformerPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 257 | 1 |
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
_UpperCAmelCase : List[Any] = False
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
pass
@nightly
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def __UpperCAmelCase ( self : List[Any] ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self : Any ) -> List[str]:
_A = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion', torch_dtype=torch.floataa )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
_A = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' )
_A = torch.manual_seed(0 )
_A = pipe.dual_guided(
prompt='first prompt', image=_snake_case, text_to_image_strength=0.75, generator=_snake_case, guidance_scale=7.5, num_inference_steps=2, output_type='numpy', ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_snake_case )
_A = VersatileDiffusionPipeline.from_pretrained(_snake_case, torch_dtype=torch.floataa )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
_A = generator.manual_seed(0 )
_A = pipe.dual_guided(
prompt='first prompt', image=_snake_case, text_to_image_strength=0.75, generator=_snake_case, guidance_scale=7.5, num_inference_steps=2, output_type='numpy', ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def __UpperCAmelCase ( self : Dict ) -> List[str]:
_A = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion', torch_dtype=torch.floataa )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
_A = 'cyberpunk 2077'
_A = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' )
_A = torch.manual_seed(0 )
_A = pipe.dual_guided(
prompt=_snake_case, image=_snake_case, text_to_image_strength=0.75, generator=_snake_case, guidance_scale=7.5, num_inference_steps=50, output_type='numpy', ).images
_A = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_A = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
_A = 'A painting of a squirrel eating a burger '
_A = torch.manual_seed(0 )
_A = pipe.text_to_image(
prompt=_snake_case, generator=_snake_case, guidance_scale=7.5, num_inference_steps=50, output_type='numpy' ).images
_A = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_A = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
_A = pipe.image_variation(_snake_case, generator=_snake_case, output_type='numpy' ).images
_A = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_A = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
| 107 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class lowerCamelCase (unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase_ ( self : List[Any] ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
SCREAMING_SNAKE_CASE__ = model(_snake_case )["last_hidden_state"]
SCREAMING_SNAKE_CASE__ = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , _snake_case )
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 159 | 0 |
"""simple docstring"""
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
A: str = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
def __init__( self , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Tuple:
'''simple docstring'''
super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Tuple = eval_examples
UpperCAmelCase : List[Any] = post_process_function
UpperCAmelCase : List[Any] = quant_trainer_args
UpperCAmelCase : Dict = 128 # default number of calibration samples
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
'''simple docstring'''
if calib_dataset is None and self.calib_dataset is None:
raise ValueError("""Trainer: calibration requires an calib_dataset.""" )
UpperCAmelCase : List[str] = calib_dataset if calib_dataset is not None else self.calib_dataset
UpperCAmelCase : Tuple = self._remove_unused_columns(_SCREAMING_SNAKE_CASE , description="""Calibration""" )
return DataLoader(
_SCREAMING_SNAKE_CASE , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=_SCREAMING_SNAKE_CASE , )
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=None ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.train_dataset if calib_dataset is None else calib_dataset
UpperCAmelCase : Tuple = self.get_calib_dataloader(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[int] = self.model
quant_trainer.configure_model(_SCREAMING_SNAKE_CASE , self.quant_trainer_args , calib=_SCREAMING_SNAKE_CASE )
model.eval()
quant_trainer.enable_calibration(_SCREAMING_SNAKE_CASE )
logger.info("""***** Running calibration *****""" )
logger.info(F" Num examples = {self.calib_num}" )
logger.info(F" Batch size = {calib_dataloader.batch_size}" )
for step, inputs in enumerate(_SCREAMING_SNAKE_CASE ):
# Prediction step
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = self.prediction_step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prediction_loss_only=_SCREAMING_SNAKE_CASE )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(_SCREAMING_SNAKE_CASE , self.quant_trainer_args )
UpperCAmelCase : Optional[int] = model
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = "eval" ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : str = self.eval_dataset if eval_dataset is None else eval_dataset
UpperCAmelCase : int = self.get_eval_dataloader(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Dict = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase : Dict = self.compute_metrics
UpperCAmelCase : int = None
UpperCAmelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
UpperCAmelCase : Dict = eval_loop(
_SCREAMING_SNAKE_CASE , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , )
finally:
UpperCAmelCase : str = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
UpperCAmelCase : Optional[Any] = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions )
UpperCAmelCase : str = self.compute_metrics(_SCREAMING_SNAKE_CASE )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"{metric_key_prefix}_" ):
UpperCAmelCase : str = metrics.pop(_SCREAMING_SNAKE_CASE )
self.log(_SCREAMING_SNAKE_CASE )
else:
UpperCAmelCase : Union[str, Any] = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
UpperCAmelCase : Tuple = self.callback_handler.on_evaluate(self.args , self.state , self.control , _SCREAMING_SNAKE_CASE )
return metrics
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = "test" ) -> List[str]:
'''simple docstring'''
UpperCAmelCase : int = self.get_test_dataloader(_SCREAMING_SNAKE_CASE )
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase : str = self.compute_metrics
UpperCAmelCase : int = None
UpperCAmelCase : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
UpperCAmelCase : Union[str, Any] = eval_loop(
_SCREAMING_SNAKE_CASE , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , )
finally:
UpperCAmelCase : Any = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
UpperCAmelCase : Optional[int] = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions , """predict""" )
UpperCAmelCase : str = self.compute_metrics(_SCREAMING_SNAKE_CASE )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"{metric_key_prefix}_" ):
UpperCAmelCase : List[str] = metrics.pop(_SCREAMING_SNAKE_CASE )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE="./" ) -> List[str]:
'''simple docstring'''
UpperCAmelCase : Any = self.eval_dataset
UpperCAmelCase : Optional[Any] = self.get_eval_dataloader(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Tuple = next(iter(_SCREAMING_SNAKE_CASE ) )
# saving device - to make it consistent
UpperCAmelCase : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
# convert to tuple
UpperCAmelCase : List[Any] = tuple(v.to(_SCREAMING_SNAKE_CASE ) for k, v in batch.items() )
logger.info("""Converting model to be onnx compatible""" )
from pytorch_quantization.nn import TensorQuantizer
UpperCAmelCase : List[Any] = True
UpperCAmelCase : Any = self.model.to(_SCREAMING_SNAKE_CASE )
model.eval()
model.float()
UpperCAmelCase : str = model.module if hasattr(_SCREAMING_SNAKE_CASE , """module""" ) else model
quant_trainer.configure_model(_SCREAMING_SNAKE_CASE , self.quant_trainer_args )
UpperCAmelCase : Tuple = os.path.join(_SCREAMING_SNAKE_CASE , """model.onnx""" )
logger.info(F"exporting model to {output_model_file}" )
UpperCAmelCase : List[Any] = {0: """batch_size""", 1: """seq_len"""}
torch.onnx.export(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , export_params=_SCREAMING_SNAKE_CASE , opset_version=13 , do_constant_folding=_SCREAMING_SNAKE_CASE , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={
"""input_ids""": axes,
"""attention_mask""": axes,
"""token_type_ids""": axes,
"""output_start_logits""": axes,
"""output_end_logits""": axes,
} , verbose=_SCREAMING_SNAKE_CASE , )
logger.info("""onnx export finished""" )
| 359 |
"""simple docstring"""
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : str = tempfile.mkdtemp()
UpperCAmelCase : str = 8
# DPR tok
UpperCAmelCase : int = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , """dpr_tokenizer""" )
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : str = os.path.join(_SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
# BART tok
UpperCAmelCase : int = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
UpperCAmelCase : Tuple = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) )
UpperCAmelCase : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
UpperCAmelCase : List[Any] = {"""unk_token""": """<unk>"""}
UpperCAmelCase : int = os.path.join(self.tmpdirname , """bart_tokenizer""" )
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCAmelCase : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(_SCREAMING_SNAKE_CASE ) )
def SCREAMING_SNAKE_CASE ( self ) -> DPRQuestionEncoderTokenizer:
'''simple docstring'''
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) )
def SCREAMING_SNAKE_CASE ( self ) -> DPRContextEncoderTokenizer:
'''simple docstring'''
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) )
def SCREAMING_SNAKE_CASE ( self ) -> BartTokenizer:
'''simple docstring'''
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) )
def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : Dict = Dataset.from_dict(
{
"""id""": ["""0""", """1"""],
"""text""": ["""foo""", """bar"""],
"""title""": ["""Foo""", """Bar"""],
"""embeddings""": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index("""embeddings""" , string_factory="""Flat""" , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.get_dummy_dataset()
UpperCAmelCase : List[Any] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset:
UpperCAmelCase : Tuple = dataset
UpperCAmelCase : List[str] = RagRetriever(
_SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Dict:
'''simple docstring'''
UpperCAmelCase : List[Any] = self.get_dummy_dataset()
UpperCAmelCase : Any = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="""custom""" , )
if from_disk:
UpperCAmelCase : str = os.path.join(self.tmpdirname , """dataset""" )
UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , """index.faiss""" )
dataset.get_index("""embeddings""" ).save(os.path.join(self.tmpdirname , """index.faiss""" ) )
dataset.drop_index("""embeddings""" )
dataset.save_to_disk(os.path.join(self.tmpdirname , """dataset""" ) )
del dataset
UpperCAmelCase : List[Any] = RagRetriever(
_SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
UpperCAmelCase : Optional[Any] = RagRetriever(
_SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _SCREAMING_SNAKE_CASE ) , )
return retriever
def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase : List[str] = Dataset.from_dict(
{
"""id""": ["""0""", """1"""],
"""text""": ["""foo""", """bar"""],
"""title""": ["""Foo""", """Bar"""],
"""embeddings""": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index("""embeddings""" , string_factory="""Flat""" , metric_type=faiss.METRIC_INNER_PRODUCT )
UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , """hf_bert_base.hnswSQ8_correct_phi_128.c_index""" )
dataset.save_faiss_index("""embeddings""" , index_file_name + """.index.dpr""" )
pickle.dump(dataset["""id"""] , open(index_file_name + """.index_meta.dpr""" , """wb""" ) )
UpperCAmelCase : Dict = os.path.join(self.tmpdirname , """psgs_w100.tsv.pkl""" )
UpperCAmelCase : Any = {sample["""id"""]: [sample["""text"""], sample["""title"""]] for sample in dataset}
pickle.dump(_SCREAMING_SNAKE_CASE , open(_SCREAMING_SNAKE_CASE , """wb""" ) )
UpperCAmelCase : Dict = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="""legacy""" , index_path=self.tmpdirname , )
UpperCAmelCase : str = RagRetriever(
_SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def SCREAMING_SNAKE_CASE ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : int = 1
UpperCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever()
UpperCAmelCase : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=_SCREAMING_SNAKE_CASE )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] )
self.assertEqual(len(doc_dicts[0]["""id"""] ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset:
UpperCAmelCase : Optional[int] = self.get_dummy_dataset()
retriever.save_pretrained(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Tuple = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Optional[Any] = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=1 )
self.assertTrue(out is not None )
def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase : Tuple = 1
UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=_SCREAMING_SNAKE_CASE )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] )
self.assertEqual(len(doc_dicts[0]["""id"""] ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=_SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Union[str, Any] = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : List[str] = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=1 )
self.assertTrue(out is not None )
def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Optional[Any] = 1
UpperCAmelCase : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Dict = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=_SCREAMING_SNAKE_CASE )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] )
self.assertEqual(len(doc_dicts[0]["""id"""] ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=_SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : List[Any] = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : int = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=1 )
self.assertTrue(out is not None )
def SCREAMING_SNAKE_CASE ( self ) -> List[str]:
'''simple docstring'''
UpperCAmelCase : Tuple = 1
UpperCAmelCase : List[Any] = self.get_dummy_legacy_index_retriever()
UpperCAmelCase : Any = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=_SCREAMING_SNAKE_CASE )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["""text""", """title"""] )
self.assertEqual(len(doc_dicts[0]["""text"""] ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(doc_dicts[0]["""text"""][0] , """bar""" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["""text"""][0] , """foo""" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def SCREAMING_SNAKE_CASE ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : str = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Any = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Tuple = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def SCREAMING_SNAKE_CASE ( self ) -> List[str]:
'''simple docstring'''
import torch
UpperCAmelCase : Dict = 1
UpperCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever()
UpperCAmelCase : List[str] = [[5, 7], [10, 11]]
UpperCAmelCase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Union[str, Any] = retriever(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=_SCREAMING_SNAKE_CASE )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = (
out["""context_input_ids"""],
out["""context_attention_mask"""],
out["""retrieved_doc_embeds"""],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
UpperCAmelCase : Any = retriever(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = ( # noqa: F841
out["""context_input_ids"""],
out["""context_attention_mask"""],
out["""retrieved_doc_embeds"""],
out["""doc_ids"""],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def SCREAMING_SNAKE_CASE ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : int = self.get_dpr_ctx_encoder_tokenizer()
UpperCAmelCase : Any = 1
UpperCAmelCase : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=_SCREAMING_SNAKE_CASE )
retriever.set_ctx_encoder_tokenizer(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Dict = [[5, 7], [10, 11]]
UpperCAmelCase : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Tuple = retriever(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=_SCREAMING_SNAKE_CASE )
self.assertEqual(
len(_SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ("""tokenized_doc_ids""", """tokenized_doc_attention_mask""") ) , _SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
| 359 | 1 |
from __future__ import annotations
from collections import Counter
from random import random
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self ) -> int:
snake_case_ : Dict = {}
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> None:
snake_case_ : List[Any] = {}
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None:
if nodea not in self.connections:
self.add_node(_SCREAMING_SNAKE_CASE )
if nodea not in self.connections:
self.add_node(_SCREAMING_SNAKE_CASE )
snake_case_ : List[Any] = probability
def _lowerCAmelCase ( self ) -> list[str]:
return list(self.connections )
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> str:
snake_case_ : Tuple = 0
snake_case_ : int = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def lowerCAmelCase__ ( _a : str , _a : list[tuple[str, str, float]] , _a : int ):
snake_case_ : Tuple = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(_a , _a , _a )
snake_case_ : Dict = Counter(graph.get_nodes() )
snake_case_ : Optional[int] = start
for _ in range(_a ):
snake_case_ : int = graph.transition(_a )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 568 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
A : Dict = 'openai/whisper-base'
A : Optional[Any] = (
'This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the '
'transcribed text.'
)
A : Dict = 'transcriber'
A : Any = WhisperProcessor
A : Any = WhisperForConditionalGeneration
A : Union[str, Any] = ['audio']
A : Optional[int] = ['text']
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
return self.pre_processor(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_features
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]:
return self.model.generate(inputs=_SCREAMING_SNAKE_CASE )
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Dict:
return self.pre_processor.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE )[0]
| 568 | 1 |
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCAmelCase :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=3 , lowerCAmelCase__=32 , lowerCAmelCase__=3 , lowerCAmelCase__=10 , lowerCAmelCase__=[10, 20, 30, 40] , lowerCAmelCase__=[1, 1, 2, 1] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=3 , lowerCAmelCase__=None , ):
_A= parent
_A= batch_size
_A= image_size
_A= num_channels
_A= embeddings_size
_A= hidden_sizes
_A= depths
_A= is_training
_A= use_labels
_A= hidden_act
_A= num_labels
_A= scope
_A= len(_A )
def a__ ( self ):
_A= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A= None
if self.use_labels:
_A= ids_tensor([self.batch_size] , self.num_labels )
_A= self.get_config()
return config, pixel_values, labels
def a__ ( self ):
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
_A= TFRegNetModel(config=_A )
_A= model(_A , training=_A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
_A= self.num_labels
_A= TFRegNetForImageClassification(_A )
_A= model(_A , labels=_A , training=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self ):
_A= self.prepare_config_and_inputs()
_A, _A, _A= config_and_inputs
_A= {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class lowerCAmelCase ( _a , _a , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[Any] =(TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
_SCREAMING_SNAKE_CASE : Optional[Any] =(
{"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification}
if is_tf_available()
else {}
)
_SCREAMING_SNAKE_CASE : Union[str, Any] =False
_SCREAMING_SNAKE_CASE : Union[str, Any] =False
_SCREAMING_SNAKE_CASE : List[str] =False
_SCREAMING_SNAKE_CASE : List[str] =False
_SCREAMING_SNAKE_CASE : List[Any] =False
def a__ ( self ):
_A= TFRegNetModelTester(self )
_A= ConfigTester(self , config_class=_A , has_text_modality=_A )
def a__ ( self ):
return
@unittest.skip(reason='RegNet does not use inputs_embeds' )
def a__ ( self ):
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , )
@slow
def a__ ( self ):
super().test_keras_fit()
@unittest.skip(reason='RegNet does not support input and output embeddings' )
def a__ ( self ):
pass
def a__ ( self ):
_A, _A= self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A= model_class(_A )
_A= inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A= [*signature.parameters.keys()]
_A= ['pixel_values']
self.assertListEqual(arg_names[:1] , _A )
def a__ ( self ):
_A= self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def a__ ( self ):
def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
_A= model_class(_A )
_A= model(**self._prepare_for_class(_A , _A ) , training=_A )
_A= outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_A= self.model_tester.num_stages
self.assertEqual(len(_A ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
_A, _A= self.model_tester.prepare_config_and_inputs_for_common()
_A= ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
_A= layer_type
_A= True
check_hidden_states_output(_A , _A , _A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A= True
check_hidden_states_output(_A , _A , _A )
def a__ ( self ):
_A, _A= self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__={} ):
_A= model(_A , return_dict=_A , **_A )
_A= model(_A , return_dict=_A , **_A ).to_tuple()
def recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ):
if isinstance(_A , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(_A , _A ):
recursive_check(_A , _A )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(_A , _A ) ) , msg=(
'Tuple and dict output are not equal. Difference:'
f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}"
) , )
recursive_check(_A , _A )
for model_class in self.all_model_classes:
_A= model_class(_A )
_A= self._prepare_for_class(_A , _A )
_A= self._prepare_for_class(_A , _A )
check_equivalence(_A , _A , _A )
_A= self._prepare_for_class(_A , _A , return_labels=_A )
_A= self._prepare_for_class(_A , _A , return_labels=_A )
check_equivalence(_A , _A , _A )
_A= self._prepare_for_class(_A , _A )
_A= self._prepare_for_class(_A , _A )
check_equivalence(_A , _A , _A , {'output_hidden_states': True} )
_A= self._prepare_for_class(_A , _A , return_labels=_A )
_A= self._prepare_for_class(_A , _A , return_labels=_A )
check_equivalence(_A , _A , _A , {'output_hidden_states': True} )
def a__ ( self ):
_A= self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_A )
@slow
def a__ ( self ):
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A= TFRegNetModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def UpperCamelCase ( ) -> str:
'''simple docstring'''
_A= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class lowerCAmelCase ( unittest.TestCase ):
@cached_property
def a__ ( self ):
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def a__ ( self ):
_A= TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
_A= self.default_image_processor
_A= prepare_img()
_A= image_processor(images=_A , return_tensors='tf' )
# forward pass
_A= model(**_A , training=_A )
# verify the logits
_A= tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , _A )
_A= tf.constant([-0.4180, -1.5051, -3.4836] )
tf.debugging.assert_near(outputs.logits[0, :3] , _A , atol=1E-4 )
| 714 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase ( _a , _a , _a , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] =AltDiffusionPipeline
_SCREAMING_SNAKE_CASE : int =TEXT_TO_IMAGE_PARAMS
_SCREAMING_SNAKE_CASE : List[Any] =TEXT_TO_IMAGE_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : Dict =TEXT_TO_IMAGE_IMAGE_PARAMS
_SCREAMING_SNAKE_CASE : Any =TEXT_TO_IMAGE_IMAGE_PARAMS
def a__ ( self ):
torch.manual_seed(0 )
_A= UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
_A= DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , )
torch.manual_seed(0 )
_A= AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
_A= CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , )
_A= CLIPTextModel(lowerCAmelCase__ )
_A= XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
_A= 77
_A= {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ):
if str(lowerCAmelCase__ ).startswith('mps' ):
_A= torch.manual_seed(lowerCAmelCase__ )
else:
_A= torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
_A= {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def a__ ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def a__ ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def a__ ( self ):
_A= 'cpu' # ensure determinism for the device-dependent torch.Generator
_A= self.get_dummy_components()
torch.manual_seed(0 )
_A= RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
_A= RobertaSeriesModelWithTransformation(lowerCAmelCase__ )
_A= text_encoder
_A= AltDiffusionPipeline(**lowerCAmelCase__ )
_A= alt_pipe.to(lowerCAmelCase__ )
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_A= self.get_dummy_inputs(lowerCAmelCase__ )
_A= 'A photo of an astronaut'
_A= alt_pipe(**lowerCAmelCase__ )
_A= output.images
_A= image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_A= np.array(
[0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def a__ ( self ):
_A= 'cpu' # ensure determinism for the device-dependent torch.Generator
_A= self.get_dummy_components()
_A= PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
torch.manual_seed(0 )
_A= RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
_A= RobertaSeriesModelWithTransformation(lowerCAmelCase__ )
_A= text_encoder
_A= AltDiffusionPipeline(**lowerCAmelCase__ )
_A= alt_pipe.to(lowerCAmelCase__ )
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_A= self.get_dummy_inputs(lowerCAmelCase__ )
_A= alt_pipe(**lowerCAmelCase__ )
_A= output.images
_A= image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_A= np.array(
[0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCAmelCase ( unittest.TestCase ):
def a__ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self ):
# make sure here that pndm scheduler skips prk
_A= AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=lowerCAmelCase__ )
_A= alt_pipe.to(lowerCAmelCase__ )
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_A= 'A painting of a squirrel eating a burger'
_A= torch.manual_seed(0 )
_A= alt_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' )
_A= output.images
_A= image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_A= np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def a__ ( self ):
_A= DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' )
_A= AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ )
_A= alt_pipe.to(lowerCAmelCase__ )
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_A= 'A painting of a squirrel eating a burger'
_A= torch.manual_seed(0 )
_A= alt_pipe([prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type='numpy' )
_A= output.images
_A= image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_A= np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 476 | 0 |
"""simple docstring"""
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
class snake_case_ ( lowerCamelCase_ ):
"""simple docstring"""
A_ = ['''input_features''', '''is_longer''']
def __init__( self , lowerCamelCase_=6_4 , lowerCamelCase_=4_8_0_0_0 , lowerCamelCase_=4_8_0 , lowerCamelCase_=1_0 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=0.0 , lowerCamelCase_=False , lowerCamelCase_ = 0 , lowerCamelCase_ = 1_4_0_0_0 , lowerCamelCase_ = None , lowerCamelCase_ = "fusion" , lowerCamelCase_ = "repeatpad" , **lowerCamelCase_ , ) -> Optional[Any]:
super().__init__(
feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , )
UpperCamelCase = top_db
UpperCamelCase = truncation
UpperCamelCase = padding
UpperCamelCase = fft_window_size
UpperCamelCase = (fft_window_size >> 1) + 1
UpperCamelCase = hop_length
UpperCamelCase = max_length_s
UpperCamelCase = max_length_s * sampling_rate
UpperCamelCase = sampling_rate
UpperCamelCase = frequency_min
UpperCamelCase = frequency_max
UpperCamelCase = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase_ , min_frequency=lowerCamelCase_ , max_frequency=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , norm=lowerCamelCase_ , mel_scale='''htk''' , )
UpperCamelCase = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase_ , min_frequency=lowerCamelCase_ , max_frequency=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , norm='''slaney''' , mel_scale='''slaney''' , )
def UpperCAmelCase__ ( self) -> Dict[str, Any]:
UpperCamelCase = copy.deepcopy(self.__dict__)
UpperCamelCase = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> np.ndarray:
UpperCamelCase = spectrogram(
lowerCamelCase_ , window_function(self.fft_window_size , '''hann''') , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCamelCase_ , log_mel='''dB''' , )
return log_mel_spectrogram.T
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]:
UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3)
if len(ranges[1]) == 0:
# if the audio is too short, we just use the first chunk
UpperCamelCase = [0]
if len(ranges[2]) == 0:
# if the audio is too short, we just use the first chunk
UpperCamelCase = [0]
# randomly choose index for each part
UpperCamelCase = np.random.choice(ranges[0])
UpperCamelCase = np.random.choice(ranges[1])
UpperCamelCase = np.random.choice(ranges[2])
UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :]
UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :]
UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :]
UpperCamelCase = torch.tensor(mel[None, None, :])
UpperCamelCase = torch.nn.functional.interpolate(
lowerCamelCase_ , size=[chunk_frames, 6_4] , mode='''bilinear''' , align_corners=lowerCamelCase_)
UpperCamelCase = mel_shrink[0][0].numpy()
UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0)
return mel_fusion
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.array:
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
UpperCamelCase = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
UpperCamelCase = len(lowerCamelCase_) - max_length
UpperCamelCase = np.random.randint(0 , overflow + 1)
UpperCamelCase = waveform[idx : idx + max_length]
UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase_ , self.mel_filters_slaney)[None, :]
elif truncation == "fusion":
UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase_ , self.mel_filters)
UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
UpperCamelCase = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0)
UpperCamelCase = False
else:
UpperCamelCase = self._random_mel_fusion(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase = True
else:
raise NotImplementedError(F'data_truncating {truncation} not implemented')
else:
UpperCamelCase = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
UpperCamelCase = int(max_length / len(lowerCamelCase_))
UpperCamelCase = np.stack(np.tile(lowerCamelCase_ , n_repeat + 1))[:max_length]
if padding == "repeatpad":
UpperCamelCase = int(max_length / len(lowerCamelCase_))
UpperCamelCase = np.stack(np.tile(lowerCamelCase_ , lowerCamelCase_))
UpperCamelCase = np.pad(lowerCamelCase_ , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0)
if truncation == "fusion":
UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase_ , self.mel_filters)
UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0)
else:
UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase_ , self.mel_filters_slaney)[None, :]
return input_mel, longer
def __call__( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> BatchFeature:
UpperCamelCase = truncation if truncation is not None else self.truncation
UpperCamelCase = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'
F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'
F' was sampled with {self.sampling_rate} and not {sampling_rate}.')
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''')
UpperCamelCase = isinstance(lowerCamelCase_ , np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}')
UpperCamelCase = is_batched_numpy or (
isinstance(lowerCamelCase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list)))
)
if is_batched:
UpperCamelCase = [np.asarray(lowerCamelCase_ , dtype=np.floataa) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray):
UpperCamelCase = np.asarray(lowerCamelCase_ , dtype=np.floataa)
elif isinstance(lowerCamelCase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa):
UpperCamelCase = raw_speech.astype(np.floataa)
# always return batch
if not is_batched:
UpperCamelCase = [np.asarray(lowerCamelCase_)]
# convert to mel spectrogram, truncate and pad if needed.
UpperCamelCase = [
self._get_input_mel(lowerCamelCase_ , max_length if max_length else self.nb_max_samples , lowerCamelCase_ , lowerCamelCase_)
for waveform in raw_speech
]
UpperCamelCase = []
UpperCamelCase = []
for mel, longer in padded_inputs:
input_mel.append(lowerCamelCase_)
is_longer.append(lowerCamelCase_)
if truncation == "fusion" and sum(lowerCamelCase_) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
UpperCamelCase = np.random.randint(0 , len(lowerCamelCase_))
UpperCamelCase = True
if isinstance(input_mel[0] , lowerCamelCase_):
UpperCamelCase = [np.asarray(lowerCamelCase_ , dtype=np.floataa) for feature in input_mel]
# is_longer is a list of bool
UpperCamelCase = [[longer] for longer in is_longer]
UpperCamelCase = {'''input_features''': input_mel, '''is_longer''': is_longer}
UpperCamelCase = BatchFeature(lowerCamelCase_)
if return_tensors is not None:
UpperCamelCase = input_features.convert_to_tensors(lowerCamelCase_)
return input_features
| 34 |
'''simple docstring'''
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ):
'''simple docstring'''
_a : List[Any] = tau * frequency / samplerate
_a : Tuple = sin(A )
_a : List[Any] = cos(A )
_a : Union[str, Any] = _sin / (2 * q_factor)
_a : Dict = (1 - _cos) / 2
_a : Any = 1 - _cos
_a : Any = 1 + alpha
_a : int = -2 * _cos
_a : str = 1 - alpha
_a : Optional[Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ):
'''simple docstring'''
_a : int = tau * frequency / samplerate
_a : int = sin(A )
_a : Union[str, Any] = cos(A )
_a : int = _sin / (2 * q_factor)
_a : Dict = (1 + _cos) / 2
_a : int = -1 - _cos
_a : Optional[int] = 1 + alpha
_a : str = -2 * _cos
_a : Dict = 1 - alpha
_a : List[str] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ):
'''simple docstring'''
_a : str = tau * frequency / samplerate
_a : Dict = sin(A )
_a : int = cos(A )
_a : Dict = _sin / (2 * q_factor)
_a : List[Any] = _sin / 2
_a : List[str] = 0
_a : Dict = -ba
_a : List[Any] = 1 + alpha
_a : Union[str, Any] = -2 * _cos
_a : List[Any] = 1 - alpha
_a : int = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ):
'''simple docstring'''
_a : Optional[Any] = tau * frequency / samplerate
_a : Tuple = sin(A )
_a : Tuple = cos(A )
_a : Dict = _sin / (2 * q_factor)
_a : List[Any] = 1 - alpha
_a : int = -2 * _cos
_a : List[Any] = 1 + alpha
_a : str = IIRFilter(2 )
filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] )
return filt
def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ):
'''simple docstring'''
_a : Union[str, Any] = tau * frequency / samplerate
_a : str = sin(A )
_a : str = cos(A )
_a : List[Any] = _sin / (2 * q_factor)
_a : Optional[Any] = 1_0 ** (gain_db / 4_0)
_a : Dict = 1 + alpha * big_a
_a : str = -2 * _cos
_a : Tuple = 1 - alpha * big_a
_a : Tuple = 1 + alpha / big_a
_a : str = -2 * _cos
_a : Union[str, Any] = 1 - alpha / big_a
_a : Optional[int] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ):
'''simple docstring'''
_a : Optional[int] = tau * frequency / samplerate
_a : List[str] = sin(A )
_a : Tuple = cos(A )
_a : Union[str, Any] = _sin / (2 * q_factor)
_a : str = 1_0 ** (gain_db / 4_0)
_a : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos
_a : List[str] = (big_a + 1) + (big_a - 1) * _cos
_a : List[Any] = (big_a - 1) - (big_a + 1) * _cos
_a : Dict = (big_a - 1) + (big_a + 1) * _cos
_a : Tuple = 2 * sqrt(A ) * alpha
_a : Any = big_a * (pmc + aaa)
_a : Optional[int] = 2 * big_a * mpc
_a : Dict = big_a * (pmc - aaa)
_a : List[str] = ppmc + aaa
_a : int = -2 * pmpc
_a : Tuple = ppmc - aaa
_a : Tuple = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ):
'''simple docstring'''
_a : Dict = tau * frequency / samplerate
_a : Tuple = sin(A )
_a : Any = cos(A )
_a : int = _sin / (2 * q_factor)
_a : str = 1_0 ** (gain_db / 4_0)
_a : List[Any] = (big_a + 1) - (big_a - 1) * _cos
_a : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos
_a : List[Any] = (big_a - 1) - (big_a + 1) * _cos
_a : List[str] = (big_a - 1) + (big_a + 1) * _cos
_a : Union[str, Any] = 2 * sqrt(A ) * alpha
_a : Optional[Any] = big_a * (ppmc + aaa)
_a : List[str] = -2 * big_a * pmpc
_a : Any = big_a * (ppmc - aaa)
_a : List[Any] = pmc + aaa
_a : Tuple = 2 * mpc
_a : List[Any] = pmc - aaa
_a : str = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
| 120 | 0 |
import json
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import numpy as np
import torch
import torchaudio
from packaging import version
from torch import nn
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaProcessor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''):
lowerCamelCase : Optional[int] = True
from torch.cuda.amp import autocast
lowerCamelCase : Optional[int] = logging.getLogger(__name__)
def snake_case_ ( lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[Any]=None ):
return field(default_factory=lambda: default , metadata=lowerCAmelCase_ )
@dataclass
class lowerCAmelCase :
'''simple docstring'''
_A : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
_A : Optional[str] = field(
default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
_A : Optional[bool] = field(
default=__a , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} )
_A : Optional[float] = field(
default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} )
_A : Optional[float] = field(
default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} )
_A : Optional[float] = field(
default=0.1 , metadata={
'''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.'''
} , )
_A : Optional[float] = field(
default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , )
_A : Optional[float] = field(
default=0.0_5 , metadata={
'''help''': (
'''Propability of each feature vector along the time axis to be chosen as the start of the vector'''
'''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature'''
'''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.'''
)
} , )
_A : Optional[float] = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} )
@dataclass
class lowerCAmelCase :
'''simple docstring'''
_A : Optional[str] = field(
default=__a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
_A : Optional[str] = field(
default='''train+validation''' , metadata={
'''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\''''
} , )
_A : bool = field(
default=__a , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} )
_A : Optional[int] = field(
default=__a , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
_A : Optional[int] = field(
default=__a , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
_A : Optional[int] = field(
default=__a , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of validation examples to this '''
'''value if set.'''
)
} , )
_A : List[str] = list_field(
default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , )
@dataclass
class lowerCAmelCase :
'''simple docstring'''
_A : WavaVecaProcessor
_A : Union[bool, str] = True
_A : Optional[int] = None
_A : Optional[int] = None
_A : Optional[int] = None
_A : Optional[int] = None
def __call__( self : Optional[Any] , __a : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]:
"""simple docstring"""
__lowercase : Dict = [{"""input_values""": feature["""input_values"""]} for feature in features]
__lowercase : int = [{"""input_ids""": feature["""labels"""]} for feature in features]
__lowercase : Dict = self.processor.pad(
__a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , )
__lowercase : Dict = self.processor.pad(
labels=__a , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="""pt""" , )
# replace padding with -100 to ignore loss correctly
__lowercase : Optional[int] = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 )
__lowercase : Optional[Any] = labels
return batch
class lowerCAmelCase ( __a ):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] , __a : nn.Module , __a : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor:
"""simple docstring"""
model.train()
__lowercase : str = self._prepare_inputs(__a )
if self.use_amp:
with autocast():
__lowercase : Any = self.compute_loss(__a , __a )
else:
__lowercase : int = self.compute_loss(__a , __a )
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
__lowercase : str = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
__lowercase : Optional[int] = loss.sum() / (inputs["""labels"""] >= 0).sum()
else:
raise ValueError(F"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" )
if self.args.gradient_accumulation_steps > 1:
__lowercase : List[str] = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(__a ).backward()
elif self.use_apex:
with amp.scale_loss(__a , self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(__a )
else:
loss.backward()
return loss.detach()
def snake_case_ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowercase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowercase , __lowercase , __lowercase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowercase , __lowercase , __lowercase : List[str] = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
__lowercase : Optional[int] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__lowercase : Tuple = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. "
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None:
logger.info(
F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase_ )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets:
__lowercase : Union[str, Any] = datasets.load_dataset(
"""common_voice""" , data_args.dataset_config_name , split=data_args.train_split_name )
__lowercase : List[str] = datasets.load_dataset("""common_voice""" , data_args.dataset_config_name , split="""test""" )
# Create and save tokenizer
__lowercase : str = F"[{''.join(data_args.chars_to_ignore )}]"
def remove_special_characters(lowerCAmelCase_ : Any ):
__lowercase : Any = re.sub(lowerCAmelCase_ , """""" , batch["""sentence"""] ).lower() + """ """
return batch
__lowercase : int = train_dataset.map(lowerCAmelCase_ , remove_columns=["""sentence"""] )
__lowercase : Tuple = eval_dataset.map(lowerCAmelCase_ , remove_columns=["""sentence"""] )
def extract_all_chars(lowerCAmelCase_ : Optional[Any] ):
__lowercase : Union[str, Any] = """ """.join(batch["""text"""] )
__lowercase : str = list(set(lowerCAmelCase_ ) )
return {"vocab": [vocab], "all_text": [all_text]}
__lowercase : Optional[int] = train_dataset.map(
lowerCAmelCase_ , batched=lowerCAmelCase_ , batch_size=-1 , keep_in_memory=lowerCAmelCase_ , remove_columns=train_dataset.column_names , )
__lowercase : Optional[Any] = train_dataset.map(
lowerCAmelCase_ , batched=lowerCAmelCase_ , batch_size=-1 , keep_in_memory=lowerCAmelCase_ , remove_columns=eval_dataset.column_names , )
__lowercase : List[Any] = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) )
__lowercase : Optional[int] = {v: k for k, v in enumerate(lowerCAmelCase_ )}
__lowercase : Any = vocab_dict[""" """]
del vocab_dict[" "]
__lowercase : List[Any] = len(lowerCAmelCase_ )
__lowercase : Optional[Any] = len(lowerCAmelCase_ )
with open("""vocab.json""" , """w""" ) as vocab_file:
json.dump(lowerCAmelCase_ , lowerCAmelCase_ )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowercase : Union[str, Any] = WavaVecaCTCTokenizer(
"""vocab.json""" , unk_token="""[UNK]""" , pad_token="""[PAD]""" , word_delimiter_token="""|""" , )
__lowercase : str = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ )
__lowercase : str = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ )
__lowercase : List[Any] = WavaVecaForCTC.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="""mean""" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , )
if data_args.max_train_samples is not None:
__lowercase : Union[str, Any] = min(len(lowerCAmelCase_ ) , data_args.max_train_samples )
__lowercase : Optional[int] = train_dataset.select(range(lowerCAmelCase_ ) )
if data_args.max_val_samples is not None:
__lowercase : int = eval_dataset.select(range(data_args.max_val_samples ) )
__lowercase : List[str] = torchaudio.transforms.Resample(48000 , 16000 )
# Preprocessing the datasets.
# We need to read the aduio files as arrays and tokenize the targets.
def speech_file_to_array_fn(lowerCAmelCase_ : List[Any] ):
__lowercase , __lowercase : Optional[int] = torchaudio.load(batch["""path"""] )
__lowercase : Tuple = resampler(lowerCAmelCase_ ).squeeze().numpy()
__lowercase : Any = 16000
__lowercase : Union[str, Any] = batch["""text"""]
return batch
__lowercase : List[Any] = train_dataset.map(
lowerCAmelCase_ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
__lowercase : Dict = eval_dataset.map(
lowerCAmelCase_ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
def prepare_dataset(lowerCAmelCase_ : str ):
# check that all files have the correct sampling rate
assert (
len(set(batch["""sampling_rate"""] ) ) == 1
), F"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."
__lowercase : str = processor(
audio=batch["""speech"""] , text=batch["""target_text"""] , sampling_rate=batch["""sampling_rate"""][0] )
batch.update(lowerCAmelCase_ )
return batch
__lowercase : Any = train_dataset.map(
lowerCAmelCase_ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , )
__lowercase : Optional[int] = eval_dataset.map(
lowerCAmelCase_ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , )
# Metric
__lowercase : Optional[Any] = datasets.load_metric("""wer""" )
def compute_metrics(lowerCAmelCase_ : str ):
__lowercase : str = pred.predictions
__lowercase : int = np.argmax(lowerCAmelCase_ , axis=-1 )
__lowercase : Optional[Any] = processor.tokenizer.pad_token_id
__lowercase : Optional[int] = processor.batch_decode(lowerCAmelCase_ )
# we do not want to group tokens when computing the metrics
__lowercase : Any = processor.batch_decode(pred.label_ids , group_tokens=lowerCAmelCase_ )
__lowercase : Union[str, Any] = wer_metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# Data collator
__lowercase : Optional[int] = DataCollatorCTCWithPadding(processor=lowerCAmelCase_ , padding=lowerCAmelCase_ )
# Initialize our Trainer
__lowercase : Optional[Any] = CTCTrainer(
model=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , args=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
__lowercase : Optional[int] = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path ):
__lowercase : int = model_args.model_name_or_path
else:
__lowercase : Union[str, Any] = None
# Save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank ):
processor.save_pretrained(training_args.output_dir )
__lowercase : Union[str, Any] = trainer.train(resume_from_checkpoint=lowerCAmelCase_ )
trainer.save_model()
__lowercase : List[Any] = train_result.metrics
__lowercase : List[str] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ )
)
__lowercase : Union[str, Any] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) )
trainer.log_metrics("""train""" , lowerCAmelCase_ )
trainer.save_metrics("""train""" , lowerCAmelCase_ )
trainer.save_state()
# Evaluation
__lowercase : int = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__lowercase : int = trainer.evaluate()
__lowercase : Any = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ )
__lowercase : Tuple = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) )
trainer.log_metrics("""eval""" , lowerCAmelCase_ )
trainer.save_metrics("""eval""" , lowerCAmelCase_ )
return results
if __name__ == "__main__":
main()
| 649 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase : int = {
'''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''],
'''convert_funnel_original_tf_checkpoint_to_pytorch''': [],
'''tokenization_funnel''': ['''FunnelTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : List[str] = ['''FunnelTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Union[str, Any] = [
'''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FunnelBaseModel''',
'''FunnelForMaskedLM''',
'''FunnelForMultipleChoice''',
'''FunnelForPreTraining''',
'''FunnelForQuestionAnswering''',
'''FunnelForSequenceClassification''',
'''FunnelForTokenClassification''',
'''FunnelModel''',
'''FunnelPreTrainedModel''',
'''load_tf_weights_in_funnel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : str = [
'''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFFunnelBaseModel''',
'''TFFunnelForMaskedLM''',
'''TFFunnelForMultipleChoice''',
'''TFFunnelForPreTraining''',
'''TFFunnelForQuestionAnswering''',
'''TFFunnelForSequenceClassification''',
'''TFFunnelForTokenClassification''',
'''TFFunnelModel''',
'''TFFunnelPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 649 | 1 |
"""simple docstring"""
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class SCREAMING_SNAKE_CASE :
"""simple docstring"""
@staticmethod
def _lowerCAmelCase ( *_snake_case : Tuple , **_snake_case : List[str] ) -> Optional[Any]:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
a_ : Tuple =MODEL_FOR_OBJECT_DETECTION_MAPPING
def _lowerCAmelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any] ) -> List[str]:
'''simple docstring'''
a__ = ObjectDetectionPipeline(model=_snake_case , image_processor=_snake_case )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def _lowerCAmelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : List[str] ) -> Dict:
'''simple docstring'''
a__ = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 )
self.assertGreater(len(_snake_case ) , 0 )
for detected_object in outputs:
self.assertEqual(
_snake_case , {
'score': ANY(_snake_case ),
'label': ANY(_snake_case ),
'box': {'xmin': ANY(_snake_case ), 'ymin': ANY(_snake_case ), 'xmax': ANY(_snake_case ), 'ymax': ANY(_snake_case )},
} , )
import datasets
a__ = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' )
a__ = [
Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ),
'http://images.cocodataset.org/val2017/000000039769.jpg',
# RGBA
dataset[0]['file'],
# LA
dataset[1]['file'],
# L
dataset[2]['file'],
]
a__ = object_detector(_snake_case , threshold=0.0 )
self.assertEqual(len(_snake_case ) , len(_snake_case ) )
for outputs in batch_outputs:
self.assertGreater(len(_snake_case ) , 0 )
for detected_object in outputs:
self.assertEqual(
_snake_case , {
'score': ANY(_snake_case ),
'label': ANY(_snake_case ),
'box': {'xmin': ANY(_snake_case ), 'ymin': ANY(_snake_case ), 'xmax': ANY(_snake_case ), 'ymax': ANY(_snake_case )},
} , )
@require_tf
@unittest.skip('Object detection not implemented in TF' )
def _lowerCAmelCase ( self : Tuple ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
a__ = 'hf-internal-testing/tiny-detr-mobilenetsv3'
a__ = AutoModelForObjectDetection.from_pretrained(_snake_case )
a__ = AutoFeatureExtractor.from_pretrained(_snake_case )
a__ = ObjectDetectionPipeline(model=_snake_case , feature_extractor=_snake_case )
a__ = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 )
self.assertEqual(
nested_simplify(_snake_case , decimals=4 ) , [
{'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
] , )
a__ = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(_snake_case , decimals=4 ) , [
[
{'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
[
{'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
] , )
@require_torch
@slow
def _lowerCAmelCase ( self : Tuple ) -> Any:
'''simple docstring'''
a__ = 'facebook/detr-resnet-50'
a__ = AutoModelForObjectDetection.from_pretrained(_snake_case )
a__ = AutoFeatureExtractor.from_pretrained(_snake_case )
a__ = ObjectDetectionPipeline(model=_snake_case , feature_extractor=_snake_case )
a__ = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(_snake_case , decimals=4 ) , [
{'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
] , )
a__ = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(_snake_case , decimals=4 ) , [
[
{'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
] , )
@require_torch
@slow
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
a__ = 'facebook/detr-resnet-50'
a__ = pipeline('object-detection' , model=_snake_case )
a__ = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(_snake_case , decimals=4 ) , [
{'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
] , )
a__ = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(_snake_case , decimals=4 ) , [
[
{'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
] , )
@require_torch
@slow
def _lowerCAmelCase ( self : int ) -> Union[str, Any]:
'''simple docstring'''
a__ = 0.9985
a__ = 'facebook/detr-resnet-50'
a__ = pipeline('object-detection' , model=_snake_case )
a__ = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=_snake_case )
self.assertEqual(
nested_simplify(_snake_case , decimals=4 ) , [
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
] , )
@require_torch
@require_pytesseract
@slow
def _lowerCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
a__ = 'Narsil/layoutlmv3-finetuned-funsd'
a__ = 0.9993
a__ = pipeline('object-detection' , model=_snake_case , threshold=_snake_case )
a__ = object_detector(
'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' )
self.assertEqual(
nested_simplify(_snake_case , decimals=4 ) , [
{'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
{'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
] , )
| 232 |
"""simple docstring"""
def _lowerCamelCase ( UpperCAmelCase__ ) -> bool:
'''simple docstring'''
a__ = 0
for ch in input_str:
a__ = ord(UpperCAmelCase__ )
a__ = pow(2,UpperCAmelCase__ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 232 | 1 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class _lowercase ( __lowerCamelCase ):
_lowercase : Tuple = 'char'
_lowercase : Optional[int] = 'bpe'
_lowercase : Tuple = 'wp'
__lowercase = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class _lowercase ( __lowerCamelCase ):
_lowercase : str = ['image_processor', 'char_tokenizer']
_lowercase : Optional[Any] = 'ViTImageProcessor'
_lowercase : str = 'MgpstrTokenizer'
def __init__( self : List[Any] , lowerCamelCase__ : str=None , lowerCamelCase__ : List[Any]=None , **lowerCamelCase__ : int ) -> int:
"""simple docstring"""
A_ = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , lowerCamelCase__ , )
A_ = kwargs.pop('''feature_extractor''' )
A_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
A_ = tokenizer
A_ = AutoTokenizer.from_pretrained('''gpt2''' )
A_ = AutoTokenizer.from_pretrained('''bert-base-uncased''' )
super().__init__(lowerCamelCase__ , lowerCamelCase__ )
def __call__( self : Optional[int] , lowerCamelCase__ : str=None , lowerCamelCase__ : str=None , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Tuple ) -> Optional[int]:
"""simple docstring"""
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
A_ = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ )
if text is not None:
A_ = self.char_tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ )
if text is None:
return inputs
elif images is None:
return encodings
else:
A_ = encodings['''input_ids''']
return inputs
def UpperCamelCase ( self : Tuple , lowerCamelCase__ : Optional[int] ) -> List[str]:
"""simple docstring"""
A_ ,A_ ,A_ = sequences
A_ = char_preds.size(0 )
A_ ,A_ = self._decode_helper(lowerCamelCase__ , '''char''' )
A_ ,A_ = self._decode_helper(lowerCamelCase__ , '''bpe''' )
A_ ,A_ = self._decode_helper(lowerCamelCase__ , '''wp''' )
A_ = []
A_ = []
for i in range(lowerCamelCase__ ):
A_ = [char_scores[i], bpe_scores[i], wp_scores[i]]
A_ = [char_strs[i], bpe_strs[i], wp_strs[i]]
A_ = scores.index(max(lowerCamelCase__ ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
A_ = {}
A_ = final_strs
A_ = final_scores
A_ = char_strs
A_ = bpe_strs
A_ = wp_strs
return out
def UpperCamelCase ( self : int , lowerCamelCase__ : Dict , lowerCamelCase__ : Any ) -> Any:
"""simple docstring"""
if format == DecodeType.CHARACTER:
A_ = self.char_decode
A_ = 1
A_ = '''[s]'''
elif format == DecodeType.BPE:
A_ = self.bpe_decode
A_ = 2
A_ = '''#'''
elif format == DecodeType.WORDPIECE:
A_ = self.wp_decode
A_ = 1_0_2
A_ = '''[SEP]'''
else:
raise ValueError(F"Format {format} is not supported." )
A_ ,A_ = [], []
A_ = pred_logits.size(0 )
A_ = pred_logits.size(1 )
A_ ,A_ = pred_logits.topk(1 , dim=-1 , largest=lowerCamelCase__ , sorted=lowerCamelCase__ )
A_ = preds_index.view(-1 , lowerCamelCase__ )[:, 1:]
A_ = decoder(lowerCamelCase__ )
A_ ,A_ = torch.nn.functional.softmax(lowerCamelCase__ , dim=2 ).max(dim=2 )
A_ = preds_max_prob[:, 1:]
for index in range(lowerCamelCase__ ):
A_ = preds_str[index].find(lowerCamelCase__ )
A_ = preds_str[index][:pred_eos]
A_ = preds_index[index].cpu().tolist()
A_ = pred_index.index(lowerCamelCase__ ) if eos_token in pred_index else -1
A_ = preds_max_prob[index][: pred_eos_index + 1]
A_ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(lowerCamelCase__ )
conf_scores.append(lowerCamelCase__ )
return dec_strs, conf_scores
def UpperCamelCase ( self : str , lowerCamelCase__ : Tuple ) -> Any:
"""simple docstring"""
A_ = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(lowerCamelCase__ )]
return decode_strs
def UpperCamelCase ( self : str , lowerCamelCase__ : Dict ) -> Dict:
"""simple docstring"""
return self.bpe_tokenizer.batch_decode(lowerCamelCase__ )
def UpperCamelCase ( self : Any , lowerCamelCase__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
A_ = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(lowerCamelCase__ )]
return decode_strs
| 563 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
__lowercase = logging.get_logger(__name__)
class _lowercase ( __lowerCamelCase ):
_lowercase : Optional[Any] = ['pixel_values']
def __init__( self : List[str] , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Dict[str, int]] = None , lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[int, float] = 1 / 2_5_5 , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , **lowerCamelCase__ : str , ) -> None:
"""simple docstring"""
super().__init__(**lowerCamelCase__ )
A_ = size if size is not None else {'''shortest_edge''': 2_5_6}
A_ = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ )
A_ = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4}
A_ = get_size_dict(lowerCamelCase__ )
A_ = do_resize
A_ = size
A_ = resample
A_ = do_center_crop
A_ = crop_size
A_ = do_rescale
A_ = rescale_factor
A_ = do_normalize
A_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
A_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase ( self : List[Any] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Optional[int] , ) -> np.ndarray:
"""simple docstring"""
A_ = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ )
if "shortest_edge" not in size:
raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" )
A_ = get_resize_output_image_size(lowerCamelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCamelCase__ )
return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ )
def UpperCamelCase ( self : Optional[int] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Union[str, Any] , ) -> np.ndarray:
"""simple docstring"""
A_ = get_size_dict(lowerCamelCase__ )
return center_crop(lowerCamelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCamelCase__ , **lowerCamelCase__ )
def UpperCamelCase ( self : Any , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : float , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Union[str, Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ )
def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Dict , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ )
def UpperCamelCase ( self : Optional[int] , lowerCamelCase__ : ImageInput , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[float] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCamelCase__ : Dict , ) -> Dict:
"""simple docstring"""
A_ = do_resize if do_resize is not None else self.do_resize
A_ = size if size is not None else self.size
A_ = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ )
A_ = resample if resample is not None else self.resample
A_ = do_center_crop if do_center_crop is not None else self.do_center_crop
A_ = crop_size if crop_size is not None else self.crop_size
A_ = get_size_dict(lowerCamelCase__ )
A_ = do_rescale if do_rescale is not None else self.do_rescale
A_ = rescale_factor if rescale_factor is not None else self.rescale_factor
A_ = do_normalize if do_normalize is not None else self.do_normalize
A_ = image_mean if image_mean is not None else self.image_mean
A_ = image_std if image_std is not None else self.image_std
A_ = make_list_of_images(lowerCamelCase__ )
if not valid_images(lowerCamelCase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
A_ = [to_numpy_array(lowerCamelCase__ ) for image in images]
if do_resize:
A_ = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images]
if do_center_crop:
A_ = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images]
if do_rescale:
A_ = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images]
if do_normalize:
A_ = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images]
A_ = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images]
A_ = {'''pixel_values''': images}
return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
| 563 | 1 |
'''simple docstring'''
from string import ascii_lowercase, ascii_uppercase
def __UpperCAmelCase (lowercase__ ) -> str:
'''simple docstring'''
if not sentence:
return ""
a_ = dict(zip(lowercase__ ,lowercase__ ) )
return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 685 |
'''simple docstring'''
import re
def __UpperCAmelCase (lowercase__ ) -> bool:
'''simple docstring'''
a_ = re.compile(
r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" )
return bool(re.search(lowercase__ ,lowercase__ ) )
if __name__ == "__main__":
a_ = '0094702343221'
print(is_sri_lankan_phone_number(phone))
| 685 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
lowerCAmelCase_ : Optional[Any] = list[list[float | int]]
def UpperCAmelCase ( A : Matrix , A : Matrix ):
SCREAMING_SNAKE_CASE : int = len(A )
SCREAMING_SNAKE_CASE : Matrix = [[0 for _ in range(size + 1 )] for _ in range(A )]
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : float
for row in range(A ):
for col in range(A ):
SCREAMING_SNAKE_CASE : Optional[int] = matrix[row][col]
SCREAMING_SNAKE_CASE : Optional[Any] = vector[row][0]
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : Dict = 0
while row < size and col < size:
# pivoting
SCREAMING_SNAKE_CASE : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(A , A ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , A ):
SCREAMING_SNAKE_CASE : Dict = augmented[rowa][col] / augmented[row][col]
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , A ):
for row in range(A ):
SCREAMING_SNAKE_CASE : int = augmented[row][col] / augmented[col][col]
for cola in range(A , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(A )
]
def UpperCAmelCase ( A : list[int] ):
SCREAMING_SNAKE_CASE : int = len(A )
SCREAMING_SNAKE_CASE : Matrix = [[0 for _ in range(A )] for _ in range(A )]
SCREAMING_SNAKE_CASE : Matrix = [[0] for _ in range(A )]
SCREAMING_SNAKE_CASE : Matrix
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : int
for x_val, y_val in enumerate(A ):
for col in range(A ):
SCREAMING_SNAKE_CASE : List[str] = (x_val + 1) ** (size - col - 1)
SCREAMING_SNAKE_CASE : Tuple = y_val
SCREAMING_SNAKE_CASE : Optional[Any] = solve(A , A )
def interpolated_func(A : int ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(A ) )
return interpolated_func
def UpperCAmelCase ( A : int ):
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def UpperCAmelCase ( A : Callable[[int], int] = question_function , A : int = 10 ):
SCREAMING_SNAKE_CASE : list[int] = [func(A ) for x_val in range(1 , order + 1 )]
SCREAMING_SNAKE_CASE : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : Callable[[int], int]
SCREAMING_SNAKE_CASE : int
for poly in polynomials:
SCREAMING_SNAKE_CASE : Tuple = 1
while func(A ) == poly(A ):
x_val += 1
ret += poly(A )
return ret
if __name__ == "__main__":
print(f'{solution() = }')
| 464 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 464 | 1 |
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class snake_case_ ( __A , __A , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
SCREAMING_SNAKE_CASE : List[Any] = (
{
"feature-extraction": TFMobileBertModel,
"fill-mask": TFMobileBertForMaskedLM,
"question-answering": TFMobileBertForQuestionAnswering,
"text-classification": TFMobileBertForSequenceClassification,
"token-classification": TFMobileBertForTokenClassification,
"zero-shot": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE : int = False
SCREAMING_SNAKE_CASE : Optional[int] = False
def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Dict=False ) ->List[str]:
snake_case_ = super()._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase )
if return_labels:
if model_class in get_values(_UpperCamelCase ):
snake_case_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class snake_case_ ( __A ):
'''simple docstring'''
def __init__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=1_3 , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=True , _UpperCamelCase : Any=True , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : str=9_9 , _UpperCamelCase : Tuple=3_2 , _UpperCamelCase : int=3_2 , _UpperCamelCase : int=2 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : Optional[int]=3_7 , _UpperCamelCase : List[str]="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : int=5_1_2 , _UpperCamelCase : Any=1_6 , _UpperCamelCase : Tuple=2 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : Any=3 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : str=None , ) ->List[Any]:
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = num_choices
snake_case_ = scope
snake_case_ = embedding_size
def snake_case__( self : Optional[int] ) ->Optional[int]:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = None
if self.use_input_mask:
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] ) ->Optional[Any]:
snake_case_ = TFMobileBertModel(config=_UpperCamelCase )
snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
snake_case_ = model(_UpperCamelCase )
snake_case_ = [input_ids, input_mask]
snake_case_ = model(_UpperCamelCase )
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def snake_case__( self : Dict , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Optional[int] ) ->List[str]:
snake_case_ = TFMobileBertForMaskedLM(config=_UpperCamelCase )
snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__( self : Any , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) ->Optional[Any]:
snake_case_ = TFMobileBertForNextSentencePrediction(config=_UpperCamelCase )
snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def snake_case__( self : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) ->List[Any]:
snake_case_ = TFMobileBertForPreTraining(config=_UpperCamelCase )
snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def snake_case__( self : int , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : int ) ->Any:
snake_case_ = self.num_labels
snake_case_ = TFMobileBertForSequenceClassification(config=_UpperCamelCase )
snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : str ) ->Union[str, Any]:
snake_case_ = self.num_choices
snake_case_ = TFMobileBertForMultipleChoice(config=_UpperCamelCase )
snake_case_ = tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
snake_case_ = tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
snake_case_ = tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
snake_case_ = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def snake_case__( self : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->str:
snake_case_ = self.num_labels
snake_case_ = TFMobileBertForTokenClassification(config=_UpperCamelCase )
snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) ->str:
snake_case_ = TFMobileBertForQuestionAnswering(config=_UpperCamelCase )
snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__( self : Union[str, Any] ) ->List[str]:
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
),
) = config_and_inputs
snake_case_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
def snake_case__( self : Tuple ) ->Optional[Any]:
snake_case_ = TFMobileBertModelTest.TFMobileBertModelTester(self )
snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 )
def snake_case__( self : Optional[Any] ) ->Any:
self.config_tester.run_common_tests()
def snake_case__( self : str ) ->Dict:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*_UpperCamelCase )
def snake_case__( self : List[str] ) ->Optional[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCamelCase )
def snake_case__( self : Optional[Any] ) ->List[str]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCamelCase )
def snake_case__( self : Tuple ) ->Optional[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCamelCase )
def snake_case__( self : List[str] ) ->Union[str, Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCamelCase )
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCamelCase )
def snake_case__( self : Optional[Any] ) ->Union[str, Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCamelCase )
def snake_case__( self : Union[str, Any] ) ->Tuple:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCamelCase )
@slow
def snake_case__( self : List[Any] ) ->int:
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["google/mobilebert-uncased"]:
snake_case_ = TFMobileBertModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
@require_tf
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def snake_case__( self : Tuple ) ->List[Any]:
snake_case_ = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' )
snake_case_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
snake_case_ = model(_UpperCamelCase )[0]
snake_case_ = [1, 6, 3_0_5_2_2]
self.assertEqual(output.shape , _UpperCamelCase )
snake_case_ = tf.constant(
[
[
[-4.5919547, -9.248295, -9.645256],
[-6.7306175, -6.440284, -6.6052837],
[-7.2743506, -6.7847915, -6.024673],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 )
| 39 |
'''simple docstring'''
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def A_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]:
__SCREAMING_SNAKE_CASE : Union[str, Any] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'''
__SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' )
__SCREAMING_SNAKE_CASE : List[Any] = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ),
] )
__SCREAMING_SNAKE_CASE : Dict = transform(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(__SCREAMING_SNAKE_CASE )
return image
def A_ ( __SCREAMING_SNAKE_CASE : Any ) -> int:
if "visual_encoder" in key:
__SCREAMING_SNAKE_CASE : List[Any] = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , __SCREAMING_SNAKE_CASE )
if "blocks" in key:
__SCREAMING_SNAKE_CASE : int = re.sub(R'''blocks''' , '''layers''' , __SCREAMING_SNAKE_CASE )
if "attn" in key:
__SCREAMING_SNAKE_CASE : int = re.sub(R'''attn''' , '''self_attn''' , __SCREAMING_SNAKE_CASE )
if "norm1" in key:
__SCREAMING_SNAKE_CASE : Optional[int] = re.sub(R'''norm1''' , '''layer_norm1''' , __SCREAMING_SNAKE_CASE )
if "norm2" in key:
__SCREAMING_SNAKE_CASE : Union[str, Any] = re.sub(R'''norm2''' , '''layer_norm2''' , __SCREAMING_SNAKE_CASE )
if "encoder.norm" in key:
__SCREAMING_SNAKE_CASE : int = re.sub(R'''encoder.norm''' , '''post_layernorm''' , __SCREAMING_SNAKE_CASE )
if "encoder.patch_embed.proj" in key:
__SCREAMING_SNAKE_CASE : Union[str, Any] = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , __SCREAMING_SNAKE_CASE )
if "encoder.pos_embed" in key:
__SCREAMING_SNAKE_CASE : Tuple = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , __SCREAMING_SNAKE_CASE )
if "encoder.cls_token" in key:
__SCREAMING_SNAKE_CASE : List[str] = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , __SCREAMING_SNAKE_CASE )
if "self_attn" in key:
__SCREAMING_SNAKE_CASE : List[Any] = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , __SCREAMING_SNAKE_CASE )
return key
@torch.no_grad()
def A_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict=None ) -> Optional[Any]:
if config_path is not None:
__SCREAMING_SNAKE_CASE : Optional[int] = BlipConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
else:
__SCREAMING_SNAKE_CASE : List[str] = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} )
__SCREAMING_SNAKE_CASE : int = BlipForConditionalGeneration(__SCREAMING_SNAKE_CASE ).eval()
__SCREAMING_SNAKE_CASE : Union[str, Any] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'''
__SCREAMING_SNAKE_CASE : Any = blip_decoder(pretrained=__SCREAMING_SNAKE_CASE , image_size=3_84 , vit='''base''' )
__SCREAMING_SNAKE_CASE : int = pt_model.eval()
__SCREAMING_SNAKE_CASE : Optional[Any] = pt_model.state_dict()
for key in modified_state_dict.copy():
__SCREAMING_SNAKE_CASE : Union[str, Any] = modified_state_dict.pop(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : List[str] = rename_key(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : Optional[int] = value
hf_model.load_state_dict(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : Optional[Any] = 3_84
__SCREAMING_SNAKE_CASE : List[Any] = load_demo_image(image_size=__SCREAMING_SNAKE_CASE , device='''cpu''' )
__SCREAMING_SNAKE_CASE : List[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' )
__SCREAMING_SNAKE_CASE : List[str] = tokenizer(['''a picture of'''] ).input_ids
__SCREAMING_SNAKE_CASE : List[Any] = hf_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02]
__SCREAMING_SNAKE_CASE : List[str] = hf_model.generate(__SCREAMING_SNAKE_CASE )
assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(__SCREAMING_SNAKE_CASE )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
__SCREAMING_SNAKE_CASE : Optional[int] = (
'''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'''
)
__SCREAMING_SNAKE_CASE : Optional[Any] = blip_vqa(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit='''base''' )
vqa_model.eval()
__SCREAMING_SNAKE_CASE : List[Any] = vqa_model.state_dict()
for key in modified_state_dict.copy():
__SCREAMING_SNAKE_CASE : Dict = modified_state_dict.pop(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : List[str] = rename_key(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : Optional[Any] = value
__SCREAMING_SNAKE_CASE : Optional[Any] = BlipForQuestionAnswering(__SCREAMING_SNAKE_CASE )
hf_vqa_model.load_state_dict(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : Optional[Any] = ['''How many dogs are in this image?''']
__SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids
__SCREAMING_SNAKE_CASE : Optional[int] = hf_vqa_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' )
__SCREAMING_SNAKE_CASE : Optional[int] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'''
__SCREAMING_SNAKE_CASE : Any = blip_itm(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit='''base''' )
itm_model.eval()
__SCREAMING_SNAKE_CASE : Union[str, Any] = itm_model.state_dict()
for key in modified_state_dict.copy():
__SCREAMING_SNAKE_CASE : Any = modified_state_dict.pop(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : int = rename_key(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : Tuple = value
__SCREAMING_SNAKE_CASE : Union[str, Any] = BlipForImageTextRetrieval(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : List[Any] = ['''A picture of a woman with a dog sitting in a beach''']
__SCREAMING_SNAKE_CASE : Any = tokenizer(
__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding='''max_length''' , truncation=__SCREAMING_SNAKE_CASE , max_length=35 , ).input_ids
hf_itm_model.load_state_dict(__SCREAMING_SNAKE_CASE )
hf_itm_model.eval()
__SCREAMING_SNAKE_CASE : Dict = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : Optional[Any] = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE )
assert out[0].item() == 0.2110687494277954
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' )
if __name__ == "__main__":
_A = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
_A = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 158 | 0 |
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def snake_case_ ( self : Any ):
torch.manual_seed(0 )
__lowercase : int = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def snake_case_ ( self : Optional[Any] ):
__lowercase : Optional[Any] = self.dummy_uncond_unet
__lowercase : str = KarrasVeScheduler()
__lowercase : int = KarrasVePipeline(unet=_snake_case , scheduler=_snake_case )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
__lowercase : Optional[int] = torch.manual_seed(0 )
__lowercase : int = pipe(num_inference_steps=2 , generator=_snake_case , output_type='''numpy''' ).images
__lowercase : Optional[int] = torch.manual_seed(0 )
__lowercase : int = pipe(num_inference_steps=2 , generator=_snake_case , output_type='''numpy''' , return_dict=_snake_case )[0]
__lowercase : Optional[Any] = image[0, -3:, -3:, -1]
__lowercase : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowercase : Tuple = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case_ ( self : str ):
__lowercase : Dict = '''google/ncsnpp-celebahq-256'''
__lowercase : str = UNetaDModel.from_pretrained(_snake_case )
__lowercase : List[Any] = KarrasVeScheduler()
__lowercase : List[Any] = KarrasVePipeline(unet=_snake_case , scheduler=_snake_case )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
__lowercase : str = torch.manual_seed(0 )
__lowercase : Optional[int] = pipe(num_inference_steps=20 , generator=_snake_case , output_type='''numpy''' ).images
__lowercase : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
__lowercase : Union[str, Any] = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 284 |
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class __lowerCAmelCase ( lowerCAmelCase_ ):
"""simple docstring"""
def snake_case_ ( self : Optional[int] ):
__lowercase : Dict = tempfile.mkdtemp()
__lowercase : Tuple = 8
# DPR tok
__lowercase : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__lowercase : Optional[Any] = os.path.join(self.tmpdirname , '''dpr_tokenizer''' )
os.makedirs(_snake_case , exist_ok=_snake_case )
__lowercase : str = os.path.join(_snake_case , DPR_VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
# BART tok
__lowercase : List[str] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
__lowercase : Optional[Any] = dict(zip(_snake_case , range(len(_snake_case ) ) ) )
__lowercase : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__lowercase : Any = {'''unk_token''': '''<unk>'''}
__lowercase : int = os.path.join(self.tmpdirname , '''bart_tokenizer''' )
os.makedirs(_snake_case , exist_ok=_snake_case )
__lowercase : List[Any] = os.path.join(_snake_case , BART_VOCAB_FILES_NAMES['''vocab_file'''] )
__lowercase : Tuple = os.path.join(_snake_case , BART_VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_snake_case ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(_snake_case ) )
def snake_case_ ( self : List[Any] ):
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def snake_case_ ( self : Dict ):
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def snake_case_ ( self : Optional[int] ):
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) )
def snake_case_ ( self : str ):
shutil.rmtree(self.tmpdirname )
def snake_case_ ( self : Tuple ):
__lowercase : Dict = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def snake_case_ ( self : Union[str, Any] ):
__lowercase : Union[str, Any] = self.get_dummy_dataset()
__lowercase : Optional[int] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
__lowercase : List[Any] = dataset
__lowercase : str = RagRetriever(
_snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def snake_case_ ( self : int , _snake_case : bool ):
__lowercase : Dict = self.get_dummy_dataset()
__lowercase : List[Any] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , )
if from_disk:
__lowercase : List[Any] = os.path.join(self.tmpdirname , '''dataset''' )
__lowercase : Union[str, Any] = os.path.join(self.tmpdirname , '''index.faiss''' )
dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) )
dataset.drop_index('''embeddings''' )
dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) )
del dataset
__lowercase : Optional[Any] = RagRetriever(
_snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
__lowercase : Optional[Any] = RagRetriever(
_snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _snake_case ) , )
return retriever
def snake_case_ ( self : str ):
__lowercase : List[str] = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
__lowercase : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' )
dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' )
pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) )
__lowercase : str = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' )
__lowercase : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset}
pickle.dump(_snake_case , open(_snake_case , '''wb''' ) )
__lowercase : List[str] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , )
__lowercase : Optional[int] = RagRetriever(
_snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def snake_case_ ( self : Optional[Any] ):
__lowercase : List[str] = 1
__lowercase : Tuple = self.get_dummy_canonical_hf_index_retriever()
__lowercase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowercase , __lowercase , __lowercase : str = retriever.retrieve(_snake_case , n_docs=_snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(_snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , _snake_case )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def snake_case_ ( self : int ):
__lowercase : int = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
__lowercase : Optional[Any] = self.get_dummy_dataset()
retriever.save_pretrained(_snake_case )
__lowercase : str = RagRetriever.from_pretrained(_snake_case )
self.assertIsInstance(_snake_case , _snake_case )
__lowercase : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowercase : Union[str, Any] = retriever.retrieve(_snake_case , n_docs=1 )
self.assertTrue(out is not None )
def snake_case_ ( self : str ):
__lowercase : List[str] = 1
__lowercase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case )
__lowercase : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowercase , __lowercase , __lowercase : Tuple = retriever.retrieve(_snake_case , n_docs=_snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(_snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , _snake_case )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def snake_case_ ( self : Any ):
__lowercase : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(_snake_case )
__lowercase : Optional[Any] = RagRetriever.from_pretrained(_snake_case )
self.assertIsInstance(_snake_case , _snake_case )
__lowercase : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowercase : List[Any] = retriever.retrieve(_snake_case , n_docs=1 )
self.assertTrue(out is not None )
def snake_case_ ( self : List[Any] ):
__lowercase : Any = 1
__lowercase : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case )
__lowercase : Any = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowercase , __lowercase , __lowercase : Union[str, Any] = retriever.retrieve(_snake_case , n_docs=_snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(_snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , _snake_case )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def snake_case_ ( self : Any ):
__lowercase : str = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(_snake_case )
__lowercase : Optional[int] = RagRetriever.from_pretrained(_snake_case )
self.assertIsInstance(_snake_case , _snake_case )
__lowercase : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowercase : Tuple = retriever.retrieve(_snake_case , n_docs=1 )
self.assertTrue(out is not None )
def snake_case_ ( self : Tuple ):
__lowercase : Optional[int] = 1
__lowercase : str = self.get_dummy_legacy_index_retriever()
__lowercase : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowercase , __lowercase , __lowercase : Tuple = retriever.retrieve(_snake_case , n_docs=_snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(_snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''text'''] ) , _snake_case )
self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def snake_case_ ( self : Union[str, Any] ):
__lowercase : Tuple = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(_snake_case )
__lowercase : Tuple = RagRetriever.from_pretrained(_snake_case )
self.assertIsInstance(_snake_case , _snake_case )
__lowercase : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowercase : Tuple = retriever.retrieve(_snake_case , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def snake_case_ ( self : Optional[Any] ):
import torch
__lowercase : Tuple = 1
__lowercase : Any = self.get_dummy_canonical_hf_index_retriever()
__lowercase : str = [[5, 7], [10, 11]]
__lowercase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowercase : Any = retriever(_snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case )
__lowercase , __lowercase , __lowercase : Tuple = (
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(_snake_case , _snake_case )
self.assertIsInstance(_snake_case , _snake_case )
self.assertIsInstance(_snake_case , np.ndarray )
__lowercase : Optional[Any] = retriever(
_snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case , return_tensors='''pt''' , )
__lowercase , __lowercase , __lowercase , __lowercase : Optional[Any] = ( # noqa: F841
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
out['''doc_ids'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(_snake_case , torch.Tensor )
self.assertIsInstance(_snake_case , torch.Tensor )
self.assertIsInstance(_snake_case , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def snake_case_ ( self : List[Any] ):
__lowercase : Tuple = self.get_dpr_ctx_encoder_tokenizer()
__lowercase : str = 1
__lowercase : int = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case )
retriever.set_ctx_encoder_tokenizer(_snake_case )
__lowercase : Tuple = [[5, 7], [10, 11]]
__lowercase : int = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowercase : Any = retriever(_snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case )
self.assertEqual(
len(_snake_case ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , _snake_case ) # check for doc token related keys in dictionary.
| 284 | 1 |
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model")
__UpperCamelCase : Tuple = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
__UpperCamelCase : Tuple = """pt""" if is_torch_available() else """tf"""
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( a_ , unittest.TestCase ):
UpperCamelCase__ = CamembertTokenizer
UpperCamelCase__ = CamembertTokenizerFast
UpperCamelCase__ = True
UpperCamelCase__ = True
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
a = CamembertTokenizer(UpperCamelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = """<pad>"""
a = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(UpperCamelCase_ ) , 1004 )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1005 )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = CamembertTokenizer(UpperCamelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
a = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
a = """I was born in 92000, and this is falsé."""
a = tokenizer.encode(UpperCamelCase_ )
a = rust_tokenizer.encode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
a = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
a = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
a = tokenizer.convert_ids_to_tokens(UpperCamelCase_ )
a = rust_tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
a = self.get_tokenizer()
a = self.get_rust_tokenizer()
a = """I was born in 92000, and this is falsé."""
a = tokenizer.tokenize(UpperCamelCase_ )
a = rust_tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
a = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
a = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
a = self.get_rust_tokenizer()
a = tokenizer.encode(UpperCamelCase_ )
a = rust_tokenizer.encode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
a = [
"""Le transformeur est un modèle d\'apprentissage profond introduit en 2017, """
"""utilisé principalement dans le domaine du traitement automatique des langues (TAL).""",
"""À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """
"""pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """
"""telles que la traduction et la synthèse de texte.""",
]
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase_ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCamelCase_ , )
| 468 |
"""simple docstring"""
from maths.prime_check import is_prime
def A ( __snake_case: int ) -> int:
"""simple docstring"""
if not isinstance(__snake_case , __snake_case ):
__magic_name__ = F"""Input value of [number={number}] must be an integer"""
raise TypeError(__snake_case )
if is_prime(__snake_case ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 545 | 0 |
'''simple docstring'''
from __future__ import annotations
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : List[Any] , UpperCamelCase__ : Dict = 0):
'''simple docstring'''
snake_case__ = key
def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int]):
'''simple docstring'''
assert isinstance(A__ , A__) and isinstance(A__ , A__)
snake_case__ = key or self.__key or 1
# make sure key is an appropriate size
key %= 2_5_5
return [chr(ord(A__) ^ key) for ch in content]
def __magic_name__ ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]):
'''simple docstring'''
assert isinstance(A__ , A__) and isinstance(A__ , A__)
snake_case__ = key or self.__key or 1
# make sure key is an appropriate size
key %= 2_5_5
return [chr(ord(A__) ^ key) for ch in content]
def __magic_name__ ( self : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] = 0):
'''simple docstring'''
assert isinstance(A__ , A__) and isinstance(A__ , A__)
snake_case__ = key or self.__key or 1
# make sure key can be any size
while key > 2_5_5:
key -= 2_5_5
# This will be returned
snake_case__ = """"""
for ch in content:
ans += chr(ord(A__) ^ key)
return ans
def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str = 0):
'''simple docstring'''
assert isinstance(A__ , A__) and isinstance(A__ , A__)
snake_case__ = key or self.__key or 1
# make sure key can be any size
while key > 2_5_5:
key -= 2_5_5
# This will be returned
snake_case__ = """"""
for ch in content:
ans += chr(ord(A__) ^ key)
return ans
def __magic_name__ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Any = 0):
'''simple docstring'''
assert isinstance(A__ , A__) and isinstance(A__ , A__)
try:
with open(A__) as fin, open("""encrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(A__ , A__))
except OSError:
return False
return True
def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict):
'''simple docstring'''
assert isinstance(A__ , A__) and isinstance(A__ , A__)
try:
with open(A__) as fin, open("""decrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(A__ , A__))
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 720 |
import random
from typing import Any
def _UpperCAmelCase ( a : list ):
for _ in range(len(a ) ):
snake_case__ = random.randint(0 , len(a ) - 1 )
snake_case__ = random.randint(0 , len(a ) - 1 )
snake_case__ , snake_case__ = data[b], data[a]
return data
if __name__ == "__main__":
a__ = [0, 1, 2, 3, 4, 5, 6, 7]
a__ = ["""python""", """says""", """hello""", """!"""]
print("""Fisher-Yates Shuffle:""")
print("""List""", integers, strings)
print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 99 | 0 |
'''simple docstring'''
from pathlib import Path
import cva
import numpy as np
from matplotlib import pyplot as plt
def UpperCamelCase ( a , a , a , a , a ) -> np.ndarray:
'''simple docstring'''
__magic_name__ = cva.getAffineTransform(a , a )
return cva.warpAffine(a , a , (rows, cols) )
if __name__ == "__main__":
# read original image
_lowerCAmelCase = cva.imread(
str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg")
)
# turn image in gray scale value
_lowerCAmelCase = cva.cvtColor(image, cva.COLOR_BGR2GRAY)
# get image shape
_lowerCAmelCase , _lowerCAmelCase = gray_img.shape
# set different points to rotate image
_lowerCAmelCase = np.array([[50, 50], [200, 50], [50, 200]], np.floataa)
_lowerCAmelCase = np.array([[10, 100], [200, 50], [100, 250]], np.floataa)
_lowerCAmelCase = np.array([[50, 50], [150, 50], [120, 200]], np.floataa)
_lowerCAmelCase = np.array([[10, 100], [80, 50], [180, 250]], np.floataa)
# add all rotated images in a list
_lowerCAmelCase = [
gray_img,
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
]
# plot different image rotations
_lowerCAmelCase = plt.figure(1)
_lowerCAmelCase = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"]
for i, image in enumerate(images):
plt.subplot(2, 2, i + 1), plt.imshow(image, "gray")
plt.title(titles[i])
plt.axis("off")
plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95)
plt.show()
| 432 |
'''simple docstring'''
import numpy as np
import torch
from imwatermark import WatermarkEncoder
# Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66
_lowerCAmelCase = 0B10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
_lowerCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
class _SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] ):
__magic_name__ = WATERMARK_BITS
__magic_name__ = WatermarkEncoder()
self.encoder.set_watermark('''bits''' , self.watermark )
def snake_case__ ( self : Optional[Any] , a__ : torch.FloatTensor ):
# can't encode images that are smaller than 256
if images.shape[-1] < 256:
return images
__magic_name__ = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__magic_name__ = [self.encoder.encode(a__ , '''dwtDct''' ) for image in images]
__magic_name__ = torch.from_numpy(np.array(a__ ) ).permute(0 , 3 , 1 , 2 )
__magic_name__ = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 )
return images
| 432 | 1 |
from ..utils import DummyObject, requires_backends
class __lowercase ( metaclass=__lowerCAmelCase ):
'''simple docstring'''
a : Dict = ["torch", "transformers", "onnx"]
def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict:
'''simple docstring'''
requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[Any]:
'''simple docstring'''
requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> str:
'''simple docstring'''
requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
class __lowercase ( metaclass=__lowerCAmelCase ):
'''simple docstring'''
a : Optional[Any] = ["torch", "transformers", "onnx"]
def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[Any]:
'''simple docstring'''
requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple:
'''simple docstring'''
requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
class __lowercase ( metaclass=__lowerCAmelCase ):
'''simple docstring'''
a : Union[str, Any] = ["torch", "transformers", "onnx"]
def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> int:
'''simple docstring'''
requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]:
'''simple docstring'''
requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]:
'''simple docstring'''
requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
class __lowercase ( metaclass=__lowerCAmelCase ):
'''simple docstring'''
a : Any = ["torch", "transformers", "onnx"]
def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> str:
'''simple docstring'''
requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
class __lowercase ( metaclass=__lowerCAmelCase ):
'''simple docstring'''
a : Optional[Any] = ["torch", "transformers", "onnx"]
def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Any:
'''simple docstring'''
requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> str:
'''simple docstring'''
requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple:
'''simple docstring'''
requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
class __lowercase ( metaclass=__lowerCAmelCase ):
'''simple docstring'''
a : Optional[int] = ["torch", "transformers", "onnx"]
def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]:
'''simple docstring'''
requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> int:
'''simple docstring'''
requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
| 715 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class __lowercase ( lowerCAmelCase__ ):
'''simple docstring'''
def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None:
'''simple docstring'''
warnings.warn(
'''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,)
super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
| 56 | 0 |
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _UpperCamelCase :
"""simple docstring"""
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=2 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=36 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=6 , lowerCAmelCase__=6 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , lowerCAmelCase__=10_00 , ) -> str:
'''simple docstring'''
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = patch_size
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
__lowercase = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__lowercase = text_seq_length
__lowercase = (image_size // patch_size) ** 2 + 1
__lowercase = self.text_seq_length + self.image_seq_length
def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
'''simple docstring'''
__lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__lowercase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__lowercase = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__lowercase = bbox[i, j, 3]
__lowercase = bbox[i, j, 1]
__lowercase = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__lowercase = bbox[i, j, 2]
__lowercase = bbox[i, j, 0]
__lowercase = tmp_coordinate
__lowercase = tf.constant(lowerCAmelCase__ )
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.text_seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__lowercase = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]:
'''simple docstring'''
__lowercase = TFLayoutLMvaModel(config=lowerCAmelCase__ )
# text + image
__lowercase = model(lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , training=lowerCAmelCase__ )
__lowercase = model(
lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , training=lowerCAmelCase__ , )
__lowercase = model(lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , training=lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__lowercase = model(lowerCAmelCase__ , training=lowerCAmelCase__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__lowercase = model({'''pixel_values''': pixel_values} , training=lowerCAmelCase__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
'''simple docstring'''
__lowercase = self.num_labels
__lowercase = TFLayoutLMvaForSequenceClassification(config=lowerCAmelCase__ )
__lowercase = model(
lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
'''simple docstring'''
__lowercase = self.num_labels
__lowercase = TFLayoutLMvaForTokenClassification(config=lowerCAmelCase__ )
__lowercase = model(
lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
'''simple docstring'''
__lowercase = 2
__lowercase = TFLayoutLMvaForQuestionAnswering(config=lowerCAmelCase__ )
__lowercase = model(
lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , training=lowerCAmelCase__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _SCREAMING_SNAKE_CASE ( self ) -> List[str]:
'''simple docstring'''
__lowercase = self.prepare_config_and_inputs()
((__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase)) = config_and_inputs
__lowercase = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''pixel_values''': pixel_values,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_tf
class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ):
"""simple docstring"""
__a : Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
__a : List[str] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
__a : List[Any] = False
__a : List[str] = False
__a : str = False
def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
'''simple docstring'''
return True
def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> dict:
'''simple docstring'''
__lowercase = copy.deepcopy(lowerCAmelCase__ )
if model_class in get_values(lowerCAmelCase__ ):
__lowercase = {
k: tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(lowerCAmelCase__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(lowerCAmelCase__ ):
__lowercase = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(lowerCAmelCase__ ):
__lowercase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__lowercase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(lowerCAmelCase__ ):
__lowercase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(lowerCAmelCase__ ):
__lowercase = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def _SCREAMING_SNAKE_CASE ( self ) -> Tuple:
'''simple docstring'''
__lowercase = TFLayoutLMvaModelTester(self )
__lowercase = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 )
def _SCREAMING_SNAKE_CASE ( self ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
'''simple docstring'''
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(lowerCAmelCase__ )
if getattr(lowerCAmelCase__ , '''hf_compute_loss''' , lowerCAmelCase__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__lowercase = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ )
__lowercase = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCAmelCase__ )[0]
]
__lowercase = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__lowercase = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ )
__lowercase = prepared_for_class.pop('''input_ids''' )
__lowercase = model(lowerCAmelCase__ , **lowerCAmelCase__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__lowercase = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ )
__lowercase = prepared_for_class.pop('''input_ids''' )
if "labels" in prepared_for_class:
__lowercase = prepared_for_class['''labels'''].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__lowercase = -1_00
__lowercase = tf.convert_to_tensor(lowerCAmelCase__ )
__lowercase = model(lowerCAmelCase__ , **lowerCAmelCase__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__lowercase = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ )
__lowercase = model(lowerCAmelCase__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__lowercase = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ )
# Get keys that were added with the _prepare_for_class function
__lowercase = prepared_for_class.keys() - inputs_dict.keys()
__lowercase = inspect.signature(model.call ).parameters
__lowercase = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__lowercase = {0: '''input_ids'''}
for label_key in label_keys:
__lowercase = signature_names.index(lowerCAmelCase__ )
__lowercase = label_key
__lowercase = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__lowercase = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__lowercase = prepared_for_class[value]
__lowercase = tuple(lowerCAmelCase__ )
# Send to model
__lowercase = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def _SCREAMING_SNAKE_CASE ( self ) -> Any:
'''simple docstring'''
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _SCREAMING_SNAKE_CASE ( self ) -> Any:
'''simple docstring'''
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowercase = type
self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _SCREAMING_SNAKE_CASE ( self ) -> List[str]:
'''simple docstring'''
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _SCREAMING_SNAKE_CASE ( self ) -> int:
'''simple docstring'''
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _SCREAMING_SNAKE_CASE ( self ) -> Any:
'''simple docstring'''
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
'''simple docstring'''
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFLayoutLMvaModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def UpperCAmelCase ( ):
"""simple docstring"""
__lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
class _UpperCamelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase__ ) if is_vision_available() else None
@slow
def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
'''simple docstring'''
__lowercase = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=lowerCAmelCase__ , return_tensors='''tf''' ).pixel_values
__lowercase = tf.constant([[1, 2]] )
__lowercase = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__lowercase = model(input_ids=lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , training=lowerCAmelCase__ )
# verify the logits
__lowercase = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__ )
__lowercase = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
| 534 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__a : Union[str, Any] = 1_6
__a : int = 3_2
def UpperCAmelCase ( lowercase , lowercase = 16 ):
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained('''bert-base-cased''' )
__lowercase = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(lowercase ):
# max_length=None => use the model max length (it's actually the default)
__lowercase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase , max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__lowercase = datasets.map(
lowercase , batched=lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowercase = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(lowercase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__lowercase = 16
elif accelerator.mixed_precision != "no":
__lowercase = 8
else:
__lowercase = None
return tokenizer.pad(
lowercase , padding='''longest''' , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors='''pt''' , )
# Instantiate dataloaders.
__lowercase = DataLoader(
tokenized_datasets['''train'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase )
__lowercase = DataLoader(
tokenized_datasets['''validation'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
__a : List[Any] = mocked_dataloaders # noqa: F811
def UpperCAmelCase ( lowercase , lowercase ):
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowercase ) == "1":
__lowercase = 2
# Initialize accelerator
__lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowercase = config['''lr''']
__lowercase = int(config['''num_epochs'''] )
__lowercase = int(config['''seed'''] )
__lowercase = int(config['''batch_size'''] )
__lowercase = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
__lowercase = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
__lowercase = batch_size // MAX_GPU_BATCH_SIZE
__lowercase = MAX_GPU_BATCH_SIZE
set_seed(lowercase )
__lowercase , __lowercase = get_dataloaders(lowercase , lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowercase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__lowercase = model.to(accelerator.device )
# Instantiate optimizer
__lowercase = AdamW(params=model.parameters() , lr=lowercase )
# Instantiate scheduler
__lowercase = get_linear_schedule_with_warmup(
optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(
lowercase , lowercase , lowercase , lowercase , lowercase )
# Now we train the model
for epoch in range(lowercase ):
model.train()
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__lowercase = model(**lowercase )
__lowercase = outputs.loss
__lowercase = loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
__lowercase = 0
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__lowercase = model(**lowercase )
__lowercase = outputs.logits.argmax(dim=-1 )
__lowercase , __lowercase = accelerator.gather((predictions, batch['''labels''']) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(lowercase ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
__lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__lowercase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=lowercase , references=lowercase , )
__lowercase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}:" , lowercase )
def UpperCAmelCase ( ):
"""simple docstring"""
__lowercase = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=lowercase , default=lowercase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
__lowercase = parser.parse_args()
__lowercase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(lowercase , lowercase )
if __name__ == "__main__":
main()
| 534 | 1 |
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def _A ( lowerCamelCase ):
a__ : Tuple = []
for line in lines:
a__ : Any = re.sub(r"#.*" , "" , lowerCamelCase ) # remove comments
if line:
filtered_lines.append(lowerCamelCase )
a__ : Optional[Any] = "\n".join(lowerCamelCase )
# Make a hash from all this code
a__ : Union[str, Any] = full_str.encode("utf-8" )
return shaaaa(lowerCamelCase ).hexdigest()
# get importable module names and hash for caching
SCREAMING_SNAKE_CASE__ : Dict = {
"""csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
"""json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
"""pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
"""parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
"""arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
"""text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
"""imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
"""audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
SCREAMING_SNAKE_CASE__ : Any = {
""".csv""": ("""csv""", {}),
""".tsv""": ("""csv""", {"""sep""": """\t"""}),
""".json""": ("""json""", {}),
""".jsonl""": ("""json""", {}),
""".parquet""": ("""parquet""", {}),
""".arrow""": ("""arrow""", {}),
""".txt""": ("""text""", {}),
}
_EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""imagefolder""", """audiofolder"""}
# Used to filter data files based on extensions given a module name
SCREAMING_SNAKE_CASE__ : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""")
_MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
| 629 |
import argparse
import hashlib
import os
import urllib
import warnings
import torch
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration
SCREAMING_SNAKE_CASE__ : List[str] = {
"""tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""",
"""tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""",
"""base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""",
"""base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""",
"""small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""",
"""small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""",
"""medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""",
"""medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""",
"""large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""",
"""large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""",
}
def _A ( lowerCamelCase ):
a__ : Optional[int] = ["layers", "blocks"]
for k in ignore_keys:
state_dict.pop(lowerCamelCase , lowerCamelCase )
SCREAMING_SNAKE_CASE__ : List[str] = {
"""blocks""": """layers""",
"""mlp.0""": """fc1""",
"""mlp.2""": """fc2""",
"""mlp_ln""": """final_layer_norm""",
""".attn.query""": """.self_attn.q_proj""",
""".attn.key""": """.self_attn.k_proj""",
""".attn.value""": """.self_attn.v_proj""",
""".attn_ln""": """.self_attn_layer_norm""",
""".attn.out""": """.self_attn.out_proj""",
""".cross_attn.query""": """.encoder_attn.q_proj""",
""".cross_attn.key""": """.encoder_attn.k_proj""",
""".cross_attn.value""": """.encoder_attn.v_proj""",
""".cross_attn_ln""": """.encoder_attn_layer_norm""",
""".cross_attn.out""": """.encoder_attn.out_proj""",
"""decoder.ln.""": """decoder.layer_norm.""",
"""encoder.ln.""": """encoder.layer_norm.""",
"""token_embedding""": """embed_tokens""",
"""encoder.positional_embedding""": """encoder.embed_positions.weight""",
"""decoder.positional_embedding""": """decoder.embed_positions.weight""",
"""ln_post""": """layer_norm""",
}
def _A ( lowerCamelCase ):
a__ : Tuple = list(s_dict.keys() )
for key in keys:
a__ : Optional[Any] = key
for k, v in WHISPER_MAPPING.items():
if k in key:
a__ : Optional[int] = new_key.replace(lowerCamelCase , lowerCamelCase )
print(F"""{key} -> {new_key}""" )
a__ : Dict = s_dict.pop(lowerCamelCase )
return s_dict
def _A ( lowerCamelCase ):
a__ , a__ : Any = emb.weight.shape
a__ : Optional[Any] = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase )
a__ : Optional[Any] = emb.weight.data
return lin_layer
def _A ( lowerCamelCase , lowerCamelCase ):
os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase )
a__ : Optional[Any] = os.path.basename(lowerCamelCase )
a__ : List[Any] = url.split("/" )[-2]
a__ : Tuple = os.path.join(lowerCamelCase , lowerCamelCase )
if os.path.exists(lowerCamelCase ) and not os.path.isfile(lowerCamelCase ):
raise RuntimeError(F"""{download_target} exists and is not a regular file""" )
if os.path.isfile(lowerCamelCase ):
a__ : Any = open(lowerCamelCase , "rb" ).read()
if hashlib.shaaaa(lowerCamelCase ).hexdigest() == expected_shaaaa:
return model_bytes
else:
warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" )
with urllib.request.urlopen(lowerCamelCase ) as source, open(lowerCamelCase , "wb" ) as output:
with tqdm(
total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=lowerCamelCase , unit_divisor=1024 ) as loop:
while True:
a__ : Optional[Any] = source.read(8192 )
if not buffer:
break
output.write(lowerCamelCase )
loop.update(len(lowerCamelCase ) )
a__ : Optional[int] = open(lowerCamelCase , "rb" ).read()
if hashlib.shaaaa(lowerCamelCase ).hexdigest() != expected_shaaaa:
raise RuntimeError(
"Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." )
return model_bytes
def _A ( lowerCamelCase , lowerCamelCase ):
if ".pt" not in checkpoint_path:
a__ : str = _download(_MODELS[checkpoint_path] )
else:
a__ : str = torch.load(lowerCamelCase , map_location="cpu" )
a__ : Dict = original_checkpoint["dims"]
a__ : Optional[int] = original_checkpoint["model_state_dict"]
a__ : Any = state_dict["decoder.token_embedding.weight"]
remove_ignore_keys_(lowerCamelCase )
rename_keys(lowerCamelCase )
a__ : Optional[Any] = True
a__ : Optional[Any] = state_dict["decoder.layers.0.fc1.weight"].shape[0]
a__ : Tuple = WhisperConfig(
vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=lowerCamelCase , decoder_ffn_dim=lowerCamelCase , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , )
a__ : Optional[Any] = WhisperForConditionalGeneration(lowerCamelCase )
a__ , a__ : Tuple = model.model.load_state_dict(lowerCamelCase , strict=lowerCamelCase )
if len(lowerCamelCase ) > 0 and not set(lowerCamelCase ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"
F""" but all the following weights are missing {missing}""" )
if tie_embeds:
a__ : Any = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
a__ : str = proj_out_weights
model.save_pretrained(lowerCamelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser()
# # Required parameters
parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""")
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args()
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
| 629 | 1 |
def lowerCamelCase ( UpperCamelCase : int = 10_00 ) -> int:
_lowerCamelCase = 2**power
_lowerCamelCase = 0
while n:
_lowerCamelCase , _lowerCamelCase = r + n % 10, n // 10
return r
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 544 |
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __lt__( self : List[Any] , snake_case__ : int ) -> Any:
return self[-1] < other[-1]
def __eq__( self : Tuple , snake_case__ : Union[str, Any] ) -> Union[str, Any]:
return self[-1] == other[-1]
def lowerCamelCase ( UpperCamelCase : list ) -> list:
_lowerCamelCase = []
# sort into stacks
for element in collection:
_lowerCamelCase = Stack([element] )
_lowerCamelCase = bisect_left(UpperCamelCase , UpperCamelCase )
if i != len(UpperCamelCase ):
stacks[i].append(UpperCamelCase )
else:
stacks.append(UpperCamelCase )
# use a heap-based merge to merge stack efficiently
_lowerCamelCase = merge(*(reversed(UpperCamelCase ) for stack in stacks) )
return collection
if __name__ == "__main__":
A = input('Enter numbers separated by a comma:\n').strip()
A = [int(item) for item in user_input.split(',')]
print(patience_sort(unsorted))
| 544 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCAmelCase : str = {
"configuration_clap": [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapAudioConfig",
"ClapConfig",
"ClapTextConfig",
],
"processing_clap": ["ClapProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : int = [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapModel",
"ClapPreTrainedModel",
"ClapTextModel",
"ClapTextModelWithProjection",
"ClapAudioModel",
"ClapAudioModelWithProjection",
]
__lowerCAmelCase : Tuple = ["ClapFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
__lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 674 |
"""simple docstring"""
from __future__ import annotations
from math import gcd
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ):
"""simple docstring"""
if num < 2:
raise ValueError("""The input value cannot be less than 2""" )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
return (pow(lowerCamelCase__ , 2 ) + step) % modulus
for _ in range(lowerCamelCase__ ):
# These track the position within the cycle detection logic.
lowerCAmelCase__ = seed
lowerCAmelCase__ = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
lowerCAmelCase__ = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"num",
type=int,
help="The value to find a divisor of",
)
parser.add_argument(
"--attempts",
type=int,
default=3,
help="The number of attempts before giving up",
)
__lowerCAmelCase : List[str] = parser.parse_args()
__lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(F"{args.num} is probably prime")
else:
__lowerCAmelCase : List[str] = args.num // divisor
print(F"{args.num} = {divisor} * {quotient}")
| 674 | 1 |
import math
from collections.abc import Callable
def a_ ( UpperCamelCase_ : Callable[[float], float] , UpperCamelCase_ : float , UpperCamelCase_ : float ) -> int:
"""simple docstring"""
lowerCamelCase = xa
lowerCamelCase = xa
while True:
if x_n == x_na or function(A__ ) == function(A__ ):
raise ZeroDivisionError('float division by zero, could not find root' )
lowerCamelCase = x_na - (
function(A__ ) / ((function(A__ ) - function(A__ )) / (x_na - x_n))
)
if abs(x_na - x_na ) < 1_0**-5:
return x_na
lowerCamelCase = x_na
lowerCamelCase = x_na
def a_ ( UpperCamelCase_ : float ) -> Tuple:
"""simple docstring"""
return math.pow(A__ , 3 ) - (2 * x) - 5
if __name__ == "__main__":
print(intersection(f, 3, 3.5))
| 246 |
from typing import Any
import numpy as np
def __a ( A__ : np.ndarray ):
return np.array_equal(A__ , matrix.conjugate().T )
def __a ( A__ : np.ndarray , A__ : np.ndarray ):
SCREAMING_SNAKE_CASE = v.conjugate().T
SCREAMING_SNAKE_CASE = v_star.dot(A__ )
assert isinstance(A__ , np.ndarray )
return (v_star_dot.dot(A__ )) / (v_star.dot(A__ ))
def __a ( ):
SCREAMING_SNAKE_CASE = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] )
SCREAMING_SNAKE_CASE = np.array([[1], [2], [3]] )
assert is_hermitian(A__ ), F"{a} is not hermitian."
print(rayleigh_quotient(A__ , A__ ) )
SCREAMING_SNAKE_CASE = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(A__ ), F"{a} is not hermitian."
assert rayleigh_quotient(A__ , A__ ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 16 | 0 |
def lowerCamelCase_ ( lowerCAmelCase: int = 50_00_00_00 )-> int:
_snake_case : Dict = set()
_snake_case : Dict = int((limit - 24) ** (1 / 2) )
_snake_case : List[Any] = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowerCAmelCase ) ) )
for primea in primes:
_snake_case : Optional[Any] = primea * primea
for primea in primes:
_snake_case : str = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
_snake_case : List[Any] = primea * primea * primea * primea
_snake_case : Dict = square + cube + tetr
if total >= limit:
break
ret.add(lowerCAmelCase )
return len(lowerCAmelCase )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 714 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"""MIT/ast-finetuned-audioset-10-10-0.4593""": (
"""https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"""
),
}
class _lowerCAmelCase ( UpperCAmelCase_ ):
'''simple docstring'''
a_ : Tuple ="""audio-spectrogram-transformer"""
def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
_snake_case : Tuple = hidden_size
_snake_case : str = num_hidden_layers
_snake_case : Optional[Any] = num_attention_heads
_snake_case : Optional[Any] = intermediate_size
_snake_case : Optional[Any] = hidden_act
_snake_case : List[str] = hidden_dropout_prob
_snake_case : Union[str, Any] = attention_probs_dropout_prob
_snake_case : Any = initializer_range
_snake_case : List[str] = layer_norm_eps
_snake_case : int = patch_size
_snake_case : List[str] = qkv_bias
_snake_case : int = frequency_stride
_snake_case : List[Any] = time_stride
_snake_case : List[Any] = max_length
_snake_case : List[str] = num_mel_bins
| 669 | 0 |
import string
def lowerCAmelCase_ ( __lowerCamelCase ):
for key in range(len(string.ascii_uppercase ) ):
__snake_case : Optional[int] = ""
for symbol in message:
if symbol in string.ascii_uppercase:
__snake_case : Dict = string.ascii_uppercase.find(__lowerCamelCase )
__snake_case : Any = num - key
if num < 0:
__snake_case : Optional[Any] = num + len(string.ascii_uppercase )
__snake_case : List[Any] = translated + string.ascii_uppercase[num]
else:
__snake_case : Dict = translated + symbol
print(F'Decryption using Key #{key}: {translated}' )
def lowerCAmelCase_ ( ):
__snake_case : Tuple = input("Encrypted message: " )
__snake_case : int = message.upper()
decrypt(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 81 |
"""simple docstring"""
def lowerCAmelCase__ ( __magic_name__ = 1_0 ) ->str:
if not isinstance(__magic_name__ , __magic_name__ ) or n < 0:
raise ValueError("Invalid input" )
__lowercase = 1_0**n
__lowercase = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , __magic_name__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F"{solution(10) = }")
| 118 | 0 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize("""repo_id""" ,["""canonical_dataset_name""", """org-name/dataset-name"""] )
@pytest.mark.parametrize("""path""" ,["""filename.csv""", """filename with blanks.csv"""] )
@pytest.mark.parametrize("""revision""" ,[None, """v2"""] )
def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
'''simple docstring'''
A_ : Union[str, Any] = hf_hub_url(repo_id=_lowerCAmelCase ,path=_lowerCAmelCase ,revision=_lowerCAmelCase )
assert url == f"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(_lowerCAmelCase )}"""
| 481 |
def _lowerCAmelCase ( _lowerCAmelCase ):
'''simple docstring'''
A_ : Union[str, Any] = [0] * len(_lowerCAmelCase )
A_ : Optional[int] = []
A_ : str = []
A_ : Dict = 0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_lowerCAmelCase ) ):
if indegree[i] == 0:
queue.append(_lowerCAmelCase )
while queue:
A_ : List[str] = queue.pop(0 )
cnt += 1
topo.append(_lowerCAmelCase )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(_lowerCAmelCase )
if cnt != len(_lowerCAmelCase ):
print("""Cycle exists""" )
else:
print(_lowerCAmelCase )
# Adjacency List of Graph
_lowerCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 481 | 1 |
import math
def UpperCAmelCase__ ( lowerCamelCase_ : list , lowerCamelCase_ : int = 0 , lowerCamelCase_ : int = 0 ):
__a : List[str] = end or len(lowerCamelCase_ )
for i in range(lowerCamelCase_ , lowerCamelCase_ ):
__a : str = i
__a : int = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__a : Dict = array[temp_index - 1]
temp_index -= 1
__a : List[Any] = temp_index_value
return array
def UpperCAmelCase__ ( lowerCamelCase_ : list , lowerCamelCase_ : int , lowerCamelCase_ : int ): # Max Heap
__a : Optional[int] = index
__a : int = 2 * index + 1 # Left Node
__a : str = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__a : Dict = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__a : Tuple = right_index
if largest != index:
__a , __a : int = array[largest], array[index]
heapify(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def UpperCAmelCase__ ( lowerCamelCase_ : list ):
__a : Dict = len(lowerCamelCase_ )
for i in range(n // 2 , -1 , -1 ):
heapify(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
for i in range(n - 1 , 0 , -1 ):
__a , __a : Any = array[0], array[i]
heapify(lowerCamelCase_ , 0 , lowerCamelCase_ )
return array
def UpperCAmelCase__ ( lowerCamelCase_ : list , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ):
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def UpperCAmelCase__ ( lowerCamelCase_ : list , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ):
__a : int = low
__a : Tuple = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__a , __a : int = array[j], array[i]
i += 1
def UpperCAmelCase__ ( lowerCamelCase_ : list ):
if len(lowerCamelCase_ ) == 0:
return array
__a : List[str] = 2 * math.ceil(math.loga(len(lowerCamelCase_ ) ) )
__a : List[Any] = 1_6
return intro_sort(lowerCamelCase_ , 0 , len(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ )
def UpperCAmelCase__ ( lowerCamelCase_ : list , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ):
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowerCamelCase_ )
max_depth -= 1
__a : Tuple = median_of_a(lowerCamelCase_ , lowerCamelCase_ , start + ((end - start) // 2) + 1 , end - 1 )
__a : Union[str, Any] = partition(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
intro_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
__a : Dict = p
return insertion_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ = input('''Enter numbers separated by a comma : ''').strip()
SCREAMING_SNAKE_CASE__ = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 47 |
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def _lowercase ( UpperCamelCase_ ) -> str:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = [
'encoder.version',
'decoder.version',
'model.encoder.version',
'model.decoder.version',
'_float_tensor',
'decoder.output_projection.weight',
]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _lowercase ( UpperCamelCase_ ) -> Union[str, Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = emb.weight.shape
SCREAMING_SNAKE_CASE__ = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ = emb.weight.data
return lin_layer
def _lowercase ( UpperCamelCase_ , UpperCamelCase_="facebook/mbart-large-en-ro" , UpperCamelCase_=False , UpperCamelCase_=False ) -> Tuple:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase_ , map_location='cpu' )['model']
remove_ignore_keys_(UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ = state_dict['encoder.embed_tokens.weight'].shape[0]
SCREAMING_SNAKE_CASE__ = MBartConfig.from_pretrained(UpperCamelCase_ , vocab_size=UpperCamelCase_ )
if mbart_aa and finetuned:
SCREAMING_SNAKE_CASE__ = 'relu'
SCREAMING_SNAKE_CASE__ = state_dict['decoder.embed_tokens.weight']
SCREAMING_SNAKE_CASE__ = MBartForConditionalGeneration(UpperCamelCase_ )
model.model.load_state_dict(UpperCamelCase_ )
if finetuned:
SCREAMING_SNAKE_CASE__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""",
default="""facebook/mbart-large-cc25""",
type=str,
help="""Which huggingface architecture to use: mbart-large""",
)
parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""")
parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""")
__snake_case = parser.parse_args()
__snake_case = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 472 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __lowercase ( lowerCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
a : List[str] = ShapEPipeline
a : str = ["prompt"]
a : Tuple = ["prompt"]
a : Optional[int] = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
a : int = False
@property
def _UpperCAmelCase (self ) -> Dict:
'''simple docstring'''
return 32
@property
def _UpperCAmelCase (self ) -> Optional[Any]:
'''simple docstring'''
return 32
@property
def _UpperCAmelCase (self ) -> List[str]:
'''simple docstring'''
return self.time_input_dim * 4
@property
def _UpperCAmelCase (self ) -> Optional[Any]:
'''simple docstring'''
return 8
@property
def _UpperCAmelCase (self ) -> Dict:
'''simple docstring'''
__lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def _UpperCAmelCase (self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,)
return CLIPTextModelWithProjection(_lowerCamelCase )
@property
def _UpperCAmelCase (self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
__lowercase = PriorTransformer(**_lowerCamelCase )
return model
@property
def _UpperCAmelCase (self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
__lowercase = ShapERenderer(**_lowerCamelCase )
return model
def _UpperCAmelCase (self ) -> Optional[Any]:
'''simple docstring'''
__lowercase = self.dummy_prior
__lowercase = self.dummy_text_encoder
__lowercase = self.dummy_tokenizer
__lowercase = self.dummy_renderer
__lowercase = HeunDiscreteScheduler(
beta_schedule='''exp''' ,num_train_timesteps=1024 ,prediction_type='''sample''' ,use_karras_sigmas=_lowerCamelCase ,clip_sample=_lowerCamelCase ,clip_sample_range=1.0 ,)
__lowercase = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=0 ) -> Union[str, Any]:
'''simple docstring'''
if str(_lowerCamelCase ).startswith('''mps''' ):
__lowercase = torch.manual_seed(_lowerCamelCase )
else:
__lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
__lowercase = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def _UpperCAmelCase (self ) -> Dict:
'''simple docstring'''
__lowercase = '''cpu'''
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**_lowerCamelCase )
__lowercase = pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
__lowercase = pipe(**self.get_dummy_inputs(_lowerCamelCase ) )
__lowercase = output.images[0]
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__lowercase = np.array(
[
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _UpperCAmelCase (self ) -> str:
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def _UpperCAmelCase (self ) -> Optional[int]:
'''simple docstring'''
__lowercase = torch_device == '''cpu'''
__lowercase = True
self._test_inference_batch_single_identical(
batch_size=2 ,test_max_difference=_lowerCamelCase ,relax_max_difference=_lowerCamelCase ,)
def _UpperCAmelCase (self ) -> int:
'''simple docstring'''
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**_lowerCamelCase )
__lowercase = pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
__lowercase = 1
__lowercase = 2
__lowercase = self.get_dummy_inputs(_lowerCamelCase )
for key in inputs.keys():
if key in self.batch_params:
__lowercase = batch_size * [inputs[key]]
__lowercase = pipe(**_lowerCamelCase ,num_images_per_prompt=_lowerCamelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase (self ) -> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase (self ) -> str:
'''simple docstring'''
__lowercase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
__lowercase = ShapEPipeline.from_pretrained('''openai/shap-e''' )
__lowercase = pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
__lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 )
__lowercase = pipe(
'''a shark''' ,generator=_lowerCamelCase ,guidance_scale=1_5.0 ,num_inference_steps=64 ,frame_size=64 ,output_type='''np''' ,).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(_lowerCamelCase ,_lowerCamelCase )
| 56 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
'''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''VanForImageClassification''',
'''VanModel''',
'''VanPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_van import (
VAN_PRETRAINED_MODEL_ARCHIVE_LIST,
VanForImageClassification,
VanModel,
VanPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 56 | 1 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Union[Dict, Any]] = None , _UpperCamelCase : Dict=True , _UpperCamelCase : List[str]=2 ) -> List[str]:
'''simple docstring'''
from .. import __version__
SCREAMING_SNAKE_CASE = take_from
SCREAMING_SNAKE_CASE = ()
if not isinstance(args[0] , _UpperCamelCase ):
SCREAMING_SNAKE_CASE = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(_UpperCamelCase ).base_version ) >= version.parse(_UpperCamelCase ):
raise ValueError(
f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"""
f""" version {__version__} is >= {version_name}""" )
SCREAMING_SNAKE_CASE = None
if isinstance(_UpperCamelCase , _UpperCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(_UpperCamelCase ),)
SCREAMING_SNAKE_CASE = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}."""
elif hasattr(_UpperCamelCase , _UpperCamelCase ):
values += (getattr(_UpperCamelCase , _UpperCamelCase ),)
SCREAMING_SNAKE_CASE = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}."""
elif deprecated_kwargs is None:
SCREAMING_SNAKE_CASE = f"""`{attribute}` is deprecated and will be removed in version {version_name}."""
if warning is not None:
SCREAMING_SNAKE_CASE = warning + ' ' if standard_warn else ''
warnings.warn(warning + message , _UpperCamelCase , stacklevel=_UpperCamelCase )
if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) > 0:
SCREAMING_SNAKE_CASE = inspect.getouterframes(inspect.currentframe() )[1]
SCREAMING_SNAKE_CASE = call_frame.filename
SCREAMING_SNAKE_CASE = call_frame.lineno
SCREAMING_SNAKE_CASE = call_frame.function
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" )
if len(_UpperCamelCase ) == 0:
return
elif len(_UpperCamelCase ) == 1:
return values[0]
return values
| 439 |
import argparse
import os
import re
a_ : List[str] = "src/transformers/models/auto"
# re pattern that matches mapping introductions:
# SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict
a_ : Optional[Any] = re.compile(R"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict")
# re pattern that matches identifiers in mappings
a_ : Optional[int] = re.compile(R"\s*\(\s*\"(\S[^\"]+)\"")
def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : bool = False ) -> Optional[int]:
'''simple docstring'''
with open(_UpperCamelCase , 'r' , encoding='utf-8' ) as f:
SCREAMING_SNAKE_CASE = f.read()
SCREAMING_SNAKE_CASE = content.split('\n' )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
while line_idx < len(_UpperCamelCase ):
if _re_intro_mapping.search(lines[line_idx] ) is not None:
SCREAMING_SNAKE_CASE = len(re.search(R'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8
# Start of a new mapping!
while not lines[line_idx].startswith(' ' * indent + '(' ):
new_lines.append(lines[line_idx] )
line_idx += 1
SCREAMING_SNAKE_CASE = []
while lines[line_idx].strip() != "]":
# Blocks either fit in one line or not
if lines[line_idx].strip() == "(":
SCREAMING_SNAKE_CASE = line_idx
while not lines[line_idx].startswith(' ' * indent + ')' ):
line_idx += 1
blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) )
else:
blocks.append(lines[line_idx] )
line_idx += 1
# Sort blocks by their identifiers
SCREAMING_SNAKE_CASE = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : _re_identifier.search(_UpperCamelCase ).groups()[0] )
new_lines += blocks
else:
new_lines.append(lines[line_idx] )
line_idx += 1
if overwrite:
with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f:
f.write('\n'.join(_UpperCamelCase ) )
elif "\n".join(_UpperCamelCase ) != content:
return True
def __lowerCAmelCase ( _UpperCamelCase : bool = False ) -> Dict:
'''simple docstring'''
SCREAMING_SNAKE_CASE = [os.path.join(_UpperCamelCase , _UpperCamelCase ) for f in os.listdir(_UpperCamelCase ) if f.endswith('.py' )]
SCREAMING_SNAKE_CASE = [sort_auto_mapping(_UpperCamelCase , overwrite=_UpperCamelCase ) for fname in fnames]
if not overwrite and any(_UpperCamelCase ):
SCREAMING_SNAKE_CASE = [f for f, d in zip(_UpperCamelCase , _UpperCamelCase ) if d]
raise ValueError(
f"""The following files have auto mappings that need sorting: {', '.join(_UpperCamelCase )}. Run `make style` to fix"""
' this.' )
if __name__ == "__main__":
a_ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
a_ : List[str] = parser.parse_args()
sort_all_auto_mappings(not args.check_only)
| 439 | 1 |
class __SCREAMING_SNAKE_CASE :
def __init__( self , __lowerCAmelCase ):
UpperCamelCase__ = val
UpperCamelCase__ = None
UpperCamelCase__ = None
def _lowerCamelCase ( self , __lowerCAmelCase ):
if self.val:
if val < self.val:
if self.left is None:
UpperCamelCase__ = Node(__lowerCAmelCase )
else:
self.left.insert(__lowerCAmelCase )
elif val > self.val:
if self.right is None:
UpperCamelCase__ = Node(__lowerCAmelCase )
else:
self.right.insert(__lowerCAmelCase )
else:
UpperCamelCase__ = val
def _UpperCamelCase (a__ :Any , a__ :List[Any] ):
"""simple docstring"""
if root:
inorder(root.left , __A )
res.append(root.val )
inorder(root.right , __A )
def _UpperCamelCase (a__ :Optional[int] ):
"""simple docstring"""
if len(__A ) == 0:
return arr
UpperCamelCase__ = Node(arr[0] )
for i in range(1 , len(__A ) ):
root.insert(arr[i] )
# Traverse BST in order.
UpperCamelCase__ = []
inorder(__A , __A )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 708 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__ = "▁"
UpperCamelCase__ = {"vocab_file": "spiece.model"}
UpperCamelCase__ = {
"vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}
}
UpperCamelCase__ = {
"google/pegasus-xsum": 512,
}
UpperCamelCase__ = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( _a ):
snake_case : Union[str, Any] = VOCAB_FILES_NAMES
snake_case : str = VOCAB_FILES_NAMES
snake_case : Any = PRETRAINED_VOCAB_FILES_MAP
snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case : Optional[int] = ["""input_ids""", """attention_mask"""]
def __init__( self , __lowerCAmelCase , __lowerCAmelCase="<pad>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<mask_2>" , __lowerCAmelCase="<mask_1>" , __lowerCAmelCase=None , __lowerCAmelCase=103 , __lowerCAmelCase = None , **__lowerCAmelCase , ):
UpperCamelCase__ = offset
if additional_special_tokens is not None:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError(
f"""additional_special_tokens should be of type {type(__lowerCAmelCase )}, but is"""
f""" {type(__lowerCAmelCase )}""" )
UpperCamelCase__ = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"""<unk_{i}>""" for i in range(len(__lowerCAmelCase ) , self.offset - 1 )
]
if len(set(__lowerCAmelCase ) ) != len(__lowerCAmelCase ):
raise ValueError(
"""Please make sure that the provided additional_special_tokens do not contain an incorrectly"""
f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" )
UpperCamelCase__ = additional_special_tokens_extended
else:
UpperCamelCase__ = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )]
UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token_sent=__lowerCAmelCase , offset=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , )
UpperCamelCase__ = mask_token_sent
UpperCamelCase__ = vocab_file
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__lowerCAmelCase )
# add special tokens to encoder dict
UpperCamelCase__ = {
0: self.pad_token,
1: self.eos_token,
}
if self.mask_token_sent is not None:
self.encoder.update(
{
2: self.mask_token_sent,
3: self.mask_token,
} )
if self.offset > 0:
# entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102
# mask_token_sent is already added to list -> so start at 1
self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} )
UpperCamelCase__ = {v: k for k, v in self.encoder.items()}
@property
def _lowerCamelCase ( self ):
return len(self.sp_model ) + self.offset
def _lowerCamelCase ( self ):
UpperCamelCase__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
UpperCamelCase__ = self.__dict__.copy()
UpperCamelCase__ = None
return state
def __setstate__( self , __lowerCAmelCase ):
UpperCamelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCamelCase__ = {}
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCamelCase ( self , __lowerCAmelCase ):
return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase )
def _lowerCamelCase ( self , __lowerCAmelCase ):
if token in self.decoder:
return self.decoder[token]
elif token in self.added_tokens_decoder:
return self.added_tokens_decoder[token]
UpperCamelCase__ = self.sp_model.piece_to_id(__lowerCAmelCase )
return sp_id + self.offset
def _lowerCamelCase ( self , __lowerCAmelCase ):
if index in self.encoder:
return self.encoder[index]
elif index in self.added_tokens_encoder:
return self.added_tokens_encoder[index]
else:
UpperCamelCase__ = self.sp_model.IdToPiece(index - self.offset )
return token
def _lowerCamelCase ( self , __lowerCAmelCase ):
UpperCamelCase__ = []
UpperCamelCase__ = """"""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(__lowerCAmelCase ) + token
UpperCamelCase__ = []
else:
current_sub_tokens.append(__lowerCAmelCase )
out_string += self.sp_model.decode(__lowerCAmelCase )
return out_string.strip()
def _lowerCamelCase ( self , __lowerCAmelCase=False ):
return 1
def _lowerCamelCase ( self , __lowerCAmelCase ):
UpperCamelCase__ = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ):
if already_has_special_tokens:
return self._special_token_mask(__lowerCAmelCase )
elif token_ids_a is None:
return self._special_token_mask(__lowerCAmelCase ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None ):
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
if not os.path.isdir(__lowerCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCamelCase__ = os.path.join(
__lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__lowerCAmelCase , """wb""" ) as fi:
UpperCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(__lowerCAmelCase )
return (out_vocab_file,)
| 548 | 0 |
'''simple docstring'''
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class __snake_case ( snake_case__):
"""simple docstring"""
@staticmethod
@abstractmethod
def __lowercase ( lowerCamelCase : Dict ) -> Union[str, Any]:
raise NotImplementedError()
@abstractmethod
def __lowercase ( self : Dict ) -> List[Any]:
raise NotImplementedError()
| 275 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"""microsoft/swinv2-tiny-patch4-window8-256""": (
"""https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"""
),
}
class UpperCAmelCase__ ( snake_case__ ):
snake_case_ = '''swinv2'''
snake_case_ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , A__=224 , A__=4 , A__=3 , A__=96 , A__=[2, 2, 6, 2] , A__=[3, 6, 12, 24] , A__=7 , A__=4.0 , A__=True , A__=0.0 , A__=0.0 , A__=0.1 , A__="gelu" , A__=False , A__=0.02 , A__=1E-5 , A__=32 , **A__ , ):
"""simple docstring"""
super().__init__(**A__ )
UpperCAmelCase_: List[str] = image_size
UpperCAmelCase_: List[str] = patch_size
UpperCAmelCase_: str = num_channels
UpperCAmelCase_: Optional[int] = embed_dim
UpperCAmelCase_: str = depths
UpperCAmelCase_: Optional[Any] = len(A__ )
UpperCAmelCase_: Optional[Any] = num_heads
UpperCAmelCase_: Dict = window_size
UpperCAmelCase_: Dict = mlp_ratio
UpperCAmelCase_: Optional[Any] = qkv_bias
UpperCAmelCase_: Optional[Any] = hidden_dropout_prob
UpperCAmelCase_: Optional[int] = attention_probs_dropout_prob
UpperCAmelCase_: int = drop_path_rate
UpperCAmelCase_: Union[str, Any] = hidden_act
UpperCAmelCase_: Any = use_absolute_embeddings
UpperCAmelCase_: Optional[int] = layer_norm_eps
UpperCAmelCase_: str = initializer_range
UpperCAmelCase_: Tuple = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCAmelCase_: Union[str, Any] = int(embed_dim * 2 ** (len(A__ ) - 1) )
UpperCAmelCase_: str = (0, 0, 0, 0)
| 137 | 0 |
'''simple docstring'''
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCAmelCase = logging.get_logger(__name__)
set_seed(770)
__lowerCAmelCase = {
'c_attn': 'att_proj',
'c_proj': 'out_proj',
'c_fc': 'in_proj',
'transformer.': '',
'h.': 'layers.',
'ln_1': 'layernorm_1',
'ln_2': 'layernorm_2',
'ln_f': 'layernorm_final',
'wpe': 'position_embeds_layer',
'wte': 'input_embeds_layer',
}
__lowerCAmelCase = {
'text_small': {
'repo_id': 'suno/bark',
'file_name': 'text.pt',
},
'coarse_small': {
'repo_id': 'suno/bark',
'file_name': 'coarse.pt',
},
'fine_small': {
'repo_id': 'suno/bark',
'file_name': 'fine.pt',
},
'text': {
'repo_id': 'suno/bark',
'file_name': 'text_2.pt',
},
'coarse': {
'repo_id': 'suno/bark',
'file_name': 'coarse_2.pt',
},
'fine': {
'repo_id': 'suno/bark',
'file_name': 'fine_2.pt',
},
}
__lowerCAmelCase = os.path.dirname(os.path.abspath(__file__))
__lowerCAmelCase = os.path.join(os.path.expanduser('~'), '.cache')
__lowerCAmelCase = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0')
def _UpperCAmelCase ( __A : Dict , __A : List[Any]=False ):
a_ : List[Any] = model_type
if use_small:
key += "_small"
return os.path.join(__A , REMOTE_MODEL_PATHS[key]['''file_name'''] )
def _UpperCAmelCase ( __A : List[str] , __A : str ):
os.makedirs(__A , exist_ok=__A )
hf_hub_download(repo_id=__A , filename=__A , local_dir=__A )
def _UpperCAmelCase ( __A : Optional[Any] , __A : str , __A : List[Any]=False , __A : str="text" ):
if model_type == "text":
a_ : Any = BarkSemanticModel
a_ : Optional[int] = BarkSemanticConfig
a_ : Tuple = BarkSemanticGenerationConfig
elif model_type == "coarse":
a_ : Union[str, Any] = BarkCoarseModel
a_ : Union[str, Any] = BarkCoarseConfig
a_ : List[Any] = BarkCoarseGenerationConfig
elif model_type == "fine":
a_ : List[str] = BarkFineModel
a_ : Any = BarkFineConfig
a_ : Any = BarkFineGenerationConfig
else:
raise NotImplementedError()
a_ : Optional[Any] = f'{model_type}_small' if use_small else model_type
a_ : Tuple = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(__A ):
logger.info(f'{model_type} model not found, downloading into `{CACHE_DIR}`.' )
_download(model_info['''repo_id'''] , model_info['''file_name'''] )
a_ : Union[str, Any] = torch.load(__A , map_location=__A )
# this is a hack
a_ : List[str] = checkpoint['''model_args''']
if "input_vocab_size" not in model_args:
a_ : Optional[int] = model_args['''vocab_size''']
a_ : Optional[Any] = model_args['''vocab_size''']
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
a_ : List[str] = model_args.pop('''n_head''' )
a_ : List[str] = model_args.pop('''n_embd''' )
a_ : Any = model_args.pop('''n_layer''' )
a_ : Optional[int] = ConfigClass(**checkpoint['''model_args'''] )
a_ : List[Any] = ModelClass(config=__A )
a_ : int = GenerationConfigClass()
a_ : Tuple = model_generation_config
a_ : Tuple = checkpoint['''model''']
# fixup checkpoint
a_ : Any = '''_orig_mod.'''
for k, v in list(state_dict.items() ):
if k.startswith(__A ):
# replace part of the key with corresponding layer name in HF implementation
a_ : Optional[int] = k[len(__A ) :]
for old_layer_name in new_layer_name_dict:
a_ : Optional[Any] = new_k.replace(__A , new_layer_name_dict[old_layer_name] )
a_ : Union[str, Any] = state_dict.pop(__A )
a_ : Optional[int] = set(state_dict.keys() ) - set(model.state_dict().keys() )
a_ : Optional[int] = {k for k in extra_keys if not k.endswith('''.attn.bias''' )}
a_ : int = set(model.state_dict().keys() ) - set(state_dict.keys() )
a_ : Tuple = {k for k in missing_keys if not k.endswith('''.attn.bias''' )}
if len(__A ) != 0:
raise ValueError(f'extra keys found: {extra_keys}' )
if len(__A ) != 0:
raise ValueError(f'missing keys: {missing_keys}' )
model.load_state_dict(__A , strict=__A )
a_ : Union[str, Any] = model.num_parameters(exclude_embeddings=__A )
a_ : List[str] = checkpoint['''best_val_loss'''].item()
logger.info(f'model loaded: {round(n_params/1E6 , 1 )}M params, {round(__A , 3 )} loss' )
model.eval()
model.to(__A )
del checkpoint, state_dict
return model
def _UpperCAmelCase ( __A : List[str] , __A : Tuple=False , __A : Optional[Any]="text" ):
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
a_ : Optional[int] = '''cpu''' # do conversion on cpu
a_ : Tuple = _get_ckpt_path(__A , use_small=__A )
a_ : Any = _load_model(__A , __A , model_type=__A , use_small=__A )
# load bark initial model
a_ : int = _bark_load_model(__A , '''cpu''' , model_type=__A , use_small=__A )
if model_type == "text":
a_ : Dict = bark_model['''model''']
if model.num_parameters(exclude_embeddings=__A ) != bark_model.get_num_params():
raise ValueError('''initial and new models don\'t have the same number of parameters''' )
# check if same output as the bark model
a_ : List[str] = 5
a_ : List[Any] = 10
if model_type in ["text", "coarse"]:
a_ : Union[str, Any] = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int )
a_ : Union[str, Any] = bark_model(__A )[0]
a_ : List[str] = model(__A )
# take last logits
a_ : Optional[Any] = output_new_model_total.logits[:, [-1], :]
else:
a_ : Tuple = 3
a_ : Tuple = 8
a_ : Any = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int )
a_ : int = model(__A , __A )
a_ : List[Any] = bark_model(__A , __A )
a_ : Optional[int] = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError('''initial and new outputs don\'t have the same shape''' )
if (output_new_model - output_old_model).abs().max().item() > 1E-3:
raise ValueError('''initial and new outputs are not equal''' )
Path(__A ).mkdir(exist_ok=__A )
model.save_pretrained(__A )
def _UpperCAmelCase ( __A : Dict , __A : Optional[Any] , __A : Tuple , __A : Dict , __A : Tuple , __A : int , ):
a_ : Union[str, Any] = os.path.join(__A , __A )
a_ : Tuple = BarkSemanticConfig.from_pretrained(os.path.join(__A , '''config.json''' ) )
a_ : str = BarkCoarseConfig.from_pretrained(os.path.join(__A , '''config.json''' ) )
a_ : Dict = BarkFineConfig.from_pretrained(os.path.join(__A , '''config.json''' ) )
a_ : Union[str, Any] = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' )
a_ : List[str] = BarkSemanticModel.from_pretrained(__A )
a_ : List[str] = BarkCoarseModel.from_pretrained(__A )
a_ : str = BarkFineModel.from_pretrained(__A )
a_ : Optional[int] = EncodecModel.from_pretrained('''facebook/encodec_24khz''' )
a_ : Tuple = BarkConfig.from_sub_model_configs(
__A , __A , __A , __A )
a_ : Dict = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config )
a_ : List[Any] = BarkModel(__A )
a_ : str = semantic
a_ : Any = coarseAcoustic
a_ : List[str] = fineAcoustic
a_ : Dict = codec
a_ : Tuple = bark_generation_config
Path(__A ).mkdir(exist_ok=__A )
bark.save_pretrained(__A , repo_id=__A , push_to_hub=__A )
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('model_type', type=str, help='text, coarse or fine.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.')
__lowerCAmelCase = parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 666 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
snake_case__ = IFInpaintingSuperResolutionPipeline
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} )
snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"}
def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]:
return self._get_superresolution_dummy_components()
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]:
if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ):
a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
a_ : Union[str, Any] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def SCREAMING_SNAKE_CASE ( self : int ) -> int:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]:
self._test_save_load_local()
def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 666 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ :List[str] = logging.get_logger(__name__)
lowerCAmelCase__ :Optional[Any] = {
'''microsoft/beit-base-patch16-224-pt22k''': (
'''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json'''
),
# See all BEiT models at https://huggingface.co/models?filter=beit
}
class __a ( UpperCAmelCase ):
_a : str = 'beit'
def __init__( self , _SCREAMING_SNAKE_CASE=8192 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[3, 5, 7, 11] , _SCREAMING_SNAKE_CASE=[1, 2, 3, 6] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.4 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=255 , **_SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(**_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = use_mask_token
_UpperCAmelCase = use_absolute_position_embeddings
_UpperCAmelCase = use_relative_position_bias
_UpperCAmelCase = use_shared_relative_position_bias
_UpperCAmelCase = layer_scale_init_value
_UpperCAmelCase = drop_path_rate
_UpperCAmelCase = use_mean_pooling
# decode head attributes (semantic segmentation)
_UpperCAmelCase = out_indices
_UpperCAmelCase = pool_scales
# auxiliary head attributes (semantic segmentation)
_UpperCAmelCase = use_auxiliary_head
_UpperCAmelCase = auxiliary_loss_weight
_UpperCAmelCase = auxiliary_channels
_UpperCAmelCase = auxiliary_num_convs
_UpperCAmelCase = auxiliary_concat_input
_UpperCAmelCase = semantic_loss_ignore_index
class __a ( UpperCAmelCase ):
_a : Union[str, Any] = version.parse('1.11' )
@property
def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def UpperCAmelCase__ ( self ) -> float:
"""simple docstring"""
return 1e-4
| 618 |
def lowerCAmelCase__ ( a__: list ) -> list:
'''simple docstring'''
if len(a__ ) < 2:
return collection
def circle_sort_util(a__: list , a__: int , a__: int ) -> bool:
_UpperCAmelCase = False
if low == high:
return swapped
_UpperCAmelCase = low
_UpperCAmelCase = high
while left < right:
if collection[left] > collection[right]:
_UpperCAmelCase , _UpperCAmelCase = (
collection[right],
collection[left],
)
_UpperCAmelCase = True
left += 1
right -= 1
if left == right and collection[left] > collection[right + 1]:
_UpperCAmelCase , _UpperCAmelCase = (
collection[right + 1],
collection[left],
)
_UpperCAmelCase = True
_UpperCAmelCase = low + int((high - low) / 2 )
_UpperCAmelCase = circle_sort_util(a__ , a__ , a__ )
_UpperCAmelCase = circle_sort_util(a__ , mid + 1 , a__ )
return swapped or left_swap or right_swap
_UpperCAmelCase = True
while is_not_sorted is True:
_UpperCAmelCase = circle_sort_util(a__ , 0 , len(a__ ) - 1 )
return collection
if __name__ == "__main__":
lowerCAmelCase__ :Tuple = input('''Enter numbers separated by a comma:\n''').strip()
lowerCAmelCase__ :List[str] = [int(item) for item in user_input.split(''',''')]
print(circle_sort(unsorted))
| 618 | 1 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
__UpperCAmelCase = 500_000
__UpperCAmelCase , __UpperCAmelCase = os.path.split(__file__)
__UpperCAmelCase = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json'''))
@get_duration
def _snake_case ( A , **A ) -> int:
lowerCAmelCase__ = dataset.map(**A )
@get_duration
def _snake_case ( A , **A ) -> Union[str, Any]:
lowerCAmelCase__ = dataset.filter(**A )
def _snake_case ( ) -> Any:
lowerCAmelCase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} )
lowerCAmelCase__ = generate_example_dataset(
os.path.join(A , '''dataset.arrow''' ) , A , num_examples=A )
lowerCAmelCase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=A )
def tokenize(A ):
return tokenizer(examples['''text'''] )
lowerCAmelCase__ = map(A )
lowerCAmelCase__ = map(A , batched=A )
lowerCAmelCase__ = map(A , function=lambda A : None , batched=A )
with dataset.formatted_as(type='''numpy''' ):
lowerCAmelCase__ = map(A , function=lambda A : None , batched=A )
with dataset.formatted_as(type='''pandas''' ):
lowerCAmelCase__ = map(A , function=lambda A : None , batched=A )
with dataset.formatted_as(type='''torch''' , columns='''numbers''' ):
lowerCAmelCase__ = map(A , function=lambda A : None , batched=A )
with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ):
lowerCAmelCase__ = map(A , function=lambda A : None , batched=A )
lowerCAmelCase__ = map(A , function=A , batched=A )
lowerCAmelCase__ = filter(A )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(A , '''wb''' ) as f:
f.write(json.dumps(A ).encode('''utf-8''' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 719 |
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = '''T5Config'''
def _snake_case ( A , A , A ) -> jnp.ndarray:
lowerCAmelCase__ = jnp.zeros_like(A )
lowerCAmelCase__ = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
lowerCAmelCase__ = shifted_input_ids.at[:, 0].set(A )
lowerCAmelCase__ = jnp.where(shifted_input_ids == -100 , A , A )
return shifted_input_ids
class a__ ( a__ ):
'''simple docstring'''
lowercase__ : int = "mt5"
lowercase__ : Dict = MTaConfig
class a__ ( a__ ):
'''simple docstring'''
lowercase__ : int = "mt5"
lowercase__ : Any = MTaConfig
class a__ ( a__ ):
'''simple docstring'''
lowercase__ : Union[str, Any] = "mt5"
lowercase__ : Tuple = MTaConfig
| 98 | 0 |
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
a_ : Optional[Any] = get_logger(__name__)
a_ : Dict = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n'
class _snake_case :
@add_start_docstrings(a)
def __call__( self , a , a) -> jnp.ndarray:
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
class _snake_case :
@add_start_docstrings(a)
def __call__( self , a , a) -> jnp.ndarray:
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
class _snake_case ( A__ ):
@add_start_docstrings(a)
def __call__( self , a , a , a , **a) -> jnp.ndarray:
for processor in self:
SCREAMING_SNAKE_CASE = inspect.signature(processor.__call__).parameters
if len(a) > 3:
if not all(arg in kwargs for arg in list(function_args.keys())[2:]):
raise ValueError(
f'''Make sure that all the required parameters: {list(function_args.keys())} for '''
f'''{processor.__class__} are passed to the logits processor.''')
SCREAMING_SNAKE_CASE = processor(a , a , a , **a)
else:
SCREAMING_SNAKE_CASE = processor(a , a , a)
return scores
class _snake_case ( A__ ):
def __init__( self , a) -> List[str]:
if not isinstance(a , a) or not (temperature > 0):
raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''')
SCREAMING_SNAKE_CASE = temperature
def __call__( self , a , a , a) -> jnp.ndarray:
SCREAMING_SNAKE_CASE = scores / self.temperature
return scores
class _snake_case ( A__ ):
def __init__( self , a , a = -float('Inf') , a = 1) -> Optional[Any]:
if not isinstance(a , a) or (top_p < 0 or top_p > 1.0):
raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''')
if not isinstance(a , a) or (min_tokens_to_keep < 1):
raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''')
SCREAMING_SNAKE_CASE = top_p
SCREAMING_SNAKE_CASE = filter_value
SCREAMING_SNAKE_CASE = min_tokens_to_keep
def __call__( self , a , a , a) -> jnp.ndarray:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = lax.top_k(a , scores.shape[-1])
SCREAMING_SNAKE_CASE = jnp.full_like(a , self.filter_value)
SCREAMING_SNAKE_CASE = jax.nn.softmax(a , axis=-1).cumsum(axis=-1)
SCREAMING_SNAKE_CASE = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
SCREAMING_SNAKE_CASE = jnp.roll(a , 1)
score_mask |= score_mask.at[:, 0].set(a)
# min tokens to keep
SCREAMING_SNAKE_CASE = score_mask.at[:, : self.min_tokens_to_keep].set(a)
SCREAMING_SNAKE_CASE = jnp.where(a , a , a)
SCREAMING_SNAKE_CASE = jax.lax.sort_key_val(a , a)[-1]
return next_scores
class _snake_case ( A__ ):
def __init__( self , a , a = -float('Inf') , a = 1) -> int:
if not isinstance(a , a) or top_k <= 0:
raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''')
SCREAMING_SNAKE_CASE = max(a , a)
SCREAMING_SNAKE_CASE = filter_value
def __call__( self , a , a , a) -> jnp.ndarray:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = scores.shape
SCREAMING_SNAKE_CASE = jnp.full(batch_size * vocab_size , self.filter_value)
SCREAMING_SNAKE_CASE = min(self.top_k , scores.shape[-1]) # Safety check
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = lax.top_k(a , a)
SCREAMING_SNAKE_CASE = jnp.broadcast_to((jnp.arange(a) * vocab_size)[:, None] , (batch_size, topk)).flatten()
SCREAMING_SNAKE_CASE = topk_scores.flatten()
SCREAMING_SNAKE_CASE = topk_indices.flatten() + shift
SCREAMING_SNAKE_CASE = next_scores_flat.at[topk_indices_flat].set(a)
SCREAMING_SNAKE_CASE = next_scores_flat.reshape(a , a)
return next_scores
class _snake_case ( A__ ):
def __init__( self , a) -> Any:
SCREAMING_SNAKE_CASE = bos_token_id
def __call__( self , a , a , a) -> jnp.ndarray:
SCREAMING_SNAKE_CASE = jnp.full(scores.shape , -float('inf'))
SCREAMING_SNAKE_CASE = 1 - jnp.bool_(cur_len - 1)
SCREAMING_SNAKE_CASE = jnp.where(a , new_scores.at[:, self.bos_token_id].set(0) , a)
return scores
class _snake_case ( A__ ):
def __init__( self , a , a) -> int:
SCREAMING_SNAKE_CASE = max_length
SCREAMING_SNAKE_CASE = eos_token_id
def __call__( self , a , a , a) -> jnp.ndarray:
SCREAMING_SNAKE_CASE = jnp.full(scores.shape , -float('inf'))
SCREAMING_SNAKE_CASE = 1 - jnp.bool_(cur_len - self.max_length + 1)
SCREAMING_SNAKE_CASE = jnp.where(a , new_scores.at[:, self.eos_token_id].set(0) , a)
return scores
class _snake_case ( A__ ):
def __init__( self , a , a) -> int:
if not isinstance(a , a) or min_length < 0:
raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''')
if not isinstance(a , a) or eos_token_id < 0:
raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''')
SCREAMING_SNAKE_CASE = min_length
SCREAMING_SNAKE_CASE = eos_token_id
def __call__( self , a , a , a) -> jnp.ndarray:
# create boolean flag to decide if min length penalty should be applied
SCREAMING_SNAKE_CASE = 1 - jnp.clip(cur_len - self.min_length , 0 , 1)
SCREAMING_SNAKE_CASE = jnp.where(a , scores.at[:, self.eos_token_id].set(-float('inf')) , a)
return scores
class _snake_case ( A__ ):
def __init__( self , a , a) -> Any:
SCREAMING_SNAKE_CASE = list(a)
SCREAMING_SNAKE_CASE = begin_index
def __call__( self , a , a , a) -> List[str]:
SCREAMING_SNAKE_CASE = 1 - jnp.bool_(cur_len - self.begin_index)
SCREAMING_SNAKE_CASE = jnp.where(a , scores.at[:, self.begin_suppress_tokens].set(-float('inf')) , a)
return scores
class _snake_case ( A__ ):
def __init__( self , a) -> Any:
SCREAMING_SNAKE_CASE = list(a)
def __call__( self , a , a , a) -> jnp.ndarray:
SCREAMING_SNAKE_CASE = scores.at[..., self.suppress_tokens].set(-float('inf'))
return scores
class _snake_case ( A__ ):
def __init__( self , a) -> int:
SCREAMING_SNAKE_CASE = dict(a)
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
SCREAMING_SNAKE_CASE = jnp.ones((max(force_token_map.keys()) + 1) , dtype=jnp.intaa) * -1
for index, token in force_token_map.items():
if token is not None:
SCREAMING_SNAKE_CASE = force_token_array.at[index].set(a)
SCREAMING_SNAKE_CASE = jnp.intaa(a)
def __call__( self , a , a , a) -> jnp.ndarray:
def _force_token(a):
SCREAMING_SNAKE_CASE = scores.shape[0]
SCREAMING_SNAKE_CASE = self.force_token_array[generation_idx]
SCREAMING_SNAKE_CASE = jnp.ones_like(a , dtype=scores.dtype) * -float('inf')
SCREAMING_SNAKE_CASE = jnp.zeros((batch_size, 1) , dtype=scores.dtype)
SCREAMING_SNAKE_CASE = lax.dynamic_update_slice(a , a , (0, current_token))
return new_scores
SCREAMING_SNAKE_CASE = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(a) , lambda: scores , ) , )
return scores
class _snake_case ( A__ ):
def __init__( self , a , a , a) -> List[str]:
SCREAMING_SNAKE_CASE = generate_config.eos_token_id
SCREAMING_SNAKE_CASE = generate_config.no_timestamps_token_id
SCREAMING_SNAKE_CASE = generate_config.no_timestamps_token_id + 1
SCREAMING_SNAKE_CASE = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(a , 'max_initial_timestamp_index'):
SCREAMING_SNAKE_CASE = generate_config.max_initial_timestamp_index
else:
SCREAMING_SNAKE_CASE = model_config.vocab_size
if self.max_initial_timestamp_index is None:
SCREAMING_SNAKE_CASE = model_config.vocab_size
def __call__( self , a , a , a) -> Tuple:
# suppress <|notimestamps|> which is handled by without_timestamps
SCREAMING_SNAKE_CASE = scores.at[:, self.no_timestamps_token_id].set(-float('inf'))
def handle_pairs(a , a):
SCREAMING_SNAKE_CASE = jnp.where((cur_len - self.begin_index) >= 1 , a , a)
SCREAMING_SNAKE_CASE = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , a , )
SCREAMING_SNAKE_CASE = jnp.where((cur_len - self.begin_index) < 2 , a , a)
SCREAMING_SNAKE_CASE = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , a , a , )
return jnp.where(
a , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf')) , scores_k.at[: self.eos_token_id].set(-float('inf')) , ) , a , )
SCREAMING_SNAKE_CASE = jax.vmap(a)(a , a)
SCREAMING_SNAKE_CASE = jnp.where(cur_len == self.begin_index , a , a)
SCREAMING_SNAKE_CASE = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , a , )
SCREAMING_SNAKE_CASE = self.timestamp_begin + self.max_initial_timestamp_index
SCREAMING_SNAKE_CASE = jnp.where(
a , scores.at[:, last_allowed + 1 :].set(-float('inf')) , a , )
# if sum of probability over timestamps is above any other token, sample timestamp
SCREAMING_SNAKE_CASE = jax.nn.log_softmax(a , axis=-1)
def handle_cumulative_probs(a , a):
SCREAMING_SNAKE_CASE = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1)
SCREAMING_SNAKE_CASE = jnp.max(logprobs_k[: self.timestamp_begin])
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf')) , a , )
SCREAMING_SNAKE_CASE = jax.vmap(a)(a , a)
return scores
| 73 |
"""simple docstring"""
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCAmelCase_ : List[str] = 16
UpperCAmelCase_ : str = 32
def _A (__a , __a , __a , __a , __a = 16 ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = AutoTokenizer.from_pretrained('''bert-base-cased''' )
SCREAMING_SNAKE_CASE_ : Any = DatasetDict(
{
'''train''': dataset['''train'''].select(__a ),
'''validation''': dataset['''train'''].select(__a ),
'''test''': dataset['''validation'''],
} )
def tokenize_function(__a ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE_ : Any = datasets.map(
__a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
SCREAMING_SNAKE_CASE_ : List[str] = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__a ):
# On TPU it's best to pad everything to the same length or training will be very slow.
SCREAMING_SNAKE_CASE_ : Any = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
SCREAMING_SNAKE_CASE_ : Optional[int] = 16
elif accelerator.mixed_precision != "no":
SCREAMING_SNAKE_CASE_ : List[Any] = 8
else:
SCREAMING_SNAKE_CASE_ : List[str] = None
return tokenizer.pad(
__a , padding='''longest''' , max_length=__a , pad_to_multiple_of=__a , return_tensors='''pt''' , )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE_ : int = DataLoader(
tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a )
SCREAMING_SNAKE_CASE_ : List[Any] = DataLoader(
tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a )
SCREAMING_SNAKE_CASE_ : str = DataLoader(
tokenized_datasets['''test'''] , shuffle=__a , collate_fn=__a , batch_size=__a )
return train_dataloader, eval_dataloader, test_dataloader
def _A (__a , __a ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = []
# Download the dataset
SCREAMING_SNAKE_CASE_ : List[Any] = load_dataset('''glue''' , '''mrpc''' )
# Create our splits
SCREAMING_SNAKE_CASE_ : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
SCREAMING_SNAKE_CASE_ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE_ : Optional[Any] = config['''lr''']
SCREAMING_SNAKE_CASE_ : List[Any] = int(config['''num_epochs'''] )
SCREAMING_SNAKE_CASE_ : List[str] = int(config['''seed'''] )
SCREAMING_SNAKE_CASE_ : Tuple = int(config['''batch_size'''] )
SCREAMING_SNAKE_CASE_ : Any = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
SCREAMING_SNAKE_CASE_ : Dict = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
SCREAMING_SNAKE_CASE_ : Tuple = batch_size // MAX_GPU_BATCH_SIZE
SCREAMING_SNAKE_CASE_ : Optional[int] = MAX_GPU_BATCH_SIZE
set_seed(__a )
# New Code #
# Create our folds:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] )
SCREAMING_SNAKE_CASE_ : Optional[Any] = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(__a ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = get_fold_dataloaders(
__a , __a , __a , __a , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__a )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
SCREAMING_SNAKE_CASE_ : Tuple = model.to(accelerator.device )
# Instantiate optimizer
SCREAMING_SNAKE_CASE_ : Union[str, Any] = AdamW(params=model.parameters() , lr=__a )
# Instantiate scheduler
SCREAMING_SNAKE_CASE_ : Dict = get_linear_schedule_with_warmup(
optimizer=__a , num_warmup_steps=1_00 , num_training_steps=(len(__a ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = accelerator.prepare(
__a , __a , __a , __a , __a )
# Now we train the model
for epoch in range(__a ):
model.train()
for step, batch in enumerate(__a ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
SCREAMING_SNAKE_CASE_ : Optional[int] = model(**__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs.loss
SCREAMING_SNAKE_CASE_ : Dict = loss / gradient_accumulation_steps
accelerator.backward(__a )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__a ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : str = model(**__a )
SCREAMING_SNAKE_CASE_ : Any = outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__a , references=__a , )
SCREAMING_SNAKE_CASE_ : int = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:' , __a )
# New Code #
# We also run predictions on the test set at the very end
SCREAMING_SNAKE_CASE_ : Any = []
for step, batch in enumerate(__a ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : Optional[int] = model(**__a )
SCREAMING_SNAKE_CASE_ : int = outputs.logits
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(__a , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
SCREAMING_SNAKE_CASE_ : str = torch.cat(__a , dim=0 )
SCREAMING_SNAKE_CASE_ : Tuple = torch.stack(__a , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
SCREAMING_SNAKE_CASE_ : Tuple = metric.compute(predictions=__a , references=__a )
accelerator.print('''Average test metrics from all folds:''' , __a )
def _A () -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__a , default=__a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
# New Code #
parser.add_argument('''--num_folds''' , type=__a , default=3 , help='''The number of splits to perform across the dataset''' )
SCREAMING_SNAKE_CASE_ : List[str] = parser.parse_args()
SCREAMING_SNAKE_CASE_ : int = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__a , __a )
if __name__ == "__main__":
main()
| 512 | 0 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=_A )
class a ( _A ):
UpperCAmelCase_ : List[Any] =field(default="question-answering-extractive", metadata={"include_in_asdict_even_if_is_default": True} )
UpperCAmelCase_ : Union[str, Any] =Features({"question": Value("string" ), "context": Value("string" )} )
UpperCAmelCase_ : Dict =Features(
{
"answers": Sequence(
{
"text": Value("string" ),
"answer_start": Value("int32" ),
} )
} )
UpperCAmelCase_ : int ="question"
UpperCAmelCase_ : List[str] ="context"
UpperCAmelCase_ : Optional[int] ="answers"
@property
def UpperCamelCase_ ( self ):
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 717 |
"""simple docstring"""
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
_UpperCamelCase : Optional[Any] = Lock()
def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[Any] ):
'''simple docstring'''
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(__snake_case )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
lowercase = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
lowercase = min(__snake_case , __snake_case )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(__snake_case )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
lowercase = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
lowercase = max(__snake_case , __snake_case )
# after all swaps are performed, send the values back to main
result_pipe[1].send(__snake_case )
def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] ):
'''simple docstring'''
lowercase = []
lowercase = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
lowercase = Pipe()
lowercase = Pipe()
process_array_.append(
Process(
target=__snake_case , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
lowercase = temp_rs
lowercase = temp_rr
for i in range(1 , len(__snake_case ) - 1 ):
lowercase = Pipe()
lowercase = Pipe()
process_array_.append(
Process(
target=__snake_case , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
lowercase = temp_rs
lowercase = temp_rr
process_array_.append(
Process(
target=__snake_case , args=(
len(__snake_case ) - 1,
arr[len(__snake_case ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(__snake_case ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(__snake_case ) ):
lowercase = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def _SCREAMING_SNAKE_CASE ( ):
'''simple docstring'''
lowercase = list(range(10 , 0 , -1 ) )
print('Initial List' )
print(*__snake_case )
lowercase = odd_even_transposition(__snake_case )
print('Sorted List\n' )
print(*__snake_case )
if __name__ == "__main__":
main()
| 134 | 0 |
'''simple docstring'''
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def UpperCAmelCase_ ( A ):
'''simple docstring'''
_a : Dict = tmp_path / 'file.csv'
_a : Union[str, Any] = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(_lowerCamelCase , 'w' ) as f:
f.write(_lowerCamelCase )
return str(_lowerCamelCase )
@pytest.fixture
def UpperCAmelCase_ ( A ):
'''simple docstring'''
_a : Optional[int] = tmp_path / 'malformed_file.csv'
_a : List[str] = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(_lowerCamelCase , 'w' ) as f:
f.write(_lowerCamelCase )
return str(_lowerCamelCase )
@pytest.fixture
def UpperCAmelCase_ ( A , A ):
'''simple docstring'''
_a : Any = tmp_path / 'csv_with_image.csv'
_a : List[Any] = textwrap.dedent(
f'''\
image
{image_file}
''' )
with open(_lowerCamelCase , 'w' ) as f:
f.write(_lowerCamelCase )
return str(_lowerCamelCase )
@pytest.fixture
def UpperCAmelCase_ ( A ):
'''simple docstring'''
_a : Dict = tmp_path / 'csv_with_label.csv'
_a : Optional[int] = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(_lowerCamelCase , 'w' ) as f:
f.write(_lowerCamelCase )
return str(_lowerCamelCase )
@pytest.fixture
def UpperCAmelCase_ ( A ):
'''simple docstring'''
_a : Optional[int] = tmp_path / 'csv_with_int_list.csv'
_a : Tuple = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(_lowerCamelCase , 'w' ) as f:
f.write(_lowerCamelCase )
return str(_lowerCamelCase )
def UpperCAmelCase_ ( A , A , A ):
'''simple docstring'''
_a : Dict = Csv()
_a : Any = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(_lowerCamelCase , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(_lowerCamelCase ) in record.message
for record in caplog.records )
@require_pil
def UpperCAmelCase_ ( A ):
'''simple docstring'''
with open(_lowerCamelCase , encoding='utf-8' ) as f:
_a : Any = f.read().splitlines()[1]
_a : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
_a : List[str] = csv._generate_tables([[csv_file_with_image]] )
_a : int = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
_a : List[str] = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def UpperCAmelCase_ ( A ):
'''simple docstring'''
with open(_lowerCamelCase , encoding='utf-8' ) as f:
_a : List[Any] = f.read().splitlines()[1:]
_a : Dict = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
_a : Optional[Any] = csv._generate_tables([[csv_file_with_label]] )
_a : Optional[Any] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
_a : Tuple = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(_lowerCamelCase ) for label in labels]
def UpperCAmelCase_ ( A ):
'''simple docstring'''
_a : Dict = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda A : [int(_lowerCamelCase ) for i in x.split()]} )
_a : Dict = csv._generate_tables([[csv_file_with_int_list]] )
_a : Optional[Any] = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
_a : List[str] = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 120 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCAmelCase_ : int = logging.get_logger(__name__)
UpperCAmelCase_ : Dict = {
'''microsoft/swin-tiny-patch4-window7-224''': (
'''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'''
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase):
__lowercase : List[Any] = '''swin'''
__lowercase : str = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , __SCREAMING_SNAKE_CASE=224 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=96 , __SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , __SCREAMING_SNAKE_CASE=[3, 6, 12, 24] , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=4.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-5 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) -> int:
'''simple docstring'''
super().__init__(**__SCREAMING_SNAKE_CASE )
__snake_case = image_size
__snake_case = patch_size
__snake_case = num_channels
__snake_case = embed_dim
__snake_case = depths
__snake_case = len(__SCREAMING_SNAKE_CASE )
__snake_case = num_heads
__snake_case = window_size
__snake_case = mlp_ratio
__snake_case = qkv_bias
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = drop_path_rate
__snake_case = hidden_act
__snake_case = use_absolute_embeddings
__snake_case = layer_norm_eps
__snake_case = initializer_range
__snake_case = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__snake_case = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) )
__snake_case = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )]
__snake_case , __snake_case = get_aligned_output_features_output_indices(
out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
class lowerCAmelCase ( __lowerCAmelCase):
__lowercase : Optional[int] = version.parse('''1.11''')
@property
def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def lowerCAmelCase ( self ) -> float:
'''simple docstring'''
return 1E-4
| 24 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
snake_case = logging.get_logger(__name__)
class __A ( snake_case__ ):
'''simple docstring'''
def __init__( self , _snake_case , _snake_case , _snake_case , **_snake_case ):
_lowerCAmelCase : Union[str, Any] = feature_size
_lowerCAmelCase : Tuple = sampling_rate
_lowerCAmelCase : int = padding_value
_lowerCAmelCase : Union[str, Any] = kwargs.pop("padding_side" , "right" )
_lowerCAmelCase : Optional[int] = kwargs.pop("return_attention_mask" , _snake_case )
super().__init__(**_snake_case )
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case = True , _snake_case = None , _snake_case = False , _snake_case = None , _snake_case = None , _snake_case = None , ):
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(_snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
_lowerCAmelCase : List[Any] = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"
F""" to this method that includes {self.model_input_names[0]}, but you provided"""
F""" {list(processed_features.keys() )}""" )
_lowerCAmelCase : Any = processed_features[self.model_input_names[0]]
_lowerCAmelCase : str = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(_snake_case ) == 0:
if return_attention_mask:
_lowerCAmelCase : str = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
_lowerCAmelCase : Any = required_input[0]
if isinstance(_snake_case , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
_lowerCAmelCase : Union[str, Any] = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(_snake_case ):
_lowerCAmelCase : List[Any] = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(_snake_case ):
_lowerCAmelCase : Tuple = "tf"
elif is_torch_tensor(_snake_case ):
_lowerCAmelCase : Any = "pt"
elif isinstance(_snake_case , (int, float, list, tuple, np.ndarray) ):
_lowerCAmelCase : Any = "np"
else:
raise ValueError(
F"""type of {first_element} unknown: {type(_snake_case )}. """
"Should be one of a python, numpy, pytorch or tensorflow object." )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
_lowerCAmelCase : Dict = to_numpy(_snake_case )
else:
_lowerCAmelCase : Dict = [to_numpy(_snake_case ) for v in value]
# Convert padding_strategy in PaddingStrategy
_lowerCAmelCase : Optional[int] = self._get_padding_strategies(padding=_snake_case , max_length=_snake_case )
_lowerCAmelCase : Union[str, Any] = processed_features[self.model_input_names[0]]
_lowerCAmelCase : Optional[Any] = len(_snake_case )
if not all(len(_snake_case ) == batch_size for v in processed_features.values() ):
raise ValueError("Some items in the output dictionary have a different batch size than others." )
_lowerCAmelCase : List[Any] = []
for i in range(_snake_case ):
_lowerCAmelCase : Optional[Any] = {k: v[i] for k, v in processed_features.items()}
# truncation
_lowerCAmelCase : Dict = self._truncate(
_snake_case , max_length=_snake_case , pad_to_multiple_of=_snake_case , truncation=_snake_case , )
truncated_inputs.append(_snake_case )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
_lowerCAmelCase : Tuple = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
_lowerCAmelCase : List[Any] = PaddingStrategy.MAX_LENGTH
_lowerCAmelCase : Tuple = {}
for i in range(_snake_case ):
# padding
_lowerCAmelCase : Optional[int] = self._pad(
truncated_inputs[i] , max_length=_snake_case , padding_strategy=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , )
for key, value in outputs.items():
if key not in batch_outputs:
_lowerCAmelCase : Optional[int] = []
if value.dtype is np.dtype(np.floataa ):
_lowerCAmelCase : Tuple = value.astype(np.floataa )
batch_outputs[key].append(_snake_case )
return BatchFeature(_snake_case , tensor_type=_snake_case )
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case = None , _snake_case = PaddingStrategy.DO_NOT_PAD , _snake_case = None , _snake_case = None , ):
_lowerCAmelCase : Dict = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
_lowerCAmelCase : str = len(_snake_case )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
_lowerCAmelCase : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
_lowerCAmelCase : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_snake_case ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
_lowerCAmelCase : List[str] = np.ones(len(_snake_case ) , dtype=np.intaa )
if needs_to_be_padded:
_lowerCAmelCase : Dict = max_length - len(_snake_case )
if self.padding_side == "right":
if return_attention_mask:
_lowerCAmelCase : List[str] = np.pad(
processed_features["attention_mask"] , (0, difference) )
_lowerCAmelCase : Optional[Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
_lowerCAmelCase : int = np.pad(
_snake_case , _snake_case , "constant" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
_lowerCAmelCase : Optional[int] = np.pad(
processed_features["attention_mask"] , (difference, 0) )
_lowerCAmelCase : List[Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
_lowerCAmelCase : int = np.pad(
_snake_case , _snake_case , "constant" , constant_values=self.padding_value )
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return processed_features
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , ):
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." )
_lowerCAmelCase : Any = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
_lowerCAmelCase : Optional[int] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
_lowerCAmelCase : Optional[Any] = len(_snake_case ) > max_length
if needs_to_be_truncated:
_lowerCAmelCase : List[Any] = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
_lowerCAmelCase : List[Any] = processed_features["attention_mask"][:max_length]
return processed_features
def SCREAMING_SNAKE_CASE__ ( self , _snake_case=False , _snake_case=None ):
# Get padding strategy
if padding is not False:
if padding is True:
_lowerCAmelCase : str = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(_snake_case , _snake_case ):
_lowerCAmelCase : str = PaddingStrategy(_snake_case )
elif isinstance(_snake_case , _snake_case ):
_lowerCAmelCase : Any = padding
else:
_lowerCAmelCase : Tuple = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"
" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." )
return padding_strategy
| 587 |
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def UpperCamelCase_ ( lowerCAmelCase__ ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , collections.abc.Iterable ):
return x
return (x, x)
@require_tf
class __A :
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ):
pass
def SCREAMING_SNAKE_CASE__ ( self ):
pass
def SCREAMING_SNAKE_CASE__ ( self ):
pass
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ):
_lowerCAmelCase : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case , _snake_case )
_lowerCAmelCase : Tuple = TFVisionTextDualEncoderModel(_snake_case )
_lowerCAmelCase : Any = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) )
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ):
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.get_vision_text_model(_snake_case , _snake_case )
_lowerCAmelCase : Any = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case )
_lowerCAmelCase : Union[str, Any] = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) )
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ):
_lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_vision_text_model(_snake_case , _snake_case )
_lowerCAmelCase : Any = {"vision_model": vision_model, "text_model": text_model}
_lowerCAmelCase : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case )
_lowerCAmelCase : Dict = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) )
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ):
_lowerCAmelCase , _lowerCAmelCase : List[str] = self.get_vision_text_model(_snake_case , _snake_case )
_lowerCAmelCase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case )
_lowerCAmelCase : Tuple = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case )
_lowerCAmelCase : List[str] = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_snake_case )
_lowerCAmelCase : Dict = TFVisionTextDualEncoderModel.from_pretrained(_snake_case )
_lowerCAmelCase : Dict = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case )
_lowerCAmelCase : Optional[int] = after_output[0].numpy()
_lowerCAmelCase : Any = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_snake_case , 1E-5 )
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ):
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.get_vision_text_model(_snake_case , _snake_case )
_lowerCAmelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case )
_lowerCAmelCase : List[str] = model(
input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case )
_lowerCAmelCase : Optional[Any] = output.vision_model_output.attentions
self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_lowerCAmelCase : List[Any] = to_atuple(vision_model.config.image_size )
_lowerCAmelCase : Optional[int] = to_atuple(vision_model.config.patch_size )
_lowerCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_lowerCAmelCase : Any = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_lowerCAmelCase : int = output.text_model_output.attentions
self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case ):
_lowerCAmelCase : List[str] = np.abs((a - b) ).max()
self.assertLessEqual(_snake_case , _snake_case , F"""Difference between torch and flax is {diff} (>= {tol}).""" )
def SCREAMING_SNAKE_CASE__ ( self ):
_lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**_snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
_lowerCAmelCase : Any = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**_snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
_lowerCAmelCase : Any = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**_snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
_lowerCAmelCase : int = self.prepare_config_and_inputs()
self.check_save_load(**_snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
_lowerCAmelCase : int = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**_snake_case )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
_lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.get_pretrained_model_and_inputs()
_lowerCAmelCase : List[str] = model_a(**_snake_case )
_lowerCAmelCase : List[Any] = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(_snake_case )
_lowerCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(_snake_case )
_lowerCAmelCase : List[str] = model_a(**_snake_case )
_lowerCAmelCase : Any = after_outputs[0].numpy()
_lowerCAmelCase : Dict = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_snake_case , 1E-5 )
@require_tf
class __A ( snake_case__ ,unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self ):
_lowerCAmelCase : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" )
_lowerCAmelCase : Optional[int] = 13
_lowerCAmelCase : Optional[int] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
_lowerCAmelCase : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
_lowerCAmelCase : Optional[int] = random_attention_mask([batch_size, 4] )
_lowerCAmelCase : Tuple = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ):
_lowerCAmelCase : Optional[Any] = TFViTModel(_snake_case , name="vision_model" )
_lowerCAmelCase : Union[str, Any] = TFBertModel(_snake_case , name="text_model" )
return vision_model, text_model
def SCREAMING_SNAKE_CASE__ ( self ):
_lowerCAmelCase : List[Any] = TFViTModelTester(self )
_lowerCAmelCase : List[str] = TFBertModelTester(self )
_lowerCAmelCase : str = vit_model_tester.prepare_config_and_inputs()
_lowerCAmelCase : int = bert_model_tester.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = vision_config_and_inputs
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) : Dict = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class __A ( snake_case__ ,unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self ):
# DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's
# just reinitialize it.
_lowerCAmelCase : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" )
_lowerCAmelCase : List[Any] = 13
_lowerCAmelCase : Tuple = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
_lowerCAmelCase : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
_lowerCAmelCase : List[Any] = random_attention_mask([batch_size, 4] )
_lowerCAmelCase : Optional[int] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ):
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.get_vision_text_model(_snake_case , _snake_case )
_lowerCAmelCase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case )
_lowerCAmelCase : Tuple = model(
input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case )
_lowerCAmelCase : Tuple = output.vision_model_output.attentions
self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers )
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
_lowerCAmelCase : Any = to_atuple(vision_model.config.image_size )
_lowerCAmelCase : List[str] = to_atuple(vision_model.config.patch_size )
_lowerCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_lowerCAmelCase : Dict = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_lowerCAmelCase : str = output.text_model_output.attentions
self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ):
_lowerCAmelCase : Any = TFDeiTModel(_snake_case , name="vision_model" )
_lowerCAmelCase : int = TFRobertaModel(_snake_case , name="text_model" )
return vision_model, text_model
def SCREAMING_SNAKE_CASE__ ( self ):
_lowerCAmelCase : Optional[int] = TFDeiTModelTester(self )
_lowerCAmelCase : Union[str, Any] = TFRobertaModelTester(self )
_lowerCAmelCase : Any = vit_model_tester.prepare_config_and_inputs()
_lowerCAmelCase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = vision_config_and_inputs
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) : Optional[int] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class __A ( snake_case__ ,unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self ):
_lowerCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" )
_lowerCAmelCase : List[str] = 13
_lowerCAmelCase : List[Any] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
_lowerCAmelCase : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
_lowerCAmelCase : Tuple = random_attention_mask([batch_size, 4] )
_lowerCAmelCase : Any = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ):
_lowerCAmelCase : Any = TFCLIPVisionModel(_snake_case , name="vision_model" )
_lowerCAmelCase : Any = TFBertModel(_snake_case , name="text_model" )
return vision_model, text_model
def SCREAMING_SNAKE_CASE__ ( self ):
_lowerCAmelCase : Optional[int] = TFCLIPVisionModelTester(self )
_lowerCAmelCase : Union[str, Any] = TFBertModelTester(self )
_lowerCAmelCase : str = clip_model_tester.prepare_config_and_inputs()
_lowerCAmelCase : Dict = bert_model_tester.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase : Tuple = vision_config_and_inputs
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) : Any = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class __A ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
_lowerCAmelCase : Dict = TFVisionTextDualEncoderModel.from_pretrained(
"clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=_snake_case )
_lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" )
_lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
_lowerCAmelCase : Optional[int] = processor(
text=["una foto di un gatto", "una foto di un cane"] , images=_snake_case , padding=_snake_case , return_tensors="np" )
_lowerCAmelCase : List[Any] = model(**_snake_case )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_lowerCAmelCase : Any = np.array([[1.228_4727, 0.310_4122]] )
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _snake_case , atol=1E-3 ) )
| 587 | 1 |
from . import __version__
# Backward compatibility imports, to make sure all those objects can be found in file_utils
from .utils import (
CLOUDFRONT_DISTRIB_PREFIX,
CONFIG_NAME,
DISABLE_TELEMETRY,
DUMMY_INPUTS,
DUMMY_MASK,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
FEATURE_EXTRACTOR_NAME,
FLAX_WEIGHTS_NAME,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MODEL_CARD_NAME,
MULTIPLE_CHOICE_DUMMY_INPUTS,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
SENTENCEPIECE_UNDERLINE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TORCH_FX_REQUIRED_VERSION,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
USE_JAX,
USE_TF,
USE_TORCH,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
DummyObject,
EntryNotFoundError,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
TensorType,
_LazyModule,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_property,
copy_func,
default_cache_path,
define_sagemaker_information,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
get_torch_version,
has_file,
http_user_agent,
is_apex_available,
is_bsa_available,
is_coloredlogs_available,
is_datasets_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_librosa_available,
is_offline_mode,
is_onnx_available,
is_pandas_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_tensor,
is_tensorflow_probability_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_training_run_on_sagemaker,
is_vision_available,
replace_return_docstrings,
requires_backends,
to_numpy,
to_py_obj,
torch_only_method,
)
| 114 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json',
# See all ViT MSN models at https://huggingface.co/models?filter=vit_msn
}
class __A ( lowerCamelCase__ ):
"""simple docstring"""
UpperCAmelCase__ = """vit_msn"""
def __init__( self , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.0 , a__=0.0 , a__=0.02 , a__=1e-06 , a__=224 , a__=16 , a__=3 , a__=True , **a__ , ):
"""simple docstring"""
super().__init__(**a__)
_lowerCamelCase : Tuple = hidden_size
_lowerCamelCase : str = num_hidden_layers
_lowerCamelCase : int = num_attention_heads
_lowerCamelCase : Optional[int] = intermediate_size
_lowerCamelCase : Union[str, Any] = hidden_act
_lowerCamelCase : str = hidden_dropout_prob
_lowerCamelCase : List[Any] = attention_probs_dropout_prob
_lowerCamelCase : Optional[int] = initializer_range
_lowerCamelCase : Optional[Any] = layer_norm_eps
_lowerCamelCase : Dict = image_size
_lowerCamelCase : Tuple = patch_size
_lowerCamelCase : List[str] = num_channels
_lowerCamelCase : Optional[int] = qkv_bias
| 114 | 1 |
import importlib
import os
import fsspec
import pytest
from fsspec import register_implementation
from fsspec.registry import _registry as _fsspec_registry
from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem
from .utils import require_lza, require_zstandard
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ):
assert "mock" in _fsspec_registry
assert "bz2" in _fsspec_registry
def UpperCamelCase__ ( ):
assert "mock" not in _fsspec_registry
assert "bz2" in _fsspec_registry
def UpperCamelCase__ ( ):
__lowerCamelCase : Optional[int] = 'mock-s3-bucket'
__lowerCamelCase : Tuple = f's3://{mock_bucket}'
__lowerCamelCase : List[str] = extract_path_from_uri(SCREAMING_SNAKE_CASE__ )
assert dataset_path.startswith('s3://' ) is False
__lowerCamelCase : str = './local/path'
__lowerCamelCase : Dict = extract_path_from_uri(SCREAMING_SNAKE_CASE__ )
assert dataset_path == new_dataset_path
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : int = is_remote_filesystem(SCREAMING_SNAKE_CASE__ )
assert is_remote is True
__lowerCamelCase : Optional[Any] = fsspec.filesystem('file' )
__lowerCamelCase : Union[str, Any] = is_remote_filesystem(SCREAMING_SNAKE_CASE__ )
assert is_remote is False
@pytest.mark.parametrize('compression_fs_class' , SCREAMING_SNAKE_CASE__ )
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file}
__lowerCamelCase : Optional[int] = input_paths[compression_fs_class.protocol]
if input_path is None:
__lowerCamelCase : Optional[Any] = f'for \'{compression_fs_class.protocol}\' compression protocol, '
if compression_fs_class.protocol == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_fs_class.protocol == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase : List[Any] = os.path.basename(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase : List[str] = expected_filename[: expected_filename.rindex('.' )]
assert fs.glob('*' ) == [expected_filename]
with fs.open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f, open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as expected_file:
assert f.read() == expected_file.read()
@pytest.mark.parametrize('protocol' , ['zip', 'gzip'] )
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : Any = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path}
__lowerCamelCase : Dict = compressed_file_paths[protocol]
__lowerCamelCase : Union[str, Any] = 'dataset.jsonl'
__lowerCamelCase : Optional[int] = f'{protocol}://{member_file_path}::{compressed_file_path}'
__lowerCamelCase , *__lowerCamelCase : str = fsspec.get_fs_token_paths(SCREAMING_SNAKE_CASE__ )
assert fs.isfile(SCREAMING_SNAKE_CASE__ )
assert not fs.isfile('non_existing_' + member_file_path )
@pytest.mark.integration
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : Optional[Any] = hf_api.dataset_info(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase : Any = HfFileSystem(repo_info=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ )
assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"]
assert hffs.isdir('data' )
assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' )
with open(SCREAMING_SNAKE_CASE__ ) as f:
assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read()
def UpperCamelCase__ ( ):
__lowerCamelCase : str = 'bz2'
# Import module
import datasets.filesystems
# Overwrite protocol and reload
register_implementation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , clobber=SCREAMING_SNAKE_CASE__ )
with pytest.warns(SCREAMING_SNAKE_CASE__ ) as warning_info:
importlib.reload(datasets.filesystems )
assert len(SCREAMING_SNAKE_CASE__ ) == 1
assert (
str(warning_info[0].message )
== f'A filesystem protocol was already set for {protocol} and will be overwritten.'
)
| 230 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
'configuration_instructblip': [
'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InstructBlipConfig',
'InstructBlipQFormerConfig',
'InstructBlipVisionConfig',
],
'processing_instructblip': ['InstructBlipProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'InstructBlipQFormerModel',
'InstructBlipPreTrainedModel',
'InstructBlipForConditionalGeneration',
'InstructBlipVisionModel',
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 230 | 1 |
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
while b:
__magic_name__ , __magic_name__ :List[str] = b, a % b
return a
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
return a if b == 0 else euclidean_gcd_recursive(snake_case, a % b )
def __lowercase ( ):
"""simple docstring"""
print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3, 5 )}''' )
print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5, 3 )}''' )
print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1, 3 )}''' )
print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3, 6 )}''' )
print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6, 3 )}''' )
print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3, 5 )}''' )
print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5, 3 )}''' )
print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1, 3 )}''' )
print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3, 6 )}''' )
print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6, 3 )}''' )
if __name__ == "__main__":
main()
| 0 |
"""simple docstring"""
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class a ( unittest.TestCase ):
def UpperCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict ) -> str:
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) )
for a, b in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , delta=__SCREAMING_SNAKE_CASE )
def UpperCamelCase ( self : List[Any] ) -> int:
lowerCamelCase_ = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 )
def UpperCamelCase ( self : str ) -> Any:
lowerCamelCase_ = None
ops.enable_eager_execution_internal()
lowerCamelCase_ = tf.config.list_physical_devices('CPU' )
if len(__SCREAMING_SNAKE_CASE ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' )
lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
lowerCamelCase_ = GradientAccumulator()
lowerCamelCase_ = tf.Variable([4.0, 3.0] )
lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5e-5 , 10 , 5 )
lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=__SCREAMING_SNAKE_CASE )
def accumulate_on_replica(__SCREAMING_SNAKE_CASE : Union[str, Any] ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any ):
with strategy.scope():
lowerCamelCase_ = strategy.experimental_local_results(__SCREAMING_SNAKE_CASE )
local_variables[0].assign(__SCREAMING_SNAKE_CASE )
local_variables[1].assign(__SCREAMING_SNAKE_CASE )
strategy.run(__SCREAMING_SNAKE_CASE , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(__SCREAMING_SNAKE_CASE )
def _check_local_values(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] ):
lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , __SCREAMING_SNAKE_CASE , tol=1e-2 )
self.assertListAlmostEqual(values[1].value() , __SCREAMING_SNAKE_CASE , tol=1e-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 549 | 0 |
import json
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import numpy as np
import torch
import torchaudio
from packaging import version
from torch import nn
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaProcessor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
a_ : Tuple = True
from torch.cuda.amp import autocast
a_ : int = logging.getLogger(__name__)
def __lowerCAmelCase ( _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : int=None ) -> str:
'''simple docstring'''
return field(default_factory=lambda: default , metadata=_UpperCamelCase )
@dataclass
class UpperCamelCase :
__UpperCamelCase =field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__UpperCamelCase =field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__UpperCamelCase =field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "Whether to freeze the feature extractor layers of the model."} )
__UpperCamelCase =field(
default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} )
__UpperCamelCase =field(
default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} )
__UpperCamelCase =field(
default=0.1 , metadata={
"help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler."
} , )
__UpperCamelCase =field(
default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , )
__UpperCamelCase =field(
default=0.05 , metadata={
"help": (
"Propability of each feature vector along the time axis to be chosen as the start of the vector"
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
"vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``."
)
} , )
__UpperCamelCase =field(default=0.0 , metadata={"help": "The LayerDrop probability."} )
@dataclass
class UpperCamelCase :
__UpperCamelCase =field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
__UpperCamelCase =field(
default="train+validation" , metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
} , )
__UpperCamelCase =field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
__UpperCamelCase =field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "The number of processes to use for the preprocessing."} , )
__UpperCamelCase =field(
default=SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__UpperCamelCase =field(
default=SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
)
} , )
__UpperCamelCase =list_field(
default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , )
@dataclass
class UpperCamelCase :
__UpperCamelCase =42
__UpperCamelCase =True
__UpperCamelCase =None
__UpperCamelCase =None
__UpperCamelCase =None
__UpperCamelCase =None
def __call__( self : Optional[Any] , snake_case__ : List[Dict[str, Union[List[int], torch.Tensor]]] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = [{'input_values': feature['input_values']} for feature in features]
SCREAMING_SNAKE_CASE = [{'input_ids': feature['labels']} for feature in features]
SCREAMING_SNAKE_CASE = self.processor.pad(
snake_case__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
SCREAMING_SNAKE_CASE = self.processor.pad(
labels=snake_case__ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , )
# replace padding with -100 to ignore loss correctly
SCREAMING_SNAKE_CASE = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 )
SCREAMING_SNAKE_CASE = labels
return batch
class UpperCamelCase ( SCREAMING_SNAKE_CASE ):
def UpperCamelCase ( self : List[str] , snake_case__ : nn.Module , snake_case__ : Dict[str, Union[torch.Tensor, Any]] ):
"""simple docstring"""
model.train()
SCREAMING_SNAKE_CASE = self._prepare_inputs(snake_case__ )
if self.use_amp:
with autocast():
SCREAMING_SNAKE_CASE = self.compute_loss(snake_case__ , snake_case__ )
else:
SCREAMING_SNAKE_CASE = self.compute_loss(snake_case__ , snake_case__ )
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
SCREAMING_SNAKE_CASE = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
SCREAMING_SNAKE_CASE = loss.sum() / (inputs['labels'] >= 0).sum()
else:
raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" )
if self.args.gradient_accumulation_steps > 1:
SCREAMING_SNAKE_CASE = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(snake_case__ ).backward()
elif self.use_apex:
with amp.scale_loss(snake_case__ , self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(snake_case__ )
else:
loss.backward()
return loss.detach()
def __lowerCAmelCase ( ) -> Dict:
'''simple docstring'''
SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
SCREAMING_SNAKE_CASE = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('Training/evaluation parameters %s' , _UpperCamelCase )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets:
SCREAMING_SNAKE_CASE = datasets.load_dataset(
'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name )
SCREAMING_SNAKE_CASE = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' )
# Create and save tokenizer
SCREAMING_SNAKE_CASE = f"""[{''.join(data_args.chars_to_ignore )}]"""
def remove_special_characters(_UpperCamelCase : Any ):
SCREAMING_SNAKE_CASE = re.sub(_UpperCamelCase , '' , batch['sentence'] ).lower() + ' '
return batch
SCREAMING_SNAKE_CASE = train_dataset.map(_UpperCamelCase , remove_columns=['sentence'] )
SCREAMING_SNAKE_CASE = eval_dataset.map(_UpperCamelCase , remove_columns=['sentence'] )
def extract_all_chars(_UpperCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = ' '.join(batch['text'] )
SCREAMING_SNAKE_CASE = list(set(_UpperCamelCase ) )
return {"vocab": [vocab], "all_text": [all_text]}
SCREAMING_SNAKE_CASE = train_dataset.map(
_UpperCamelCase , batched=_UpperCamelCase , batch_size=-1 , keep_in_memory=_UpperCamelCase , remove_columns=train_dataset.column_names , )
SCREAMING_SNAKE_CASE = train_dataset.map(
_UpperCamelCase , batched=_UpperCamelCase , batch_size=-1 , keep_in_memory=_UpperCamelCase , remove_columns=eval_dataset.column_names , )
SCREAMING_SNAKE_CASE = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) )
SCREAMING_SNAKE_CASE = {v: k for k, v in enumerate(_UpperCamelCase )}
SCREAMING_SNAKE_CASE = vocab_dict[' ']
del vocab_dict[" "]
SCREAMING_SNAKE_CASE = len(_UpperCamelCase )
SCREAMING_SNAKE_CASE = len(_UpperCamelCase )
with open('vocab.json' , 'w' ) as vocab_file:
json.dump(_UpperCamelCase , _UpperCamelCase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer(
'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , )
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase )
SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase )
SCREAMING_SNAKE_CASE = WavaVecaForCTC.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , )
if data_args.max_train_samples is not None:
SCREAMING_SNAKE_CASE = min(len(_UpperCamelCase ) , data_args.max_train_samples )
SCREAMING_SNAKE_CASE = train_dataset.select(range(_UpperCamelCase ) )
if data_args.max_val_samples is not None:
SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_val_samples ) )
SCREAMING_SNAKE_CASE = torchaudio.transforms.Resample(4_80_00 , 1_60_00 )
# Preprocessing the datasets.
# We need to read the aduio files as arrays and tokenize the targets.
def speech_file_to_array_fn(_UpperCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torchaudio.load(batch['path'] )
SCREAMING_SNAKE_CASE = resampler(_UpperCamelCase ).squeeze().numpy()
SCREAMING_SNAKE_CASE = 1_60_00
SCREAMING_SNAKE_CASE = batch['text']
return batch
SCREAMING_SNAKE_CASE = train_dataset.map(
_UpperCamelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
SCREAMING_SNAKE_CASE = eval_dataset.map(
_UpperCamelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
def prepare_dataset(_UpperCamelCase : Union[str, Any] ):
# check that all files have the correct sampling rate
assert (
len(set(batch['sampling_rate'] ) ) == 1
), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."""
SCREAMING_SNAKE_CASE = processor(
audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] )
batch.update(_UpperCamelCase )
return batch
SCREAMING_SNAKE_CASE = train_dataset.map(
_UpperCamelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , )
SCREAMING_SNAKE_CASE = eval_dataset.map(
_UpperCamelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , )
# Metric
SCREAMING_SNAKE_CASE = datasets.load_metric('wer' )
def compute_metrics(_UpperCamelCase : Dict ):
SCREAMING_SNAKE_CASE = pred.predictions
SCREAMING_SNAKE_CASE = np.argmax(_UpperCamelCase , axis=-1 )
SCREAMING_SNAKE_CASE = processor.tokenizer.pad_token_id
SCREAMING_SNAKE_CASE = processor.batch_decode(_UpperCamelCase )
# we do not want to group tokens when computing the metrics
SCREAMING_SNAKE_CASE = processor.batch_decode(pred.label_ids , group_tokens=_UpperCamelCase )
SCREAMING_SNAKE_CASE = wer_metric.compute(predictions=_UpperCamelCase , references=_UpperCamelCase )
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# Data collator
SCREAMING_SNAKE_CASE = DataCollatorCTCWithPadding(processor=_UpperCamelCase , padding=_UpperCamelCase )
# Initialize our Trainer
SCREAMING_SNAKE_CASE = CTCTrainer(
model=_UpperCamelCase , data_collator=_UpperCamelCase , args=_UpperCamelCase , compute_metrics=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
SCREAMING_SNAKE_CASE = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path ):
SCREAMING_SNAKE_CASE = model_args.model_name_or_path
else:
SCREAMING_SNAKE_CASE = None
# Save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank ):
processor.save_pretrained(training_args.output_dir )
SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=_UpperCamelCase )
trainer.save_model()
SCREAMING_SNAKE_CASE = train_result.metrics
SCREAMING_SNAKE_CASE = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase )
)
SCREAMING_SNAKE_CASE = min(_UpperCamelCase , len(_UpperCamelCase ) )
trainer.log_metrics('train' , _UpperCamelCase )
trainer.save_metrics('train' , _UpperCamelCase )
trainer.save_state()
# Evaluation
SCREAMING_SNAKE_CASE = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
SCREAMING_SNAKE_CASE = trainer.evaluate()
SCREAMING_SNAKE_CASE = data_args.max_val_samples if data_args.max_val_samples is not None else len(_UpperCamelCase )
SCREAMING_SNAKE_CASE = min(_UpperCamelCase , len(_UpperCamelCase ) )
trainer.log_metrics('eval' , _UpperCamelCase )
trainer.save_metrics('eval' , _UpperCamelCase )
return results
if __name__ == "__main__":
main()
| 704 |
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"pipelines_utils",
"0.22.0",
"Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.",
standard_warn=False,
stacklevel=3,
)
| 673 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {'vocab_file': 'spm_char.model'}
__a = {
'vocab_file': {
'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model',
'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model',
'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model',
}
}
__a = {
'microsoft/speecht5_asr': 1_0_2_4,
'microsoft/speecht5_tts': 1_0_2_4,
'microsoft/speecht5_vc': 1_0_2_4,
}
class lowercase__( UpperCAmelCase ):
"""simple docstring"""
a :Dict = VOCAB_FILES_NAMES
a :Dict = PRETRAINED_VOCAB_FILES_MAP
a :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a :str = ['input_ids', 'attention_mask']
def __init__( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any="<s>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Tuple="<pad>" , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> None:
lowercase_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , )
lowercase_ = vocab_file
lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(SCREAMING_SNAKE_CASE_ )
@property
def _lowercase ( self : Optional[Any] ) -> Dict:
return self.sp_model.get_piece_size()
def _lowercase ( self : Optional[int] ) -> List[Any]:
lowercase_ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : int ) -> List[Any]:
lowercase_ = self.__dict__.copy()
lowercase_ = None
return state
def __setstate__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]:
lowercase_ = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
lowercase_ = {}
lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : str ) -> List[str]:
return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]:
return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]:
lowercase_ = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ )
return token
def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[str] ) -> str:
lowercase_ = []
lowercase_ = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token
lowercase_ = []
else:
current_sub_tokens.append(SCREAMING_SNAKE_CASE_ )
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ )
return out_string.strip()
def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict=None ) -> List[int]:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
lowercase_ = [1]
if token_ids_a is None:
return ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones
return ([0] * len(SCREAMING_SNAKE_CASE_ )) + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones
def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase_ = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as fi:
lowercase_ = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE_ )
return (out_vocab_file,)
| 97 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
_A = logging.get_logger()
@dataclass
class A :
__snake_case = 42
__snake_case = field(default_factory=__UpperCAmelCase )
__snake_case = field(default_factory=__UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ):
"""simple docstring"""
lowerCAmelCase_ = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase__, nn.Convad ) or isinstance(UpperCamelCase__, nn.BatchNormad )
if has_not_submodules:
self.traced.append(UpperCamelCase__ )
def __call__( self, UpperCamelCase__ ):
"""simple docstring"""
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(UpperCamelCase__ )
[x.remove() for x in self.handles]
return self
@property
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
return list(filter(lambda UpperCamelCase__ : len(list(x.state_dict().keys() ) ) > 0, self.traced ) )
@dataclass
class A :
__snake_case = 42
__snake_case = 42
__snake_case = 1
__snake_case = field(default_factory=__UpperCAmelCase )
__snake_case = field(default_factory=__UpperCAmelCase )
__snake_case = True
def __call__( self, UpperCamelCase__ ):
"""simple docstring"""
lowerCAmelCase_ = Tracker(self.dest )(UpperCamelCase__ ).parametrized
lowerCAmelCase_ = Tracker(self.src )(UpperCamelCase__ ).parametrized
lowerCAmelCase_ = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.src_skip, UpperCamelCase__ ) )
lowerCAmelCase_ = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.dest_skip, UpperCamelCase__ ) )
if len(UpperCamelCase__ ) != len(UpperCamelCase__ ) and self.raise_if_mismatch:
raise Exception(
f"Numbers of operations are different. Source module has {len(UpperCamelCase__ )} operations while"
f" destination module has {len(UpperCamelCase__ )}." )
for dest_m, src_m in zip(UpperCamelCase__, UpperCamelCase__ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f"Transfered from={src_m} to={dest_m}" )
class A ( nn.Module ):
def __init__( self, UpperCamelCase__ ):
"""simple docstring"""
super().__init__()
lowerCAmelCase_ = []
# - get the stem
feature_blocks.append(('''conv1''', model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith('''block''' ), f"Unexpected layer name {k}"
lowerCAmelCase_ = len(UpperCamelCase__ ) + 1
feature_blocks.append((f"res{block_index}", v) )
lowerCAmelCase_ = nn.ModuleDict(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ):
"""simple docstring"""
return get_trunk_forward_outputs(
UpperCamelCase__, out_feat_keys=UpperCamelCase__, feature_blocks=self._feature_blocks, )
class A ( __UpperCAmelCase ):
def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ):
"""simple docstring"""
lowerCAmelCase_ = x.split('''-''' )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self, UpperCamelCase__ ):
"""simple docstring"""
if x not in self:
lowerCAmelCase_ = self.convert_name_to_timm(UpperCamelCase__ )
lowerCAmelCase_ = partial(lambda: (timm.create_model(UpperCamelCase__, pretrained=UpperCamelCase__ ).eval(), None) )
else:
lowerCAmelCase_ = super().__getitem__(UpperCamelCase__ )
return val
class A ( __UpperCAmelCase ):
def __getitem__( self, UpperCamelCase__ ):
"""simple docstring"""
if "seer" in x and "in1k" not in x:
lowerCAmelCase_ = RegNetModel
else:
lowerCAmelCase_ = RegNetForImageClassification
return val
def __UpperCamelCase ( _A , _A , _A ):
for from_key, to_key in keys:
lowerCAmelCase_ = from_state_dict[from_key].clone()
print(f"Copied key={from_key} to={to_key}" )
return to_state_dict
def __UpperCamelCase ( _A , _A , _A , _A , _A , _A = True , ):
print(f"Converting {name}..." )
with torch.no_grad():
lowerCAmelCase_ , lowerCAmelCase_ = from_model_func()
lowerCAmelCase_ = our_model_func(_A ).eval()
lowerCAmelCase_ = ModuleTransfer(src=_A , dest=_A , raise_if_mismatch=_A )
lowerCAmelCase_ = torch.randn((1, 3, 224, 224) )
module_transfer(_A )
if from_state_dict is not None:
lowerCAmelCase_ = []
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
lowerCAmelCase_ = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')]
lowerCAmelCase_ = manually_copy_vissl_head(_A , our_model.state_dict() , _A )
our_model.load_state_dict(_A )
lowerCAmelCase_ = our_model(_A , output_hidden_states=_A )
lowerCAmelCase_ = (
our_outputs.logits if isinstance(_A , _A ) else our_outputs.last_hidden_state
)
lowerCAmelCase_ = from_model(_A )
lowerCAmelCase_ = from_output[-1] if type(_A ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
lowerCAmelCase_ = our_outputs.hidden_states[-1]
assert torch.allclose(_A , _A ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=_A , )
lowerCAmelCase_ = 224 if '''seer''' not in name else 384
# we can use the convnext one
lowerCAmelCase_ = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=_A )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=_A , )
print(f"Pushed {name}" )
def __UpperCamelCase ( _A , _A = None , _A = True ):
lowerCAmelCase_ = '''imagenet-1k-id2label.json'''
lowerCAmelCase_ = 1000
lowerCAmelCase_ = (1, num_labels)
lowerCAmelCase_ = '''huggingface/label-files'''
lowerCAmelCase_ = num_labels
lowerCAmelCase_ = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='''dataset''' ) ) , '''r''' ) )
lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()}
lowerCAmelCase_ = idalabel
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ = partial(_A , num_labels=_A , idalabel=_A , labelaid=_A )
lowerCAmelCase_ = {
'''regnet-x-002''': ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ),
'''regnet-x-004''': ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ),
'''regnet-x-006''': ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ),
'''regnet-x-008''': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ),
'''regnet-x-016''': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ),
'''regnet-x-032''': ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type='''x''' ),
'''regnet-x-040''': ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type='''x''' ),
'''regnet-x-064''': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type='''x''' ),
'''regnet-x-080''': ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type='''x''' ),
'''regnet-x-120''': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type='''x''' ),
'''regnet-x-160''': ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type='''x''' ),
'''regnet-x-320''': ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type='''x''' ),
# y variant
'''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ),
'''regnet-y-004''': ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ),
'''regnet-y-006''': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ),
'''regnet-y-008''': ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ),
'''regnet-y-016''': ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ),
'''regnet-y-032''': ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ),
'''regnet-y-040''': ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ),
'''regnet-y-064''': ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ),
'''regnet-y-080''': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ),
'''regnet-y-120''': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ),
'''regnet-y-160''': ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ),
'''regnet-y-320''': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
'''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
'''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ),
'''regnet-y-1280-seer''': RegNetConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ),
'''regnet-y-2560-seer''': RegNetConfig(
depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ),
'''regnet-y-10b-seer''': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ),
# finetuned on imagenet
'''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
'''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ),
'''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ),
'''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ),
'''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ),
}
lowerCAmelCase_ = NameToOurModelFuncMap()
lowerCAmelCase_ = NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(_A , _A ) -> Tuple[nn.Module, Dict]:
lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A , model_dir=str(_A ) , map_location='''cpu''' )
lowerCAmelCase_ = model_func()
# check if we have a head, if yes add it
lowerCAmelCase_ = files['''classy_state_dict''']['''base_model''']['''model''']
lowerCAmelCase_ = model_state_dict['''trunk''']
model.load_state_dict(_A )
return model.eval(), model_state_dict["heads"]
# pretrained
lowerCAmelCase_ = partial(
_A , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
lowerCAmelCase_ = partial(
_A , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
lowerCAmelCase_ = partial(
_A , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
lowerCAmelCase_ = partial(
_A , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , )
# IN1K finetuned
lowerCAmelCase_ = partial(
_A , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
lowerCAmelCase_ = partial(
_A , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
lowerCAmelCase_ = partial(
_A , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
lowerCAmelCase_ = partial(
_A , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , )
if model_name:
convert_weight_and_push(
_A , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _A , _A , )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
_A , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _A , _A , _A , )
return config, expected_shape
if __name__ == "__main__":
_A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default=None,
type=str,
help=(
'''The name of the model you wish to convert, it must be one of the supported regnet* architecture,'''
''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=Path,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
default=True,
type=bool,
required=False,
help='''If True, push model and image processor to the hub.''',
)
_A = parser.parse_args()
_A = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 431 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
class snake_case ( UpperCAmelCase_ ):
'''simple docstring'''
_A : Union[str, Any] = 'bert-generation'
def __init__( self : str , __lowercase : List[str]=50_358 , __lowercase : str=1_024 , __lowercase : str=24 , __lowercase : Any=16 , __lowercase : Optional[int]=4_096 , __lowercase : Optional[int]="gelu" , __lowercase : Optional[Any]=0.1 , __lowercase : Optional[Any]=0.1 , __lowercase : Optional[Any]=512 , __lowercase : List[Any]=0.0_2 , __lowercase : List[str]=1e-12 , __lowercase : List[Any]=0 , __lowercase : int=2 , __lowercase : int=1 , __lowercase : List[Any]="absolute" , __lowercase : Tuple=True , **__lowercase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : List[Any] = hidden_size
__UpperCAmelCase : Any = num_hidden_layers
__UpperCAmelCase : List[Any] = num_attention_heads
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : Union[str, Any] = intermediate_size
__UpperCAmelCase : str = hidden_dropout_prob
__UpperCAmelCase : Any = attention_probs_dropout_prob
__UpperCAmelCase : Union[str, Any] = max_position_embeddings
__UpperCAmelCase : str = initializer_range
__UpperCAmelCase : Tuple = layer_norm_eps
__UpperCAmelCase : Dict = position_embedding_type
__UpperCAmelCase : int = use_cache
| 707 |
"""simple docstring"""
def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Tuple:
"""simple docstring"""
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_=0 ) ->Dict:
"""simple docstring"""
return sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[column] )
def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=float('''inf''' ) ) ->str:
"""simple docstring"""
for i in range(points_counts - 1 ):
for j in range(i + 1 , UpperCAmelCase_ ):
__UpperCAmelCase : List[Any] = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCAmelCase : Tuple = current_dis
return min_dis
def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=float('''inf''' ) ) ->str:
"""simple docstring"""
for i in range(min(6 , points_counts - 1 ) , UpperCAmelCase_ ):
for j in range(max(0 , i - 6 ) , UpperCAmelCase_ ):
__UpperCAmelCase : Dict = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCAmelCase : Tuple = current_dis
return min_dis
def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Any:
"""simple docstring"""
if points_counts <= 3:
return dis_between_closest_pair(UpperCAmelCase_ , UpperCAmelCase_ )
# recursion
__UpperCAmelCase : Any = points_counts // 2
__UpperCAmelCase : Any = closest_pair_of_points_sqr(
UpperCAmelCase_ , points_sorted_on_y[:mid] , UpperCAmelCase_ )
__UpperCAmelCase : Tuple = closest_pair_of_points_sqr(
UpperCAmelCase_ , points_sorted_on_y[mid:] , points_counts - mid )
__UpperCAmelCase : List[Any] = min(UpperCAmelCase_ , UpperCAmelCase_ )
__UpperCAmelCase : int = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(UpperCAmelCase_ )
__UpperCAmelCase : Union[str, Any] = dis_between_closest_in_strip(
UpperCAmelCase_ , len(UpperCAmelCase_ ) , UpperCAmelCase_ )
return min(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]:
"""simple docstring"""
__UpperCAmelCase : str = column_based_sort(UpperCAmelCase_ , column=0 )
__UpperCAmelCase : Any = column_based_sort(UpperCAmelCase_ , column=1 )
return (
closest_pair_of_points_sqr(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
) ** 0.5
if __name__ == "__main__":
lowercase__ :Optional[Any] = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)]
print('Distance:', closest_pair_of_points(points, len(points)))
| 374 | 0 |
'''simple docstring'''
from PIL import Image
def _lowerCamelCase (__lowerCamelCase : Image ) -> Image:
a__ , a__ = image.size
a__ = 0
a__ = image.load()
for i in range(__lowerCamelCase ):
for j in range(__lowerCamelCase ):
a__ = pixels[j, i]
mean += pixel
mean //= width * height
for j in range(__lowerCamelCase ):
for i in range(__lowerCamelCase ):
a__ = 255 if pixels[i, j] > mean else 0
return image
if __name__ == "__main__":
lowerCAmelCase_ : Dict = mean_threshold(Image.open("path_to_image").convert("L"))
image.save("output_image_path")
| 489 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase__ :
def __init__( self : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : Union[str, Any]=3_2 , lowerCamelCase : str=3 , lowerCamelCase : Optional[int]=1_0 , lowerCamelCase : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCamelCase : str=[1, 1, 2, 1] , lowerCamelCase : List[Any]=True , lowerCamelCase : Tuple=True , lowerCamelCase : Any="relu" , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : Any=None , ):
'''simple docstring'''
a__ = parent
a__ = batch_size
a__ = image_size
a__ = num_channels
a__ = embeddings_size
a__ = hidden_sizes
a__ = depths
a__ = is_training
a__ = use_labels
a__ = hidden_act
a__ = num_labels
a__ = scope
a__ = len(lowerCamelCase )
def __a ( self : Dict ):
'''simple docstring'''
a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a__ = None
if self.use_labels:
a__ = ids_tensor([self.batch_size] , self.num_labels )
a__ = self.get_config()
return config, pixel_values, labels
def __a ( self : Tuple ):
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def __a ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Dict ):
'''simple docstring'''
a__ = TFRegNetModel(config=lowerCamelCase )
a__ = model(lowerCamelCase , training=lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def __a ( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : str ):
'''simple docstring'''
a__ = self.num_labels
a__ = TFRegNetForImageClassification(lowerCamelCase )
a__ = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self : Dict ):
'''simple docstring'''
a__ = self.prepare_config_and_inputs()
a__ , a__ , a__ = config_and_inputs
a__ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase__ ( __lowerCAmelCase ,__lowerCAmelCase ,unittest.TestCase ):
lowerCAmelCase__ : Dict = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
lowerCAmelCase__ : int = (
{"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification}
if is_tf_available()
else {}
)
lowerCAmelCase__ : Dict = False
lowerCAmelCase__ : Dict = False
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : Union[str, Any] = False
def __a ( self : Dict ):
'''simple docstring'''
a__ = TFRegNetModelTester(self )
a__ = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return
@unittest.skip(reason="RegNet does not use inputs_embeds" )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , )
@slow
def __a ( self : Union[str, Any] ):
'''simple docstring'''
super().test_keras_fit()
@unittest.skip(reason="RegNet does not support input and output embeddings" )
def __a ( self : int ):
'''simple docstring'''
pass
def __a ( self : Union[str, Any] ):
'''simple docstring'''
a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a__ = model_class(lowerCamelCase )
a__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a__ = [*signature.parameters.keys()]
a__ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCamelCase )
def __a ( self : Optional[Any] ):
'''simple docstring'''
a__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase )
def __a ( self : Dict ):
'''simple docstring'''
def check_hidden_states_output(lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : List[Any] ):
a__ = model_class(lowerCamelCase )
a__ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) , training=lowerCamelCase )
a__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
a__ = self.model_tester.num_stages
self.assertEqual(len(lowerCamelCase ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common()
a__ = ["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
a__ = layer_type
a__ = True
check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a__ = True
check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase )
def __a ( self : List[Any] ):
'''simple docstring'''
a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Any={} ):
a__ = model(lowerCamelCase , return_dict=lowerCamelCase , **lowerCamelCase )
a__ = model(lowerCamelCase , return_dict=lowerCamelCase , **lowerCamelCase ).to_tuple()
def recursive_check(lowerCamelCase : str , lowerCamelCase : Dict ):
if isinstance(lowerCamelCase , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(lowerCamelCase , lowerCamelCase ):
recursive_check(lowerCamelCase , lowerCamelCase )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(lowerCamelCase , lowerCamelCase ) ) , msg=(
"Tuple and dict output are not equal. Difference:"
F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}'''
) , )
recursive_check(lowerCamelCase , lowerCamelCase )
for model_class in self.all_model_classes:
a__ = model_class(lowerCamelCase )
a__ = self._prepare_for_class(lowerCamelCase , lowerCamelCase )
a__ = self._prepare_for_class(lowerCamelCase , lowerCamelCase )
check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase )
a__ = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase )
a__ = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase )
check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase )
a__ = self._prepare_for_class(lowerCamelCase , lowerCamelCase )
a__ = self._prepare_for_class(lowerCamelCase , lowerCamelCase )
check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase , {"output_hidden_states": True} )
a__ = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase )
a__ = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase )
check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase , {"output_hidden_states": True} )
def __a ( self : Optional[int] ):
'''simple docstring'''
a__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase )
@slow
def __a ( self : Union[str, Any] ):
'''simple docstring'''
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a__ = TFRegNetModel.from_pretrained(lowerCamelCase )
self.assertIsNotNone(lowerCamelCase )
def _lowerCamelCase () -> List[Any]:
a__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
@cached_property
def __a ( self : Dict ):
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __a ( self : Tuple ):
'''simple docstring'''
a__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
a__ = self.default_image_processor
a__ = prepare_img()
a__ = image_processor(images=lowerCamelCase , return_tensors="tf" )
# forward pass
a__ = model(**lowerCamelCase , training=lowerCamelCase )
# verify the logits
a__ = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , lowerCamelCase )
a__ = tf.constant([-0.4180, -1.5051, -3.4836] )
tf.debugging.assert_near(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 )
| 489 | 1 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class __lowercase:
"""simple docstring"""
UpperCamelCase_ = MBartConfig
UpperCamelCase_ = {}
UpperCamelCase_ = '''gelu'''
def __init__( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any]=13 , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : List[str]=99 , _lowerCAmelCase : int=32 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Any=4 , _lowerCAmelCase : Dict=37 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[str]=20 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : int=0 , ) -> Tuple:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = eos_token_id
_lowerCAmelCase = pad_token_id
_lowerCAmelCase = bos_token_id
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Union[str, Any]:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_lowerCAmelCase = prepare_mbart_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]:
_lowerCAmelCase = TFMBartModel(config=_lowerCAmelCase ).get_decoder()
_lowerCAmelCase = inputs_dict['input_ids']
_lowerCAmelCase = input_ids[:1, :]
_lowerCAmelCase = inputs_dict['attention_mask'][:1, :]
_lowerCAmelCase = inputs_dict['head_mask']
_lowerCAmelCase = 1
# first forward pass
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase )
_lowerCAmelCase , _lowerCAmelCase = outputs.to_tuple()
_lowerCAmelCase = past_key_values[1]
def _a ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , ):
"""simple docstring"""
if attention_mask is None:
_lowerCAmelCase = tf.cast(tf.math.not_equal(__SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
_lowerCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
_lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __lowercase( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
UpperCamelCase_ = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
UpperCamelCase_ = (
{
'''conversational''': TFMBartForConditionalGeneration,
'''feature-extraction''': TFMBartModel,
'''summarization''': TFMBartForConditionalGeneration,
'''text2text-generation''': TFMBartForConditionalGeneration,
'''translation''': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
UpperCamelCase_ = True
UpperCamelCase_ = False
UpperCamelCase_ = False
def SCREAMING_SNAKE_CASE_ ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Dict ) -> Tuple:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[Any]:
_lowerCAmelCase = TFMBartModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase )
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class __lowercase( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = [
''' UN Chief Says There Is No Military Solution in Syria''',
]
UpperCamelCase_ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
]
UpperCamelCase_ = '''facebook/mbart-large-en-ro'''
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str:
_lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def SCREAMING_SNAKE_CASE_ ( self : Dict , **_lowerCAmelCase : Union[str, Any] ) -> Any:
_lowerCAmelCase = self.translate_src_text(**_lowerCAmelCase )
self.assertListEqual(self.expected_text , _lowerCAmelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any , **_lowerCAmelCase : List[str] ) -> List[str]:
_lowerCAmelCase = self.tokenizer(self.src_text , **_lowerCAmelCase , return_tensors='tf' )
_lowerCAmelCase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
_lowerCAmelCase = self.tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
return generated_words
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
self._assert_generated_batch_equal_expected()
| 704 |
from typing import Dict
import numpy as np
import torch
from . import residue_constants as rc
from .tensor_utils import tensor_tree_map, tree_map
def _a ( __SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ):
"""simple docstring"""
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
for rt in rc.restypes:
_lowerCAmelCase = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]]
restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] )
_lowerCAmelCase = {name: i for i, name in enumerate(__SCREAMING_SNAKE_CASE )}
restype_atomaa_to_atomaa_list.append(
[(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] )
restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] )
# Add dummy mapping for restype 'UNK'
restype_atomaa_to_atomaa_list.append([0] * 14 )
restype_atomaa_to_atomaa_list.append([0] * 37 )
restype_atomaa_mask_list.append([0.0] * 14 )
_lowerCAmelCase = torch.tensor(
__SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['aatype'].device , )
_lowerCAmelCase = torch.tensor(
__SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['aatype'].device , )
_lowerCAmelCase = torch.tensor(
__SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=protein['aatype'].device , )
_lowerCAmelCase = protein['aatype'].to(torch.long )
# create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein
_lowerCAmelCase = restype_atomaa_to_atomaa[protein_aatype]
_lowerCAmelCase = restype_atomaa_mask[protein_aatype]
_lowerCAmelCase = residx_atomaa_mask
_lowerCAmelCase = residx_atomaa_to_atomaa.long()
# create the gather indices for mapping back
_lowerCAmelCase = restype_atomaa_to_atomaa[protein_aatype]
_lowerCAmelCase = residx_atomaa_to_atomaa.long()
# create the corresponding mask
_lowerCAmelCase = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['aatype'].device )
for restype, restype_letter in enumerate(rc.restypes ):
_lowerCAmelCase = rc.restype_atoa[restype_letter]
_lowerCAmelCase = rc.residue_atoms[restype_name]
for atom_name in atom_names:
_lowerCAmelCase = rc.atom_order[atom_name]
_lowerCAmelCase = 1
_lowerCAmelCase = restype_atomaa_mask[protein_aatype]
_lowerCAmelCase = residx_atomaa_mask
return protein
def _a ( __SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ):
"""simple docstring"""
_lowerCAmelCase = tree_map(lambda __SCREAMING_SNAKE_CASE : torch.tensor(__SCREAMING_SNAKE_CASE , device=batch['aatype'].device ) , __SCREAMING_SNAKE_CASE , np.ndarray )
_lowerCAmelCase = tensor_tree_map(lambda __SCREAMING_SNAKE_CASE : np.array(__SCREAMING_SNAKE_CASE ) , make_atomaa_masks(__SCREAMING_SNAKE_CASE ) )
return out
| 585 | 0 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
a_ : Optional[Any] = logging.get_logger(__name__)
a_ : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
a_ : int = {
"tokenizer_file": {
"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json",
},
}
a_ : int = {
"gpt-neox-20b": 2048,
}
class UpperCamelCase ( SCREAMING_SNAKE_CASE ):
__UpperCamelCase =VOCAB_FILES_NAMES
__UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase =["input_ids", "attention_mask"]
def __init__( self : Dict , snake_case__ : Optional[int]=None , snake_case__ : Any=None , snake_case__ : str=None , snake_case__ : int="<|endoftext|>" , snake_case__ : Tuple="<|endoftext|>" , snake_case__ : str="<|endoftext|>" , snake_case__ : Any=False , **snake_case__ : int , ):
"""simple docstring"""
super().__init__(
snake_case__ , snake_case__ , tokenizer_file=snake_case__ , unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , )
SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) )
SCREAMING_SNAKE_CASE = add_prefix_space
SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ )
SCREAMING_SNAKE_CASE = add_prefix_space
def UpperCamelCase ( self : Optional[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ )
return tuple(snake_case__ )
def UpperCamelCase ( self : Optional[int] , snake_case__ : "Conversation" ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(snake_case__ , add_special_tokens=snake_case__ ) + [self.eos_token_id] )
if len(snake_case__ ) > self.model_max_length:
SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
return input_ids
| 439 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCamelCase ( self : Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = 3
SCREAMING_SNAKE_CASE = (3_2, 3_2)
SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ )
return image
@property
def UpperCamelCase ( self : List[Any] ):
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , )
return model
@property
def UpperCamelCase ( self : str ):
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def UpperCamelCase ( self : List[Any] ):
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(snake_case__ )
@property
def UpperCamelCase ( self : Dict ):
"""simple docstring"""
def extract(*snake_case__ : List[Any] , **snake_case__ : Union[str, Any] ):
class UpperCamelCase :
def __init__( self : str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = torch.ones([0] )
def UpperCamelCase ( self : Any , snake_case__ : List[str] ):
"""simple docstring"""
self.pixel_values.to(snake_case__ )
return self
return Out()
return extract
def UpperCamelCase ( self : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE = self.dummy_cond_unet
SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ )
SCREAMING_SNAKE_CASE = self.dummy_vae
SCREAMING_SNAKE_CASE = self.dummy_text_encoder
SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
SCREAMING_SNAKE_CASE = 7_7
SCREAMING_SNAKE_CASE = self.dummy_image.to(snake_case__ )
SCREAMING_SNAKE_CASE = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline(
unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case__ )
SCREAMING_SNAKE_CASE = alt_pipe.to(snake_case__ )
alt_pipe.set_progress_bar_config(disable=snake_case__ )
SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger'
SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(0 )
SCREAMING_SNAKE_CASE = alt_pipe(
[prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=snake_case__ , )
SCREAMING_SNAKE_CASE = output.images
SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(0 )
SCREAMING_SNAKE_CASE = alt_pipe(
[prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=snake_case__ , return_dict=snake_case__ , )[0]
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
SCREAMING_SNAKE_CASE = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def UpperCamelCase ( self : str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = self.dummy_cond_unet
SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ )
SCREAMING_SNAKE_CASE = self.dummy_vae
SCREAMING_SNAKE_CASE = self.dummy_text_encoder
SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
SCREAMING_SNAKE_CASE = 7_7
SCREAMING_SNAKE_CASE = self.dummy_image.to(snake_case__ )
# put models in fp16
SCREAMING_SNAKE_CASE = unet.half()
SCREAMING_SNAKE_CASE = vae.half()
SCREAMING_SNAKE_CASE = bert.half()
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline(
unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case__ )
SCREAMING_SNAKE_CASE = alt_pipe.to(snake_case__ )
alt_pipe.set_progress_bar_config(disable=snake_case__ )
SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger'
SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = alt_pipe(
[prompt] , generator=snake_case__ , num_inference_steps=2 , output_type='np' , image=snake_case__ , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def UpperCamelCase ( self : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
# resize to resolution that is divisible by 8 but not 16 or 32
SCREAMING_SNAKE_CASE = init_image.resize((7_6_0, 5_0_4) )
SCREAMING_SNAKE_CASE = 'BAAI/AltDiffusion'
SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline.from_pretrained(
snake_case__ , safety_checker=snake_case__ , )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = pipe(
prompt=snake_case__ , image=snake_case__ , strength=0.75 , guidance_scale=7.5 , generator=snake_case__ , output_type='np' , )
SCREAMING_SNAKE_CASE = output.images[0]
SCREAMING_SNAKE_CASE = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
SCREAMING_SNAKE_CASE = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase ( self : int ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase ( self : List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
SCREAMING_SNAKE_CASE = init_image.resize((7_6_8, 5_1_2) )
SCREAMING_SNAKE_CASE = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' )
SCREAMING_SNAKE_CASE = 'BAAI/AltDiffusion'
SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline.from_pretrained(
snake_case__ , safety_checker=snake_case__ , )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = pipe(
prompt=snake_case__ , image=snake_case__ , strength=0.75 , guidance_scale=7.5 , generator=snake_case__ , output_type='np' , )
SCREAMING_SNAKE_CASE = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 439 | 1 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( __lowerCamelCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = (DEISMultistepScheduler,)
__UpperCAmelCase : List[str] = (("num_inference_steps", 25),)
def _UpperCamelCase ( self , **a_ ):
lowerCamelCase_ : Union[str, Any] = {
"num_train_timesteps": 1000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"solver_order": 2,
}
config.update(**a_ )
return config
def _UpperCamelCase ( self , a_=0 , **a_ ):
lowerCamelCase_ : Any = dict(self.forward_default_kwargs )
lowerCamelCase_ : Any = kwargs.pop("num_inference_steps" , a_ )
lowerCamelCase_ : Dict = self.dummy_sample
lowerCamelCase_ : str = 0.1 * sample
lowerCamelCase_ : int = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
lowerCamelCase_ : List[Any] = self.get_scheduler_config(**a_ )
lowerCamelCase_ : List[Any] = scheduler_class(**a_ )
scheduler.set_timesteps(a_ )
# copy over dummy past residuals
lowerCamelCase_ : List[str] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(a_ )
lowerCamelCase_ : Tuple = scheduler_class.from_pretrained(a_ )
new_scheduler.set_timesteps(a_ )
# copy over dummy past residuals
lowerCamelCase_ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCamelCase_ ,lowerCamelCase_ : Optional[Any] = sample, sample
for t in range(a_ , time_step + scheduler.config.solver_order + 1 ):
lowerCamelCase_ : List[str] = scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample
lowerCamelCase_ : Any = new_scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _UpperCamelCase ( self ):
pass
def _UpperCamelCase ( self , a_=0 , **a_ ):
lowerCamelCase_ : int = dict(self.forward_default_kwargs )
lowerCamelCase_ : Tuple = kwargs.pop("num_inference_steps" , a_ )
lowerCamelCase_ : Union[str, Any] = self.dummy_sample
lowerCamelCase_ : Tuple = 0.1 * sample
lowerCamelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
lowerCamelCase_ : Tuple = self.get_scheduler_config()
lowerCamelCase_ : List[Any] = scheduler_class(**a_ )
scheduler.set_timesteps(a_ )
# copy over dummy past residuals (must be after setting timesteps)
lowerCamelCase_ : Tuple = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(a_ )
lowerCamelCase_ : Optional[Any] = scheduler_class.from_pretrained(a_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(a_ )
# copy over dummy past residual (must be after setting timesteps)
lowerCamelCase_ : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCamelCase_ : Optional[Any] = scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample
lowerCamelCase_ : List[Any] = new_scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _UpperCamelCase ( self , a_=None , **a_ ):
if scheduler is None:
lowerCamelCase_ : Dict = self.scheduler_classes[0]
lowerCamelCase_ : str = self.get_scheduler_config(**a_ )
lowerCamelCase_ : Union[str, Any] = scheduler_class(**a_ )
lowerCamelCase_ : List[str] = self.scheduler_classes[0]
lowerCamelCase_ : List[Any] = self.get_scheduler_config(**a_ )
lowerCamelCase_ : List[Any] = scheduler_class(**a_ )
lowerCamelCase_ : Optional[int] = 10
lowerCamelCase_ : Union[str, Any] = self.dummy_model()
lowerCamelCase_ : Any = self.dummy_sample_deter
scheduler.set_timesteps(a_ )
for i, t in enumerate(scheduler.timesteps ):
lowerCamelCase_ : Optional[Any] = model(a_ , a_ )
lowerCamelCase_ : Optional[int] = scheduler.step(a_ , a_ , a_ ).prev_sample
return sample
def _UpperCamelCase ( self ):
lowerCamelCase_ : List[str] = dict(self.forward_default_kwargs )
lowerCamelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , a_ )
for scheduler_class in self.scheduler_classes:
lowerCamelCase_ : Any = self.get_scheduler_config()
lowerCamelCase_ : Any = scheduler_class(**a_ )
lowerCamelCase_ : str = self.dummy_sample
lowerCamelCase_ : int = 0.1 * sample
if num_inference_steps is not None and hasattr(a_ , "set_timesteps" ):
scheduler.set_timesteps(a_ )
elif num_inference_steps is not None and not hasattr(a_ , "set_timesteps" ):
lowerCamelCase_ : Optional[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowerCamelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10]
lowerCamelCase_ : Dict = dummy_past_residuals[: scheduler.config.solver_order]
lowerCamelCase_ : Optional[Any] = scheduler.timesteps[5]
lowerCamelCase_ : str = scheduler.timesteps[6]
lowerCamelCase_ : List[Any] = scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample
lowerCamelCase_ : Optional[int] = scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def _UpperCamelCase ( self ):
lowerCamelCase_ : List[str] = DEISMultistepScheduler(**self.get_scheduler_config() )
lowerCamelCase_ : int = self.full_loop(scheduler=a_ )
lowerCamelCase_ : Union[str, Any] = torch.mean(torch.abs(a_ ) )
assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3
lowerCamelCase_ : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config )
lowerCamelCase_ : Optional[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config )
lowerCamelCase_ : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config )
lowerCamelCase_ : List[str] = DEISMultistepScheduler.from_config(scheduler.config )
lowerCamelCase_ : Tuple = self.full_loop(scheduler=a_ )
lowerCamelCase_ : Union[str, Any] = torch.mean(torch.abs(a_ ) )
assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3
def _UpperCamelCase ( self ):
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=a_ )
def _UpperCamelCase ( self ):
self.check_over_configs(thresholding=a_ )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=a_ , prediction_type=a_ , sample_max_value=a_ , algorithm_type="deis" , solver_order=a_ , solver_type=a_ , )
def _UpperCamelCase ( self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=a_ )
def _UpperCamelCase ( self ):
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=a_ , solver_type=a_ , prediction_type=a_ , algorithm_type=a_ , )
lowerCamelCase_ : Tuple = self.full_loop(
solver_order=a_ , solver_type=a_ , prediction_type=a_ , algorithm_type=a_ , )
assert not torch.isnan(a_ ).any(), "Samples have nan numbers"
def _UpperCamelCase ( self ):
self.check_over_configs(lower_order_final=a_ )
self.check_over_configs(lower_order_final=a_ )
def _UpperCamelCase ( self ):
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=a_ , time_step=0 )
def _UpperCamelCase ( self ):
lowerCamelCase_ : Tuple = self.full_loop()
lowerCamelCase_ : str = torch.mean(torch.abs(a_ ) )
assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3
def _UpperCamelCase ( self ):
lowerCamelCase_ : str = self.full_loop(prediction_type="v_prediction" )
lowerCamelCase_ : str = torch.mean(torch.abs(a_ ) )
assert abs(result_mean.item() - 0.0_91 ) < 1E-3
def _UpperCamelCase ( self ):
lowerCamelCase_ : Optional[Any] = self.scheduler_classes[0]
lowerCamelCase_ : Optional[int] = self.get_scheduler_config(thresholding=a_ , dynamic_thresholding_ratio=0 )
lowerCamelCase_ : Dict = scheduler_class(**a_ )
lowerCamelCase_ : List[str] = 10
lowerCamelCase_ : int = self.dummy_model()
lowerCamelCase_ : Optional[Any] = self.dummy_sample_deter.half()
scheduler.set_timesteps(a_ )
for i, t in enumerate(scheduler.timesteps ):
lowerCamelCase_ : int = model(a_ , a_ )
lowerCamelCase_ : Union[str, Any] = scheduler.step(a_ , a_ , a_ ).prev_sample
assert sample.dtype == torch.floataa
| 706 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( __lowerCamelCase ):
"""simple docstring"""
__UpperCAmelCase : Dict = '''ClapFeatureExtractor'''
__UpperCAmelCase : List[str] = ('''RobertaTokenizer''', '''RobertaTokenizerFast''')
def __init__( self , a_ , a_ ):
super().__init__(a_ , a_ )
def __call__( self , a_=None , a_=None , a_=None , **a_ ):
lowerCamelCase_ : Any = kwargs.pop("sampling_rate" , a_ )
if text is None and audios is None:
raise ValueError("You have to specify either text or audios. Both cannot be none." )
if text is not None:
lowerCamelCase_ : Any = self.tokenizer(a_ , return_tensors=a_ , **a_ )
if audios is not None:
lowerCamelCase_ : List[str] = self.feature_extractor(
a_ , sampling_rate=a_ , return_tensors=a_ , **a_ )
if text is not None and audios is not None:
lowerCamelCase_ : List[str] = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ )
def _UpperCamelCase ( self , *a_ , **a_ ):
return self.tokenizer.batch_decode(*a_ , **a_ )
def _UpperCamelCase ( self , *a_ , **a_ ):
return self.tokenizer.decode(*a_ , **a_ )
@property
def _UpperCamelCase ( self ):
lowerCamelCase_ : int = self.tokenizer.model_input_names
lowerCamelCase_ : Dict = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 73 | 0 |
"""simple docstring"""
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
__lowerCamelCase = logging.getLogger()
def a ( ):
'''simple docstring'''
UpperCAmelCase_ :Any = argparse.ArgumentParser()
parser.add_argument('''-f''' )
UpperCAmelCase_ :Dict = parser.parse_args()
return args.f
class _snake_case ( A__ ):
'''simple docstring'''
def snake_case_ ( self : List[str] ):
UpperCAmelCase_ :int = logging.StreamHandler(sys.stdout )
logger.addHandler(snake_case )
def snake_case_ ( self : Tuple , snake_case : Dict ):
UpperCAmelCase_ :int = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , '''run_glue_deebert.py''' )
with patch.object(snake_case , '''argv''' , snake_case ):
UpperCAmelCase_ :List[str] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(snake_case , 0.666 )
@slow
@require_torch_non_multi_gpu
def snake_case_ ( self : Optional[Any] ):
UpperCAmelCase_ :Optional[int] = '''
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
'''.split()
self.run_and_check(snake_case )
UpperCAmelCase_ :Tuple = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(snake_case )
UpperCAmelCase_ :str = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(snake_case )
| 608 |
"""simple docstring"""
import socket
def a ( ):
'''simple docstring'''
UpperCAmelCase_ :Union[str, Any] = socket.socket(socket.AF_INET, socket.SOCK_STREAM )
UpperCAmelCase_ :int = socket.gethostname()
UpperCAmelCase_ :List[Any] = 12312
sock.connect((host, port) )
sock.send(b'''Hello server!''' )
with open('''Received_file''', '''wb''' ) as out_file:
print('''File opened''' )
print('''Receiving data...''' )
while True:
UpperCAmelCase_ :int = sock.recv(1024 )
if not data:
break
out_file.write(__snake_case )
print('''Successfully received the file''' )
sock.close()
print('''Connection closed''' )
if __name__ == "__main__":
main()
| 608 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__lowerCamelCase : str = logging.get_logger(__name__)
def UpperCAmelCase_ ( lowerCAmelCase_ ):
"""simple docstring"""
if isinstance(lowerCAmelCase_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase_ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase_ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class UpperCAmelCase ( _lowercase ):
UpperCAmelCase : int = ['''pixel_values''']
def __init__(self : Dict , A__ : bool = True , A__ : Dict[str, int] = None , A__ : PILImageResampling = PILImageResampling.BILINEAR , A__ : bool = True , A__ : Dict[str, int] = None , A__ : bool = True , A__ : Union[int, float] = 1 / 2_5_5 , A__ : bool = True , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[float, List[float]]] = None , **A__ : Any , ) -> None:
super().__init__(**A__ )
lowercase = size if size is not None else {"shortest_edge": 2_2_4}
lowercase = get_size_dict(A__ , default_to_square=A__ )
lowercase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4}
lowercase = get_size_dict(A__ , param_name="crop_size" )
lowercase = do_resize
lowercase = size
lowercase = do_center_crop
lowercase = crop_size
lowercase = resample
lowercase = do_rescale
lowercase = rescale_factor
lowercase = do_normalize
lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase__ (self : Optional[Any] , A__ : np.ndarray , A__ : Dict[str, int] , A__ : PILImageResampling = PILImageResampling.BILINEAR , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Optional[int] , ) -> np.ndarray:
lowercase = get_size_dict(A__ , default_to_square=A__ )
if "shortest_edge" in size:
lowercase = get_resize_output_image_size(A__ , size["shortest_edge"] , default_to_square=A__ )
elif "height" in size and "width" in size:
lowercase = (size["height"], size["width"])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(A__ , size=A__ , resample=A__ , data_format=A__ , **A__ )
def UpperCAmelCase__ (self : List[str] , A__ : np.ndarray , A__ : Dict[str, int] , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : str , ) -> np.ndarray:
lowercase = get_size_dict(A__ )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(A__ , size=(size["height"], size["width"]) , data_format=A__ , **A__ )
def UpperCAmelCase__ (self : List[Any] , A__ : np.ndarray , A__ : Union[int, float] , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Tuple , ) -> Optional[int]:
return rescale(A__ , scale=A__ , data_format=A__ , **A__ )
def UpperCAmelCase__ (self : List[str] , A__ : np.ndarray , A__ : Union[float, List[float]] , A__ : Union[float, List[float]] , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : List[Any] , ) -> np.ndarray:
return normalize(A__ , mean=A__ , std=A__ , data_format=A__ , **A__ )
def UpperCAmelCase__ (self : Any , A__ : ImageInput , A__ : bool = None , A__ : Dict[str, int] = None , A__ : PILImageResampling = None , A__ : bool = None , A__ : Dict[str, int] = None , A__ : bool = None , A__ : float = None , A__ : bool = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray:
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
lowercase = to_numpy_array(A__ )
if do_resize:
lowercase = self.resize(image=A__ , size=A__ , resample=A__ )
if do_center_crop:
lowercase = self.center_crop(A__ , size=A__ )
if do_rescale:
lowercase = self.rescale(image=A__ , scale=A__ )
if do_normalize:
lowercase = self.normalize(image=A__ , mean=A__ , std=A__ )
lowercase = to_channel_dimension_format(A__ , A__ )
return image
def UpperCAmelCase__ (self : Dict , A__ : ImageInput , A__ : bool = None , A__ : Dict[str, int] = None , A__ : PILImageResampling = None , A__ : bool = None , A__ : Dict[str, int] = None , A__ : bool = None , A__ : float = None , A__ : bool = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[str, TensorType]] = None , A__ : ChannelDimension = ChannelDimension.FIRST , **A__ : Optional[Any] , ) -> PIL.Image.Image:
lowercase = do_resize if do_resize is not None else self.do_resize
lowercase = resample if resample is not None else self.resample
lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop
lowercase = do_rescale if do_rescale is not None else self.do_rescale
lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase = do_normalize if do_normalize is not None else self.do_normalize
lowercase = image_mean if image_mean is not None else self.image_mean
lowercase = image_std if image_std is not None else self.image_std
lowercase = size if size is not None else self.size
lowercase = get_size_dict(A__ , default_to_square=A__ )
lowercase = crop_size if crop_size is not None else self.crop_size
lowercase = get_size_dict(A__ , param_name="crop_size" )
if not valid_images(A__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
lowercase = make_batched(A__ )
lowercase = [
[
self._preprocess_image(
image=A__ , do_resize=A__ , size=A__ , resample=A__ , do_center_crop=A__ , crop_size=A__ , do_rescale=A__ , rescale_factor=A__ , do_normalize=A__ , image_mean=A__ , image_std=A__ , data_format=A__ , )
for img in video
]
for video in videos
]
lowercase = {"pixel_values": videos}
return BatchFeature(data=A__ , tensor_type=A__ )
| 719 |
'''simple docstring'''
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCamelCase : List[str] = logging.get_logger(__name__)
__lowerCamelCase : List[Any] = "https://openaipublic.azureedge.net/jukebox/models/"
__lowerCamelCase : Tuple = {
"jukebox-1b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"1b_lyrics/prior_level_2.pth.tar",
],
"jukebox-5b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"5b_lyrics/prior_level_2.pth.tar",
],
}
def UpperCAmelCase_ ( lowerCAmelCase_ ):
"""simple docstring"""
if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10:
lowercase = key.replace(".model.1.bias" , ".conv1d_1.bias" )
elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10:
lowercase = key.replace(".model.1.weight" , ".conv1d_1.weight" )
elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10:
lowercase = key.replace(".model.3.bias" , ".conv1d_2.bias" )
elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10:
lowercase = key.replace(".model.3.weight" , ".conv1d_2.weight" )
if "conditioner_blocks.0." in key:
lowercase = key.replace("conditioner_blocks.0" , "conditioner_blocks" )
if "prime_prior" in key:
lowercase = key.replace("prime_prior" , "encoder" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
lowercase = key.replace(".emb." , "." )
if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(".k" , ".codebook" )
if "y_emb." in key:
return key.replace("y_emb." , "metadata_embedding." )
if "x_emb.emb." in key:
lowercase = key.replace("0.x_emb.emb" , "embed_tokens" )
if "prime_state_ln" in key:
return key.replace("prime_state_ln" , "encoder.final_layer_norm" )
if ".ln" in key:
return key.replace(".ln" , ".layer_norm" )
if "_ln" in key:
return key.replace("_ln" , "_layer_norm" )
if "prime_state_proj" in key:
return key.replace("prime_state_proj" , "encoder.proj_in" )
if "prime_x_out" in key:
return key.replace("prime_x_out" , "encoder.lm_head" )
if "prior.x_out" in key:
return key.replace("x_out" , "fc_proj_out" )
if "x_emb" in key:
return key.replace("x_emb" , "embed_tokens" )
return key
def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
lowercase = {}
import re
lowercase = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" )
lowercase = re.compile(
R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
lowercase = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" )
lowercase = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" )
lowercase = re.compile(
R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
lowercase = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" )
lowercase = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" )
lowercase = re.compile(
R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
lowercase = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(lowerCAmelCase_ ):
lowercase = re_encoder_block_conv_in.match(lowerCAmelCase_ )
lowercase = regex_match.groups()
lowercase = int(groups[2] ) * 2 + int(groups[3] )
lowercase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'
lowercase = re_encoder_block_conv_in.sub(lowerCAmelCase_ , lowerCAmelCase_ )
elif re_encoder_block_resnet.fullmatch(lowerCAmelCase_ ):
lowercase = re_encoder_block_resnet.match(lowerCAmelCase_ )
lowercase = regex_match.groups()
lowercase = int(groups[2] ) * 2 + int(groups[3] )
lowercase = {"1": 1, "3": 2}[groups[-2]]
lowercase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'
lowercase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
lowercase = prefix + resnet_block
lowercase = re_encoder_block_resnet.sub(lowerCAmelCase_ , lowerCAmelCase_ )
elif re_encoder_block_proj_out.fullmatch(lowerCAmelCase_ ):
lowercase = re_encoder_block_proj_out.match(lowerCAmelCase_ )
lowercase = regex_match.groups()
lowercase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'
lowercase = re_encoder_block_proj_out.sub(lowerCAmelCase_ , lowerCAmelCase_ )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(lowerCAmelCase_ ):
lowercase = re_decoder_block_conv_out.match(lowerCAmelCase_ )
lowercase = regex_match.groups()
lowercase = int(groups[2] ) * 2 + int(groups[3] ) - 2
lowercase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'
lowercase = re_decoder_block_conv_out.sub(lowerCAmelCase_ , lowerCAmelCase_ )
elif re_decoder_block_resnet.fullmatch(lowerCAmelCase_ ):
lowercase = re_decoder_block_resnet.match(lowerCAmelCase_ )
lowercase = regex_match.groups()
lowercase = int(groups[2] ) * 2 + int(groups[3] ) - 2
lowercase = {"1": 1, "3": 2}[groups[-2]]
lowercase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'
lowercase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
lowercase = prefix + resnet_block
lowercase = re_decoder_block_resnet.sub(lowerCAmelCase_ , lowerCAmelCase_ )
elif re_decoder_block_proj_in.fullmatch(lowerCAmelCase_ ):
lowercase = re_decoder_block_proj_in.match(lowerCAmelCase_ )
lowercase = regex_match.groups()
lowercase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'
lowercase = re_decoder_block_proj_in.sub(lowerCAmelCase_ , lowerCAmelCase_ )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(lowerCAmelCase_ ):
lowercase = re_prior_cond_conv_out.match(lowerCAmelCase_ )
lowercase = regex_match.groups()
lowercase = int(groups[1] ) * 2 + int(groups[2] ) - 2
lowercase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'
lowercase = re_prior_cond_conv_out.sub(lowerCAmelCase_ , lowerCAmelCase_ )
elif re_prior_cond_resnet.fullmatch(lowerCAmelCase_ ):
lowercase = re_prior_cond_resnet.match(lowerCAmelCase_ )
lowercase = regex_match.groups()
lowercase = int(groups[1] ) * 2 + int(groups[2] ) - 2
lowercase = {"1": 1, "3": 2}[groups[-2]]
lowercase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.'
lowercase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
lowercase = prefix + resnet_block
lowercase = re_prior_cond_resnet.sub(lowerCAmelCase_ , lowerCAmelCase_ )
elif re_prior_cond_proj_in.fullmatch(lowerCAmelCase_ ):
lowercase = re_prior_cond_proj_in.match(lowerCAmelCase_ )
lowercase = regex_match.groups()
lowercase = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}'
lowercase = re_prior_cond_proj_in.sub(lowerCAmelCase_ , lowerCAmelCase_ )
# keep original key
else:
lowercase = original_key
lowercase = replace_key(lowerCAmelCase_ )
if f'{key_prefix}.{key}' not in model_state_dict or key is None:
print(f'failed converting {original_key} to {key}, does not match' )
# handle missmatched shape
elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape:
lowercase = model_state_dict[f'{key_prefix}.{key}']
print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' )
lowercase = original_key
lowercase = original_key
lowercase = value
return new_dict
@torch.no_grad()
def UpperCAmelCase_ ( lowerCAmelCase_=None , lowerCAmelCase_=None ):
"""simple docstring"""
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ):
lowercase = requests.get(f'{PREFIX}{file}' , allow_redirects=lowerCAmelCase_ )
os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=lowerCAmelCase_ )
open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , "wb" ).write(r.content )
lowercase = MODEL_MAPPING[model_name.split("/" )[-1]]
lowercase = JukeboxConfig.from_pretrained(lowerCAmelCase_ )
lowercase = JukeboxModel(lowerCAmelCase_ )
lowercase = []
lowercase = {}
for i, dict_name in enumerate(lowerCAmelCase_ ):
lowercase = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["model"]
lowercase = {}
for k in old_dic.keys():
if k.endswith(".b" ):
lowercase = old_dic[k]
elif k.endswith(".w" ):
lowercase = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
lowercase = old_dic[k]
else:
lowercase = old_dic[k]
lowercase = "vqvae" if i == 0 else f'priors.{3 - i}'
lowercase = fix_jukebox_keys(lowerCAmelCase_ , model.state_dict() , lowerCAmelCase_ , lowerCAmelCase_ )
weight_dict.append(lowerCAmelCase_ )
lowercase = weight_dict.pop(0 )
model.vqvae.load_state_dict(lowerCAmelCase_ )
for i in range(len(lowerCAmelCase_ ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
with open(f'{pytorch_dump_folder_path}/mapping.json' , "w" ) as txtfile:
json.dump(lowerCAmelCase_ , lowerCAmelCase_ )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase_ )
return weight_dict
if __name__ == "__main__":
__lowerCamelCase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="jukebox-5b-lyrics",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="jukebox-5b-lyrics-converted",
type=str,
help="Path to the output PyTorch model directory.",
)
__lowerCamelCase : List[str] = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 459 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCAmelCase : Any = {
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class __snake_case ( SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE__ = 'gpt_bigcode'
SCREAMING_SNAKE_CASE__ = ['past_key_values']
SCREAMING_SNAKE_CASE__ = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,a_=5_0257 ,a_=1024 ,a_=768 ,a_=12 ,a_=12 ,a_=None ,a_="gelu_pytorch_tanh" ,a_=0.1 ,a_=0.1 ,a_=0.1 ,a_=1e-5 ,a_=0.02 ,a_=True ,a_=True ,a_=5_0256 ,a_=5_0256 ,a_=True ,a_=True ,a_=True ,**a_ ,):
"""simple docstring"""
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = n_positions
lowerCAmelCase__ = n_embd
lowerCAmelCase__ = n_layer
lowerCAmelCase__ = n_head
lowerCAmelCase__ = n_inner
lowerCAmelCase__ = activation_function
lowerCAmelCase__ = resid_pdrop
lowerCAmelCase__ = embd_pdrop
lowerCAmelCase__ = attn_pdrop
lowerCAmelCase__ = layer_norm_epsilon
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = scale_attn_weights
lowerCAmelCase__ = use_cache
lowerCAmelCase__ = attention_softmax_in_fpaa
lowerCAmelCase__ = scale_attention_softmax_in_fpaa
lowerCAmelCase__ = multi_query
lowerCAmelCase__ = bos_token_id
lowerCAmelCase__ = eos_token_id
super().__init__(bos_token_id=a_ ,eos_token_id=a_ ,**a_ )
| 193 |
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
_lowerCAmelCase : List[str] = TypeVar("T")
class __snake_case ( Generic[T] ):
def __init__( self ,a_ ):
"""simple docstring"""
lowerCAmelCase__ = data
lowerCAmelCase__ = None
def __str__( self ):
"""simple docstring"""
return f'{self.data}'
class __snake_case ( Generic[T] ):
def __init__( self ):
"""simple docstring"""
lowerCAmelCase__ = None
def __iter__( self ):
"""simple docstring"""
lowerCAmelCase__ = self.top
while node:
yield node.data
lowerCAmelCase__ = node.next
def __str__( self ):
"""simple docstring"""
return "->".join([str(a_ ) for item in self] )
def __len__( self ):
"""simple docstring"""
return len(tuple(iter(self ) ) )
def SCREAMING_SNAKE_CASE_ ( self ):
"""simple docstring"""
return self.top is None
def SCREAMING_SNAKE_CASE_ ( self ,a_ ):
"""simple docstring"""
lowerCAmelCase__ = Node(a_ )
if not self.is_empty():
lowerCAmelCase__ = self.top
lowerCAmelCase__ = node
def SCREAMING_SNAKE_CASE_ ( self ):
"""simple docstring"""
if self.is_empty():
raise IndexError('pop from empty stack' )
assert isinstance(self.top ,a_ )
lowerCAmelCase__ = self.top
lowerCAmelCase__ = self.top.next
return pop_node.data
def SCREAMING_SNAKE_CASE_ ( self ):
"""simple docstring"""
if self.is_empty():
raise IndexError('peek from empty stack' )
assert self.top is not None
return self.top.data
def SCREAMING_SNAKE_CASE_ ( self ):
"""simple docstring"""
lowerCAmelCase__ = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 193 | 1 |
'''simple docstring'''
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
"""simple docstring"""
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
"""simple docstring"""
snake_case: int =tmp_path / 'cache'
snake_case: Tuple ={'text': 'string'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
snake_case: List[Any] =TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase ).read()
_check_text_dataset(__UpperCAmelCase , __UpperCAmelCase )
@pytest.mark.parametrize(
'features' , [
None,
{'text': 'string'},
{'text': 'int32'},
{'text': 'float32'},
] , )
def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
"""simple docstring"""
snake_case: Optional[int] =tmp_path / 'cache'
snake_case: Optional[Any] ={'text': 'string'}
snake_case: List[Any] =features.copy() if features else default_expected_features
snake_case: List[str] =(
Features({feature: Value(__UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
snake_case: int =TextDatasetReader(__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read()
_check_text_dataset(__UpperCAmelCase , __UpperCAmelCase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
"""simple docstring"""
snake_case: Union[str, Any] =tmp_path / 'cache'
snake_case: List[str] ={'text': 'string'}
snake_case: Any =TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase , split=__UpperCAmelCase ).read()
_check_text_dataset(__UpperCAmelCase , __UpperCAmelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
"""simple docstring"""
if issubclass(__UpperCAmelCase , __UpperCAmelCase ):
snake_case: Tuple =text_path
elif issubclass(__UpperCAmelCase , __UpperCAmelCase ):
snake_case: int =[text_path]
snake_case: Dict =tmp_path / 'cache'
snake_case: List[Any] ={'text': 'string'}
snake_case: Optional[Any] =TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read()
_check_text_dataset(__UpperCAmelCase , __UpperCAmelCase )
def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=("train",) ) -> Optional[int]:
"""simple docstring"""
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
for split in splits:
snake_case: Optional[Any] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
"""simple docstring"""
snake_case: Tuple =tmp_path / 'cache'
snake_case: Optional[Any] ={'text': 'string'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
snake_case: List[Any] =TextDatasetReader({'train': text_path} , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase ).read()
_check_text_datasetdict(__UpperCAmelCase , __UpperCAmelCase )
@pytest.mark.parametrize(
'features' , [
None,
{'text': 'string'},
{'text': 'int32'},
{'text': 'float32'},
] , )
def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
"""simple docstring"""
snake_case: Optional[int] =tmp_path / 'cache'
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
snake_case: str ={'text': 'string'}
snake_case: str =features.copy() if features else default_expected_features
snake_case: int =(
Features({feature: Value(__UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
snake_case: Optional[Any] =TextDatasetReader({'train': text_path} , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read()
_check_text_datasetdict(__UpperCAmelCase , __UpperCAmelCase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
"""simple docstring"""
if split:
snake_case: List[Any] ={split: text_path}
else:
snake_case: Any ='train'
snake_case: Optional[Any] ={'train': text_path, 'test': text_path}
snake_case: Optional[Any] =tmp_path / 'cache'
snake_case: Any ={'text': 'string'}
snake_case: Optional[int] =TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read()
_check_text_datasetdict(__UpperCAmelCase , __UpperCAmelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 713 |
'''simple docstring'''
def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str:
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError('the value of both inputs must be positive' )
snake_case: Optional[Any] =str(bin(__UpperCAmelCase ) )[2:] # remove the leading "0b"
snake_case: Union[str, Any] =str(bin(__UpperCAmelCase ) )[2:]
snake_case: List[Any] =max(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) )
return "0b" + "".join(
str(int('1' in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(__UpperCAmelCase ) , b_binary.zfill(__UpperCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase = {
"""text_branch""": """text_model""",
"""audio_branch""": """audio_model.audio_encoder""",
"""attn""": """attention.self""",
"""self.proj""": """output.dense""",
"""attention.self_mask""": """attn_mask""",
"""mlp.fc1""": """intermediate.dense""",
"""mlp.fc2""": """output.dense""",
"""norm1""": """layernorm_before""",
"""norm2""": """layernorm_after""",
"""bn0""": """batch_norm""",
}
lowercase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""")
def lowerCamelCase_ ( UpperCamelCase__ : List[Any], UpperCamelCase__ : Any=False ):
'''simple docstring'''
UpperCamelCase__ , UpperCamelCase__ = create_model(
'''HTSAT-tiny''', '''roberta''', UpperCamelCase__, precision='''fp32''', device='''cuda:0''' if torch.cuda.is_available() else '''cpu''', enable_fusion=UpperCamelCase__, fusion_type='''aff_2d''' if enable_fusion else None, )
return model, model_cfg
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ):
'''simple docstring'''
UpperCamelCase__ = {}
UpperCamelCase__ = r'''.*sequential.(\d+).*'''
UpperCamelCase__ = r'''.*_projection.(\d+).*'''
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
UpperCamelCase__ = key.replace(UpperCamelCase__, UpperCamelCase__ )
if re.match(UpperCamelCase__, UpperCamelCase__ ):
# replace sequential layers with list
UpperCamelCase__ = re.match(UpperCamelCase__, UpperCamelCase__ ).group(1 )
UpperCamelCase__ = key.replace(F"""sequential.{sequential_layer}.""", F"""layers.{int(UpperCamelCase__ )//3}.linear.""" )
elif re.match(UpperCamelCase__, UpperCamelCase__ ):
UpperCamelCase__ = int(re.match(UpperCamelCase__, UpperCamelCase__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
UpperCamelCase__ = 1 if projecton_layer == 0 else 2
UpperCamelCase__ = key.replace(F"""_projection.{projecton_layer}.""", F"""_projection.linear{transformers_projection_layer}.""" )
if "audio" and "qkv" in key:
# split qkv into query key and value
UpperCamelCase__ = value
UpperCamelCase__ = mixed_qkv.size(0 ) // 3
UpperCamelCase__ = mixed_qkv[:qkv_dim]
UpperCamelCase__ = mixed_qkv[qkv_dim : qkv_dim * 2]
UpperCamelCase__ = mixed_qkv[qkv_dim * 2 :]
UpperCamelCase__ = query_layer
UpperCamelCase__ = key_layer
UpperCamelCase__ = value_layer
else:
UpperCamelCase__ = value
return model_state_dict
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int=False ):
'''simple docstring'''
UpperCamelCase__ , UpperCamelCase__ = init_clap(UpperCamelCase__, enable_fusion=UpperCamelCase__ )
clap_model.eval()
UpperCamelCase__ = clap_model.state_dict()
UpperCamelCase__ = rename_state_dict(UpperCamelCase__ )
UpperCamelCase__ = ClapConfig()
UpperCamelCase__ = enable_fusion
UpperCamelCase__ = ClapModel(UpperCamelCase__ )
# ignore the spectrogram embedding layer
model.load_state_dict(UpperCamelCase__, strict=UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
transformers_config.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
lowercase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""")
lowercase = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 240 |
import random
def lowerCamelCase_ ( UpperCamelCase__ : list, UpperCamelCase__ : List[Any] ):
'''simple docstring'''
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = [], [], []
for element in data:
if element < pivot:
less.append(UpperCamelCase__ )
elif element > pivot:
greater.append(UpperCamelCase__ )
else:
equal.append(UpperCamelCase__ )
return less, equal, greater
def lowerCamelCase_ ( UpperCamelCase__ : list, UpperCamelCase__ : int ):
'''simple docstring'''
if index >= len(UpperCamelCase__ ) or index < 0:
return None
UpperCamelCase__ = items[random.randint(0, len(UpperCamelCase__ ) - 1 )]
UpperCamelCase__ = 0
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = _partition(UpperCamelCase__, UpperCamelCase__ )
UpperCamelCase__ = len(UpperCamelCase__ )
UpperCamelCase__ = len(UpperCamelCase__ )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(UpperCamelCase__, UpperCamelCase__ )
# must be in larger
else:
return quick_select(UpperCamelCase__, index - (m + count) )
| 240 | 1 |
import os
import sys
import unittest
_UpperCAmelCase : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
_UpperCAmelCase : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""")
class lowerCAmelCase ( unittest.TestCase ):
def A_ ( self : Union[str, Any] ) -> int:
lowerCamelCase__ : int = find_backend(' if not is_torch_available():' )
self.assertEqual(UpperCAmelCase , 'torch' )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
lowerCamelCase__ : List[str] = find_backend(' if not (is_torch_available() and is_transformers_available()):' )
self.assertEqual(UpperCAmelCase , 'torch_and_transformers' )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
lowerCamelCase__ : Union[str, Any] = find_backend(
' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' )
self.assertEqual(UpperCAmelCase , 'torch_and_transformers_and_onnx' )
def A_ ( self : str ) -> int:
lowerCamelCase__ : Dict = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('torch' , UpperCAmelCase )
self.assertIn('torch_and_transformers' , UpperCAmelCase )
self.assertIn('flax_and_transformers' , UpperCAmelCase )
self.assertIn('torch_and_transformers_and_onnx' , UpperCAmelCase )
# Likewise, we can't assert on the exact content of a key
self.assertIn('UNet2DModel' , objects['torch'] )
self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] )
self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] )
self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] )
self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] )
self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] )
def A_ ( self : Optional[int] ) -> Union[str, Any]:
lowerCamelCase__ : Optional[Any] = create_dummy_object('CONSTANT' , '\'torch\'' )
self.assertEqual(UpperCAmelCase , '\nCONSTANT = None\n' )
lowerCamelCase__ : List[Any] = create_dummy_object('function' , '\'torch\'' )
self.assertEqual(
UpperCAmelCase , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' )
lowerCamelCase__ : Any = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n'
lowerCamelCase__ : Any = create_dummy_object('FakeClass' , '\'torch\'' )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def A_ ( self : Any ) -> List[str]:
lowerCamelCase__ : Union[str, Any] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n'
lowerCamelCase__ : List[str] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} )
self.assertEqual(dummy_files['torch'] , UpperCAmelCase )
| 188 |
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
_UpperCAmelCase : int = Mapping[str, np.ndarray]
_UpperCAmelCase : List[Any] = Mapping[str, Any] # Is a nested dict.
_UpperCAmelCase : Dict = 0.01
@dataclasses.dataclass(frozen=__UpperCamelCase )
class lowerCAmelCase :
UpperCAmelCase__ = 42 # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
UpperCAmelCase__ = 42 # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
UpperCAmelCase__ = 42 # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
UpperCAmelCase__ = 42 # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
UpperCAmelCase__ = 42 # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
UpperCAmelCase__ = None
# Optional remark about the protein. Included as a comment in output PDB
# files
UpperCAmelCase__ = None
# Templates used to generate this protein (prediction-only)
UpperCAmelCase__ = None
# Chain corresponding to each parent
UpperCAmelCase__ = None
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Protein:
lowerCamelCase__ : Optional[int] = r'(\[[A-Z]+\]\n)'
lowerCamelCase__ : List[str] = [tag.strip() for tag in re.split(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0]
lowerCamelCase__ : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] )
lowerCamelCase__ : List[str] = ["N", "CA", "C"]
lowerCamelCase__ : Dict = None
lowerCamelCase__ : str = None
lowerCamelCase__ : int = None
for g in groups:
if "[PRIMARY]" == g[0]:
lowerCamelCase__ : int = g[1][0].strip()
for i in range(len(_UpperCAmelCase ) ):
if seq[i] not in residue_constants.restypes:
lowerCamelCase__ : Union[str, Any] = 'X' # FIXME: strings are immutable
lowerCamelCase__ : Union[str, Any] = np.array(
[residue_constants.restype_order.get(_UpperCAmelCase , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
lowerCamelCase__ : List[List[float]] = []
for axis in range(3 ):
tertiary.append(list(map(_UpperCAmelCase , g[1][axis].split() ) ) )
lowerCamelCase__ : int = np.array(_UpperCAmelCase )
lowerCamelCase__ : Tuple = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(_UpperCAmelCase ):
lowerCamelCase__ : int = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
lowerCamelCase__ : int = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) )
lowerCamelCase__ : List[Any] = np.zeros(
(
len(_UpperCAmelCase ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(_UpperCAmelCase ):
lowerCamelCase__ : Union[str, Any] = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=_UpperCAmelCase , atom_mask=_UpperCAmelCase , aatype=_UpperCAmelCase , residue_index=np.arange(len(_UpperCAmelCase ) ) , b_factors=_UpperCAmelCase , )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase = 0 ) -> List[str]:
lowerCamelCase__ : List[str] = []
lowerCamelCase__ : Dict = prot.remark
if remark is not None:
pdb_headers.append(F"""REMARK {remark}""" )
lowerCamelCase__ : str = prot.parents
lowerCamelCase__ : Union[str, Any] = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
lowerCamelCase__ : Any = [p for i, p in zip(_UpperCAmelCase , _UpperCAmelCase ) if i == chain_id]
if parents is None or len(_UpperCAmelCase ) == 0:
lowerCamelCase__ : List[Any] = ['N/A']
pdb_headers.append(F"""PARENT {" ".join(_UpperCAmelCase )}""" )
return pdb_headers
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> str:
lowerCamelCase__ : List[str] = []
lowerCamelCase__ : str = pdb_str.split('\n' )
lowerCamelCase__ : int = prot.remark
if remark is not None:
out_pdb_lines.append(F"""REMARK {remark}""" )
lowerCamelCase__ : List[List[str]]
if prot.parents is not None and len(prot.parents ) > 0:
lowerCamelCase__ : List[Any] = []
if prot.parents_chain_index is not None:
lowerCamelCase__ : Dict[str, List[str]] = {}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(_UpperCAmelCase ) , [] )
parent_dict[str(_UpperCAmelCase )].append(_UpperCAmelCase )
lowerCamelCase__ : str = max([int(_UpperCAmelCase ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
lowerCamelCase__ : Optional[Any] = parent_dict.get(str(_UpperCAmelCase ) , ['N/A'] )
parents_per_chain.append(_UpperCAmelCase )
else:
parents_per_chain.append(list(prot.parents ) )
else:
lowerCamelCase__ : Union[str, Any] = [['N/A']]
def make_parent_line(_UpperCAmelCase ) -> str:
return F"""PARENT {" ".join(_UpperCAmelCase )}"""
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
lowerCamelCase__ : List[Any] = 0
for i, l in enumerate(_UpperCAmelCase ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(_UpperCAmelCase )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(_UpperCAmelCase ):
lowerCamelCase__ : Union[str, Any] = parents_per_chain[chain_counter]
else:
lowerCamelCase__ : Optional[Any] = ['N/A']
out_pdb_lines.append(make_parent_line(_UpperCAmelCase ) )
return "\n".join(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str:
lowerCamelCase__ : Tuple = residue_constants.restypes + ['X']
def res_atoa(_UpperCAmelCase ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , 'UNK' )
lowerCamelCase__ : int = residue_constants.atom_types
lowerCamelCase__ : List[str] = []
lowerCamelCase__ : Union[str, Any] = prot.atom_mask
lowerCamelCase__ : Union[str, Any] = prot.aatype
lowerCamelCase__ : int = prot.atom_positions
lowerCamelCase__ : List[Any] = prot.residue_index.astype(np.intaa )
lowerCamelCase__ : Optional[int] = prot.b_factors
lowerCamelCase__ : Any = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError('Invalid aatypes.' )
lowerCamelCase__ : List[Any] = get_pdb_headers(_UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
pdb_lines.extend(_UpperCAmelCase )
lowerCamelCase__ : Union[str, Any] = aatype.shape[0]
lowerCamelCase__ : Optional[Any] = 1
lowerCamelCase__ : str = 0
lowerCamelCase__ : Tuple = string.ascii_uppercase
lowerCamelCase__ : str = None
# Add all atom sites.
for i in range(_UpperCAmelCase ):
lowerCamelCase__ : List[Any] = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(_UpperCAmelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
lowerCamelCase__ : Union[str, Any] = 'ATOM'
lowerCamelCase__ : Optional[int] = atom_name if len(_UpperCAmelCase ) == 4 else F""" {atom_name}"""
lowerCamelCase__ : Any = ''
lowerCamelCase__ : Optional[Any] = ''
lowerCamelCase__ : str = 1.00
lowerCamelCase__ : str = atom_name[0] # Protein supports only C, N, O, S, this works.
lowerCamelCase__ : List[str] = ''
lowerCamelCase__ : str = 'A'
if chain_index is not None:
lowerCamelCase__ : List[Any] = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
lowerCamelCase__ : Union[str, Any] = (
F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"""
F"""{res_name_a:>3} {chain_tag:>1}"""
F"""{residue_index[i]:>4}{insertion_code:>1} """
F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"""
F"""{occupancy:>6.2f}{b_factor:>6.2f} """
F"""{element:>2}{charge:>2}"""
)
pdb_lines.append(_UpperCAmelCase )
atom_index += 1
lowerCamelCase__ : Dict = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
lowerCamelCase__ : List[Any] = True
lowerCamelCase__ : List[str] = chain_index[i + 1]
if should_terminate:
# Close the chain.
lowerCamelCase__ : int = 'TER'
lowerCamelCase__ : Any = (
F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}"""
)
pdb_lines.append(_UpperCAmelCase )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(_UpperCAmelCase , _UpperCAmelCase ) )
pdb_lines.append('END' )
pdb_lines.append('' )
return "\n".join(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> np.ndarray:
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ) -> Protein:
return Protein(
aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=_UpperCAmelCase , remark=_UpperCAmelCase , parents=_UpperCAmelCase , parents_chain_index=_UpperCAmelCase , )
| 188 | 1 |
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class UpperCamelCase_ ( yaml.SafeLoader ):
def _snake_case ( self :List[str] , __A :List[Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.constructed_objects[key_node] for key_node, _ in node.value]
SCREAMING_SNAKE_CASE__ = [tuple(__A ) if isinstance(__A , __A ) else key for key in keys]
SCREAMING_SNAKE_CASE__ = Counter(__A )
SCREAMING_SNAKE_CASE__ = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' )
def _snake_case ( self :Optional[int] , __A :List[Any] , __A :Union[str, Any]=False ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super().construct_mapping(__A , deep=__A )
self._check_no_duplicates_on_constructed_node(__A )
return mapping
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = list(readme_content.splitlines() )
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
SCREAMING_SNAKE_CASE__ = full_content[1:].index("""---""" ) + 1
SCREAMING_SNAKE_CASE__ = """\n""".join(full_content[1:sep_idx] )
return yamlblock, "\n".join(full_content[sep_idx + 1 :] )
return None, "\n".join(UpperCamelCase__ )
class UpperCamelCase_ ( UpperCamelCase__ ):
# class attributes
lowerCamelCase_ = {"train_eval_index"} # train-eval-index in the YAML metadata
@classmethod
def _snake_case ( cls :int , __A :Path ) -> "DatasetMetadata":
"""simple docstring"""
with open(__A , encoding="""utf-8""" ) as readme_file:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = _split_yaml_from_readme(readme_file.read() )
if yaml_string is not None:
return cls.from_yaml_string(__A )
else:
return cls()
def _snake_case ( self :int , __A :Path ) -> str:
"""simple docstring"""
if path.exists():
with open(__A , encoding="""utf-8""" ) as readme_file:
SCREAMING_SNAKE_CASE__ = readme_file.read()
else:
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = self._to_readme(__A )
with open(__A , """w""" , encoding="""utf-8""" ) as readme_file:
readme_file.write(__A )
def _snake_case ( self :int , __A :Optional[str] = None ) -> str:
"""simple docstring"""
if readme_content is not None:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = _split_yaml_from_readme(__A )
SCREAMING_SNAKE_CASE__ = """---\n""" + self.to_yaml_string() + """---\n""" + content
else:
SCREAMING_SNAKE_CASE__ = """---\n""" + self.to_yaml_string() + """---\n"""
return full_content
@classmethod
def _snake_case ( cls :Tuple , __A :str ) -> "DatasetMetadata":
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = yaml.load(__A , Loader=_NoDuplicateSafeLoader ) or {}
# Convert the YAML keys to DatasetMetadata fields
SCREAMING_SNAKE_CASE__ = {
(key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**__A )
def _snake_case ( self :Union[str, Any] ) -> str:
"""simple docstring"""
return yaml.safe_dump(
{
(key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
} , sort_keys=__A , allow_unicode=__A , encoding="""utf-8""" , ).decode("""utf-8""" )
_lowerCamelCase = {
'image-classification': [],
'translation': [],
'image-segmentation': [],
'fill-mask': [],
'automatic-speech-recognition': [],
'token-classification': [],
'sentence-similarity': [],
'audio-classification': [],
'question-answering': [],
'summarization': [],
'zero-shot-classification': [],
'table-to-text': [],
'feature-extraction': [],
'other': [],
'multiple-choice': [],
'text-classification': [],
'text-to-image': [],
'text2text-generation': [],
'zero-shot-image-classification': [],
'tabular-classification': [],
'tabular-regression': [],
'image-to-image': [],
'tabular-to-text': [],
'unconditional-image-generation': [],
'text-retrieval': [],
'text-to-speech': [],
'object-detection': [],
'audio-to-audio': [],
'text-generation': [],
'conversational': [],
'table-question-answering': [],
'visual-question-answering': [],
'image-to-text': [],
'reinforcement-learning': [],
'voice-activity-detection': [],
'time-series-forecasting': [],
'document-question-answering': [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
_lowerCamelCase = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.')
ap.add_argument('readme_filepath')
_lowerCamelCase = ap.parse_args()
_lowerCamelCase = Path(args.readme_filepath)
_lowerCamelCase = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath)
| 6 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "OwlViTImageProcessor"
lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __A , )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" )
SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__A , __A )
def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple:
"""simple docstring"""
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )):
SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )]
elif isinstance(__A , __A ) and isinstance(text[0] , __A ):
SCREAMING_SNAKE_CASE__ = []
# Maximum number of queries across batch
SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__A ) != max_num_queries:
SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A ))
SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )
encodings.append(__A )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 )
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = input_ids
SCREAMING_SNAKE_CASE__ = attention_mask
if query_images is not None:
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = self.image_processor(
__A , return_tensors=__A , **__A ).pixel_values
SCREAMING_SNAKE_CASE__ = query_pixel_values
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]:
"""simple docstring"""
return self.image_processor.post_process(*__A , **__A )
def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor.post_process_object_detection(*__A , **__A )
def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any:
"""simple docstring"""
return self.image_processor.post_process_image_guided_detection(*__A , **__A )
def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _snake_case ( self :List[Any] ) -> Optional[int]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , )
return self.image_processor_class
@property
def _snake_case ( self :Any ) -> Optional[Any]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , )
return self.image_processor
| 6 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
lowercase : int = {
'''configuration_audio_spectrogram_transformer''': [
'''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''ASTConfig''',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[Any] = [
'''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ASTForAudioClassification''',
'''ASTModel''',
'''ASTPreTrainedModel''',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[int] = ['''ASTFeatureExtractor''']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
lowercase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 707 |
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
lowercase : Optional[Any] = 2_00
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
lowercase : Optional[Any] = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
lowercase : Union[str, Any] = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 10_00))
def lowerCAmelCase__ ( _a : str , _a : str ):
snake_case_ : Union[str, Any] = len([g for position, g in enumerate(_a ) if g == main_target[position]] )
return (item, float(_a ))
def lowerCAmelCase__ ( _a : str , _a : str ):
snake_case_ : Tuple = random.randint(0 , len(_a ) - 1 )
snake_case_ : Any = parent_a[:random_slice] + parent_a[random_slice:]
snake_case_ : Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def lowerCAmelCase__ ( _a : str , _a : list[str] ):
snake_case_ : str = list(_a )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
snake_case_ : Optional[Any] = random.choice(_a )
return "".join(_a )
def lowerCAmelCase__ ( _a : tuple[str, float] , _a : list[tuple[str, float]] , _a : list[str] , ):
snake_case_ : Tuple = []
# Generate more children proportionally to the fitness score.
snake_case_ : Optional[int] = int(parent_a[1] * 1_00 ) + 1
snake_case_ : Tuple = 10 if child_n >= 10 else child_n
for _ in range(_a ):
snake_case_ : int = population_score[random.randint(0 , _a )][0]
snake_case_ , snake_case_ : Any = crossover(parent_a[0] , _a )
# Append new string to the population list.
pop.append(mutate(_a , _a ) )
pop.append(mutate(_a , _a ) )
return pop
def lowerCAmelCase__ ( _a : str , _a : list[str] , _a : bool = True ):
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
snake_case_ : Any = F'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(_a )
# Verify that the target contains no genes besides the ones inside genes variable.
snake_case_ : Optional[Any] = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
snake_case_ : str = F'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(_a )
# Generate random starting population.
snake_case_ : Optional[int] = []
for _ in range(_a ):
population.append("".join([random.choice(_a ) for i in range(len(_a ) )] ) )
# Just some logs to know what the algorithms is doing.
snake_case_ , snake_case_ : Dict = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_a )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
snake_case_ : Optional[int] = [evaluate(_a , _a ) for item in population]
# Check if there is a matching evolution.
snake_case_ : Any = sorted(_a , key=lambda _a : x[1] , reverse=_a )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'''\nGeneration: {generation}'''
F'''\nTotal Population:{total_population}'''
F'''\nBest score: {population_score[0][1]}'''
F'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
snake_case_ : Union[str, Any] = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_a )
# Normalize population score to be between 0 and 1.
snake_case_ : int = [
(item, score / len(_a )) for item, score in population_score
]
# This is selection
for i in range(_a ):
population.extend(select(population_score[int(_a )] , _a , _a ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_a ) > N_POPULATION:
break
if __name__ == "__main__":
lowercase : Dict = (
'''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'''
)
lowercase : Optional[int] = list(
''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'''
'''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'''
)
lowercase ,lowercase ,lowercase : Optional[Any] = basic(target_str, genes_list)
print(
F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"""
)
| 114 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class A (unittest.TestCase ):
'''simple docstring'''
def a_ ( self : int ) -> Any:
"""simple docstring"""
A__ = {
"""task_specific_params""": {
"""summarization""": {"""length_penalty""": 1.0, """max_length""": 1_28, """min_length""": 12, """num_beams""": 4},
"""summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_42, """min_length""": 56, """num_beams""": 4},
"""summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6},
}
}
A__ = {
"""task_specific_params.summarization.length_penalty""": 1.0,
"""task_specific_params.summarization.max_length""": 1_28,
"""task_specific_params.summarization.min_length""": 12,
"""task_specific_params.summarization.num_beams""": 4,
"""task_specific_params.summarization_cnn.length_penalty""": 2.0,
"""task_specific_params.summarization_cnn.max_length""": 1_42,
"""task_specific_params.summarization_cnn.min_length""": 56,
"""task_specific_params.summarization_cnn.num_beams""": 4,
"""task_specific_params.summarization_xsum.length_penalty""": 1.0,
"""task_specific_params.summarization_xsum.max_length""": 62,
"""task_specific_params.summarization_xsum.min_length""": 11,
"""task_specific_params.summarization_xsum.num_beams""": 6,
}
self.assertEqual(flatten_dict(__lowerCAmelCase ) , __lowerCAmelCase )
def a_ ( self : str ) -> Optional[Any]:
"""simple docstring"""
A__ = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , x.transpose() ) )
A__ = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) )
@require_torch
def a_ ( self : int ) -> List[Any]:
"""simple docstring"""
A__ = np.random.randn(3 , 4 )
A__ = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , transpose(__lowerCAmelCase ).numpy() ) )
A__ = np.random.randn(3 , 4 , 5 )
A__ = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , transpose(__lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) )
@require_tf
def a_ ( self : Dict ) -> List[Any]:
"""simple docstring"""
A__ = np.random.randn(3 , 4 )
A__ = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , transpose(__lowerCAmelCase ).numpy() ) )
A__ = np.random.randn(3 , 4 , 5 )
A__ = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , transpose(__lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) )
@require_flax
def a_ ( self : str ) -> List[Any]:
"""simple docstring"""
A__ = np.random.randn(3 , 4 )
A__ = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , np.asarray(transpose(__lowerCAmelCase ) ) ) )
A__ = np.random.randn(3 , 4 , 5 )
A__ = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) ) ) )
def a_ ( self : Tuple ) -> Any:
"""simple docstring"""
A__ = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , np.reshape(__lowerCAmelCase , (4, 3) ) ) )
A__ = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (12, 5) ) , np.reshape(__lowerCAmelCase , (12, 5) ) ) )
@require_torch
def a_ ( self : Tuple ) -> Any:
"""simple docstring"""
A__ = np.random.randn(3 , 4 )
A__ = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , reshape(__lowerCAmelCase , (4, 3) ).numpy() ) )
A__ = np.random.randn(3 , 4 , 5 )
A__ = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (12, 5) ) , reshape(__lowerCAmelCase , (12, 5) ).numpy() ) )
@require_tf
def a_ ( self : List[Any] ) -> Dict:
"""simple docstring"""
A__ = np.random.randn(3 , 4 )
A__ = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , reshape(__lowerCAmelCase , (4, 3) ).numpy() ) )
A__ = np.random.randn(3 , 4 , 5 )
A__ = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (12, 5) ) , reshape(__lowerCAmelCase , (12, 5) ).numpy() ) )
@require_flax
def a_ ( self : List[str] ) -> Any:
"""simple docstring"""
A__ = np.random.randn(3 , 4 )
A__ = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , np.asarray(reshape(__lowerCAmelCase , (4, 3) ) ) ) )
A__ = np.random.randn(3 , 4 , 5 )
A__ = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (12, 5) ) , np.asarray(reshape(__lowerCAmelCase , (12, 5) ) ) ) )
def a_ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
A__ = np.random.randn(1 , 3 , 4 )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , np.squeeze(__lowerCAmelCase ) ) )
A__ = np.random.randn(1 , 4 , 1 , 5 )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , np.squeeze(__lowerCAmelCase , axis=2 ) ) )
@require_torch
def a_ ( self : Any ) -> int:
"""simple docstring"""
A__ = np.random.randn(1 , 3 , 4 )
A__ = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , squeeze(__lowerCAmelCase ).numpy() ) )
A__ = np.random.randn(1 , 4 , 1 , 5 )
A__ = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , squeeze(__lowerCAmelCase , axis=2 ).numpy() ) )
@require_tf
def a_ ( self : int ) -> Optional[int]:
"""simple docstring"""
A__ = np.random.randn(1 , 3 , 4 )
A__ = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , squeeze(__lowerCAmelCase ).numpy() ) )
A__ = np.random.randn(1 , 4 , 1 , 5 )
A__ = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , squeeze(__lowerCAmelCase , axis=2 ).numpy() ) )
@require_flax
def a_ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
A__ = np.random.randn(1 , 3 , 4 )
A__ = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , np.asarray(squeeze(__lowerCAmelCase ) ) ) )
A__ = np.random.randn(1 , 4 , 1 , 5 )
A__ = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , np.asarray(squeeze(__lowerCAmelCase , axis=2 ) ) ) )
def a_ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
A__ = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , np.expand_dims(__lowerCAmelCase , axis=1 ) ) )
@require_torch
def a_ ( self : List[Any] ) -> Any:
"""simple docstring"""
A__ = np.random.randn(3 , 4 )
A__ = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , expand_dims(__lowerCAmelCase , axis=1 ).numpy() ) )
@require_tf
def a_ ( self : int ) -> Optional[Any]:
"""simple docstring"""
A__ = np.random.randn(3 , 4 )
A__ = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , expand_dims(__lowerCAmelCase , axis=1 ).numpy() ) )
@require_flax
def a_ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
A__ = np.random.randn(3 , 4 )
A__ = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , np.asarray(expand_dims(__lowerCAmelCase , axis=1 ) ) ) )
| 176 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
A : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Dict = ['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Dict = ['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 176 | 1 |
def lowerCamelCase__ ( _lowerCamelCase = 10**9 ):
_UpperCAmelCase =1
_UpperCAmelCase =2
_UpperCAmelCase =0
_UpperCAmelCase =0
_UpperCAmelCase =0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
_UpperCAmelCase =2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F"""{solution() = }""")
| 700 |
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self ):
_UpperCAmelCase =tf.convert_to_tensor(
[
[
8.2_220_991, # 3rd highest value; idx. 0
-0.5_620_044,
5.23_229_752,
4.0_386_393,
-6.8_798_378,
-0.54_785_802,
-3.2_012_153,
2.92_777_176,
1.88_171_953,
7.35_341_276, # 5th highest value; idx. 9
8.43_207_833, # 2nd highest value; idx. 10
-9.85_711_836,
-5.96_209_236,
-1.13_039_161,
-7.1_115_294,
-0.8_369_633,
-5.3_186_408,
7.06_427_407,
0.81_369_344,
-0.82_023_817,
-5.9_179_796,
0.58_813_443,
-6.99_778_438,
4.71_551_189,
-0.18_771_637,
7.44_020_759, # 4th highest value; idx. 25
9.38_450_987, # 1st highest value; idx. 26
2.12_662_941,
-9.32_562_038,
2.35_652_522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58_425_518,
4.53_139_238,
-5.57_510_464,
-6.28_030_699,
-7.19_529_503,
-4.02_122_551,
1.39_337_037,
-6.06_707_057,
1.59_480_517,
-9.643_119,
0.03_907_799,
0.67_231_762,
-8.88_206_726,
6.27_115_922, # 4th highest value; idx. 13
2.28_520_723,
4.82_767_506,
4.30_421_368,
8.8_275_313, # 2nd highest value; idx. 17
5.44_029_958, # 5th highest value; idx. 18
-4.4_735_794,
7.38_579_536, # 3rd highest value; idx. 20
-2.91_051_663,
2.61_946_077,
-2.5_674_762,
-9.48_959_302,
-4.02_922_645,
-1.35_416_918,
9.67_702_323, # 1st highest value; idx. 27
-5.89_478_553,
1.85_370_467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
_UpperCAmelCase =tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
_UpperCAmelCase =tf.convert_to_tensor(
[8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above
_UpperCAmelCase =tf_top_k_top_p_filtering(_snake_case , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
_UpperCAmelCase =output[output != -float("inf" )]
_UpperCAmelCase =tf.cast(
tf.where(tf.not_equal(_snake_case , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(_snake_case , _snake_case , rtol=1E-1_2 )
tf.debugging.assert_equal(_snake_case , _snake_case )
@require_tf
class _a ( unittest.TestCase , A__ ):
"""simple docstring"""
if is_tf_available():
snake_case ={
"""AutoModelForCausalLM""": TFAutoModelForCausalLM,
"""AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq,
"""AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM,
"""AutoModelForVision2Seq""": TFAutoModelForVisionaSeq,
"""LogitsProcessorList""": TFLogitsProcessorList,
"""MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor,
"""create_tensor_fn""": tf.convert_to_tensor,
"""floats_tensor""": floats_tensor,
"""return_tensors""": """tf""",
}
@slow
def SCREAMING_SNAKE_CASE ( self ):
# TF-only test: tf.saved_model export
_UpperCAmelCase =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCAmelCase =2
_UpperCAmelCase =2
class _a ( tf.Module ):
"""simple docstring"""
def __init__( self , _snake_case ):
super(_snake_case , self ).__init__()
_UpperCAmelCase =model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ),
) , jit_compile=_snake_case , )
def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ):
_UpperCAmelCase =self.model.generate(
input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , )
return {"sequences": outputs["sequences"]}
_UpperCAmelCase =[[2, 0], [102, 103]]
_UpperCAmelCase =[[1, 0], [1, 1]]
_UpperCAmelCase =DummyModel(model=_snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_snake_case , _snake_case , signatures={"serving_default": dummy_model.serving} )
_UpperCAmelCase =tf.saved_model.load(_snake_case ).signatures["serving_default"]
for batch_size in range(1 , len(_snake_case ) + 1 ):
_UpperCAmelCase ={
"input_ids": tf.constant(dummy_input_ids[:batch_size] ),
"attention_mask": tf.constant(dummy_attention_masks[:batch_size] ),
}
_UpperCAmelCase =serving_func(**_snake_case )["sequences"]
_UpperCAmelCase =test_model.generate(**_snake_case , max_new_tokens=_snake_case )
tf.debugging.assert_equal(_snake_case , _snake_case )
@slow
def SCREAMING_SNAKE_CASE ( self ):
# TF-only test: tf.saved_model export
_UpperCAmelCase =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCAmelCase =1
_UpperCAmelCase =2
class _a ( tf.Module ):
"""simple docstring"""
def __init__( self , _snake_case ):
super(_snake_case , self ).__init__()
_UpperCAmelCase =model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ),
) , jit_compile=_snake_case , )
def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ):
_UpperCAmelCase =self.model.generate(
input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , )
return {"sequences": outputs["sequences"]}
_UpperCAmelCase =[[2], [102, 103]]
_UpperCAmelCase =[[1], [1, 1]]
_UpperCAmelCase =DummyModel(model=_snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_snake_case , _snake_case , signatures={"serving_default": dummy_model.serving} )
_UpperCAmelCase =tf.saved_model.load(_snake_case ).signatures["serving_default"]
for input_row in range(len(_snake_case ) ):
_UpperCAmelCase ={
"input_ids": tf.constant([dummy_input_ids[input_row]] ),
"attention_mask": tf.constant([dummy_attention_masks[input_row]] ),
}
_UpperCAmelCase =serving_func(**_snake_case )["sequences"]
_UpperCAmelCase =test_model.generate(**_snake_case , max_new_tokens=_snake_case )
tf.debugging.assert_equal(_snake_case , _snake_case )
@slow
@require_tensorflow_text
def SCREAMING_SNAKE_CASE ( self ):
# TF-only test: tf.saved_model export
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=_snake_case )
class _a ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self ):
super().__init__()
_UpperCAmelCase =text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(_snake_case , "spiece.model" ) , "rb" ).read() )
_UpperCAmelCase =TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" )
def SCREAMING_SNAKE_CASE ( self , _snake_case , *_snake_case , **_snake_case ):
_UpperCAmelCase =self.tokenizer.tokenize(_snake_case )
_UpperCAmelCase , _UpperCAmelCase =text.pad_model_inputs(
_snake_case , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
_UpperCAmelCase =self.model.generate(input_ids=_snake_case , attention_mask=_snake_case )
return self.tokenizer.detokenize(_snake_case )
_UpperCAmelCase =CompleteSentenceTransformer()
_UpperCAmelCase =tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" )
_UpperCAmelCase =complete_model(_snake_case )
_UpperCAmelCase =tf.keras.Model(_snake_case , _snake_case )
keras_model.save(_snake_case )
def SCREAMING_SNAKE_CASE ( self ):
# Has PT equivalent: this test relies on random sampling
_UpperCAmelCase ={
"do_sample": True,
"num_beams": 1,
"top_p": 0.7,
"top_k": 10,
"temperature": 0.7,
}
_UpperCAmelCase =14
_UpperCAmelCase =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCAmelCase ="Hello, my dog is cute and"
_UpperCAmelCase =tokenizer(_snake_case , return_tensors="tf" )
_UpperCAmelCase =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCAmelCase =638
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(":/CPU:0" ):
tf.random.set_seed(0 )
_UpperCAmelCase =model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case )
self.assertTrue(expectation == len(generated_tokens[0] ) )
_UpperCAmelCase =[638, 198]
with tf.device(":/CPU:0" ):
tf.random.set_seed(0 )
_UpperCAmelCase =model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def SCREAMING_SNAKE_CASE ( self ):
# Has PT equivalent: ample use of framework-specific code
_UpperCAmelCase =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" )
_UpperCAmelCase ="Hugging Face is a technology company based in New York and Paris."
_UpperCAmelCase =bart_tokenizer(_snake_case , return_tensors="tf" ).input_ids
_UpperCAmelCase =TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" )
_UpperCAmelCase =bart_model.generate(_snake_case ).numpy()
class _a ( A__ ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case=None , **_snake_case ):
return super().call(_snake_case , **_snake_case )
_UpperCAmelCase =FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" )
_UpperCAmelCase =bart_model.generate(_snake_case , foo="bar" ).numpy()
self.assertTrue(np.array_equal(_snake_case , _snake_case ) )
class _a ( bart_model.model.encoder.__class__ ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self , _snake_case , **_snake_case ):
return super().call(_snake_case , **_snake_case )
_UpperCAmelCase =FakeEncoder(bart_model.config , bart_model.model.shared )
_UpperCAmelCase =fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
_UpperCAmelCase =bart_model.generate(_snake_case ).numpy()
with self.assertRaises(_snake_case ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(_snake_case , foo="bar" )
| 592 | 0 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def snake_case( __magic_name__ ) -> Optional[int]:
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class _A ( nn.Module ):
def __init__( self : Union[str, Any] , _A : nn.Module , _A : int ) -> Dict:
"""simple docstring"""
super().__init__()
lowercase : str = module
lowercase : List[Any] = nn.Sequential(
nn.Linear(module.in_features , _A , bias=_A ) , nn.Linear(_A , module.out_features , bias=_A ) , )
lowercase : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=_A )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def __a ( self : str , _A : Optional[Any] , *_A : str , **_A : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.module(_A , *_A , **_A ) + self.adapter(_A )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _A ( unittest.TestCase ):
_UpperCamelCase : List[str] = '''bigscience/bloom-1b7'''
# Constant values
_UpperCamelCase : List[Any] = 2.1_09_65_95_52_69_25_74
_UpperCamelCase : Dict = '''Hello my name is'''
_UpperCamelCase : Dict = set()
EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' )
EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' )
EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' )
_UpperCamelCase : int = 1_0
def __a ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
lowercase : List[str] = AutoTokenizer.from_pretrained(self.model_name )
class _A ( __A ):
def __a ( self : Dict ) -> int:
"""simple docstring"""
super().setUp()
# Models and tokenizer
lowercase : Dict = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''' )
lowercase : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A , device_map='''auto''' )
def __a ( self : List[str] ) -> Dict:
"""simple docstring"""
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def __a ( self : Tuple ) -> Tuple:
"""simple docstring"""
lowercase : Optional[int] = self.model_abit.config
self.assertTrue(hasattr(_A , '''quantization_config''' ) )
lowercase : Union[str, Any] = config.to_dict()
lowercase : str = config.to_diff_dict()
lowercase : Union[str, Any] = config.to_json_string()
def __a ( self : Dict ) -> Optional[int]:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
lowercase : int = self.model_fpaa.get_memory_footprint()
lowercase : int = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
lowercase : Union[str, Any] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def __a ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_A , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def __a ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
lowercase : Optional[int] = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowercase : Tuple = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS )
def __a ( self : Optional[int] ) -> int:
"""simple docstring"""
lowercase : Tuple = BitsAndBytesConfig()
lowercase : Optional[int] = True
lowercase : int = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_A , device_map='''auto''' )
lowercase : int = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowercase : Tuple = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS )
def __a ( self : Any ) -> str:
"""simple docstring"""
with self.assertRaises(_A ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_A )
def __a ( self : List[str] ) -> Tuple:
"""simple docstring"""
lowercase : int = BitsAndBytesConfig()
with self.assertRaises(_A ):
lowercase : List[str] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_A , load_in_abit=_A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def __a ( self : Any ) -> Tuple:
"""simple docstring"""
with self.assertRaises(_A ):
# Tries with `str`
self.model_abit.to('''cpu''' )
with self.assertRaises(_A ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_A ):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0''' ) )
with self.assertRaises(_A ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_A ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowercase : List[str] = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowercase : Optional[Any] = self.model_fpaa.to(torch.floataa )
lowercase : Optional[Any] = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
lowercase : Tuple = self.model_fpaa.to('''cpu''' )
# Check this does not throw an error
lowercase : Dict = self.model_fpaa.half()
# Check this does not throw an error
lowercase : str = self.model_fpaa.float()
def __a ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
lowercase : int = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_A , device_map='''auto''' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _A ( unittest.TestCase ):
@classmethod
def __a ( cls : str ) -> str:
"""simple docstring"""
lowercase : List[str] = "t5-small"
lowercase : Optional[Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense
lowercase : Any = AutoTokenizer.from_pretrained(cls.model_name )
lowercase : Optional[Any] = "Translate in German: Hello, my dog is cute"
def __a ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
def __a ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
from transformers import TaForConditionalGeneration
lowercase : Any = TaForConditionalGeneration._keep_in_fpaa_modules
lowercase : Dict = None
# test with `t5-small`
lowercase : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_A , device_map='''auto''' )
lowercase : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowercase : Any = model.generate(**_A )
# test with `flan-t5-small`
lowercase : Dict = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_A , device_map='''auto''' )
lowercase : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowercase : Optional[int] = model.generate(**_A )
lowercase : Tuple = modules
def __a ( self : int ) -> Dict:
"""simple docstring"""
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowercase : Optional[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_A , device_map='''auto''' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
lowercase : List[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowercase : Optional[Any] = model.generate(**_A )
# test with `flan-t5-small`
lowercase : List[str] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_A , device_map='''auto''' )
lowercase : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowercase : Tuple = model.generate(**_A )
class _A ( __A ):
def __a ( self : Any ) -> Tuple:
"""simple docstring"""
super().setUp()
# model_name
lowercase : Optional[int] = "bigscience/bloom-560m"
lowercase : List[str] = "t5-small"
# Different types of model
lowercase : str = AutoModel.from_pretrained(self.model_name , load_in_abit=_A , device_map='''auto''' )
# Sequence classification model
lowercase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=_A , device_map='''auto''' )
# CausalLM model
lowercase : List[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A , device_map='''auto''' )
# Seq2seq model
lowercase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=_A , device_map='''auto''' )
def __a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def __a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class _A ( __A ):
def __a ( self : Dict ) -> Dict:
"""simple docstring"""
super().setUp()
def __a ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def __a ( self : Dict ) -> Dict:
"""simple docstring"""
lowercase : Optional[Any] = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
lowercase : Any = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class _A ( __A ):
def __a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
super().setUp()
def __a ( self : List[Any] ) -> Any:
"""simple docstring"""
lowercase : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=_A , device_map='''balanced''' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
lowercase : Tuple = self.tokenizer(self.input_text , return_tensors='''pt''' )
# Second real batch
lowercase : Tuple = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS )
class _A ( __A ):
def __a ( self : List[str] ) -> Dict:
"""simple docstring"""
lowercase : str = "facebook/opt-350m"
super().setUp()
def __a ( self : int ) -> List[Any]:
"""simple docstring"""
if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ):
return
# Step 1: freeze all parameters
lowercase : Dict = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
lowercase : Any = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowercase : Union[str, Any] = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_A ) ):
lowercase : Optional[Any] = LoRALayer(module.q_proj , rank=16 )
lowercase : Optional[int] = LoRALayer(module.k_proj , rank=16 )
lowercase : Optional[int] = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
lowercase : Dict = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowercase : str = model.forward(**_A )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_A , _A ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_A , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class _A ( __A ):
_UpperCamelCase : int = '''gpt2-xl'''
_UpperCamelCase : Optional[Any] = 3.31_91_85_48_54_15_21_87
| 217 |
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
a_ = logging.getLogger(__name__)
a_ = 'Hello world! cécé herlolip'
a_ = namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def lowerCamelCase__ ( _a , _a):
SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig(
temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , )
SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage)
SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a)
original.eval()
SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu"))
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("convert the model")
new_model.bert.load_state_dict(original.bert.state_dict())
new_model.decoder.load_state_dict(original.decoder.state_dict())
new_model.generator.load_state_dict(original.generator.state_dict())
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("Make sure that the models' outputs are identical")
SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased")
# prepare the model inputs
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.")
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a)))
SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0)
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.")
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a)))
SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0)
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0
# forward pass
SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids
SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids
SCREAMING_SNAKE_CASE : Dict = None
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : List[Any] = None
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0]
SCREAMING_SNAKE_CASE : Dict = original.generator(_a)
SCREAMING_SNAKE_CASE : Any = new_model(
_a , _a , _a , _a , _a)[0]
SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a)
SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item()
print("Maximum absolute difference beween weights: {:.2f}".format(_a))
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item()
print("Maximum absolute difference beween weights: {:.2f}".format(_a))
SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3)
if are_identical:
logging.info("all weights are equal up to 1e-3")
else:
raise ValueError("the weights are different. The new model is likely different from the original one.")
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("saving the model's state dictionary")
torch.save(
new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin")
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
a_ = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 25 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
snake_case__ = "speech_to_text"
snake_case__ = ["past_key_values"]
snake_case__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Dict=10_000 , SCREAMING_SNAKE_CASE__ : List[Any]=12 , SCREAMING_SNAKE_CASE__ : Optional[int]=2_048 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6 , SCREAMING_SNAKE_CASE__ : Any=2_048 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : List[str]="relu" , SCREAMING_SNAKE_CASE__ : Tuple=256 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Tuple=6_000 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_024 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=(5, 5) , SCREAMING_SNAKE_CASE__ : Any=1_024 , SCREAMING_SNAKE_CASE__ : str=80 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1 , **SCREAMING_SNAKE_CASE__ : int , ) -> List[str]:
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = encoder_ffn_dim
lowerCAmelCase__ = encoder_layers
lowerCAmelCase__ = encoder_attention_heads
lowerCAmelCase__ = decoder_ffn_dim
lowerCAmelCase__ = decoder_layers
lowerCAmelCase__ = decoder_attention_heads
lowerCAmelCase__ = dropout
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = activation_dropout
lowerCAmelCase__ = activation_function
lowerCAmelCase__ = init_std
lowerCAmelCase__ = encoder_layerdrop
lowerCAmelCase__ = decoder_layerdrop
lowerCAmelCase__ = use_cache
lowerCAmelCase__ = encoder_layers
lowerCAmelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True
lowerCAmelCase__ = max_source_positions
lowerCAmelCase__ = max_target_positions
lowerCAmelCase__ = num_conv_layers
lowerCAmelCase__ = list(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = conv_channels
lowerCAmelCase__ = input_feat_per_channel
lowerCAmelCase__ = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` "
f'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '
f'`config.num_conv_layers = {self.num_conv_layers}`.' )
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
| 125 |
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
UpperCamelCase = logging.getLogger(__name__)
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=-1 ) -> str:
# in NER datasets, the last column is usually reserved for NER label
lowerCAmelCase__ = label_idx
def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[Split, str] ) -> List[InputExample]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase__ = mode.value
lowerCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , f'{mode}.txt' )
lowerCAmelCase__ = 1
lowerCAmelCase__ = []
with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f:
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for line in f:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) )
guid_index += 1
lowerCAmelCase__ = []
lowerCAmelCase__ = []
else:
lowerCAmelCase__ = line.split(" " )
words.append(splits[0] )
if len(SCREAMING_SNAKE_CASE__ ) > 1:
labels.append(splits[self.label_idx].replace("\n" , "" ) )
else:
# Examples could have no label for mode = "test"
labels.append("O" )
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) )
return examples
def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : List ) -> Dict:
lowerCAmelCase__ = 0
for line in test_input_reader:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
writer.write(SCREAMING_SNAKE_CASE__ )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
lowerCAmelCase__ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n"
writer.write(SCREAMING_SNAKE_CASE__ )
else:
logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] )
def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
if path:
with open(SCREAMING_SNAKE_CASE__ , "r" ) as f:
lowerCAmelCase__ = f.read().splitlines()
if "O" not in labels:
lowerCAmelCase__ = ["O"] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
def __init__( self : Dict ) -> List[str]:
# in CONLL2003 dataset chunk column is second-to-last
super().__init__(label_idx=-2 )
def a ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
if path:
with open(SCREAMING_SNAKE_CASE__ , "r" ) as f:
lowerCAmelCase__ = f.read().splitlines()
if "O" not in labels:
lowerCAmelCase__ = ["O"] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[Split, str] ) -> List[InputExample]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase__ = mode.value
lowerCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , f'{mode}.txt' )
lowerCAmelCase__ = 1
lowerCAmelCase__ = []
with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f:
for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for token in sentence:
words.append(token["form"] )
labels.append(token["upos"] )
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) )
guid_index += 1
return examples
def a ( self : int , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : List ) -> int:
lowerCAmelCase__ = 0
for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase__ = preds_list[example_id]
lowerCAmelCase__ = ""
for token in sentence:
out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) '
out += "\n"
writer.write(SCREAMING_SNAKE_CASE__ )
example_id += 1
def a ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
if path:
with open(SCREAMING_SNAKE_CASE__ , "r" ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 125 | 1 |
import random
from typing import Any
def A ( lowercase__ : list ) -> list[Any]:
for _ in range(len(lowercase__ ) ):
UpperCamelCase__ :Optional[int] = random.randint(0 , len(lowercase__ ) - 1 )
UpperCamelCase__ :Optional[int] = random.randint(0 , len(lowercase__ ) - 1 )
UpperCamelCase__ , UpperCamelCase__ :List[str] = data[b], data[a]
return data
if __name__ == "__main__":
UpperCamelCase = [0, 1, 2, 3, 4, 5, 6, 7]
UpperCamelCase = ["python", "says", "hello", "!"]
print("Fisher-Yates Shuffle:")
print("List", integers, strings)
print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 45 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
lowercase : Any = {
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[Any] = [
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
lowercase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 495 | 0 |
"""simple docstring"""
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a__ : Optional[Any] = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
a__ : List[Any] = logging.get_logger(__name__)
class __magic_name__ ( _UpperCamelCase ):
UpperCamelCase : Union[str, Any] = "mask2former"
UpperCamelCase : Union[str, Any] = ["swin"]
UpperCamelCase : str = {"hidden_size": "hidden_dim"}
def __init__( self , __magic_name__ = None , __magic_name__ = 2_5_6 , __magic_name__ = 2_5_6 , __magic_name__ = 2_5_6 , __magic_name__ = 1_0_2_4 , __magic_name__ = "relu" , __magic_name__ = 6 , __magic_name__ = 1_0 , __magic_name__ = 8 , __magic_name__ = 0.0 , __magic_name__ = 2_0_4_8 , __magic_name__ = False , __magic_name__ = False , __magic_name__ = 4 , __magic_name__ = 2_5_5 , __magic_name__ = 1_0_0 , __magic_name__ = 0.1 , __magic_name__ = 2.0 , __magic_name__ = 5.0 , __magic_name__ = 5.0 , __magic_name__ = 1_2_5_4_4 , __magic_name__ = 3.0 , __magic_name__ = 0.75 , __magic_name__ = 0.02 , __magic_name__ = 1.0 , __magic_name__ = True , __magic_name__ = [4, 8, 1_6, 3_2] , __magic_name__ = None , **__magic_name__ , ):
"""simple docstring"""
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
_lowerCAmelCase = CONFIG_MAPPING['swin'](
image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__magic_name__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(__magic_name__ , __magic_name__ ):
_lowerCAmelCase = backbone_config.pop('model_type' )
_lowerCAmelCase = CONFIG_MAPPING[backbone_model_type]
_lowerCAmelCase = config_class.from_dict(__magic_name__ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '''
F'''Supported model types: {",".join(self.backbones_supported )}''' )
_lowerCAmelCase = backbone_config
_lowerCAmelCase = feature_size
_lowerCAmelCase = mask_feature_size
_lowerCAmelCase = hidden_dim
_lowerCAmelCase = encoder_feedforward_dim
_lowerCAmelCase = activation_function
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = decoder_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = dropout
_lowerCAmelCase = dim_feedforward
_lowerCAmelCase = pre_norm
_lowerCAmelCase = enforce_input_projection
_lowerCAmelCase = common_stride
_lowerCAmelCase = ignore_value
_lowerCAmelCase = num_queries
_lowerCAmelCase = no_object_weight
_lowerCAmelCase = class_weight
_lowerCAmelCase = mask_weight
_lowerCAmelCase = dice_weight
_lowerCAmelCase = train_num_points
_lowerCAmelCase = oversample_ratio
_lowerCAmelCase = importance_sample_ratio
_lowerCAmelCase = init_std
_lowerCAmelCase = init_xavier_std
_lowerCAmelCase = use_auxiliary_loss
_lowerCAmelCase = feature_strides
_lowerCAmelCase = output_auxiliary_logits
_lowerCAmelCase = decoder_layers
super().__init__(**__magic_name__ )
@classmethod
def _lowerCamelCase ( cls , __magic_name__ , **__magic_name__ ):
"""simple docstring"""
return cls(
backbone_config=__magic_name__ , **__magic_name__ , )
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowerCAmelCase = copy.deepcopy(self.__dict__ )
_lowerCAmelCase = self.backbone_config.to_dict()
_lowerCAmelCase = self.__class__.model_type
return output
| 309 |
"""simple docstring"""
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __magic_name__ :
def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=3_0 , __magic_name__=2 , __magic_name__=3 , __magic_name__=True , __magic_name__=True , __magic_name__=3_2 , __magic_name__=5 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1_0 , __magic_name__=0.02 , __magic_name__=3 , __magic_name__=0.6 , __magic_name__=None , ):
"""simple docstring"""
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = is_training
_lowerCAmelCase = use_labels
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = mask_ratio
_lowerCAmelCase = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
_lowerCAmelCase = (image_size // patch_size) ** 2
_lowerCAmelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self ):
"""simple docstring"""
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ):
"""simple docstring"""
_lowerCAmelCase = ViTMAEModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
_lowerCAmelCase = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ):
"""simple docstring"""
_lowerCAmelCase = ViTMAEForPreTraining(__magic_name__ )
model.to(__magic_name__ )
model.eval()
_lowerCAmelCase = model(__magic_name__ )
_lowerCAmelCase = (self.image_size // self.patch_size) ** 2
_lowerCAmelCase = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
_lowerCAmelCase = 1
_lowerCAmelCase = ViTMAEForPreTraining(__magic_name__ )
model.to(__magic_name__ )
model.eval()
_lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase = model(__magic_name__ )
_lowerCAmelCase = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs
_lowerCAmelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ):
UpperCamelCase : Dict = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
UpperCamelCase : Dict = {"feature-extraction": ViTMAEModel} if is_torch_available() else {}
UpperCamelCase : int = False
UpperCamelCase : Optional[int] = False
UpperCamelCase : Any = False
UpperCamelCase : Optional[Any] = False
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowerCAmelCase = ViTMAEModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=3_7 )
def _lowerCamelCase ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMAE does not use inputs_embeds' )
def _lowerCamelCase ( self ):
"""simple docstring"""
pass
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(__magic_name__ )
_lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase = [*signature.parameters.keys()]
_lowerCAmelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , __magic_name__ )
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__magic_name__ )
def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ):
"""simple docstring"""
np.random.seed(2 )
_lowerCAmelCase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
_lowerCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_lowerCAmelCase = torch.from_numpy(__magic_name__ )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
_lowerCAmelCase = pt_noise
super().check_pt_tf_models(__magic_name__ , __magic_name__ , __magic_name__ )
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
_lowerCAmelCase = outputs[0].cpu().numpy()
_lowerCAmelCase = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__magic_name__ )
_lowerCAmelCase = model_class.from_pretrained(__magic_name__ )
model.to(__magic_name__ )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
# Make sure we don't have nans
_lowerCAmelCase = after_outputs[0].cpu().numpy()
_lowerCAmelCase = 0
_lowerCAmelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__magic_name__ , 1e-5 )
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' )
def _lowerCamelCase ( self ):
"""simple docstring"""
pass
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' )
def _lowerCamelCase ( self ):
"""simple docstring"""
pass
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' )
def _lowerCamelCase ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' )
def _lowerCamelCase ( self ):
"""simple docstring"""
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _lowerCamelCase ( self ):
"""simple docstring"""
pass
@slow
def _lowerCamelCase ( self ):
"""simple docstring"""
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = ViTMAEModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def A__ ( ):
"""simple docstring"""
_lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __magic_name__ ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self ):
"""simple docstring"""
return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None
@slow
def _lowerCamelCase ( self ):
"""simple docstring"""
np.random.seed(2 )
_lowerCAmelCase = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(__magic_name__ )
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(images=__magic_name__ , return_tensors='pt' ).to(__magic_name__ )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
_lowerCAmelCase = ViTMAEConfig()
_lowerCAmelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
_lowerCAmelCase = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
_lowerCAmelCase = model(**__magic_name__ , noise=torch.from_numpy(__magic_name__ ).to(device=__magic_name__ ) )
# verify the logits
_lowerCAmelCase = torch.Size((1, 1_9_6, 7_6_8) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
_lowerCAmelCase = torch.tensor(
[[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__magic_name__ ) , atol=1e-4 ) )
| 309 | 1 |
'''simple docstring'''
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
__SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowerCAmelCase__ ( _lowerCAmelCase ):
"""simple docstring"""
def __init__( self : str , *A__ : Dict , A__ : Any=None , A__ : List[str]=None , A__ : List[str]=None , **A__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
a__ : str = eval_examples
a__ : List[Any] = post_process_function
a__ : List[Any] = quant_trainer_args
a__ : List[Any] = 1_2_8 # default number of calibration samples
def __lowerCAmelCase ( self : Dict , A__ : str=None ) -> List[str]:
'''simple docstring'''
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('''Trainer: calibration requires an calib_dataset.''' )
a__ : Dict = calib_dataset if calib_dataset is not None else self.calib_dataset
a__ : Dict = self._remove_unused_columns(UpperCAmelCase_ , description='''Calibration''' )
return DataLoader(
UpperCAmelCase_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCAmelCase_ , )
def __lowerCAmelCase ( self : List[str] , A__ : Tuple=None ) -> Union[str, Any]:
'''simple docstring'''
a__ : Optional[int] = self.train_dataset if calib_dataset is None else calib_dataset
a__ : Optional[int] = self.get_calib_dataloader(UpperCAmelCase_ )
a__ : str = self.model
quant_trainer.configure_model(UpperCAmelCase_ , self.quant_trainer_args , calib=UpperCAmelCase_ )
model.eval()
quant_trainer.enable_calibration(UpperCAmelCase_ )
logger.info('''***** Running calibration *****''' )
logger.info(F' Num examples = {self.calib_num}' )
logger.info(F' Batch size = {calib_dataloader.batch_size}' )
for step, inputs in enumerate(UpperCAmelCase_ ):
# Prediction step
a__ , a__ , a__ : str = self.prediction_step(UpperCAmelCase_ , UpperCAmelCase_ , prediction_loss_only=UpperCAmelCase_ )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(UpperCAmelCase_ , self.quant_trainer_args )
a__ : List[Any] = model
def __lowerCAmelCase ( self : List[Any] , A__ : Optional[Any]=None , A__ : str=None , A__ : List[str]=None , A__ : str = "eval" ) -> Tuple:
'''simple docstring'''
a__ : str = self.eval_dataset if eval_dataset is None else eval_dataset
a__ : List[str] = self.get_eval_dataloader(UpperCAmelCase_ )
a__ : int = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
a__ : List[Any] = self.compute_metrics
a__ : List[str] = None
a__ : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
a__ : List[str] = eval_loop(
UpperCAmelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase_ , )
finally:
a__ : str = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
a__ : int = self.post_process_function(UpperCAmelCase_ , UpperCAmelCase_ , output.predictions )
a__ : Union[str, Any] = self.compute_metrics(UpperCAmelCase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'{metric_key_prefix}_' ):
a__ : Union[str, Any] = metrics.pop(UpperCAmelCase_ )
self.log(UpperCAmelCase_ )
else:
a__ : Dict = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
a__ : Optional[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase_ )
return metrics
def __lowerCAmelCase ( self : Optional[int] , A__ : Tuple , A__ : str , A__ : Tuple=None , A__ : str = "test" ) -> List[str]:
'''simple docstring'''
a__ : str = self.get_test_dataloader(UpperCAmelCase_ )
# Temporarily disable metric computation, we will do it in the loop here.
a__ : List[str] = self.compute_metrics
a__ : Tuple = None
a__ : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
a__ : int = eval_loop(
UpperCAmelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase_ , )
finally:
a__ : List[Any] = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
a__ : Optional[int] = self.post_process_function(UpperCAmelCase_ , UpperCAmelCase_ , output.predictions , '''predict''' )
a__ : List[Any] = self.compute_metrics(UpperCAmelCase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'{metric_key_prefix}_' ):
a__ : List[Any] = metrics.pop(UpperCAmelCase_ )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] , A__ : Union[str, Any]="./" ) -> Optional[int]:
'''simple docstring'''
a__ : List[str] = self.eval_dataset
a__ : Optional[Any] = self.get_eval_dataloader(UpperCAmelCase_ )
a__ : Optional[Any] = next(iter(UpperCAmelCase_ ) )
# saving device - to make it consistent
a__ : Any = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
# convert to tuple
a__ : Optional[Any] = tuple(v.to(UpperCAmelCase_ ) for k, v in batch.items() )
logger.info('''Converting model to be onnx compatible''' )
from pytorch_quantization.nn import TensorQuantizer
a__ : str = True
a__ : Tuple = self.model.to(UpperCAmelCase_ )
model.eval()
model.float()
a__ : List[Any] = model.module if hasattr(UpperCAmelCase_ , '''module''' ) else model
quant_trainer.configure_model(UpperCAmelCase_ , self.quant_trainer_args )
a__ : Tuple = os.path.join(UpperCAmelCase_ , '''model.onnx''' )
logger.info(F'exporting model to {output_model_file}' )
a__ : int = {0: '''batch_size''', 1: '''seq_len'''}
torch.onnx.export(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , export_params=UpperCAmelCase_ , opset_version=1_3 , do_constant_folding=UpperCAmelCase_ , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={
'''input_ids''': axes,
'''attention_mask''': axes,
'''token_type_ids''': axes,
'''output_start_logits''': axes,
'''output_end_logits''': axes,
} , verbose=UpperCAmelCase_ , )
logger.info('''onnx export finished''' )
| 688 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class __a ( _lowerCAmelCase ):
def __init__( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Any )-> None:
"""simple docstring"""
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , UpperCAmelCase_ , )
super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
| 554 | 0 |
from __future__ import annotations
import math
class lowerCamelCase__ :
def __init__( self : List[str] , __a : int ):
'''simple docstring'''
lowerCamelCase__: int = size
# approximate the overall size of segment tree with given value
lowerCamelCase__: Optional[Any] = [0 for i in range(0 , 4 * size )]
# create array to store lazy update
lowerCamelCase__: str = [0 for i in range(0 , 4 * size )]
lowerCamelCase__: Tuple = [0 for i in range(0 , 4 * size )] # flag for lazy update
def lowerCamelCase_ ( self : Optional[Any] , __a : int ):
'''simple docstring'''
return idx * 2
def lowerCamelCase_ ( self : int , __a : int ):
'''simple docstring'''
return idx * 2 + 1
def lowerCamelCase_ ( self : Union[str, Any] , __a : int , __a : int , __a : int , __a : list[int] ):
'''simple docstring'''
if left_element == right_element:
lowerCamelCase__: Dict = a[left_element - 1]
else:
lowerCamelCase__: List[str] = (left_element + right_element) // 2
self.build(self.left(__a ) , __a , __a , __a )
self.build(self.right(__a ) , mid + 1 , __a , __a )
lowerCamelCase__: str = max(
self.segment_tree[self.left(__a )] , self.segment_tree[self.right(__a )] )
def lowerCamelCase_ ( self : Union[str, Any] , __a : int , __a : int , __a : int , __a : int , __a : int , __a : int ):
'''simple docstring'''
if self.flag[idx] is True:
lowerCamelCase__: List[str] = self.lazy[idx]
lowerCamelCase__: Optional[Any] = False
if left_element != right_element:
lowerCamelCase__: str = self.lazy[idx]
lowerCamelCase__: List[str] = self.lazy[idx]
lowerCamelCase__: Optional[int] = True
lowerCamelCase__: List[str] = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
lowerCamelCase__: Optional[int] = val
if left_element != right_element:
lowerCamelCase__: Optional[int] = val
lowerCamelCase__: Optional[int] = val
lowerCamelCase__: Tuple = True
lowerCamelCase__: Tuple = True
return True
lowerCamelCase__: Union[str, Any] = (left_element + right_element) // 2
self.update(self.left(__a ) , __a , __a , __a , __a , __a )
self.update(self.right(__a ) , mid + 1 , __a , __a , __a , __a )
lowerCamelCase__: List[Any] = max(
self.segment_tree[self.left(__a )] , self.segment_tree[self.right(__a )] )
return True
def lowerCamelCase_ ( self : Dict , __a : int , __a : int , __a : int , __a : int , __a : int ):
'''simple docstring'''
if self.flag[idx] is True:
lowerCamelCase__: str = self.lazy[idx]
lowerCamelCase__: Dict = False
if left_element != right_element:
lowerCamelCase__: int = self.lazy[idx]
lowerCamelCase__: Dict = self.lazy[idx]
lowerCamelCase__: Optional[int] = True
lowerCamelCase__: int = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
lowerCamelCase__: Dict = (left_element + right_element) // 2
lowerCamelCase__: Optional[int] = self.query(self.left(__a ) , __a , __a , __a , __a )
lowerCamelCase__: Optional[int] = self.query(self.right(__a ) , mid + 1 , __a , __a , __a )
return max(__a , __a )
def __str__( self : List[str] ):
'''simple docstring'''
return str([self.query(1 , 1 , self.size , __a , __a ) for i in range(1 , self.size + 1 )] )
if __name__ == "__main__":
_lowercase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
_lowercase = 15
_lowercase = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 111)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 235)
print(segt)
| 242 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class lowerCamelCase__ :
def __init__( self : Any , __a : str , __a : int = 13 , __a : int = 64 , __a : int = 2 , __a : int = 3 , __a : int = 3 , __a : bool = True , __a : bool = True , __a : int = 128 , __a : Any=[16, 32, 64, 128] , __a : int = 7 , __a : int = 4 , __a : int = 37 , __a : str = "gelu" , __a : float = 0.1 , __a : float = 0.1 , __a : int = 10 , __a : float = 0.02 , __a : int = 2 , __a : int = 1 , __a : int = 128 , __a : List[int] = [2, 2, 2, 2] , __a : int = 2 , __a : int = 2 , ):
'''simple docstring'''
lowerCamelCase__: Any = parent
lowerCamelCase__: Optional[int] = batch_size
lowerCamelCase__: List[Any] = image_size
lowerCamelCase__: Dict = patch_size
lowerCamelCase__: int = num_channels
lowerCamelCase__: Any = is_training
lowerCamelCase__: List[Any] = use_labels
lowerCamelCase__: List[Any] = hidden_size
lowerCamelCase__: Optional[Any] = num_hidden_layers
lowerCamelCase__: Optional[Any] = num_attention_heads
lowerCamelCase__: int = intermediate_size
lowerCamelCase__: Dict = hidden_act
lowerCamelCase__: Any = hidden_dropout_prob
lowerCamelCase__: Dict = attention_probs_dropout_prob
lowerCamelCase__: Union[str, Any] = type_sequence_label_size
lowerCamelCase__: List[str] = initializer_range
lowerCamelCase__: List[str] = encoder_stride
lowerCamelCase__: Dict = num_attention_outputs
lowerCamelCase__: Dict = embed_dim
lowerCamelCase__: Optional[int] = embed_dim + 1
lowerCamelCase__: str = resolution
lowerCamelCase__: Dict = depths
lowerCamelCase__: Optional[int] = hidden_sizes
lowerCamelCase__: Any = dim
lowerCamelCase__: Optional[Any] = mlp_expansion_ratio
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__: Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__: Any = None
if self.use_labels:
lowerCamelCase__: List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__: Dict = self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def lowerCamelCase_ ( self : Optional[int] , __a : str , __a : Optional[Any] , __a : Dict ):
'''simple docstring'''
lowerCamelCase__: int = TFEfficientFormerModel(config=__a )
lowerCamelCase__: List[str] = model(__a , training=__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase_ ( self : int , __a : Optional[Any] , __a : List[str] , __a : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__: Optional[int] = self.type_sequence_label_size
lowerCamelCase__: List[str] = TFEfficientFormerForImageClassification(__a )
lowerCamelCase__: List[Any] = model(__a , labels=__a , training=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCamelCase__: Any = 1
lowerCamelCase__: int = TFEfficientFormerForImageClassification(__a )
lowerCamelCase__: Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase__: int = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
lowerCamelCase__: Any = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple = config_and_inputs
lowerCamelCase__: List[str] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( A__ , A__ , unittest.TestCase ):
__lowerCamelCase = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
__lowerCamelCase = (
{
"""feature-extraction""": TFEfficientFormerModel,
"""image-classification""": (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__: Optional[int] = TFEfficientFormerModelTester(self )
lowerCamelCase__: Union[str, Any] = ConfigTester(
self , config_class=__a , has_text_modality=__a , hidden_size=37 )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__: Optional[int] = model_class(__a )
lowerCamelCase__: int = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__: Dict = [*signature.parameters.keys()]
lowerCamelCase__: str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __a )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
def check_hidden_states_output(__a : List[str] , __a : str , __a : Tuple ):
lowerCamelCase__: List[Any] = model_class(__a )
lowerCamelCase__: Optional[Any] = model(**self._prepare_for_class(__a , __a ) , training=__a )
lowerCamelCase__: Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCamelCase__: Union[str, Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__a ) , __a )
if hasattr(self.model_tester , """encoder_seq_length""" ):
lowerCamelCase__: int = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1:
lowerCamelCase__: Optional[Any] = seq_length * self.model_tester.chunk_length
else:
lowerCamelCase__: Union[str, Any] = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
lowerCamelCase__: Optional[Any] = outputs.decoder_hidden_states
self.asseretIsInstance(__a , (list, tuple) )
self.assertEqual(len(__a ) , __a )
lowerCamelCase__: List[Any] = getattr(self.model_tester , """seq_length""" , __a )
lowerCamelCase__: Optional[int] = getattr(self.model_tester , """decoder_seq_length""" , __a )
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , )
lowerCamelCase__ , lowerCamelCase__: List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__: Any = True
check_hidden_states_output(__a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__: str = True
check_hidden_states_output(__a , __a , __a )
def lowerCamelCase_ ( self : List[Any] , __a : int , __a : Tuple , __a : str=False ):
'''simple docstring'''
lowerCamelCase__: List[str] = super()._prepare_for_class(__a , __a , return_labels=__a )
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__: List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
@unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__: Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__a )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
lowerCamelCase__: Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__: List[Any] = TFEfficientFormerModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: str = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__: str = True
lowerCamelCase__: Tuple = getattr(self.model_tester , """seq_length""" , __a )
lowerCamelCase__: Tuple = getattr(self.model_tester , """encoder_seq_length""" , __a )
lowerCamelCase__: Optional[Any] = getattr(self.model_tester , """key_length""" , __a )
lowerCamelCase__: Tuple = getattr(self.model_tester , """chunk_length""" , __a )
if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ):
lowerCamelCase__: Tuple = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
lowerCamelCase__: List[str] = True
lowerCamelCase__: Dict = False
lowerCamelCase__: str = True
lowerCamelCase__: int = model_class(__a )
lowerCamelCase__: Any = model(**self._prepare_for_class(__a , __a ) , training=__a )
lowerCamelCase__: Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(__a ) , self.model_tester.num_attention_outputs )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowerCamelCase__: Optional[Any] = True
lowerCamelCase__: str = model_class(__a )
lowerCamelCase__: Optional[Any] = model(**self._prepare_for_class(__a , __a ) , training=__a )
lowerCamelCase__: Tuple = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(__a ) , self.model_tester.num_attention_outputs )
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
lowerCamelCase__: List[str] = model_class(__a )
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
lowerCamelCase__: str = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=__a )
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
lowerCamelCase__: Optional[int] = model(__a )
self.assertTrue(outputs_dict is not None )
def __lowerCAmelCase ( ) -> Any:
'''simple docstring'''
lowerCamelCase__: str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
return (
EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" )
if is_vision_available()
else None
)
@slow
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__: Any = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" )
lowerCamelCase__: str = self.default_image_processor
lowerCamelCase__: List[Any] = prepare_img()
lowerCamelCase__: List[str] = image_processor(images=__a , return_tensors="""tf""" )
# forward pass
lowerCamelCase__: int = model(**__a , training=__a )
# verify the logits
lowerCamelCase__: Union[str, Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
lowerCamelCase__: str = tf.constant([-0.0_555, 0.4_825, -0.0_852] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
@slow
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__: Tuple = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
"""snap-research/efficientformer-l1-300""" )
lowerCamelCase__: Union[str, Any] = self.default_image_processor
lowerCamelCase__: List[Any] = prepare_img()
lowerCamelCase__: Any = image_processor(images=__a , return_tensors="""tf""" )
# forward pass
lowerCamelCase__: Union[str, Any] = model(**__a , training=__a )
# verify the logits
lowerCamelCase__: Any = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
lowerCamelCase__: Optional[int] = tf.constant([-0.1_312, 0.4_353, -1.0_499] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
| 242 | 1 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
__UpperCAmelCase : Tuple = pd.read_csv("sample_data.csv", header=None)
__UpperCAmelCase : str = df.shape[:1][0]
# If you're using some other dataset input the target column
__UpperCAmelCase : Tuple = df.iloc[:, 1:2]
__UpperCAmelCase : List[Any] = actual_data.values.reshape(len_data, 1)
__UpperCAmelCase : str = MinMaxScaler().fit_transform(actual_data)
__UpperCAmelCase : Union[str, Any] = 1_0
__UpperCAmelCase : Any = 5
__UpperCAmelCase : Dict = 2_0
__UpperCAmelCase : int = len_data - periods * look_back
__UpperCAmelCase : str = actual_data[:division]
__UpperCAmelCase : Any = actual_data[division - look_back :]
__UpperCAmelCase , __UpperCAmelCase : List[str] = [], []
__UpperCAmelCase , __UpperCAmelCase : List[str] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
__UpperCAmelCase : Optional[Any] = np.array(train_x)
__UpperCAmelCase : Dict = np.array(test_x)
__UpperCAmelCase : Dict = np.array([list(i.ravel()) for i in train_y])
__UpperCAmelCase : int = np.array([list(i.ravel()) for i in test_y])
__UpperCAmelCase : Optional[int] = Sequential()
model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(6_4, input_shape=(1_2_8, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
__UpperCAmelCase : List[str] = model.fit(
x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4
)
__UpperCAmelCase : Optional[int] = model.predict(x_test)
| 241 |
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class _snake_case ( _A ):
_A = 'Speech2TextFeatureExtractor'
_A = 'Speech2TextTokenizer'
def __init__( self ,UpperCamelCase ,UpperCamelCase ) -> int:
super().__init__(UpperCamelCase ,UpperCamelCase )
snake_case__ :int = self.feature_extractor
snake_case__ :Any = False
def __call__( self ,*UpperCamelCase ,**UpperCamelCase ) -> Optional[Any]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*UpperCamelCase ,**UpperCamelCase )
if "raw_speech" in kwargs:
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." )
snake_case__ :int = kwargs.pop("raw_speech" )
else:
snake_case__ :Tuple = kwargs.pop("audio" ,UpperCamelCase )
snake_case__ :List[Any] = kwargs.pop("sampling_rate" ,UpperCamelCase )
snake_case__ :Tuple = kwargs.pop("text" ,UpperCamelCase )
if len(UpperCamelCase ) > 0:
snake_case__ :str = args[0]
snake_case__ :Tuple = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process." )
if audio is not None:
snake_case__ :List[Any] = self.feature_extractor(UpperCamelCase ,*UpperCamelCase ,sampling_rate=UpperCamelCase ,**UpperCamelCase )
if text is not None:
snake_case__ :List[Any] = self.tokenizer(UpperCamelCase ,**UpperCamelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
snake_case__ :Optional[Any] = encodings["input_ids"]
return inputs
def lowerCAmelCase_ ( self ,*UpperCamelCase ,**UpperCamelCase ) -> Any:
return self.tokenizer.batch_decode(*UpperCamelCase ,**UpperCamelCase )
def lowerCAmelCase_ ( self ,*UpperCamelCase ,**UpperCamelCase ) -> Optional[Any]:
return self.tokenizer.decode(*UpperCamelCase ,**UpperCamelCase )
@contextmanager
def lowerCAmelCase_ ( self ) -> Union[str, Any]:
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your audio inputs, or in a separate call." )
snake_case__ :Optional[int] = True
snake_case__ :str = self.tokenizer
yield
snake_case__ :Optional[Any] = self.feature_extractor
snake_case__ :Tuple = False
| 241 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class snake_case__ :
"""simple docstring"""
_SCREAMING_SNAKE_CASE = 42
_SCREAMING_SNAKE_CASE = None
_SCREAMING_SNAKE_CASE = None
def lowercase_ ():
snake_case__ : Tuple = Node(1 )
snake_case__ : Tuple = Node(2 )
snake_case__ : str = Node(3 )
snake_case__ : Tuple = Node(4 )
snake_case__ : Any = Node(5 )
return tree
def lowercase_ (A : Node | None ):
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowercase_ (A : Node | None ):
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowercase_ (A : Node | None ):
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowercase_ (A : Node | None ):
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def lowercase_ (A : Node | None ):
snake_case__ : list[Any] = []
if root is None:
return output
snake_case__ : Optional[Any] = deque([root] )
while process_queue:
snake_case__ : Optional[int] = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowercase_ (A : Node | None , A : int ):
snake_case__ : list[Any] = []
def populate_output(A : Node | None , A : int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(A , A )
return output
def lowercase_ (A : Node | None , A : int ):
snake_case__ : list[Any] = []
def populate_output(A : Node | None , A : int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(A , A )
return output
def lowercase_ (A : Node | None ):
if root is None:
return []
snake_case__ : list[Sequence[Node | None]] = []
snake_case__ : int = 0
snake_case__ : List[str] = height(A )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(A , A ) )
snake_case__ : int = 1
else:
output.append(get_nodes_from_right_to_left(A , A ) )
snake_case__ : Any = 0
return output
def lowercase_ (): # Main function for testing.
snake_case__ : str = make_tree()
print(F'''In-order Traversal: {inorder(A )}''' )
print(F'''Pre-order Traversal: {preorder(A )}''' )
print(F'''Post-order Traversal: {postorder(A )}''' , '\n' )
print(F'''Height of Tree: {height(A )}''' , '\n' )
print('Complete Level Order Traversal: ' )
print(level_order(A ) , '\n' )
print('Level-wise order Traversal: ' )
for level in range(1 , height(A ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(A , level=A ) )
print('\nZigZag order Traversal: ' )
print(zigzag(A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 701 |
from __future__ import annotations
def lowercase_ (A : list[int] ):
return len(set(A ) ) == len(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 243 | 0 |
"""simple docstring"""
def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ):
"""simple docstring"""
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f'{price_plus_tax(1_0_0, 0.25) = }')
print(f'{price_plus_tax(1_25.50, 0.05) = }')
| 580 |
"""simple docstring"""
import math
def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ):
"""simple docstring"""
if (
not isinstance(SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * power_factor
def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ):
"""simple docstring"""
if (
not isinstance(SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 580 | 1 |
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class SCREAMING_SNAKE_CASE__ ( lowercase__ ):
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]:
super().__init__()
self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def __call__( self : Any , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE__ : int = 5_0 , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]:
a_ : Tuple = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE__ , )
a_ : int = image.to(self.device )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
a_ : Dict = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
a_ : List[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample
a_ : Tuple = (image / 2 + 0.5).clamp(0 , 1 )
a_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
a_ : Optional[int] = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ )
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ ), "This is a local test"
| 443 |
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
UpperCAmelCase_ : int = datasets.logging.get_logger(__name__)
UpperCAmelCase_ : Dict = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
UpperCAmelCase_ : Tuple = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
UpperCAmelCase_ : Optional[Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : Any , __A : List[Any]=False , __A : Tuple=False , __A : Any=True , __A : Any=False , __A : Any="dummy_doc" ) -> List[str]:
"""simple docstring"""
a_ : List[str] = {doc: key_lines}
a_ : Optional[Any] = {doc: sys_lines}
a_ : List[Any] = {}
a_ : Tuple = 0
a_ : List[str] = 0
a_ : Union[str, Any] = 0
a_ : List[Any] = 0
a_ : List[str] = 0
a_ : Union[str, Any] = 0
a_ , a_ : List[Any] = reader.get_doc_mentions(__A , key_doc_lines[doc] , __A )
key_singletons_num += singletons_num
if NP_only or min_span:
a_ : Union[str, Any] = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A )
a_ , a_ : Union[str, Any] = reader.get_doc_mentions(__A , sys_doc_lines[doc] , __A )
sys_singletons_num += singletons_num
if NP_only or min_span:
a_ : Dict = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A )
if remove_nested:
a_ , a_ : Optional[Any] = reader.remove_nested_coref_mentions(__A , __A )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
a_ , a_ : Optional[Any] = reader.remove_nested_coref_mentions(__A , __A )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
a_ : int = reader.get_mention_assignments(__A , __A )
a_ : List[Any] = reader.get_mention_assignments(__A , __A )
a_ : List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
'Number of removed nested coreferring mentions in the key '
F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" )
logger.info(
'Number of resulting singleton clusters in the key '
F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" )
if not keep_singletons:
logger.info(
F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """
'files, respectively' )
return doc_coref_infos
def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Optional[int] , __A : Optional[Any] , __A : Optional[int] , __A : Tuple , __A : Dict , __A : Optional[int] ) -> List[Any]:
"""simple docstring"""
a_ : int = get_coref_infos(__A , __A , __A , __A , __A , __A )
a_ : List[Any] = {}
a_ : int = 0
a_ : Optional[int] = 0
for name, metric in metrics:
a_ , a_ , a_ : Tuple = evaluator.evaluate_documents(__A , __A , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} )
logger.info(
name.ljust(10 ) , F"""Recall: {recall * 1_00:.2f}""" , F""" Precision: {precision * 1_00:.2f}""" , F""" F1: {fa * 1_00:.2f}""" , )
if conll_subparts_num == 3:
a_ : List[str] = (conll / 3) * 1_00
logger.info(F"""CoNLL score: {conll:.2f}""" )
output_scores.update({'conll_score': conll} )
return output_scores
def SCREAMING_SNAKE_CASE_ ( __A : int ) -> Dict:
"""simple docstring"""
a_ : List[Any] = False
for line in key_lines:
if not line.startswith('#' ):
if len(line.split() ) > 6:
a_ : List[Any] = line.split()[5]
if not parse_col == "-":
a_ : List[Any] = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' ) ),
'references': datasets.Sequence(datasets.Value('string' ) ),
} ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[
'https://github.com/ns-moosavi/coval',
'https://www.aclweb.org/anthology/P16-1060',
'http://www.conll.cemantix.org/2012/data.html',
] , )
def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : int=False ) -> Tuple:
a_ : List[str] = [
('mentions', evaluator.mentions),
('muc', evaluator.muc),
('bcub', evaluator.b_cubed),
('ceafe', evaluator.ceafe),
('lea', evaluator.lea),
]
if min_span:
a_ : Union[str, Any] = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE__ )
if not has_gold_parse:
raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
a_ : List[Any] = evaluate(
key_lines=SCREAMING_SNAKE_CASE__ , sys_lines=SCREAMING_SNAKE_CASE__ , metrics=SCREAMING_SNAKE_CASE__ , NP_only=SCREAMING_SNAKE_CASE__ , remove_nested=SCREAMING_SNAKE_CASE__ , keep_singletons=SCREAMING_SNAKE_CASE__ , min_span=SCREAMING_SNAKE_CASE__ , )
return score
| 443 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = {
'''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''',
}
class lowerCAmelCase ( A ):
lowerCAmelCase_ = "nllb-moe"
lowerCAmelCase_ = ["past_key_values"]
lowerCAmelCase_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Optional[int] , __lowercase : List[Any]=128112 , __lowercase : int=1024 , __lowercase : Any=12 , __lowercase : Any=4096 , __lowercase : Optional[Any]=16 , __lowercase : List[str]=12 , __lowercase : str=4096 , __lowercase : int=16 , __lowercase : str=0.0_5 , __lowercase : Optional[Any]=0.0_5 , __lowercase : Tuple=True , __lowercase : Optional[int]=True , __lowercase : Union[str, Any]="relu" , __lowercase : Any=1024 , __lowercase : Optional[Any]=0.1 , __lowercase : int=0.1 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0_2 , __lowercase : Union[str, Any]=2 , __lowercase : Optional[int]=True , __lowercase : List[str]=False , __lowercase : List[str]="float32" , __lowercase : Dict=False , __lowercase : List[str]=128 , __lowercase : Union[str, Any]=64 , __lowercase : Any=4 , __lowercase : Optional[Any]=4 , __lowercase : str=0.0_0_1 , __lowercase : str=0.0_0_1 , __lowercase : Dict="all" , __lowercase : int=False , __lowercase : Optional[Any]=False , __lowercase : List[str]=1.0 , __lowercase : Dict=0.2 , __lowercase : List[Any]=1 , __lowercase : Optional[int]=0 , __lowercase : str=2 , __lowercase : Optional[Any]=False , **__lowercase : Dict , ):
"""simple docstring"""
__lowercase =vocab_size
__lowercase =max_position_embeddings
__lowercase =d_model
__lowercase =encoder_ffn_dim
__lowercase =encoder_layers
__lowercase =encoder_attention_heads
__lowercase =decoder_ffn_dim
__lowercase =decoder_layers
__lowercase =decoder_attention_heads
__lowercase =dropout
__lowercase =attention_dropout
__lowercase =activation_dropout
__lowercase =activation_function
__lowercase =init_std
__lowercase =encoder_layerdrop
__lowercase =decoder_layerdrop
__lowercase =use_cache
__lowercase =encoder_layers
__lowercase =scale_embedding # scale factor will be sqrt(d_model) if True
__lowercase =router_z_loss_coef
__lowercase =router_aux_loss_coef
__lowercase =decoder_sparse_step
__lowercase =encoder_sparse_step
__lowercase =num_experts
__lowercase =expert_capacity
__lowercase =router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' )
__lowercase =router_dtype
__lowercase =router_ignore_padding_tokens
__lowercase =batch_prioritized_routing
__lowercase =second_expert_policy
__lowercase =normalize_router_prob_before_dropping
__lowercase =moe_eval_capacity_token_fraction
__lowercase =moe_token_dropout
__lowercase =output_router_logits
super().__init__(
pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , **__lowercase , )
| 119 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = {
'''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''',
# See all Dinat models at https://huggingface.co/models?filter=dinat
}
class lowerCAmelCase ( A , A ):
lowerCAmelCase_ = "dinat"
lowerCAmelCase_ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : int , __lowercase : str=4 , __lowercase : str=3 , __lowercase : int=64 , __lowercase : int=[3, 4, 6, 5] , __lowercase : Union[str, Any]=[2, 4, 8, 16] , __lowercase : Optional[int]=7 , __lowercase : str=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , __lowercase : Any=3.0 , __lowercase : Optional[Any]=True , __lowercase : List[Any]=0.0 , __lowercase : Optional[Any]=0.0 , __lowercase : int=0.1 , __lowercase : Union[str, Any]="gelu" , __lowercase : Any=0.0_2 , __lowercase : int=1E-5 , __lowercase : Optional[int]=0.0 , __lowercase : Optional[int]=None , __lowercase : str=None , **__lowercase : Any , ):
"""simple docstring"""
super().__init__(**__lowercase )
__lowercase =patch_size
__lowercase =num_channels
__lowercase =embed_dim
__lowercase =depths
__lowercase =len(__lowercase )
__lowercase =num_heads
__lowercase =kernel_size
__lowercase =dilations
__lowercase =mlp_ratio
__lowercase =qkv_bias
__lowercase =hidden_dropout_prob
__lowercase =attention_probs_dropout_prob
__lowercase =drop_path_rate
__lowercase =hidden_act
__lowercase =layer_norm_eps
__lowercase =initializer_range
# we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__lowercase =int(embed_dim * 2 ** (len(__lowercase ) - 1) )
__lowercase =layer_scale_init_value
__lowercase =['stem'] + [f'''stage{idx}''' for idx in range(1 , len(__lowercase ) + 1 )]
__lowercase , __lowercase =get_aligned_output_features_output_indices(
out_features=__lowercase , out_indices=__lowercase , stage_names=self.stage_names )
| 119 | 1 |
'''simple docstring'''
import os
import unittest
from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class _SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
def _lowerCamelCase ( self ):
"""simple docstring"""
super().setUp()
__lowerCamelCase = [
'''<unk>''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''unwanted''',
'''wa''',
'''un''',
'''running''',
''',''',
'''low''',
'''l''',
]
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def _lowerCamelCase ( self , **_snake_case ):
"""simple docstring"""
__lowerCamelCase = True
return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_snake_case )
def _lowerCamelCase ( self , _snake_case ):
"""simple docstring"""
__lowerCamelCase = '''<unk> UNwanted , running'''
__lowerCamelCase = '''<unk> unwanted, running'''
return input_text, output_text
def _lowerCamelCase ( self ):
"""simple docstring"""
__lowerCamelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_snake_case )
__lowerCamelCase = tokenizer.tokenize('''<unk> UNwanted , running''' )
self.assertListEqual(_snake_case , ['''<unk>''', '''unwanted''', ''',''', '''running'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [0, 4, 8, 7] )
def _lowerCamelCase ( self ):
"""simple docstring"""
__lowerCamelCase = TransfoXLTokenizer(lower_case=_snake_case )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
def _lowerCamelCase ( self ):
"""simple docstring"""
__lowerCamelCase = TransfoXLTokenizer(lower_case=_snake_case )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def _lowerCamelCase ( self ):
"""simple docstring"""
__lowerCamelCase = TransfoXLTokenizer(lower_case=_snake_case )
__lowerCamelCase = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?'''
__lowerCamelCase = [
'''Hello''',
'''(''',
'''bracket''',
''')''',
'''and''',
'''side''',
'''@-@''',
'''scrolled''',
'''[''',
'''and''',
''']''',
'''Henry''',
'''\'s''',
'''$''',
'''5''',
'''@,@''',
'''000''',
'''with''',
'''3''',
'''@.@''',
'''34''',
'''m''',
'''.''',
'''What''',
'''\'s''',
'''up''',
'''!''',
'''?''',
]
self.assertListEqual(tokenizer.tokenize(_snake_case ) , _snake_case )
self.assertEqual(tokenizer.convert_tokens_to_string(_snake_case ) , _snake_case )
def _lowerCamelCase ( self ):
"""simple docstring"""
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = len(_snake_case )
tokenizer.add_tokens(['''new1''', '''new2'''] )
tokenizer.move_added_token('''new1''' , 1 )
# Check that moved token is not copied (duplicate)
self.assertEqual(len(_snake_case ) , original_len + 2 )
# Check that token is moved to specified id
self.assertEqual(tokenizer.encode('''new1''' ) , [1] )
self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
| 575 |
'''simple docstring'''
def lowerCamelCase_ ( A_ ):
__lowerCamelCase = []
__lowerCamelCase = []
__lowerCamelCase = {
'''^''': 3,
'''*''': 2,
'''/''': 2,
'''%''': 2,
'''+''': 1,
'''-''': 1,
} # Priority of each operator
__lowerCamelCase = len(A_ ) if (len(A_ ) > 7) else 7
# Print table header for output
print(
'''Symbol'''.center(8 ) , '''Stack'''.center(A_ ) , '''Postfix'''.center(A_ ) , sep=''' | ''' , )
print('''-''' * (print_width * 3 + 7) )
for x in infix:
if x.isalpha() or x.isdigit():
post_fix.append(A_ ) # if x is Alphabet / Digit, add it to Postfix
elif x == "(":
stack.append(A_ ) # if x is "(" push to Stack
elif x == ")": # if x is ")" pop stack until "(" is encountered
while stack[-1] != "(":
post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix
stack.pop()
else:
if len(A_ ) == 0:
stack.append(A_ ) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
while len(A_ ) > 0 and priority[x] <= priority[stack[-1]]:
post_fix.append(stack.pop() ) # pop stack & add to Postfix
stack.append(A_ ) # push x to stack
print(
x.center(8 ) , (''''''.join(A_ )).ljust(A_ ) , (''''''.join(A_ )).ljust(A_ ) , sep=''' | ''' , ) # Output in tabular format
while len(A_ ) > 0: # while stack is not empty
post_fix.append(stack.pop() ) # pop stack & add to Postfix
print(
''' '''.center(8 ) , (''''''.join(A_ )).ljust(A_ ) , (''''''.join(A_ )).ljust(A_ ) , sep=''' | ''' , ) # Output in tabular format
return "".join(A_ ) # return Postfix as str
def lowerCamelCase_ ( A_ ):
__lowerCamelCase = list(infix[::-1] ) # reverse the infix equation
for i in range(len(A_ ) ):
if infix[i] == "(":
__lowerCamelCase = ''')''' # change "(" to ")"
elif infix[i] == ")":
__lowerCamelCase = '''(''' # change ")" to "("
return (infix_2_postfix(''''''.join(A_ ) ))[
::-1
] # call infix_2_postfix on Infix, return reverse of Postfix
if __name__ == "__main__":
_UpperCamelCase : Optional[Any] =input("\nEnter an Infix Equation = ") # Input an Infix equation
_UpperCamelCase : str ="".join(Infix.split()) # Remove spaces from the input
print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
| 575 | 1 |
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ):
_a = (UnCLIPScheduler,)
def A__ ( self , **lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
_lowercase ={
'num_train_timesteps': 1_000,
'variance_type': 'fixed_small_log',
'clip_sample': True,
'clip_sample_range': 1.0,
'prediction_type': 'epsilon',
}
config.update(**SCREAMING_SNAKE_CASE__ )
return config
def A__ ( self ) -> List[str]:
'''simple docstring'''
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
def A__ ( self ) -> str:
'''simple docstring'''
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE__ )
def A__ ( self ) -> Union[str, Any]:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ )
def A__ ( self ) -> Tuple:
'''simple docstring'''
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=SCREAMING_SNAKE_CASE__ )
def A__ ( self ) -> Optional[int]:
'''simple docstring'''
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ )
def A__ ( self ) -> Dict:
'''simple docstring'''
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , prev_timestep=SCREAMING_SNAKE_CASE__ )
def A__ ( self ) -> Tuple:
'''simple docstring'''
_lowercase =self.scheduler_classes[0]
_lowercase =self.get_scheduler_config(variance_type='fixed_small_log' )
_lowercase =scheduler_class(**SCREAMING_SNAKE_CASE__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5
def A__ ( self ) -> str:
'''simple docstring'''
_lowercase =self.scheduler_classes[0]
_lowercase =self.get_scheduler_config(variance_type='learned_range' )
_lowercase =scheduler_class(**SCREAMING_SNAKE_CASE__ )
_lowercase =0.5
assert scheduler._get_variance(1 , predicted_variance=SCREAMING_SNAKE_CASE__ ) - -10.1712790 < 1e-5
assert scheduler._get_variance(487 , predicted_variance=SCREAMING_SNAKE_CASE__ ) - -5.7998052 < 1e-5
assert scheduler._get_variance(999 , predicted_variance=SCREAMING_SNAKE_CASE__ ) - -0.0010011 < 1e-5
def A__ ( self ) -> int:
'''simple docstring'''
_lowercase =self.scheduler_classes[0]
_lowercase =self.get_scheduler_config()
_lowercase =scheduler_class(**SCREAMING_SNAKE_CASE__ )
_lowercase =scheduler.timesteps
_lowercase =self.dummy_model()
_lowercase =self.dummy_sample_deter
_lowercase =torch.manual_seed(0 )
for i, t in enumerate(SCREAMING_SNAKE_CASE__ ):
# 1. predict noise residual
_lowercase =model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# 2. predict previous mean of sample x_t-1
_lowercase =scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample
_lowercase =pred_prev_sample
_lowercase =torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
_lowercase =torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2
assert abs(result_mean.item() - 0.3284743 ) < 1e-3
def A__ ( self ) -> Optional[Any]:
'''simple docstring'''
_lowercase =self.scheduler_classes[0]
_lowercase =self.get_scheduler_config()
_lowercase =scheduler_class(**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(25 )
_lowercase =scheduler.timesteps
_lowercase =self.dummy_model()
_lowercase =self.dummy_sample_deter
_lowercase =torch.manual_seed(0 )
for i, t in enumerate(SCREAMING_SNAKE_CASE__ ):
# 1. predict noise residual
_lowercase =model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if i + 1 == timesteps.shape[0]:
_lowercase =None
else:
_lowercase =timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
_lowercase =scheduler.step(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , prev_timestep=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample
_lowercase =pred_prev_sample
_lowercase =torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
_lowercase =torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2
assert abs(result_mean.item() - 0.3362038 ) < 1e-3
def A__ ( self ) -> Dict:
'''simple docstring'''
pass
def A__ ( self ) -> Dict:
'''simple docstring'''
pass
| 291 |
"""simple docstring"""
import unittest
from transformers import MPNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
class _a :
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Any=99 , SCREAMING_SNAKE_CASE__ : str=64 , SCREAMING_SNAKE_CASE__ : Any=5 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : int=64 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=5_12 , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = seq_length
lowerCamelCase__ = is_training
lowerCamelCase__ = use_input_mask
lowerCamelCase__ = use_token_type_ids
lowerCamelCase__ = use_labels
lowerCamelCase__ = vocab_size
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = max_position_embeddings
lowerCamelCase__ = type_vocab_size
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = num_labels
lowerCamelCase__ = num_choices
lowerCamelCase__ = scope
def _UpperCamelCase ( self : Dict ):
return MPNetConfig.from_pretrained('microsoft/mpnet-base' )
def _UpperCamelCase ( self : Optional[int] ):
lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ = None
if self.use_input_mask:
lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ = None
lowerCamelCase__ = None
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : Optional[Any] ):
return MPNetConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ):
lowerCamelCase__ = MPNetModel(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ):
lowerCamelCase__ = MPNetForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
lowerCamelCase__ = model(
SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
lowerCamelCase__ = self.num_labels
lowerCamelCase__ = MPNetForSequenceClassification(SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
lowerCamelCase__ = self.num_choices
lowerCamelCase__ = MPNetForMultipleChoice(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
lowerCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ = model(
SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ):
lowerCamelCase__ = self.num_labels
lowerCamelCase__ = MPNetForTokenClassification(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : List[str] ):
lowerCamelCase__ = self.prepare_config_and_inputs()
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs
lowerCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
a_ : Any = (
(
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
if is_torch_available()
else ()
)
a_ : Optional[Any] = (
{
'feature-extraction': MPNetModel,
'fill-mask': MPNetForMaskedLM,
'question-answering': MPNetForQuestionAnswering,
'text-classification': MPNetForSequenceClassification,
'token-classification': MPNetForTokenClassification,
'zero-shot': MPNetForSequenceClassification,
}
if is_torch_available()
else {}
)
a_ : Optional[Any] = False
a_ : Any = True
def _UpperCamelCase ( self : str ):
lowerCamelCase__ = MPNetModelTester(self )
lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 )
def _UpperCamelCase ( self : Tuple ):
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : int ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_model(*SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( self : Dict ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_sequence_classification(*SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( self : int ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_multiple_choice(*SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( self : Union[str, Any] ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_token_classification(*SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( self : Optional[int] ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_question_answering(*SCREAMING_SNAKE_CASE__ )
@require_torch
class _a ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Optional[int] ):
lowerCamelCase__ = MPNetModel.from_pretrained('microsoft/mpnet-base' )
lowerCamelCase__ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ )[0]
lowerCamelCase__ = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ )
lowerCamelCase__ = torch.tensor(
[[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]] )
# compare the actual values for a slice.
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
| 510 | 0 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_torch_available():
import torch
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
_A = logging.get_logger(__name__)
@dataclass
class UpperCAmelCase__ ( _snake_case ):
"""simple docstring"""
A : int = [
'''no_inference''',
'''no_cuda''',
'''no_tpu''',
'''no_speed''',
'''no_memory''',
'''no_env_print''',
'''no_multi_process''',
]
def __init__(self , **_a ) -> Optional[int]:
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
lowercase_ : Dict = deprecated_arg[3:]
setattr(self , _a , not kwargs.pop(_a ) )
logger.warning(
f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or'''
f''' {positive_arg}={kwargs[positive_arg]}''' )
lowercase_ : List[Any] = kwargs.pop('torchscript' , self.torchscript )
lowercase_ : Tuple = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics )
lowercase_ : Any = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level )
super().__init__(**_a )
A : bool = field(default=_snake_case , metadata={'''help''': '''Trace the models using torchscript'''} )
A : bool = field(default=_snake_case , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} )
A : str = field(
default='''O1''' , metadata={
'''help''': (
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. '''
'''See details at https://nvidia.github.io/apex/amp.html'''
)
} , )
@cached_property
def _lowerCamelCase (self ) -> Tuple["torch.device", int]:
requires_backends(self , ['torch'] )
logger.info('PyTorch: setting up devices' )
if not self.cuda:
lowercase_ : List[str] = torch.device('cpu' )
lowercase_ : Optional[int] = 0
elif is_torch_tpu_available():
lowercase_ : Dict = xm.xla_device()
lowercase_ : Tuple = 0
else:
lowercase_ : Dict = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
lowercase_ : Tuple = torch.cuda.device_count()
return device, n_gpu
@property
def _lowerCamelCase (self ) -> str:
return is_torch_tpu_available() and self.tpu
@property
def _lowerCamelCase (self ) -> int:
requires_backends(self , ['torch'] )
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def _lowerCamelCase (self ) -> "torch.device":
requires_backends(self , ['torch'] )
return self._setup_devices[0]
@property
def _lowerCamelCase (self ) -> int:
requires_backends(self , ['torch'] )
return self._setup_devices[1]
@property
def _lowerCamelCase (self ) -> Optional[int]:
return self.n_gpu > 0
| 438 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
_A = logging.get_logger(__name__)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ):
lowercase_ : List[Any] = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
lowercase_ : List[Any] = 128
elif "12-12" in model_name:
lowercase_ : Tuple = 12
lowercase_ : List[Any] = 12
elif "14-14" in model_name:
lowercase_ : List[str] = 14
lowercase_ : Optional[Any] = 14
elif "16-16" in model_name:
lowercase_ : Union[str, Any] = 16
lowercase_ : List[str] = 16
else:
raise ValueError('Model not supported' )
lowercase_ : Optional[Any] = 'huggingface/label-files'
if "speech-commands" in model_name:
lowercase_ : List[str] = 35
lowercase_ : int = 'speech-commands-v2-id2label.json'
else:
lowercase_ : Union[str, Any] = 527
lowercase_ : int = 'audioset-id2label.json'
lowercase_ : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) )
lowercase_ : Union[str, Any] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
lowercase_ : Optional[int] = idalabel
lowercase_ : Optional[int] = {v: k for k, v in idalabel.items()}
return config
def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ):
if "module.v" in name:
lowercase_ : Dict = name.replace('module.v' , 'audio_spectrogram_transformer' )
if "cls_token" in name:
lowercase_ : Optional[Any] = name.replace('cls_token' , 'embeddings.cls_token' )
if "dist_token" in name:
lowercase_ : Any = name.replace('dist_token' , 'embeddings.distillation_token' )
if "pos_embed" in name:
lowercase_ : List[str] = name.replace('pos_embed' , 'embeddings.position_embeddings' )
if "patch_embed.proj" in name:
lowercase_ : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
# transformer blocks
if "blocks" in name:
lowercase_ : Optional[Any] = name.replace('blocks' , 'encoder.layer' )
if "attn.proj" in name:
lowercase_ : Optional[int] = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
lowercase_ : Dict = name.replace('attn' , 'attention.self' )
if "norm1" in name:
lowercase_ : int = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
lowercase_ : Optional[int] = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
lowercase_ : Optional[int] = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
lowercase_ : int = name.replace('mlp.fc2' , 'output.dense' )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
lowercase_ : int = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' )
# classifier head
if "module.mlp_head.0" in name:
lowercase_ : Dict = name.replace('module.mlp_head.0' , 'classifier.layernorm' )
if "module.mlp_head.1" in name:
lowercase_ : List[Any] = name.replace('module.mlp_head.1' , 'classifier.dense' )
return name
def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for key in orig_state_dict.copy().keys():
lowercase_ : List[str] = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ )
if "qkv" in key:
lowercase_ : List[str] = key.split('.' )
lowercase_ : int = int(key_split[3] )
lowercase_ : Tuple = config.hidden_size
if "weight" in key:
lowercase_ : Tuple = val[:dim, :]
lowercase_ : Union[str, Any] = val[dim : dim * 2, :]
lowercase_ : Optional[int] = val[-dim:, :]
else:
lowercase_ : Optional[Any] = val[:dim]
lowercase_ : Any = val[dim : dim * 2]
lowercase_ : Tuple = val[-dim:]
else:
lowercase_ : Optional[Any] = val
return orig_state_dict
def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ):
lowercase_ : List[Any] = [
'module.v.head.weight',
'module.v.head.bias',
'module.v.head_dist.weight',
'module.v.head_dist.bias',
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ):
lowercase_ : Dict = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE_ )
lowercase_ : Optional[int] = {
'ast-finetuned-audioset-10-10-0.4593': (
'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1'
),
'ast-finetuned-audioset-10-10-0.450': (
'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1'
),
'ast-finetuned-audioset-10-10-0.448': (
'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1'
),
'ast-finetuned-audioset-10-10-0.448-v2': (
'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1'
),
'ast-finetuned-audioset-12-12-0.447': (
'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1'
),
'ast-finetuned-audioset-14-14-0.443': (
'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1'
),
'ast-finetuned-audioset-16-16-0.442': (
'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1'
),
'ast-finetuned-speech-commands-v2': (
'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1'
),
}
# load original state_dict
lowercase_ : Dict = model_name_to_url[model_name]
lowercase_ : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' )
# remove some keys
remove_keys(SCREAMING_SNAKE_CASE_ )
# rename some keys
lowercase_ : str = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load 🤗 model
lowercase_ : Optional[Any] = ASTForAudioClassification(SCREAMING_SNAKE_CASE_ )
model.eval()
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
lowercase_ : Tuple = -4.267_7393 if 'speech-commands' not in model_name else -6.84_5978
lowercase_ : str = 4.568_9974 if 'speech-commands' not in model_name else 5.565_4526
lowercase_ : str = 1_024 if 'speech-commands' not in model_name else 128
lowercase_ : Dict = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ )
if "speech-commands" in model_name:
lowercase_ : Optional[Any] = load_dataset('speech_commands' , 'v0.02' , split='validation' )
lowercase_ : Any = dataset[0]['audio']['array']
else:
lowercase_ : Any = hf_hub_download(
repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , )
lowercase_ ,lowercase_ : Union[str, Any] = torchaudio.load(SCREAMING_SNAKE_CASE_ )
lowercase_ : str = waveform.squeeze().numpy()
lowercase_ : str = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=16_000 , return_tensors='pt' )
# forward pass
lowercase_ : Tuple = model(**SCREAMING_SNAKE_CASE_ )
lowercase_ : Tuple = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
lowercase_ : int = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
lowercase_ : Optional[int] = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
lowercase_ : Optional[Any] = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
lowercase_ : List[str] = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
lowercase_ : List[str] = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
lowercase_ : Any = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
lowercase_ : List[str] = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
lowercase_ : Optional[Any] = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError('Unknown model name' )
if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ):
raise ValueError('Logits don\'t match' )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if push_to_hub:
print('Pushing model and feature extractor to the hub...' )
model.push_to_hub(f'''MIT/{model_name}''' )
feature_extractor.push_to_hub(f'''MIT/{model_name}''' )
if __name__ == "__main__":
_A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='ast-finetuned-audioset-10-10-0.4593',
type=str,
help='Name of the Audio Spectrogram Transformer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
_A = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 438 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
snake_case__ : int = logging.get_logger(__name__)
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=False ) ->List[str]:
_UpperCAmelCase =[]
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_UpperCAmelCase =[(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) ->str:
for i in range(config.num_hidden_layers ):
if base_model:
_UpperCAmelCase =""
else:
_UpperCAmelCase ="vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_UpperCAmelCase =state_dict.pop(F"blocks.{i}.attn.qkv.weight" )
_UpperCAmelCase =state_dict.pop(F"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
_UpperCAmelCase =in_proj_weight[
: config.hidden_size, :
]
_UpperCAmelCase =in_proj_bias[: config.hidden_size]
_UpperCAmelCase =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_UpperCAmelCase =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_UpperCAmelCase =in_proj_weight[
-config.hidden_size :, :
]
_UpperCAmelCase =in_proj_bias[-config.hidden_size :]
def lowerCamelCase__ ( _lowerCamelCase ) ->Any:
_UpperCAmelCase =["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int:
_UpperCAmelCase =dct.pop(_lowerCamelCase )
_UpperCAmelCase =val
def lowerCamelCase__ ( ) ->Optional[Any]:
_UpperCAmelCase ="http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase =Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) ->Optional[int]:
_UpperCAmelCase =ViTConfig()
# patch_size
if model_name[-1] == "8":
_UpperCAmelCase =8
# set labels if required
if not base_model:
_UpperCAmelCase =1000
_UpperCAmelCase ="huggingface/label-files"
_UpperCAmelCase ="imagenet-1k-id2label.json"
_UpperCAmelCase =json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_UpperCAmelCase ={int(_lowerCamelCase ): v for k, v in idalabel.items()}
_UpperCAmelCase =idalabel
_UpperCAmelCase ={v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
_UpperCAmelCase =384
_UpperCAmelCase =1536
_UpperCAmelCase =12
_UpperCAmelCase =6
# load original model from torch hub
_UpperCAmelCase =torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase )
original_model.eval()
# load state_dict of original model, remove and rename some keys
_UpperCAmelCase =original_model.state_dict()
if base_model:
remove_classification_head_(_lowerCamelCase )
_UpperCAmelCase =create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# load HuggingFace model
if base_model:
_UpperCAmelCase =ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval()
else:
_UpperCAmelCase =ViTForImageClassification(_lowerCamelCase ).eval()
model.load_state_dict(_lowerCamelCase )
# Check outputs on an image, prepared by ViTImageProcessor
_UpperCAmelCase =ViTImageProcessor()
_UpperCAmelCase =image_processor(images=prepare_img() , return_tensors="pt" )
_UpperCAmelCase =encoding["pixel_values"]
_UpperCAmelCase =model(_lowerCamelCase )
if base_model:
_UpperCAmelCase =original_model(_lowerCamelCase )
assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 )
else:
_UpperCAmelCase =original_model(_lowerCamelCase )
assert logits.shape == outputs.logits.shape
assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_lowerCamelCase )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
snake_case__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
snake_case__ : Optional[int] = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 408 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
snake_case__ : Optional[Any] = logging.get_logger(__name__)
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=False ) ->int:
_UpperCAmelCase =[]
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"blocks.{i}.norm1.weight", F"deit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((F"blocks.{i}.norm1.bias", F"deit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append((F"blocks.{i}.attn.proj.weight", F"deit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((F"blocks.{i}.attn.proj.bias", F"deit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((F"blocks.{i}.norm2.weight", F"deit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((F"blocks.{i}.norm2.bias", F"deit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"deit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"deit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"deit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"deit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "deit.embeddings.cls_token"),
("dist_token", "deit.embeddings.distillation_token"),
("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "deit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
("pre_logits.fc.weight", "pooler.dense.weight"),
("pre_logits.fc.bias", "pooler.dense.bias"),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
_UpperCAmelCase =[(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("norm.weight", "deit.layernorm.weight"),
("norm.bias", "deit.layernorm.bias"),
("head.weight", "cls_classifier.weight"),
("head.bias", "cls_classifier.bias"),
("head_dist.weight", "distillation_classifier.weight"),
("head_dist.bias", "distillation_classifier.bias"),
] )
return rename_keys
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) ->List[Any]:
for i in range(config.num_hidden_layers ):
if base_model:
_UpperCAmelCase =""
else:
_UpperCAmelCase ="deit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_UpperCAmelCase =state_dict.pop(F"blocks.{i}.attn.qkv.weight" )
_UpperCAmelCase =state_dict.pop(F"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
_UpperCAmelCase =in_proj_weight[
: config.hidden_size, :
]
_UpperCAmelCase =in_proj_bias[: config.hidden_size]
_UpperCAmelCase =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_UpperCAmelCase =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_UpperCAmelCase =in_proj_weight[
-config.hidden_size :, :
]
_UpperCAmelCase =in_proj_bias[-config.hidden_size :]
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Dict:
_UpperCAmelCase =dct.pop(_lowerCamelCase )
_UpperCAmelCase =val
def lowerCamelCase__ ( ) ->int:
_UpperCAmelCase ="http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase =Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->List[str]:
_UpperCAmelCase =DeiTConfig()
# all deit models have fine-tuned heads
_UpperCAmelCase =False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
_UpperCAmelCase =1000
_UpperCAmelCase ="huggingface/label-files"
_UpperCAmelCase ="imagenet-1k-id2label.json"
_UpperCAmelCase =json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_UpperCAmelCase ={int(_lowerCamelCase ): v for k, v in idalabel.items()}
_UpperCAmelCase =idalabel
_UpperCAmelCase ={v: k for k, v in idalabel.items()}
_UpperCAmelCase =int(deit_name[-6:-4] )
_UpperCAmelCase =int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("tiny" ):
_UpperCAmelCase =192
_UpperCAmelCase =768
_UpperCAmelCase =12
_UpperCAmelCase =3
elif deit_name[9:].startswith("small" ):
_UpperCAmelCase =384
_UpperCAmelCase =1536
_UpperCAmelCase =12
_UpperCAmelCase =6
if deit_name[9:].startswith("base" ):
pass
elif deit_name[4:].startswith("large" ):
_UpperCAmelCase =1024
_UpperCAmelCase =4096
_UpperCAmelCase =24
_UpperCAmelCase =16
# load original model from timm
_UpperCAmelCase =timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
_UpperCAmelCase =timm_model.state_dict()
_UpperCAmelCase =create_rename_keys(_lowerCamelCase , _lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# load HuggingFace model
_UpperCAmelCase =DeiTForImageClassificationWithTeacher(_lowerCamelCase ).eval()
model.load_state_dict(_lowerCamelCase )
# Check outputs on an image, prepared by DeiTImageProcessor
_UpperCAmelCase =int(
(256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
_UpperCAmelCase =DeiTImageProcessor(size=_lowerCamelCase , crop_size=config.image_size )
_UpperCAmelCase =image_processor(images=prepare_img() , return_tensors="pt" )
_UpperCAmelCase =encoding["pixel_values"]
_UpperCAmelCase =model(_lowerCamelCase )
_UpperCAmelCase =timm_model(_lowerCamelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"Saving model {deit_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_lowerCamelCase )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
snake_case__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--deit_name',
default='vit_deit_base_distilled_patch16_224',
type=str,
help='Name of the DeiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
snake_case__ : List[str] = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 408 | 1 |
from __future__ import annotations
from typing import Any
class lowerCAmelCase_ :
"""simple docstring"""
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 ) -> None:
__UpperCamelCase , __UpperCamelCase = row, column
__UpperCamelCase = [[default_value for c in range(_SCREAMING_SNAKE_CASE )] for r in range(_SCREAMING_SNAKE_CASE )]
def __str__( self ) -> str:
__UpperCamelCase = f"""Matrix consist of {self.row} rows and {self.column} columns\n"""
# Make string identifier
__UpperCamelCase = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCamelCase = max(_SCREAMING_SNAKE_CASE , len(str(_SCREAMING_SNAKE_CASE ) ) )
__UpperCamelCase = f"""%{max_element_length}s"""
# Make string and return
def single_line(_SCREAMING_SNAKE_CASE ) -> str:
nonlocal string_format_identifier
__UpperCamelCase = '['
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(_SCREAMING_SNAKE_CASE ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
return str(self )
def __lowercase( self , _SCREAMING_SNAKE_CASE ) -> bool:
if not (isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and len(_SCREAMING_SNAKE_CASE ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Any:
assert self.validate_indicies(_SCREAMING_SNAKE_CASE )
return self.array[loc[0]][loc[1]]
def __setitem__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None:
assert self.validate_indicies(_SCREAMING_SNAKE_CASE )
__UpperCamelCase = value
def __add__( self , _SCREAMING_SNAKE_CASE ) -> Matrix:
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert self.row == another.row and self.column == another.column
# Add
__UpperCamelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCamelCase = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
__UpperCamelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCamelCase = -self[r, c]
return result
def __sub__( self , _SCREAMING_SNAKE_CASE ) -> Matrix:
return self + (-another)
def __mul__( self , _SCREAMING_SNAKE_CASE ) -> Matrix:
if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): # Scalar multiplication
__UpperCamelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCamelCase = self[r, c] * another
return result
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Matrix multiplication
assert self.column == another.row
__UpperCamelCase = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCamelCase = f"""Unsupported type given for another ({type(_SCREAMING_SNAKE_CASE )})"""
raise TypeError(_SCREAMING_SNAKE_CASE )
def __lowercase( self ) -> Matrix:
__UpperCamelCase = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCamelCase = self[r, c]
return result
def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCamelCase = v.transpose()
__UpperCamelCase = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def _a ( ) -> None:
"""simple docstring"""
__UpperCamelCase = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCamelCase = 1
print(F"""a^(-1) is {ainv}""" )
# u, v
__UpperCamelCase = Matrix(3 , 1 , 0 )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1, 2, -3
__UpperCamelCase = Matrix(3 , 1 , 0 )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 4, -2, 5
print(F"""u is {u}""" )
print(F"""v is {v}""" )
print(F"""uv^T is {u * v.transpose()}""" )
# Sherman Morrison
print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(__lowercase , __lowercase )}""" )
def _a ( ) -> None:
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 713 |
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnetaD
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
_snake_case = {
'gwf-440k': {
'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt',
'sample_rate': 48_000,
'sample_size': 65_536,
},
'jmann-small-190k': {
'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt',
'sample_rate': 48_000,
'sample_size': 65_536,
},
'jmann-large-580k': {
'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt',
'sample_rate': 48_000,
'sample_size': 131_072,
},
'maestro-uncond-150k': {
'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt',
'sample_rate': 16_000,
'sample_size': 65_536,
},
'unlocked-uncond-250k': {
'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt',
'sample_rate': 16_000,
'sample_size': 65_536,
},
'honk-140k': {
'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt',
'sample_rate': 16_000,
'sample_size': 65_536,
},
}
def _a ( __lowercase , __lowercase ) -> Dict:
"""simple docstring"""
return torch.atana(__lowercase , __lowercase ) / math.pi * 2
def _a ( __lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = torch.sin(t * math.pi / 2 ) ** 2
__UpperCamelCase = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(__lowercase , __lowercase )
class lowerCAmelCase_ ( _lowercase ):
"""simple docstring"""
pass
class lowerCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self , _SCREAMING_SNAKE_CASE ) -> Dict:
super().__init__()
__UpperCamelCase = DiffusionAttnUnetaD(_SCREAMING_SNAKE_CASE , n_attn_layers=4 )
__UpperCamelCase = deepcopy(self.diffusion )
__UpperCamelCase = torch.quasirandom.SobolEngine(1 , scramble=_SCREAMING_SNAKE_CASE )
def _a ( __lowercase ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = MODELS_MAP[model_name]['url']
os.system(F"""wget {url} ./""" )
return F"""./{model_name}.ckpt"""
_snake_case = {
'1': 'resnets.0',
'2': 'attentions.0',
'3': 'resnets.1',
'4': 'attentions.1',
'5': 'resnets.2',
'6': 'attentions.2',
}
_snake_case = {
'8': 'resnets.0',
'9': 'attentions.0',
'10': 'resnets.1',
'11': 'attentions.1',
'12': 'resnets.2',
'13': 'attentions.2',
}
_snake_case = {
'1': 'resnets.0',
'2': 'attentions.0',
'3': 'resnets.1',
'4': 'attentions.1',
'5': 'resnets.2',
'6': 'attentions.2',
'8': 'resnets.3',
'9': 'attentions.3',
'10': 'resnets.4',
'11': 'attentions.4',
'12': 'resnets.5',
'13': 'attentions.5',
}
_snake_case = {
'0': 'resnets.0',
'1': 'resnets.1',
'2': 'resnets.2',
'4': 'resnets.0',
'5': 'resnets.1',
'6': 'resnets.2',
}
_snake_case = {
'skip': 'conv_skip',
'main.0': 'conv_1',
'main.1': 'group_norm_1',
'main.3': 'conv_2',
'main.4': 'group_norm_2',
}
_snake_case = {
'norm': 'group_norm',
'qkv_proj': ['query', 'key', 'value'],
'out_proj': ['proj_attn'],
}
def _a ( __lowercase ) -> Optional[int]:
"""simple docstring"""
if name.startswith('skip' ):
return name.replace('skip' , RES_CONV_MAP['skip'] )
# name has to be of format main.{digit}
if not name.startswith('main.' ):
raise ValueError(F"""ResConvBlock error with {name}""" )
return name.replace(name[:6] , RES_CONV_MAP[name[:6]] )
def _a ( __lowercase ) -> List[Any]:
"""simple docstring"""
for key, value in ATTN_MAP.items():
if name.startswith(__lowercase ) and not isinstance(__lowercase , __lowercase ):
return name.replace(__lowercase , __lowercase )
elif name.startswith(__lowercase ):
return [name.replace(__lowercase , __lowercase ) for v in value]
raise ValueError(F"""Attn error with {name}""" )
def _a ( __lowercase , __lowercase=13 ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = input_string
if string.split('.' )[0] == "timestep_embed":
return string.replace('timestep_embed' , 'time_proj' )
__UpperCamelCase = 0
if string.startswith('net.3.' ):
depth += 1
__UpperCamelCase = string[6:]
elif string.startswith('net.' ):
__UpperCamelCase = string[4:]
while string.startswith('main.7.' ):
depth += 1
__UpperCamelCase = string[7:]
if string.startswith('main.' ):
__UpperCamelCase = string[5:]
# mid block
if string[:2].isdigit():
__UpperCamelCase = string[:2]
__UpperCamelCase = string[2:]
else:
__UpperCamelCase = string[0]
__UpperCamelCase = string[1:]
if depth == max_depth:
__UpperCamelCase = MID_NUM_TO_LAYER[layer_num]
__UpperCamelCase = 'mid_block'
elif depth > 0 and int(__lowercase ) < 7:
__UpperCamelCase = DOWN_NUM_TO_LAYER[layer_num]
__UpperCamelCase = F"""down_blocks.{depth}"""
elif depth > 0 and int(__lowercase ) > 7:
__UpperCamelCase = UP_NUM_TO_LAYER[layer_num]
__UpperCamelCase = F"""up_blocks.{max_depth - depth - 1}"""
elif depth == 0:
__UpperCamelCase = DEPTH_0_TO_LAYER[layer_num]
__UpperCamelCase = F"""up_blocks.{max_depth - 1}""" if int(__lowercase ) > 3 else 'down_blocks.0'
if not string_left.startswith('.' ):
raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" )
__UpperCamelCase = string_left[1:]
if "resnets" in new_layer:
__UpperCamelCase = convert_resconv_naming(__lowercase )
elif "attentions" in new_layer:
__UpperCamelCase = convert_attn_naming(__lowercase )
__UpperCamelCase = new_string_left
if not isinstance(__lowercase , __lowercase ):
__UpperCamelCase = prefix + '.' + new_layer + '.' + string_left
else:
__UpperCamelCase = [prefix + '.' + new_layer + '.' + s for s in string_left]
return new_string
def _a ( __lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = {}
for k, v in state_dict.items():
if k.endswith('kernel' ):
# up- and downsample layers, don't have trainable weights
continue
__UpperCamelCase = rename(__lowercase )
# check if we need to transform from Conv => Linear for attention
if isinstance(__lowercase , __lowercase ):
__UpperCamelCase = transform_conv_attns(__lowercase , __lowercase , __lowercase )
else:
__UpperCamelCase = v
return new_state_dict
def _a ( __lowercase , __lowercase , __lowercase ) -> List[str]:
"""simple docstring"""
if len(__lowercase ) == 1:
if len(v.shape ) == 3:
# weight
__UpperCamelCase = v[:, :, 0]
else:
# bias
__UpperCamelCase = v
else:
# qkv matrices
__UpperCamelCase = v.shape[0]
__UpperCamelCase = trippled_shape // 3
for i in range(3 ):
if len(v.shape ) == 3:
__UpperCamelCase = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
__UpperCamelCase = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def _a ( __lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
__UpperCamelCase = args.model_path.split('/' )[-1].split('.' )[0]
if not os.path.isfile(args.model_path ):
assert (
model_name == args.model_path
), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}"""
__UpperCamelCase = download(__lowercase )
__UpperCamelCase = MODELS_MAP[model_name]['sample_rate']
__UpperCamelCase = MODELS_MAP[model_name]['sample_size']
__UpperCamelCase = Object()
__UpperCamelCase = sample_size
__UpperCamelCase = sample_rate
__UpperCamelCase = 0
__UpperCamelCase = UNetaDModel(sample_size=__lowercase , sample_rate=__lowercase )
__UpperCamelCase = diffusers_model.state_dict()
__UpperCamelCase = DiffusionUncond(__lowercase )
orig_model.load_state_dict(torch.load(args.model_path , map_location=__lowercase )['state_dict'] )
__UpperCamelCase = orig_model.diffusion_ema.eval()
__UpperCamelCase = orig_model.state_dict()
__UpperCamelCase = rename_orig_weights(__lowercase )
__UpperCamelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() )
__UpperCamelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() )
assert len(__lowercase ) == 0, F"""Problem with {renamed_minus_diffusers}"""
assert all(k.endswith('kernel' ) for k in list(__lowercase ) ), F"""Problem with {diffusers_minus_renamed}"""
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}"""
if key == "time_proj.weight":
__UpperCamelCase = value.squeeze()
__UpperCamelCase = value
diffusers_model.load_state_dict(__lowercase )
__UpperCamelCase = 100
__UpperCamelCase = 33
__UpperCamelCase = IPNDMScheduler(num_train_timesteps=__lowercase )
__UpperCamelCase = torch.manual_seed(__lowercase )
__UpperCamelCase = torch.randn([1, 2, config.sample_size] , generator=__lowercase ).to(__lowercase )
__UpperCamelCase = torch.linspace(1 , 0 , steps + 1 , device=__lowercase )[:-1]
__UpperCamelCase = get_crash_schedule(__lowercase )
__UpperCamelCase = DanceDiffusionPipeline(unet=__lowercase , scheduler=__lowercase )
__UpperCamelCase = torch.manual_seed(33 )
__UpperCamelCase = pipe(num_inference_steps=__lowercase , generator=__lowercase ).audios
__UpperCamelCase = sampling.iplms_sample(__lowercase , __lowercase , __lowercase , {} )
__UpperCamelCase = generated.clamp(-1 , 1 )
__UpperCamelCase = (generated - audio).abs().sum()
__UpperCamelCase = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path )
print('Diff sum' , __lowercase )
print('Diff max' , __lowercase )
assert diff_max < 1e-3, F"""Diff max: {diff_max} is too much :-/"""
print(F"""Conversion for {model_name} successful!""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.')
parser.add_argument(
'--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.'
)
parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.')
_snake_case = parser.parse_args()
main(args)
| 567 | 0 |
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
__a = ['text', 'image', 'audio']
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
UpperCAmelCase_ : int = []
for input_type in input_types:
if input_type == "text":
inputs.append('''Text input''' )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) )
elif input_type == "audio":
inputs.append(torch.ones(3000 ) )
elif isinstance(_lowercase , _lowercase ):
inputs.append(create_inputs(_lowercase ) )
else:
raise ValueError(f'''Invalid type requested: {input_type}''' )
return inputs
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
UpperCAmelCase_ : Dict = []
for output in outputs:
if isinstance(_lowercase , (str, AgentText) ):
output_types.append('''text''' )
elif isinstance(_lowercase , (Image.Image, AgentImage) ):
output_types.append('''image''' )
elif isinstance(_lowercase , (torch.Tensor, AgentAudio) ):
output_types.append('''audio''' )
else:
raise ValueError(f'''Invalid output: {output}''' )
return output_types
@is_tool_test
class __a:
"""simple docstring"""
def a__ ( self ) -> Union[str, Any]:
self.assertTrue(hasattr(self.tool ,'''inputs''' ) )
self.assertTrue(hasattr(self.tool ,'''outputs''' ) )
UpperCAmelCase_ : str = self.tool.inputs
for _input in inputs:
if isinstance(_input ,_SCREAMING_SNAKE_CASE ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
UpperCAmelCase_ : Union[str, Any] = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def a__ ( self ) -> Any:
UpperCAmelCase_ : Union[str, Any] = create_inputs(self.tool.inputs )
UpperCAmelCase_ : Any = self.tool(*_SCREAMING_SNAKE_CASE )
# There is a single output
if len(self.tool.outputs ) == 1:
UpperCAmelCase_ : Optional[int] = [outputs]
self.assertListEqual(output_types(_SCREAMING_SNAKE_CASE ) ,self.tool.outputs )
def a__ ( self ) -> Optional[int]:
self.assertTrue(hasattr(self.tool ,'''description''' ) )
self.assertTrue(hasattr(self.tool ,'''default_checkpoint''' ) )
self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) )
def a__ ( self ) -> Optional[int]:
UpperCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs )
UpperCAmelCase_ : str = self.tool(*_SCREAMING_SNAKE_CASE )
if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ):
UpperCAmelCase_ : Union[str, Any] = [outputs]
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,len(self.tool.outputs ) )
for output, output_type in zip(_SCREAMING_SNAKE_CASE ,self.tool.outputs ):
UpperCAmelCase_ : Union[str, Any] = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) )
def a__ ( self ) -> Any:
UpperCAmelCase_ : Union[str, Any] = create_inputs(self.tool.inputs )
UpperCAmelCase_ : Tuple = []
for _input, input_type in zip(_SCREAMING_SNAKE_CASE ,self.tool.inputs ):
if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
UpperCAmelCase_ : List[Any] = self.tool(*_SCREAMING_SNAKE_CASE )
if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ):
UpperCAmelCase_ : Optional[Any] = [outputs]
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,len(self.tool.outputs ) )
| 30 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
__lowerCamelCase = logging.get_logger(__name__)
__lowerCamelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__lowerCamelCase = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
__lowerCamelCase = {
'squeezebert/squeezebert-uncased': 5_12,
'squeezebert/squeezebert-mnli': 5_12,
'squeezebert/squeezebert-mnli-headless': 5_12,
}
__lowerCamelCase = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class __A ( SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = SqueezeBertTokenizer
def __init__( self : Tuple , __snake_case : str=None , __snake_case : Optional[Any]=None , __snake_case : str=True , __snake_case : str="[UNK]" , __snake_case : int="[SEP]" , __snake_case : int="[PAD]" , __snake_case : Any="[CLS]" , __snake_case : List[Any]="[MASK]" , __snake_case : Union[str, Any]=True , __snake_case : Dict=None , **__snake_case : str , ) -> List[Any]:
super().__init__(
__snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , **__snake_case , )
__magic_name__: List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __snake_case ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __snake_case ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __snake_case ) != tokenize_chinese_chars
):
__magic_name__: Dict = getattr(__snake_case , normalizer_state.pop("""type""" ) )
__magic_name__: Optional[Any] = do_lower_case
__magic_name__: Any = strip_accents
__magic_name__: Any = tokenize_chinese_chars
__magic_name__: Union[str, Any] = normalizer_class(**__snake_case )
__magic_name__: Optional[Any] = do_lower_case
def lowerCamelCase__ ( self : Optional[Any] , __snake_case : List[Any] , __snake_case : int=None ) -> Optional[int]:
__magic_name__: int = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase__ ( self : Any , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
__magic_name__: Dict = [self.sep_token_id]
__magic_name__: List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase__ ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]:
__magic_name__: Any = self._tokenizer.model.save(__snake_case , name=__snake_case )
return tuple(__snake_case )
| 96 | 0 |
"""simple docstring"""
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
__lowerCAmelCase : Dict = [
"cross_validation.py",
"gradient_accumulation.py",
"local_sgd.py",
"multi_process_metrics.py",
"memory.py",
"automatic_gradient_accumulation.py",
"fsdp_with_peak_mem_tracking.py",
"deepspeed_with_config_support.py",
"megatron_lm_gpt_pretraining.py",
]
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : str , snake_case__ : bool , snake_case__ : str = None , snake_case__ : list = None ):
lowerCAmelCase__ = None
lowerCAmelCase__ = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) )
lowerCAmelCase__ = os.path.abspath("""examples""" )
for item in os.listdir(snake_case__ ):
if item not in EXCLUDE_EXAMPLES:
lowerCAmelCase__ = os.path.join(snake_case__ , snake_case__ )
if os.path.isfile(snake_case__ ) and ".py" in item_path:
with self.subTest(
tested_script=snake_case__ , feature_script=snake_case__ , tested_section="""main()""" if parser_only else """training_function()""" , ):
lowerCAmelCase__ = compare_against_test(
os.path.join(snake_case__ , snake_case__ ) , snake_case__ , snake_case__ , snake_case__ )
lowerCAmelCase__ = """\n""".join(snake_case__ )
if special_strings is not None:
for string in special_strings:
lowerCAmelCase__ = diff.replace(snake_case__ , """""" )
self.assertEqual(snake_case__ , """""" )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
self.one_complete_example("""complete_nlp_example.py""" , snake_case__ )
self.one_complete_example("""complete_nlp_example.py""" , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) )
lowerCAmelCase__ = [
""" """ * 16 + """{\n\n""",
""" """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""",
""" """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""",
""" """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""",
""" """ * 20 + """\"epoch\": epoch,\n\n""",
""" """ * 16 + """},\n\n""",
""" """ * 16 + """step=epoch,\n""",
""" """ * 12,
""" """ * 8 + """for step, batch in enumerate(active_dataloader):\n""",
]
self.one_complete_example("""complete_cv_example.py""" , snake_case__ , snake_case__ , snake_case__ )
self.one_complete_example("""complete_cv_example.py""" , snake_case__ , snake_case__ , snake_case__ )
@mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} )
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : Optional[Any] = False
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Tuple ):
super().setUpClass()
lowerCAmelCase__ = tempfile.mkdtemp()
lowerCAmelCase__ = os.path.join(cls._tmpdir , """default_config.yml""" )
write_basic_config(save_location=cls.configPath )
lowerCAmelCase__ = ["""accelerate""", """launch""", """--config_file""", cls.configPath]
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Dict ):
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = F"""
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = F"""
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
""".split()
lowerCAmelCase__ = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) )
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = F"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}
""".split()
lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=snake_case__ )
self.assertNotIn("""epoch 0:""" , snake_case__ )
self.assertIn("""epoch 1:""" , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = F"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}
""".split()
lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=snake_case__ )
if torch.cuda.is_available():
lowerCAmelCase__ = torch.cuda.device_count()
else:
lowerCAmelCase__ = 1
if num_processes > 1:
self.assertNotIn("""epoch 0:""" , snake_case__ )
self.assertIn("""epoch 1:""" , snake_case__ )
else:
self.assertIn("""epoch 0:""" , snake_case__ )
self.assertIn("""epoch 1:""" , snake_case__ )
@slow
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ = """
examples/by_feature/cross_validation.py
--num_folds 2
""".split()
with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ):
lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=snake_case__ )
lowerCAmelCase__ = re.findall("""({.+})""" , snake_case__ )
lowerCAmelCase__ = [r for r in results if """accuracy""" in r][-1]
lowerCAmelCase__ = ast.literal_eval(snake_case__ )
self.assertGreaterEqual(results["""accuracy"""] , 0.75 )
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ = ["""examples/by_feature/multi_process_metrics.py"""]
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
with tempfile.TemporaryDirectory() as tmpdir:
lowerCAmelCase__ = F"""
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(snake_case__ , """tracking""" ) ) )
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ = ["""examples/by_feature/gradient_accumulation.py"""]
run_command(self._launch_args + testargs )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = ["""examples/by_feature/local_sgd.py"""]
run_command(self._launch_args + testargs )
| 706 |
"""simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ = 50 ):
"""simple docstring"""
lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(F"{solution() = }")
| 674 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowerCAmelCase__ ( _lowerCAmelCase ):
def __UpperCamelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
lowerCamelCase_ : List[str] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(UpperCamelCase_ , '''hidden_sizes''' ) )
self.parent.assertTrue(hasattr(UpperCamelCase_ , '''neck_hidden_sizes''' ) )
self.parent.assertTrue(hasattr(UpperCamelCase_ , '''num_attention_heads''' ) )
class lowerCAmelCase__ :
def __init__( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Any=13 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Optional[int]=3 , UpperCamelCase_ : Optional[int]=640 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Optional[int]="silu" , UpperCamelCase_ : Any=3 , UpperCamelCase_ : Optional[Any]=32 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : int=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : int=10 , UpperCamelCase_ : List[str]=None , ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ : List[str] = parent
lowerCamelCase_ : List[Any] = batch_size
lowerCamelCase_ : Any = image_size
lowerCamelCase_ : List[Any] = patch_size
lowerCamelCase_ : Union[str, Any] = num_channels
lowerCamelCase_ : Optional[Any] = last_hidden_size
lowerCamelCase_ : str = num_attention_heads
lowerCamelCase_ : Union[str, Any] = hidden_act
lowerCamelCase_ : List[str] = conv_kernel_size
lowerCamelCase_ : List[Any] = output_stride
lowerCamelCase_ : Optional[Any] = hidden_dropout_prob
lowerCamelCase_ : Tuple = attention_probs_dropout_prob
lowerCamelCase_ : int = classifier_dropout_prob
lowerCamelCase_ : List[str] = use_labels
lowerCamelCase_ : int = is_training
lowerCamelCase_ : Any = num_labels
lowerCamelCase_ : Tuple = initializer_range
lowerCamelCase_ : Optional[Any] = scope
def __UpperCamelCase ( self : int ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase_ : Dict = None
lowerCamelCase_ : Tuple = None
if self.use_labels:
lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels )
lowerCamelCase_ : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
lowerCamelCase_ : Any = self.get_config()
return config, pixel_values, labels, pixel_labels
def __UpperCamelCase ( self : int ) -> int:
"""simple docstring"""
return MobileViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def __UpperCamelCase ( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ : Union[str, Any] = MobileViTModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCamelCase_ : Tuple = model(UpperCamelCase_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCamelCase ( self : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ : Optional[int] = self.num_labels
lowerCamelCase_ : Any = MobileViTForImageClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCamelCase_ : Optional[int] = model(UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] ) -> Any:
"""simple docstring"""
lowerCamelCase_ : Tuple = self.num_labels
lowerCamelCase_ : List[Any] = MobileViTForSemanticSegmentation(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCamelCase_ : Union[str, Any] = model(UpperCamelCase_ )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
lowerCamelCase_ : Dict = model(UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCamelCase ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ : Any = self.prepare_config_and_inputs()
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Tuple = config_and_inputs
lowerCamelCase_ : List[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( _lowerCAmelCase ,_lowerCAmelCase ,unittest.TestCase ):
A = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
A = (
{
"feature-extraction": MobileViTModel,
"image-classification": MobileViTForImageClassification,
"image-segmentation": MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
A = False
A = False
A = False
A = False
def __UpperCamelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ : Union[str, Any] = MobileViTModelTester(self )
lowerCamelCase_ : List[Any] = MobileViTConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ )
def __UpperCamelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileViT does not use inputs_embeds''' )
def __UpperCamelCase ( self : str ) -> List[str]:
"""simple docstring"""
pass
@unittest.skip(reason='''MobileViT does not support input and output embeddings''' )
def __UpperCamelCase ( self : Optional[Any] ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='''MobileViT does not output attentions''' )
def __UpperCamelCase ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def __UpperCamelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ : Dict = model_class(UpperCamelCase_ )
lowerCamelCase_ : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase_ : Tuple = [*signature.parameters.keys()]
lowerCamelCase_ : Optional[int] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCamelCase_ )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __UpperCamelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
pass
def __UpperCamelCase ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def __UpperCamelCase ( self : Any ) -> str:
"""simple docstring"""
def check_hidden_states_output(UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple ):
lowerCamelCase_ : List[str] = model_class(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
with torch.no_grad():
lowerCamelCase_ : Dict = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) )
lowerCamelCase_ : Optional[Any] = outputs.hidden_states
lowerCamelCase_ : Optional[Any] = 5
self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
lowerCamelCase_ : Any = 2
for i in range(len(UpperCamelCase_ ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
lowerCamelCase_ , lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ : Union[str, Any] = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase_ : int = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def __UpperCamelCase ( self : Any ) -> int:
"""simple docstring"""
lowerCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ )
def __UpperCamelCase ( self : str ) -> str:
"""simple docstring"""
lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase_ )
@slow
def __UpperCamelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ : str = MobileViTModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
def __snake_case ():
"""simple docstring"""
lowerCamelCase_ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self : List[Any] ) -> int:
"""simple docstring"""
return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None
@slow
def __UpperCamelCase ( self : List[Any] ) -> Dict:
"""simple docstring"""
lowerCamelCase_ : Optional[int] = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(UpperCamelCase_ )
lowerCamelCase_ : int = self.default_image_processor
lowerCamelCase_ : Optional[int] = prepare_img()
lowerCamelCase_ : Optional[int] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ )
# forward pass
with torch.no_grad():
lowerCamelCase_ : Tuple = model(**UpperCamelCase_ )
# verify the logits
lowerCamelCase_ : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCamelCase_ )
lowerCamelCase_ : int = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(UpperCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) )
@slow
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ : List[str] = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
lowerCamelCase_ : Optional[int] = model.to(UpperCamelCase_ )
lowerCamelCase_ : List[Any] = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
lowerCamelCase_ : str = prepare_img()
lowerCamelCase_ : int = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ )
# forward pass
with torch.no_grad():
lowerCamelCase_ : Optional[Any] = model(**UpperCamelCase_ )
lowerCamelCase_ : Optional[int] = outputs.logits
# verify the logits
lowerCamelCase_ : Tuple = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , UpperCamelCase_ )
lowerCamelCase_ : Union[str, Any] = torch.tensor(
[
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]],
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]],
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]],
] , device=UpperCamelCase_ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-4 ) )
@slow
def __UpperCamelCase ( self : int ) -> Dict:
"""simple docstring"""
lowerCamelCase_ : str = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
lowerCamelCase_ : Union[str, Any] = model.to(UpperCamelCase_ )
lowerCamelCase_ : Tuple = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
lowerCamelCase_ : Dict = prepare_img()
lowerCamelCase_ : Optional[Any] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ )
# forward pass
with torch.no_grad():
lowerCamelCase_ : int = model(**UpperCamelCase_ )
lowerCamelCase_ : Any = outputs.logits.detach().cpu()
lowerCamelCase_ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_ , target_sizes=[(50, 60)] )
lowerCamelCase_ : int = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , UpperCamelCase_ )
lowerCamelCase_ : str = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_ )
lowerCamelCase_ : Optional[Any] = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , UpperCamelCase_ )
| 501 |
'''simple docstring'''
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __snake_case (__UpperCAmelCase , __UpperCAmelCase ):
"""simple docstring"""
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase_ : int = tmp_path / '''cache'''
lowerCamelCase_ : str = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase_ : Tuple = TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase ).read()
_check_text_dataset(__UpperCAmelCase , __UpperCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
] , )
def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase_ : Tuple = tmp_path / '''cache'''
lowerCamelCase_ : int = {'''text''': '''string'''}
lowerCamelCase_ : Optional[Any] = features.copy() if features else default_expected_features
lowerCamelCase_ : Dict = (
Features({feature: Value(__UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase_ : Optional[int] = TextDatasetReader(__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read()
_check_text_dataset(__UpperCAmelCase , __UpperCAmelCase )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase_ : Union[str, Any] = tmp_path / '''cache'''
lowerCamelCase_ : Any = {'''text''': '''string'''}
lowerCamelCase_ : Optional[Any] = TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase , split=__UpperCAmelCase ).read()
_check_text_dataset(__UpperCAmelCase , __UpperCAmelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
"""simple docstring"""
if issubclass(__UpperCAmelCase , __UpperCAmelCase ):
lowerCamelCase_ : List[Any] = text_path
elif issubclass(__UpperCAmelCase , __UpperCAmelCase ):
lowerCamelCase_ : Optional[int] = [text_path]
lowerCamelCase_ : Any = tmp_path / '''cache'''
lowerCamelCase_ : Dict = {'''text''': '''string'''}
lowerCamelCase_ : Dict = TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read()
_check_text_dataset(__UpperCAmelCase , __UpperCAmelCase )
def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=("train",) ):
"""simple docstring"""
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
for split in splits:
lowerCamelCase_ : List[str] = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase_ : Tuple = tmp_path / '''cache'''
lowerCamelCase_ : Optional[Any] = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase_ : Union[str, Any] = TextDatasetReader({'''train''': text_path} , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase ).read()
_check_text_datasetdict(__UpperCAmelCase , __UpperCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
] , )
def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase_ : List[str] = tmp_path / '''cache'''
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
lowerCamelCase_ : Optional[Any] = {'''text''': '''string'''}
lowerCamelCase_ : List[Any] = features.copy() if features else default_expected_features
lowerCamelCase_ : List[str] = (
Features({feature: Value(__UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase_ : str = TextDatasetReader({'''train''': text_path} , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read()
_check_text_datasetdict(__UpperCAmelCase , __UpperCAmelCase )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
"""simple docstring"""
if split:
lowerCamelCase_ : Optional[Any] = {split: text_path}
else:
lowerCamelCase_ : List[str] = '''train'''
lowerCamelCase_ : int = {'''train''': text_path, '''test''': text_path}
lowerCamelCase_ : Union[str, Any] = tmp_path / '''cache'''
lowerCamelCase_ : List[str] = {'''text''': '''string'''}
lowerCamelCase_ : str = TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read()
_check_text_datasetdict(__UpperCAmelCase , __UpperCAmelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 501 | 1 |
'''simple docstring'''
from itertools import count
def _A (lowerCAmelCase__ :int = 50 ) -> int:
'''simple docstring'''
_a = [1] * min_block_length
for n in count(lowerCAmelCase__ ):
fill_count_functions.append(1 )
for block_length in range(lowerCAmelCase__ , n + 1 ):
for block_start in range(n - block_length ):
fill_count_functions[n] += fill_count_functions[
n - block_start - block_length - 1
]
fill_count_functions[n] += 1
if fill_count_functions[n] > 1_00_00_00:
break
return n
if __name__ == "__main__":
print(f'''{solution() = }''')
| 715 |
'''simple docstring'''
def _A (lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
print('\nThe shortest path matrix using Floyd Warshall algorithm\n' )
for i in range(lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ ):
if dist[i][j] != float('inf' ):
print(int(dist[i][j] ) , end='\t' )
else:
print('INF' , end='\t' )
print()
def _A (lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] ) -> List[str]:
'''simple docstring'''
_a = [[float('inf' ) for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )]
for i in range(lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ ):
_a = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(lowerCAmelCase__ ):
# looping through rows of graph array
for i in range(lowerCAmelCase__ ):
# looping through columns of graph array
for j in range(lowerCAmelCase__ ):
if (
dist[i][k] != float('inf' )
and dist[k][j] != float('inf' )
and dist[i][k] + dist[k][j] < dist[i][j]
):
_a = dist[i][k] + dist[k][j]
_print_dist(lowerCAmelCase__ , lowerCAmelCase__ )
return dist, v
if __name__ == "__main__":
a_ : Optional[Any] = int(input("Enter number of vertices: "))
a_ : List[Any] = int(input("Enter number of edges: "))
a_ : Dict = [[float("inf") for i in range(v)] for j in range(v)]
for i in range(v):
a_ : Union[str, Any] = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print("\nEdge ", i + 1)
a_ : Union[str, Any] = int(input("Enter source:"))
a_ : int = int(input("Enter destination:"))
a_ : Tuple = float(input("Enter weight:"))
a_ : Dict = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| 532 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case : List[str] = logging.get_logger(__name__)
__snake_case : int = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class A ( a ):
__UpperCAmelCase : List[str] = "mra"
def __init__( self , snake_case_=5_0_2_6_5 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="absolute" , snake_case_=4 , snake_case_="full" , snake_case_=0 , snake_case_=0 , snake_case_=1 , snake_case_=0 , snake_case_=2 , **snake_case_ , ) -> int:
super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase )
_a = vocab_size
_a = max_position_embeddings
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = initializer_range
_a = type_vocab_size
_a = layer_norm_eps
_a = position_embedding_type
_a = block_per_row
_a = approx_mode
_a = initial_prior_first_n_blocks
_a = initial_prior_diagonal_n_blocks
| 131 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
__UpperCamelCase : int = 'pt'
elif is_tf_available():
__UpperCamelCase : int = 'tf'
else:
__UpperCamelCase : List[Any] = 'jax'
class _UpperCamelCase ( A,unittest.TestCase ):
'''simple docstring'''
a_ : str = PerceiverTokenizer
a_ : int = False
def _snake_case ( self : Tuple ):
'''simple docstring'''
super().setUp()
__lowerCamelCase : str = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _snake_case ( self : Any ):
'''simple docstring'''
return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" )
def _snake_case ( self : Optional[int] , **_lowerCamelCase : Dict ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase )
def _snake_case ( self : int , _lowerCamelCase : int , _lowerCamelCase : List[Any]=False , _lowerCamelCase : int=2_0 , _lowerCamelCase : Optional[int]=5 ):
'''simple docstring'''
__lowerCamelCase : str = []
for i in range(len(_lowerCamelCase ) ):
try:
__lowerCamelCase : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCamelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__lowerCamelCase : Optional[Any] = list(filter(lambda _lowerCamelCase : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , _lowerCamelCase ) )
__lowerCamelCase : Any = list(filter(lambda _lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCamelCase ) , _lowerCamelCase ) )
if max_length is not None and len(_lowerCamelCase ) > max_length:
__lowerCamelCase : Union[str, Any] = toks[:max_length]
if min_length is not None and len(_lowerCamelCase ) < min_length and len(_lowerCamelCase ) > 0:
while len(_lowerCamelCase ) < min_length:
__lowerCamelCase : List[str] = toks + toks
# toks_str = [t[1] for t in toks]
__lowerCamelCase : Optional[int] = [t[0] for t in toks]
# Ensure consistency
__lowerCamelCase : Union[str, Any] = tokenizer.decode(_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase )
if " " not in output_txt and len(_lowerCamelCase ) > 1:
__lowerCamelCase : Optional[Any] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCamelCase )
+ """ """
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCamelCase )
)
if with_prefix_space:
__lowerCamelCase : List[str] = """ """ + output_txt
__lowerCamelCase : Optional[int] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase )
return output_txt, output_ids
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowerCamelCase : List[str] = self.perceiver_tokenizer
__lowerCamelCase : Union[str, Any] = """Unicode €."""
__lowerCamelCase : str = tokenizer(_lowerCamelCase )
__lowerCamelCase : Optional[int] = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5]
self.assertEqual(encoded["""input_ids"""] , _lowerCamelCase )
# decoding
__lowerCamelCase : Optional[int] = tokenizer.decode(_lowerCamelCase )
self.assertEqual(_lowerCamelCase , """[CLS]Unicode €.[SEP]""" )
__lowerCamelCase : Dict = tokenizer("""e è é ê ë""" )
__lowerCamelCase : Optional[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5]
self.assertEqual(encoded["""input_ids"""] , _lowerCamelCase )
# decoding
__lowerCamelCase : List[str] = tokenizer.decode(_lowerCamelCase )
self.assertEqual(_lowerCamelCase , """[CLS]e è é ê ë[SEP]""" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = self.perceiver_tokenizer
__lowerCamelCase : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
# fmt: off
__lowerCamelCase : int = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0]
# fmt: on
__lowerCamelCase : List[Any] = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase )
self.assertIsInstance(_lowerCamelCase , _lowerCamelCase )
if FRAMEWORK != "jax":
__lowerCamelCase : Tuple = list(batch.input_ids.numpy()[0] )
else:
__lowerCamelCase : List[str] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
self.assertEqual((2, 3_8) , batch.input_ids.shape )
self.assertEqual((2, 3_8) , batch.attention_mask.shape )
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowerCamelCase : Dict = self.perceiver_tokenizer
__lowerCamelCase : Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
__lowerCamelCase : Any = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("""input_ids""" , _lowerCamelCase )
self.assertIn("""attention_mask""" , _lowerCamelCase )
self.assertNotIn("""decoder_input_ids""" , _lowerCamelCase )
self.assertNotIn("""decoder_attention_mask""" , _lowerCamelCase )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
__lowerCamelCase : List[Any] = self.perceiver_tokenizer
__lowerCamelCase : Optional[Any] = [
"""Summary of the text.""",
"""Another summary.""",
]
__lowerCamelCase : Union[str, Any] = tokenizer(
text_target=_lowerCamelCase , max_length=3_2 , padding="""max_length""" , truncation=_lowerCamelCase , return_tensors=_lowerCamelCase )
self.assertEqual(3_2 , targets["""input_ids"""].shape[1] )
def _snake_case ( self : int ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length , 4_2 )
# Now let's start the test
__lowerCamelCase : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
__lowerCamelCase : Tuple = tempfile.mkdtemp()
__lowerCamelCase : Any = """ He is very happy, UNwant\u00E9d,running"""
__lowerCamelCase : Tuple = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase )
tokenizer.save_pretrained(_lowerCamelCase )
__lowerCamelCase : str = tokenizer.__class__.from_pretrained(_lowerCamelCase )
__lowerCamelCase : Dict = after_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
shutil.rmtree(_lowerCamelCase )
__lowerCamelCase : Optional[Any] = self.get_tokenizers(model_max_length=4_2 )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
__lowerCamelCase : Union[str, Any] = tempfile.mkdtemp()
__lowerCamelCase : int = """ He is very happy, UNwant\u00E9d,running"""
tokenizer.add_tokens(["""bim""", """bambam"""] )
__lowerCamelCase : Dict = tokenizer.additional_special_tokens
additional_special_tokens.append("""new_additional_special_token""" )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__lowerCamelCase : Optional[Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase )
tokenizer.save_pretrained(_lowerCamelCase )
__lowerCamelCase : int = tokenizer.__class__.from_pretrained(_lowerCamelCase )
__lowerCamelCase : Any = after_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 4_2 )
__lowerCamelCase : Any = tokenizer.__class__.from_pretrained(_lowerCamelCase , model_max_length=4_3 )
self.assertEqual(tokenizer.model_max_length , 4_3 )
shutil.rmtree(_lowerCamelCase )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCamelCase )
with open(os.path.join(_lowerCamelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__lowerCamelCase : str = json.load(_lowerCamelCase )
with open(os.path.join(_lowerCamelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__lowerCamelCase : Dict = json.load(_lowerCamelCase )
__lowerCamelCase : Optional[Any] = [F"""<extra_id_{i}>""" for i in range(1_2_5 )]
__lowerCamelCase : Optional[int] = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
__lowerCamelCase : List[Any] = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
with open(os.path.join(_lowerCamelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(_lowerCamelCase , _lowerCamelCase )
with open(os.path.join(_lowerCamelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(_lowerCamelCase , _lowerCamelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__lowerCamelCase : List[str] = tokenizer_class.from_pretrained(
_lowerCamelCase , )
self.assertIn(
"""an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__lowerCamelCase : Tuple = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=_lowerCamelCase )]
__lowerCamelCase : str = tokenizer_class.from_pretrained(
_lowerCamelCase , additional_special_tokens=_lowerCamelCase , )
self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens )
self.assertEqual(
["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , )
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowerCamelCase : List[str] = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([1_7_8] ) , """�""" )
def _snake_case ( self : Dict ):
'''simple docstring'''
pass
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
pass
def _snake_case ( self : List[Any] ):
'''simple docstring'''
pass
def _snake_case ( self : List[str] ):
'''simple docstring'''
pass
def _snake_case ( self : int ):
'''simple docstring'''
__lowerCamelCase : int = self.get_tokenizers(fast=_lowerCamelCase , do_lower_case=_lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
__lowerCamelCase : Optional[int] = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""]
__lowerCamelCase : Union[str, Any] = tokenizer.convert_tokens_to_string(_lowerCamelCase )
self.assertIsInstance(_lowerCamelCase , _lowerCamelCase )
| 519 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class lowerCAmelCase__ :
def __init__( self : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple=13 , _lowerCamelCase : List[str]=7 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : str=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : int=True , _lowerCamelCase : Any=99 , _lowerCamelCase : Optional[int]=32 , _lowerCamelCase : Dict=2 , _lowerCamelCase : Union[str, Any]=4 , _lowerCamelCase : List[Any]=37 , _lowerCamelCase : Optional[Any]="gelu" , _lowerCamelCase : str=0.1 , _lowerCamelCase : List[str]=0.1 , _lowerCamelCase : Tuple=512 , _lowerCamelCase : str=16 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Optional[Any]=0.0_2 , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Any=True , _lowerCamelCase : Any="None" , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : Union[str, Any]=None , ):
_snake_case = parent
_snake_case = batch_size
_snake_case = seq_length
_snake_case = is_training
_snake_case = use_input_mask
_snake_case = use_token_type_ids
_snake_case = use_labels
_snake_case = vocab_size
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = type_vocab_size
_snake_case = type_sequence_label_size
_snake_case = initializer_range
_snake_case = num_labels
_snake_case = num_choices
_snake_case = relative_attention
_snake_case = position_biased_input
_snake_case = pos_att_type
_snake_case = scope
def lowercase ( self : str ):
_snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_snake_case = None
if self.use_input_mask:
_snake_case = random_attention_mask([self.batch_size, self.seq_length] )
_snake_case = None
if self.use_token_type_ids:
_snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_snake_case = None
_snake_case = None
_snake_case = None
if self.use_labels:
_snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_snake_case = DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_lowerCamelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase ( self : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] ):
_snake_case = TFDebertaVaModel(config=_lowerCamelCase )
_snake_case = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_snake_case = [input_ids, input_mask]
_snake_case = model(_lowerCamelCase )
_snake_case = model(_lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] ):
_snake_case = TFDebertaVaForMaskedLM(config=_lowerCamelCase )
_snake_case = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
_snake_case = model(_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase ( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ):
_snake_case = self.num_labels
_snake_case = TFDebertaVaForSequenceClassification(config=_lowerCamelCase )
_snake_case = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
_snake_case = model(_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase ( self : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : Any ):
_snake_case = self.num_labels
_snake_case = TFDebertaVaForTokenClassification(config=_lowerCamelCase )
_snake_case = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
_snake_case = model(_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase ( self : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] ):
_snake_case = TFDebertaVaForQuestionAnswering(config=_lowerCamelCase )
_snake_case = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
_snake_case = model(_lowerCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase ( self : List[Any] ):
_snake_case = self.prepare_config_and_inputs()
(
(
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) ,
) = config_and_inputs
_snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ):
__a = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
__a = (
{
"""feature-extraction""": TFDebertaVaModel,
"""fill-mask""": TFDebertaVaForMaskedLM,
"""question-answering""": TFDebertaVaForQuestionAnswering,
"""text-classification""": TFDebertaVaForSequenceClassification,
"""token-classification""": TFDebertaVaForTokenClassification,
"""zero-shot""": TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
__a = False
__a = False
def lowercase ( self : int ):
_snake_case = TFDebertaVaModelTester(self )
_snake_case = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 )
def lowercase ( self : List[str] ):
self.config_tester.run_common_tests()
def lowercase ( self : Optional[int] ):
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def lowercase ( self : int ):
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase )
def lowercase ( self : List[str] ):
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase )
def lowercase ( self : List[Any] ):
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase )
def lowercase ( self : Union[str, Any] ):
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase )
@slow
def lowercase ( self : str ):
_snake_case = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' )
self.assertIsNotNone(_lowerCamelCase )
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
@unittest.skip(reason='''Model not available yet''' )
def lowercase ( self : Optional[int] ):
pass
@slow
def lowercase ( self : Any ):
_snake_case = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' )
_snake_case = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
_snake_case = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0]
_snake_case = tf.constant(
[[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] )
tf.debugging.assert_near(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1e-4 )
| 430 |
"""simple docstring"""
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def _UpperCAmelCase ( __lowerCamelCase : str ) -> None:
_snake_case , _snake_case = analyze_text(__lowerCamelCase )
_snake_case = list(''' ''' + ascii_lowercase )
# what is our total sum of probabilities.
_snake_case = sum(single_char_strings.values() )
# one length string
_snake_case = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
_snake_case = single_char_strings[ch]
_snake_case = my_str / all_sum
my_fir_sum += prob * math.loga(__lowerCamelCase ) # entropy formula.
# print entropy
print(f'''{round(-1 * my_fir_sum ):.1f}''' )
# two len string
_snake_case = sum(two_char_strings.values() )
_snake_case = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
_snake_case = cha + cha
if sequence in two_char_strings:
_snake_case = two_char_strings[sequence]
_snake_case = int(__lowerCamelCase ) / all_sum
my_sec_sum += prob * math.loga(__lowerCamelCase )
# print second entropy
print(f'''{round(-1 * my_sec_sum ):.1f}''' )
# print the difference between them
print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' )
def _UpperCAmelCase ( __lowerCamelCase : str ) -> tuple[dict, dict]:
_snake_case = Counter() # type: ignore
_snake_case = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0 , len(__lowerCamelCase ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def _UpperCAmelCase ( ) -> Union[str, Any]:
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 430 | 1 |
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=os.environ.get('LOGLEVEL', 'INFO').upper(),
stream=sys.stdout,
)
UpperCAmelCase_ : Optional[Any] = logging.getLogger(__name__)
UpperCAmelCase_ : Optional[int] = {'facebook/bart-base': BartForConditionalGeneration}
UpperCAmelCase_ : List[str] = {'facebook/bart-base': BartTokenizer}
def SCREAMING_SNAKE_CASE_ ( ) -> Any:
"""simple docstring"""
a_ : int = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' )
parser.add_argument(
'--validation_file' , type=__A , default=__A , help='A csv or a json file containing the validation data.' )
parser.add_argument(
'--max_length' , type=__A , default=5 , help='The maximum total input sequence length after tokenization.' , )
parser.add_argument(
'--num_beams' , type=__A , default=__A , help=(
'Number of beams to use for evaluation. This argument will be '
'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.'
) , )
parser.add_argument(
'--model_name_or_path' , type=__A , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=__A , )
parser.add_argument(
'--config_name' , type=__A , default=__A , help='Pretrained config name or path if not the same as model_name' , )
parser.add_argument(
'--device' , type=__A , default='cpu' , help='Device where the model will be run' , )
parser.add_argument('--output_file_path' , type=__A , default=__A , help='Where to store the final ONNX file.' )
a_ : Optional[int] = parser.parse_args()
return args
def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Union[str, Any]="cpu" ) -> List[Any]:
"""simple docstring"""
a_ : Any = model_dict[model_name].from_pretrained(__A ).to(__A )
a_ : Optional[Any] = tokenizer_dict[model_name].from_pretrained(__A )
if model_name in ["facebook/bart-base"]:
a_ : Union[str, Any] = 0
a_ : str = None
a_ : Optional[Any] = 0
return huggingface_model, tokenizer
def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Union[str, Any] , __A : str , __A : Union[str, Any] , __A : Dict ) -> Tuple:
"""simple docstring"""
model.eval()
a_ : List[str] = None
a_ : str = torch.jit.script(BARTBeamSearchGenerator(__A ) )
with torch.no_grad():
a_ : List[Any] = 'My friends are cool but they eat too many carbs.'
a_ : List[str] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors='pt' ).to(model.device )
a_ : Optional[Any] = model.generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=__A , max_length=__A , early_stopping=__A , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
__A , (
inputs['input_ids'],
inputs['attention_mask'],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , __A , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={
'input_ids': {0: 'batch', 1: 'seq'},
'output_ids': {0: 'batch', 1: 'seq_out'},
} , example_outputs=__A , )
logger.info('Model exported to {}'.format(__A ) )
a_ : str = remove_dup_initializers(os.path.abspath(__A ) )
logger.info('Deduplicated and optimized model written to {}'.format(__A ) )
a_ : List[str] = onnxruntime.InferenceSession(__A )
a_ : Union[str, Any] = ort_sess.run(
__A , {
'input_ids': inputs['input_ids'].cpu().numpy(),
'attention_mask': inputs['attention_mask'].cpu().numpy(),
'num_beams': np.array(__A ),
'max_length': np.array(__A ),
'decoder_start_token_id': np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 )
logger.info('Model outputs from torch and ONNX Runtime are similar.' )
logger.info('Success.' )
def SCREAMING_SNAKE_CASE_ ( ) -> Dict:
"""simple docstring"""
a_ : Optional[int] = parse_args()
a_ : Tuple = 5
a_ : Any = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
a_ : Union[str, Any] = torch.device(args.device )
a_ , a_ : Any = load_model_tokenizer(args.model_name_or_path , __A )
if model.config.decoder_start_token_id is None:
raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' )
model.to(__A )
if args.max_length:
a_ : Dict = args.max_length
if args.num_beams:
a_ : Dict = args.num_beams
if args.output_file_path:
a_ : List[str] = args.output_file_path
else:
a_ : Any = 'BART.onnx'
logger.info('Exporting model to ONNX' )
export_and_validate_model(__A , __A , __A , __A , __A )
if __name__ == "__main__":
main()
| 570 |
from ..utils import DummyObject, requires_backends
class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase__ ):
snake_case__ : List[str] = ['''onnx''']
def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Any:
requires_backends(self , ['onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE ( cls : List[Any] , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]:
requires_backends(cls , ['onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE ( cls : str , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]:
requires_backends(cls , ['onnx'] )
| 570 | 1 |
'''simple docstring'''
def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> int:
if exponent == 1:
return base
if exponent % 2 == 0:
lowercase__ : Dict = _modexpt(SCREAMING_SNAKE_CASE_ ,exponent // 2 ,SCREAMING_SNAKE_CASE_ ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(SCREAMING_SNAKE_CASE_ ,exponent - 1 ,SCREAMING_SNAKE_CASE_ )) % modulo_value
def snake_case_ ( SCREAMING_SNAKE_CASE_ = 17_77 ,SCREAMING_SNAKE_CASE_ = 18_55 ,SCREAMING_SNAKE_CASE_ = 8 ) -> int:
lowercase__ : Dict = base
for _ in range(1 ,SCREAMING_SNAKE_CASE_ ):
lowercase__ : Union[str, Any] = _modexpt(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,10**digits )
return result
if __name__ == "__main__":
print(f'{solution() = }')
| 719 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__a : Union[str, Any] = {
'''configuration_layoutlmv3''': [
'''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''LayoutLMv3Config''',
'''LayoutLMv3OnnxConfig''',
],
'''processing_layoutlmv3''': ['''LayoutLMv3Processor'''],
'''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a : Any = ['''LayoutLMv3TokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a : List[str] = [
'''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LayoutLMv3ForQuestionAnswering''',
'''LayoutLMv3ForSequenceClassification''',
'''LayoutLMv3ForTokenClassification''',
'''LayoutLMv3Model''',
'''LayoutLMv3PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a : str = [
'''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFLayoutLMv3ForQuestionAnswering''',
'''TFLayoutLMv3ForSequenceClassification''',
'''TFLayoutLMv3ForTokenClassification''',
'''TFLayoutLMv3Model''',
'''TFLayoutLMv3PreTrainedModel''',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a : Tuple = ['''LayoutLMv3FeatureExtractor''']
__a : Tuple = ['''LayoutLMv3ImageProcessor''']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
__a : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 298 | 0 |
'''simple docstring'''
from __future__ import annotations
import numpy as np
def lowerCAmelCase ( UpperCamelCase__ : np.ndarray ):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase = np.shape(UpperCamelCase__ )
if rows != columns:
__UpperCAmelCase = (
'''\'table\' has to be of square shaped array but got a '''
f"""{rows}x{columns} array:\n{table}"""
)
raise ValueError(UpperCamelCase__ )
__UpperCAmelCase = np.zeros((rows, columns) )
__UpperCAmelCase = np.zeros((rows, columns) )
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
__UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) )
if upper[j][j] == 0:
raise ArithmeticError('''No LU decomposition exists''' )
__UpperCAmelCase = (table[i][j] - total) / upper[j][j]
__UpperCAmelCase = 1
for j in range(UpperCamelCase__ , UpperCamelCase__ ):
__UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) )
__UpperCAmelCase = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 262 |
'''simple docstring'''
from collections.abc import Sequence
def lowerCAmelCase ( UpperCamelCase__ : Sequence[float] , UpperCamelCase__ : bool = False ):
"""simple docstring"""
if not arr:
return 0
__UpperCAmelCase = 0 if allow_empty_subarrays else float('''-inf''' )
__UpperCAmelCase = 0.0
for num in arr:
__UpperCAmelCase = max(0 if allow_empty_subarrays else num , curr_sum + num )
__UpperCAmelCase = max(UpperCamelCase__ , UpperCamelCase__ )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
__lowerCAmelCase : int = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F"""{max_subarray_sum(nums) = }""")
| 262 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
def A__ ( self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase: Dict = tempfile.mkdtemp()
# fmt: off
UpperCAmelCase: Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"]
# fmt: on
UpperCAmelCase: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
UpperCAmelCase: Union[str, Any] = {
"do_resize": True,
"size": {"height": 1_8, "width": 1_8},
"do_normalize": True,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5],
}
UpperCAmelCase: Optional[int] = os.path.join(self.tmpdirname , __snake_case )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__snake_case , __snake_case )
def A__ ( self , **__snake_case ) -> Dict:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **__snake_case )
def A__ ( self , **__snake_case ) -> List[str]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__snake_case )
def A__ ( self ) -> List[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def A__ ( self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase: Optional[int] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
UpperCAmelCase: Tuple = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A__ ( self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase: Union[str, Any] = self.get_tokenizer()
UpperCAmelCase: int = self.get_image_processor()
UpperCAmelCase: Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=__snake_case , image_processor=__snake_case )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase: str = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __snake_case )
def A__ ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase: Dict = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase: Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
UpperCAmelCase: Dict = self.get_image_processor(do_normalize=__snake_case , padding_value=1.0 )
UpperCAmelCase: Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__snake_case , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __snake_case )
def A__ ( self ) -> Any:
"""simple docstring"""
UpperCAmelCase: Dict = self.get_image_processor()
UpperCAmelCase: Tuple = self.get_tokenizer()
UpperCAmelCase: List[str] = VisionTextDualEncoderProcessor(tokenizer=__snake_case , image_processor=__snake_case )
UpperCAmelCase: Dict = self.prepare_image_inputs()
UpperCAmelCase: int = image_processor(__snake_case , return_tensors="np" )
UpperCAmelCase: int = processor(images=__snake_case , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def A__ ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase: Dict = self.get_image_processor()
UpperCAmelCase: Optional[int] = self.get_tokenizer()
UpperCAmelCase: Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=__snake_case , image_processor=__snake_case )
UpperCAmelCase: Optional[int] = "lower newer"
UpperCAmelCase: Optional[Any] = processor(text=__snake_case )
UpperCAmelCase: Optional[int] = tokenizer(__snake_case )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def A__ ( self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase: Union[str, Any] = self.get_image_processor()
UpperCAmelCase: str = self.get_tokenizer()
UpperCAmelCase: Any = VisionTextDualEncoderProcessor(tokenizer=__snake_case , image_processor=__snake_case )
UpperCAmelCase: Union[str, Any] = "lower newer"
UpperCAmelCase: Tuple = self.prepare_image_inputs()
UpperCAmelCase: Optional[int] = processor(text=__snake_case , images=__snake_case )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with self.assertRaises(__snake_case ):
processor()
def A__ ( self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase: Any = self.get_image_processor()
UpperCAmelCase: List[str] = self.get_tokenizer()
UpperCAmelCase: Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=__snake_case , image_processor=__snake_case )
UpperCAmelCase: Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCAmelCase: int = processor.batch_decode(__snake_case )
UpperCAmelCase: Union[str, Any] = tokenizer.batch_decode(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
def A__ ( self ) -> Any:
"""simple docstring"""
UpperCAmelCase: int = self.get_image_processor()
UpperCAmelCase: List[str] = self.get_tokenizer()
UpperCAmelCase: Dict = VisionTextDualEncoderProcessor(tokenizer=__snake_case , image_processor=__snake_case )
UpperCAmelCase: str = "lower newer"
UpperCAmelCase: List[Any] = self.prepare_image_inputs()
UpperCAmelCase: Dict = processor(text=__snake_case , images=__snake_case )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 716 |
def __UpperCAmelCase ( snake_case_ : int = 6_0_0_8_5_1_4_7_5_1_4_3 ):
'''simple docstring'''
try:
UpperCAmelCase: Optional[int] = int(snake_case_ )
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int." )
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one." )
UpperCAmelCase: List[Any] = 2
UpperCAmelCase: Any = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
UpperCAmelCase: Tuple = i
while n % i == 0:
UpperCAmelCase: Union[str, Any] = n // i
i += 1
return int(snake_case_ )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 166 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.