code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations class _lowerCamelCase : def __init__( self , lowerCAmelCase = 0 ) -> List[str]: SCREAMING_SNAKE_CASE__: Tuple= key def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> list[str]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowerCAmelCase ) ^ key ) for ch in content] def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> list[str]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowerCAmelCase ) ^ key ) for ch in content] def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = 0 ) -> str: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE__: Union[str, Any]= '''''' for ch in content: ans += chr(ord(lowerCAmelCase ) ^ key ) return ans def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = 0 ) -> str: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE__: Optional[Any]= '''''' for ch in content: ans += chr(ord(lowerCAmelCase ) ^ key ) return ans def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = 0 ) -> bool: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) try: with open(lowerCAmelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCAmelCase , lowerCAmelCase ) ) except OSError: return False return True def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> bool: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) try: with open(lowerCAmelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCAmelCase , lowerCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
64
from __future__ import annotations def a__ ( A__, A__ = None, A__ = None ): if start is None: SCREAMING_SNAKE_CASE_ : List[str] = 0 if end is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = len(A__ ) - 1 if start >= end: return SCREAMING_SNAKE_CASE_ : Tuple = (start + end) // 2 slowsort(A__, A__, A__ ) slowsort(A__, mid + 1, A__ ) if sequence[end] < sequence[mid]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sequence[mid], sequence[end] slowsort(A__, A__, end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
101
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Optional[torch.FloatTensor] =None lowerCamelCase : torch.FloatTensor =None lowerCamelCase : Optional[Tuple[torch.FloatTensor]] =None lowerCamelCase : Optional[Tuple[torch.FloatTensor]] =None class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : int=5_12 , lowerCAmelCase : int="cls" , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=True , **lowerCAmelCase : int , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowerCAmelCase : Dict = project_dim __lowerCAmelCase : Dict = pooler_fn __lowerCAmelCase : Any = learn_encoder __lowerCAmelCase : Optional[Any] = use_attention_mask class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Tuple =[R"pooler", R"logit_scale"] lowerCamelCase : List[str] =[R"position_ids", R"predictions.decoder.bias"] lowerCamelCase : List[Any] ="roberta" lowerCamelCase : List[str] =RobertaSeriesConfig def __init__( self : Dict , lowerCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().__init__(lowerCAmelCase ) __lowerCAmelCase : Any = XLMRobertaModel(lowerCAmelCase ) __lowerCAmelCase : int = nn.Linear(config.hidden_size , config.project_dim ) __lowerCAmelCase : Union[str, Any] = getattr(lowerCAmelCase , """has_pre_transformation""" , lowerCAmelCase ) if self.has_pre_transformation: __lowerCAmelCase : Dict = nn.Linear(config.hidden_size , config.project_dim ) __lowerCAmelCase : Optional[int] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> int: """simple docstring""" __lowerCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : int = self.base_model( input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , position_ids=lowerCAmelCase , head_mask=lowerCAmelCase , inputs_embeds=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , output_attentions=lowerCAmelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCAmelCase , ) if self.has_pre_transformation: __lowerCAmelCase : Union[str, Any] = outputs["""hidden_states"""][-2] __lowerCAmelCase : str = self.pre_LN(lowerCAmelCase ) __lowerCAmelCase : str = self.transformation_pre(lowerCAmelCase ) return TransformationModelOutput( projection_state=lowerCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __lowerCAmelCase : Any = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
218
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : str =(DEISMultistepScheduler,) lowerCamelCase : Optional[int] =(("num_inference_steps", 25),) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : int = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Dict=0 , **lowerCAmelCase : List[str] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase : List[Any] = kwargs.pop("""num_inference_steps""" , lowerCAmelCase ) __lowerCAmelCase : List[str] = self.dummy_sample __lowerCAmelCase : List[Any] = 0.1 * sample __lowerCAmelCase : str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase : str = self.get_scheduler_config(**lowerCAmelCase ) __lowerCAmelCase : str = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals __lowerCAmelCase : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = scheduler_class.from_pretrained(lowerCAmelCase ) new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals __lowerCAmelCase : int = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase ,__lowerCAmelCase : Optional[int] = sample, sample for t in range(lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample __lowerCAmelCase : Optional[int] = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Optional[int]=0 , **lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : int = dict(self.forward_default_kwargs ) __lowerCAmelCase : int = kwargs.pop("""num_inference_steps""" , lowerCAmelCase ) __lowerCAmelCase : int = self.dummy_sample __lowerCAmelCase : Any = 0.1 * sample __lowerCAmelCase : int = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase : Tuple = self.get_scheduler_config() __lowerCAmelCase : str = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = scheduler_class.from_pretrained(lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase : Any = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample __lowerCAmelCase : int = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : List[Any] ) -> List[str]: """simple docstring""" if scheduler is None: __lowerCAmelCase : str = self.scheduler_classes[0] __lowerCAmelCase : Dict = self.get_scheduler_config(**lowerCAmelCase ) __lowerCAmelCase : Any = scheduler_class(**lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] __lowerCAmelCase : Optional[int] = self.get_scheduler_config(**lowerCAmelCase ) __lowerCAmelCase : str = scheduler_class(**lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = 10 __lowerCAmelCase : Any = self.dummy_model() __lowerCAmelCase : Dict = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Tuple = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = dict(self.forward_default_kwargs ) __lowerCAmelCase : Dict = kwargs.pop("""num_inference_steps""" , lowerCAmelCase ) for scheduler_class in self.scheduler_classes: __lowerCAmelCase : str = self.get_scheduler_config() __lowerCAmelCase : Any = scheduler_class(**lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = self.dummy_sample __lowerCAmelCase : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase , """set_timesteps""" ): __lowerCAmelCase : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowerCAmelCase : int = [residual + 0.2, residual + 0.15, residual + 0.10] __lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] __lowerCAmelCase : Any = scheduler.timesteps[5] __lowerCAmelCase : Tuple = scheduler.timesteps[6] __lowerCAmelCase : Dict = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample __lowerCAmelCase : str = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = DEISMultistepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase : str = self.full_loop(scheduler=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 __lowerCAmelCase : Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase : int = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase : Optional[Any] = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase : Tuple = self.full_loop(scheduler=lowerCAmelCase ) __lowerCAmelCase : Dict = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , algorithm_type="""deis""" , solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) __lowerCAmelCase : str = self.full_loop( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) assert not torch.isnan(lowerCAmelCase ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: """simple docstring""" self.check_over_configs(lower_order_final=lowerCAmelCase ) self.check_over_configs(lower_order_final=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCAmelCase , time_step=0 ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" __lowerCAmelCase : Any = self.full_loop() __lowerCAmelCase : List[str] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : int = self.full_loop(prediction_type="""v_prediction""" ) __lowerCAmelCase : List[str] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = self.scheduler_classes[0] __lowerCAmelCase : Optional[int] = self.get_scheduler_config(thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase ) __lowerCAmelCase : Tuple = 10 __lowerCAmelCase : int = self.dummy_model() __lowerCAmelCase : List[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Optional[Any] = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[str] = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
218
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : int ) -> int: '''simple docstring''' snake_case__ : List[Any] = b.T snake_case__ : Union[str, Any] = np.sum(np.square(__magic_name__ ) , axis=1 ) snake_case__ : List[Any] = np.sum(np.square(__magic_name__ ) , axis=0 ) snake_case__ : Dict = np.matmul(__magic_name__ , __magic_name__ ) snake_case__ : List[str] = aa[:, None] - 2 * ab + ba[None, :] return d def UpperCamelCase__ ( __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = x.reshape(-1 , 3 ) snake_case__ : Optional[int] = squared_euclidean_distance(__magic_name__ , __magic_name__ ) return np.argmin(__magic_name__ , axis=1 ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = ['''pixel_values'''] def __init__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) snake_case__ : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case__ : Optional[Any] = get_size_dict(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = np.array(__SCREAMING_SNAKE_CASE ) if clusters is not None else None snake_case__ : Tuple = do_resize snake_case__ : int = size snake_case__ : int = resample snake_case__ : List[Any] = do_normalize snake_case__ : Any = do_color_quantize def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): snake_case__ : Any = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( __SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , ): snake_case__ : Any = rescale(image=__SCREAMING_SNAKE_CASE , scale=1 / 127.5 , data_format=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = image - 1 return image def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ): snake_case__ : str = do_resize if do_resize is not None else self.do_resize snake_case__ : List[str] = size if size is not None else self.size snake_case__ : int = get_size_dict(__SCREAMING_SNAKE_CASE ) snake_case__ : str = resample if resample is not None else self.resample snake_case__ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Optional[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ : Any = clusters if clusters is not None else self.clusters snake_case__ : List[Any] = np.array(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. snake_case__ : Union[str, Any] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: snake_case__ : Union[str, Any] = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: snake_case__ : List[Any] = [self.normalize(image=__SCREAMING_SNAKE_CASE ) for image in images] if do_color_quantize: snake_case__ : int = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ : Optional[Any] = np.array(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = color_quantize(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ : List[Any] = images.shape[0] snake_case__ : List[str] = images.reshape(__SCREAMING_SNAKE_CASE , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ : Optional[int] = list(__SCREAMING_SNAKE_CASE ) else: snake_case__ : Dict = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] snake_case__ : Optional[int] = {"""input_ids""": images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
38
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder __UpperCamelCase : Optional[Any] = '__DUMMY_TRANSFORMERS_USER__' __UpperCamelCase : Optional[Any] = 'Dummy User' __UpperCamelCase : Optional[Any] = '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' __UpperCamelCase : Optional[Any] = 'https://hub-ci.huggingface.co' __UpperCamelCase : List[Any] = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' __UpperCamelCase : Dict = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' __UpperCamelCase : str = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _UpperCAmelCase ( UpperCAmelCase : Union[str, Any] ): """simple docstring""" monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , UpperCAmelCase ) @pytest.fixture def _UpperCAmelCase ( UpperCAmelCase : Union[str, Any] ): """simple docstring""" monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , UpperCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , UpperCAmelCase ) @pytest.fixture def _UpperCAmelCase ( UpperCAmelCase : Optional[int] ): """simple docstring""" monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , UpperCAmelCase ) @pytest.fixture def _UpperCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int ): """simple docstring""" HfFolder.save_token(UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( ): """simple docstring""" return HfApi(endpoint=UpperCAmelCase ) @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( UpperCAmelCase : HfApi ): """simple docstring""" __lowerCamelCase : List[Any] = HfFolder.get_token() HfFolder.save_token(UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCAmelCase ) @pytest.fixture def _UpperCAmelCase ( UpperCAmelCase : Union[str, Any] ): """simple docstring""" def _cleanup_repo(UpperCAmelCase : str ): hf_api.delete_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def _UpperCAmelCase ( UpperCAmelCase : Optional[Any] ): """simple docstring""" @contextmanager def _temporary_repo(UpperCAmelCase : Tuple ): try: yield repo_id finally: cleanup_repo(UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( UpperCAmelCase : HfApi , UpperCAmelCase : List[str] , UpperCAmelCase : int ): """simple docstring""" __lowerCamelCase : Union[str, Any] = f"""repo_txt_data-{int(time.time() * 1_0e3 )}""" __lowerCamelCase : Dict = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" , private=UpperCAmelCase ) hf_api.upload_file( token=UpperCAmelCase , path_or_fileobj=str(UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _UpperCAmelCase ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : str ): """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( UpperCAmelCase : HfApi , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int ): """simple docstring""" __lowerCamelCase : Union[str, Any] = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}""" __lowerCamelCase : Optional[Any] = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" , private=UpperCAmelCase ) hf_api.upload_file( token=UpperCAmelCase , path_or_fileobj=str(UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _UpperCAmelCase ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int ): """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( UpperCAmelCase : HfApi , UpperCAmelCase : Dict , UpperCAmelCase : Dict ): """simple docstring""" __lowerCamelCase : Dict = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}""" __lowerCamelCase : Dict = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" , private=UpperCAmelCase ) hf_api.upload_file( token=UpperCAmelCase , path_or_fileobj=str(UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _UpperCAmelCase ( UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ): """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
519
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def __lowerCamelCase( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def __lowerCamelCase( self ): """simple docstring""" _snake_case : str = self.dummy_uncond_unet _snake_case : Tuple = PNDMScheduler() _snake_case : Dict = PNDMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pndm.to(SCREAMING_SNAKE_CASE__ ) pndm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) _snake_case : int = torch.manual_seed(0 ) _snake_case : int = pndm(generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=20 , output_type="""numpy""" ).images _snake_case : Optional[Any] = torch.manual_seed(0 ) _snake_case : Optional[Any] = pndm(generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=20 , output_type="""numpy""" , return_dict=SCREAMING_SNAKE_CASE__ )[0] _snake_case : Any = image[0, -3:, -3:, -1] _snake_case : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case : Tuple = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase( self ): """simple docstring""" _snake_case : Union[str, Any] = """google/ddpm-cifar10-32""" _snake_case : List[Any] = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = PNDMScheduler() _snake_case : Dict = PNDMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pndm.to(SCREAMING_SNAKE_CASE__ ) pndm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) _snake_case : Any = torch.manual_seed(0 ) _snake_case : Dict = pndm(generator=SCREAMING_SNAKE_CASE__ , output_type="""numpy""" ).images _snake_case : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case : Optional[int] = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
519
import sys UpperCAmelCase_ = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase ( A__ = N ) -> int: _snake_case : Any = -sys.maxsize - 1 for i in range(len(A__ ) - 12 ): _snake_case : Union[str, Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _snake_case : Dict = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
519
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __lowerCAmelCase : '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Tuple=13 , UpperCamelCase : List[Any]=2 , UpperCamelCase : Union[str, Any]=24 , UpperCamelCase : Tuple=16 , UpperCamelCase : str=True , UpperCamelCase : Any=True , UpperCamelCase : Any=32 , UpperCamelCase : Any=5 , UpperCamelCase : List[Any]=4 , UpperCamelCase : Optional[int]=37 , UpperCamelCase : str="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : Tuple=10 , UpperCamelCase : Union[str, Any]=0.02 , UpperCamelCase : List[str]=None , UpperCamelCase : Any=2 , UpperCamelCase : List[Any]=2 , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = patch_size lowercase__ = max_length lowercase__ = num_mel_bins lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = frequency_stride lowercase__ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase__ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowercase__ = (self.max_length - self.patch_size) // self.time_stride + 1 lowercase__ = frequency_out_dimension * time_out_dimension lowercase__ = num_patches + 2 def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, input_values, labels def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : Dict ): '''simple docstring''' lowercase__ = ASTModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowercase__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( lowercase__ ) = config_and_inputs lowercase__ = {"""input_values""": input_values} return config, inputs_dict @require_torch class __lowerCAmelCase (snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Any = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : str = False lowerCAmelCase__ : int = False def UpperCamelCase__ (self : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Optional[int] ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ASTModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""input_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) @slow def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ASTModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def _SCREAMING_SNAKE_CASE () -> Optional[Any]: """simple docstring""" lowercase__ = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) lowercase__ = torchaudio.load(lowerCamelCase__ ) return audio, sampling_rate @require_torch @require_torchaudio class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self : str ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = self.default_feature_extractor lowercase__ = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(UpperCamelCase ) lowercase__ = self.default_feature_extractor lowercase__ = prepare_audio() lowercase__ = audio.squeeze().numpy() lowercase__ = feature_extractor(UpperCamelCase , sampling_rate=UpperCamelCase , return_tensors='''pt''' ).to(UpperCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**UpperCamelCase ) # verify the logits lowercase__ = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowercase__ = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1E-4 ) )
460
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any]=None ): '''simple docstring''' if subparsers is not None: A: Optional[Any] = subparsers.add_parser("""env""" ) else: A: Union[str, Any] = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=lowerCamelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase__ ) return parser def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Optional[Any] ): '''simple docstring''' A: Optional[int] = torch.__version__ A: int = torch.cuda.is_available() A: List[Any] = is_xpu_available() A: List[str] = is_npu_available() A: Dict = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCamelCase__ ): A: str = load_config_from_file(args.config_file ).to_dict() A: Optional[Any] = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": f'{pt_version} ({pt_cuda_available})', """PyTorch XPU available""": str(lowerCamelCase__ ), """PyTorch NPU available""": str(lowerCamelCase__ ), """System RAM""": f'{psutil.virtual_memory().total / 1024 ** 3:.2f} GB', } if pt_cuda_available: A: Dict = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([f'- {prop}: {val}' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) A: Dict = ( """\n""".join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else f'\t{accelerate_config}' ) print(lowerCamelCase__ ) A: Any = accelerate_config return info def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' A: List[Any] = env_command_parser() A: Dict = parser.parse_args() env_command(lowerCamelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
135
0
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
344
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCAmelCase = logging.get_logger('transformers.models.encodec') UpperCAmelCase = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } UpperCAmelCase = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } UpperCAmelCase = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } UpperCAmelCase = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } UpperCAmelCase = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } UpperCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCAmelCase = [] UpperCAmelCase = [] def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" for attribute in key.split(""".""" ): lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict ) -> int: """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase, lowerCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info(f'{name} was ignored' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase, lowerCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(_SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] lowerCAmelCase = mapped_key.replace("""*""" , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowerCAmelCase = """weight_g""" elif "weight_v" in name: lowerCAmelCase = """weight_v""" elif "weight_ih_l0" in name: lowerCAmelCase = """weight_ih_l0""" elif "weight_hh_l0" in name: lowerCAmelCase = """weight_hh_l0""" elif "bias_ih_l0" in name: lowerCAmelCase = """bias_ih_l0""" elif "bias_hh_l0" in name: lowerCAmelCase = """bias_hh_l0""" elif "weight_ih_l1" in name: lowerCAmelCase = """weight_ih_l1""" elif "weight_hh_l1" in name: lowerCAmelCase = """weight_hh_l1""" elif "bias_ih_l1" in name: lowerCAmelCase = """bias_ih_l1""" elif "bias_hh_l1" in name: lowerCAmelCase = """bias_hh_l1""" elif "bias" in name: lowerCAmelCase = """bias""" elif "weight" in name: lowerCAmelCase = """weight""" elif "running_mean" in name: lowerCAmelCase = """running_mean""" elif "running_var" in name: lowerCAmelCase = """running_var""" elif "num_batches_tracked" in name: lowerCAmelCase = """num_batches_tracked""" else: lowerCAmelCase = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None , ) -> int: """simple docstring""" if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32_000 lowerCAmelCase = 2_048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48_000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = """time_group_norm""" lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) lowerCAmelCase = EncodecModel(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.load(_SCREAMING_SNAKE_CASE ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint["""best_state"""] recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) UpperCAmelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
344
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): snake_case_ : List[str] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : Optional[Any] = "sshleifer/tiny-gpt2" snake_case_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : int = "sgugger/tiny-distilbert-classification" snake_case_ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , only_pretrain_model=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> str: snake_case_ : List[Any] = "sshleifer/tiny-gpt2" snake_case_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Any = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> str: snake_case_ : Optional[Any] = "sshleifer/tiny-gpt2" snake_case_ : Optional[int] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) snake_case_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> Any: snake_case_ : Union[str, Any] = "sshleifer/tiny-gpt2" snake_case_ : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Optional[int] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) snake_case_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> int: snake_case_ : Tuple = "sshleifer/tiny-gpt2" snake_case_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Union[str, Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCAmelCase ( self ) -> int: snake_case_ : Optional[Any] = "sshleifer/tiny-gpt2" snake_case_ : Optional[int] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) snake_case_ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCAmelCase ( self ) -> Dict: snake_case_ : int = "patrickvonplaten/t5-tiny-random" snake_case_ : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) snake_case_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def _lowerCAmelCase ( self ) -> Any: snake_case_ : Dict = "sshleifer/tiny-gpt2" snake_case_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Optional[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : int = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , save_to_csv=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , "inf_mem.csv" ) , env_info_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , "env.csv" ) , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Union[str, Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) benchmark.run() self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , "env.csv" ) ).exists() ) def _lowerCAmelCase ( self ) -> str: snake_case_ : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(_SCREAMING_SNAKE_CASE ): self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "sequential" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "cumulative" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "current" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_SCREAMING_SNAKE_CASE , "log.txt" ) , log_print=_SCREAMING_SNAKE_CASE , trace_memory_line_by_line=_SCREAMING_SNAKE_CASE , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , "log.txt" ) ).exists() )
568
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowercase : int = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def lowerCAmelCase__ ( _a : Dict , _a : Optional[int]=None , _a : Union[str, Any]=None , _a : List[Any]=None ): snake_case_ : Optional[Any] = True while ask_again: snake_case_ : str = input(_a ) try: if default is not None and len(_a ) == 0: return default return convert_value(_a ) if convert_value is not None else result except Exception: if error_message is not None: print(_a ) def lowerCAmelCase__ ( _a : Dict , _a : str=[] , _a : Union[str, Any]=None , _a : Optional[int]=0 ): snake_case_ : List[Any] = BulletMenu(_a , _a ) snake_case_ : Union[str, Any] = menu.run(default_choice=_a ) return convert_value(_a ) if convert_value is not None else result def lowerCAmelCase__ ( _a : List[str] ): snake_case_ : str = int(_a ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def lowerCAmelCase__ ( _a : int ): snake_case_ : str = int(_a ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def lowerCAmelCase__ ( _a : Optional[Any] ): snake_case_ : int = int(_a ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowerCAmelCase__ ( _a : Dict ): snake_case_ : str = int(_a ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def lowerCAmelCase__ ( _a : int ): snake_case_ : Optional[int] = int(_a ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def lowerCAmelCase__ ( _a : str ): return {"yes": True, "no": False}[value.lower()] class UpperCAmelCase_ ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ : Tuple = super()._format_usage(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Any = usage.replace("<command> [<args>] " , "" ) return usage
568
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase :Any = { """configuration_lxmert""": ["""LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LxmertConfig"""], """tokenization_lxmert""": ["""LxmertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = ["""LxmertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[Any] = [ """LxmertEncoder""", """LxmertForPreTraining""", """LxmertForQuestionAnswering""", """LxmertModel""", """LxmertPreTrainedModel""", """LxmertVisualFeatureEncoder""", """LxmertXLayer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :List[Any] = [ """TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLxmertForPreTraining""", """TFLxmertMainLayer""", """TFLxmertModel""", """TFLxmertPreTrainedModel""", """TFLxmertVisualFeatureEncoder""", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _lowerCAmelCase :Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=99 , lowercase__=64 , lowercase__=5 , lowercase__=4 , lowercase__=64 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ) -> int: SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Any = use_input_mask SCREAMING_SNAKE_CASE : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def _UpperCamelCase ( self ) -> Union[str, Any]: return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : str = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ) -> Tuple: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = MPNetModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = MPNetForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model( lowercase__ , attention_mask=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MPNetForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE : Any = MPNetForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = model( lowercase__ , attention_mask=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = MPNetForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : str = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Optional[int] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) snake_case__ : Optional[int] = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : int = True def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : int = MPNetModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def _UpperCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase__ ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Tuple = MPNetModel.from_pretrained('microsoft/mpnet-base' ) SCREAMING_SNAKE_CASE : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowercase__ )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase__ ) SCREAMING_SNAKE_CASE : str = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1E-4 ) )
179
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = XGLMTokenizer _a = XGLMTokenizerFast _a = True _a = True def __lowercase ( self : Dict ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : int ): lowerCAmelCase = """<pad>""" lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def __lowercase ( self : Any ): lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(lowerCAmelCase ) , 1008 ) def __lowercase ( self : Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __lowercase ( self : str ): lowerCAmelCase = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __lowercase ( self : int ): return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def __lowercase ( self : Tuple ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name ) lowerCAmelCase = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase ) lowerCAmelCase = pickle.dumps(lowerCAmelCase ) pickle.loads(lowerCAmelCase ) def __lowercase ( self : List[str] ): if not self.test_rust_tokenizer: return lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = """I was born in 92000, and this is falsé.""" lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase ) lowerCAmelCase = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) lowerCAmelCase = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = tokenizer.encode(lowerCAmelCase ) lowerCAmelCase = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @slow def __lowercase ( self : List[str] ): lowerCAmelCase = """Hello World!""" lowerCAmelCase = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @slow def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowerCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @slow def __lowercase ( self : Union[str, Any] ): # fmt: off lowerCAmelCase = { """input_ids""": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="""facebook/xglm-564M""" , padding=lowerCAmelCase , )
169
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'efficientformer' def __init__( self : Any , lowerCAmelCase : List[int] = [3, 2, 6, 4] , lowerCAmelCase : List[int] = [48, 96, 224, 448] , lowerCAmelCase : List[bool] = [True, True, True, True] , lowerCAmelCase : int = 448 , lowerCAmelCase : int = 32 , lowerCAmelCase : int = 4 , lowerCAmelCase : int = 7 , lowerCAmelCase : int = 5 , lowerCAmelCase : int = 8 , lowerCAmelCase : int = 4 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 16 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 1 , lowerCAmelCase : bool = True , lowerCAmelCase : bool = True , lowerCAmelCase : float = 1e-5 , lowerCAmelCase : str = "gelu" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 1e-12 , lowerCAmelCase : int = 224 , lowerCAmelCase : float = 1e-05 , **lowerCAmelCase : int , ): super().__init__(**lowerCAmelCase ) lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = hidden_sizes lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = depths lowerCAmelCase = mlp_expansion_ratio lowerCAmelCase = downsamples lowerCAmelCase = dim lowerCAmelCase = key_dim lowerCAmelCase = attention_ratio lowerCAmelCase = resolution lowerCAmelCase = pool_size lowerCAmelCase = downsample_patch_size lowerCAmelCase = downsample_stride lowerCAmelCase = downsample_pad lowerCAmelCase = drop_path_rate lowerCAmelCase = num_metaad_blocks lowerCAmelCase = distillation lowerCAmelCase = use_layer_scale lowerCAmelCase = layer_scale_init_value lowerCAmelCase = image_size lowerCAmelCase = batch_norm_eps
169
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __A : List[Any] = get_tests_dir('fixtures') __A : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') __A : int = get_tests_dir('fixtures/dummy-config.json') class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =0 def _snake_case ( self )-> List[str]: lowerCamelCase_ =AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def _snake_case ( self )-> str: lowerCamelCase_ =AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def _snake_case ( self )-> Any: with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ =WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally lowerCamelCase_ =AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) lowerCamelCase_ =WavaVecaFeatureExtractor(**UpperCamelCase__ ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) config.save_pretrained(UpperCamelCase__ ) lowerCamelCase_ =AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) # make sure private variable is not incorrectly saved lowerCamelCase_ =json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def _snake_case ( self )-> Any: with self.assertRaisesRegex( UpperCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): lowerCamelCase_ =AutoFeatureExtractor.from_pretrained("""bert-base""" ) def _snake_case ( self )-> Optional[int]: with self.assertRaisesRegex( UpperCamelCase__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCamelCase_ =AutoFeatureExtractor.from_pretrained(UpperCamelCase__ , revision="""aaaaaa""" ) def _snake_case ( self )-> int: with self.assertRaisesRegex( UpperCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCamelCase_ =AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _snake_case ( self )-> int: with self.assertRaises(UpperCamelCase__ ): lowerCamelCase_ =AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): lowerCamelCase_ =AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase__ ) lowerCamelCase_ =AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase__ ) lowerCamelCase_ =AutoFeatureExtractor.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def _snake_case ( self )-> List[str]: try: AutoConfig.register("""custom""" , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ =CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase__ ) lowerCamelCase_ =AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self )-> Any: class _SCREAMING_SNAKE_CASE ( lowercase_): _UpperCamelCase:Optional[Any] = True try: AutoConfig.register("""custom""" , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local lowerCamelCase_ =AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. lowerCamelCase_ =AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub lowerCamelCase_ =AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(UpperCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
710
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Dict = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Optional[Any] = "yolos" def __init__( self , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=[512, 864] , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=100 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , )-> Tuple: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =image_size lowerCamelCase_ =patch_size lowerCamelCase_ =num_channels lowerCamelCase_ =qkv_bias lowerCamelCase_ =num_detection_tokens lowerCamelCase_ =use_mid_position_embeddings lowerCamelCase_ =auxiliary_loss # Hungarian matcher lowerCamelCase_ =class_cost lowerCamelCase_ =bbox_cost lowerCamelCase_ =giou_cost # Loss coefficients lowerCamelCase_ =bbox_loss_coefficient lowerCamelCase_ =giou_loss_coefficient lowerCamelCase_ =eos_coefficient class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Optional[Any] = version.parse("1.11") @property def _snake_case ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self )-> float: return 1E-4 @property def _snake_case ( self )-> int: return 12
75
0
def a__ ( A__, A__ ): def get_matched_characters(A__, A__ ) -> str: SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Any = min(len(_stra ), len(_stra ) ) // 2 for i, l in enumerate(_stra ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(max(0, i - limit ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(min(i + limit + 1, len(_stra ) ) ) if l in _stra[left:right]: matched.append(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = F'''{_stra[0:_stra.index(A__ )]} {_stra[_stra.index(A__ ) + 1:]}''' return "".join(A__ ) # matching characters SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_matched_characters(A__, A__ ) SCREAMING_SNAKE_CASE_ : int = get_matched_characters(A__, A__ ) SCREAMING_SNAKE_CASE_ : Any = len(A__ ) # transposition SCREAMING_SNAKE_CASE_ : Optional[int] = ( len([(ca, ca) for ca, ca in zip(A__, A__ ) if ca != ca] ) // 2 ) if not match_count: SCREAMING_SNAKE_CASE_ : Dict = 0.0 else: SCREAMING_SNAKE_CASE_ : Optional[Any] = ( 1 / 3 * ( match_count / len(A__ ) + match_count / len(A__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters SCREAMING_SNAKE_CASE_ : List[Any] = 0 for ca, ca in zip(stra[:4], stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
101
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
101
1
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _A = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def lowerCamelCase__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : str=None ): """simple docstring""" lowerCAmelCase_ = XLNetConfig.from_json_file(__lowerCAmelCase ) lowerCAmelCase_ = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowerCAmelCase_ = finetuning_task lowerCAmelCase_ = GLUE_TASKS_NUM_LABELS[finetuning_task] lowerCAmelCase_ = XLNetForSequenceClassification(__lowerCAmelCase ) elif "squad" in finetuning_task: lowerCAmelCase_ = finetuning_task lowerCAmelCase_ = XLNetForQuestionAnswering(__lowerCAmelCase ) else: lowerCAmelCase_ = XLNetLMHeadModel(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model lowerCAmelCase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F"""Save PyTorch model to {os.path.abspath(__lowerCAmelCase )}""" ) torch.save(model.state_dict() , __lowerCAmelCase ) print(F"""Save configuration file to {os.path.abspath(__lowerCAmelCase )}""" ) with open(__lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _A = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
713
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _A = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _lowerCAmelCase ( nn.Module ): def __init__( self , _UpperCamelCase ) -> Optional[Any]: super().__init__() lowerCAmelCase_ = torchvision.models.resnetaaa(pretrained=_UpperCamelCase ) lowerCAmelCase_ = list(model.children() )[:-2] lowerCAmelCase_ = nn.Sequential(*_UpperCamelCase ) lowerCAmelCase_ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def __a ( self , _UpperCamelCase ) -> Dict: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowerCAmelCase_ = self.pool(self.model(_UpperCamelCase ) ) lowerCAmelCase_ = torch.flatten(_UpperCamelCase , start_dim=2 ) lowerCAmelCase_ = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: lowerCAmelCase_ = [json.loads(_UpperCamelCase ) for l in open(_UpperCamelCase )] lowerCAmelCase_ = os.path.dirname(_UpperCamelCase ) lowerCAmelCase_ = tokenizer lowerCAmelCase_ = labels lowerCAmelCase_ = len(_UpperCamelCase ) lowerCAmelCase_ = max_seq_length lowerCAmelCase_ = transforms def __len__( self ) -> Any: return len(self.data ) def __getitem__( self , _UpperCamelCase ) -> Any: lowerCAmelCase_ = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=_UpperCamelCase ) ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = sentence[0], sentence[1:-1], sentence[-1] lowerCAmelCase_ = sentence[: self.max_seq_length] lowerCAmelCase_ = torch.zeros(self.n_classes ) lowerCAmelCase_ = 1 lowerCAmelCase_ = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) lowerCAmelCase_ = self.transforms(_UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def __a ( self ) -> str: lowerCAmelCase_ = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def lowerCamelCase__ ( __lowerCAmelCase : List[str] ): """simple docstring""" lowerCAmelCase_ = [len(row["sentence"] ) for row in batch] lowerCAmelCase_ , lowerCAmelCase_ = len(__lowerCAmelCase ), max(__lowerCAmelCase ) lowerCAmelCase_ = torch.zeros(__lowerCAmelCase , __lowerCAmelCase , dtype=torch.long ) lowerCAmelCase_ = torch.zeros(__lowerCAmelCase , __lowerCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase ) ): lowerCAmelCase_ = input_row["sentence"] lowerCAmelCase_ = 1 lowerCAmelCase_ = torch.stack([row["image"] for row in batch] ) lowerCAmelCase_ = torch.stack([row["label"] for row in batch] ) lowerCAmelCase_ = torch.stack([row["image_start_token"] for row in batch] ) lowerCAmelCase_ = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase__ ( ): """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase__ ( ): """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
279
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) # TODO Update this _lowercase = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class lowercase_ ( A ): __lowerCamelCase = "esm" def __init__( self , __A=None , __A=None , __A=None , __A=768 , __A=12 , __A=12 , __A=3_072 , __A=0.1 , __A=0.1 , __A=1_026 , __A=0.02 , __A=1e-1_2 , __A="absolute" , __A=True , __A=None , __A=False , __A=False , __A=None , __A=None , **__A , ) -> int: super().__init__(pad_token_id=__A , mask_token_id=__A , **__A ) SCREAMING_SNAKE_CASE_ : Any =vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] =hidden_size SCREAMING_SNAKE_CASE_ : int =num_hidden_layers SCREAMING_SNAKE_CASE_ : int =num_attention_heads SCREAMING_SNAKE_CASE_ : List[str] =intermediate_size SCREAMING_SNAKE_CASE_ : int =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] =max_position_embeddings SCREAMING_SNAKE_CASE_ : List[Any] =initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] =layer_norm_eps SCREAMING_SNAKE_CASE_ : str =position_embedding_type SCREAMING_SNAKE_CASE_ : Union[str, Any] =use_cache SCREAMING_SNAKE_CASE_ : Optional[int] =emb_layer_norm_before SCREAMING_SNAKE_CASE_ : Tuple =token_dropout SCREAMING_SNAKE_CASE_ : List[Any] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) SCREAMING_SNAKE_CASE_ : Optional[int] =EsmFoldConfig() elif isinstance(__A , __A ): SCREAMING_SNAKE_CASE_ : List[Any] =EsmFoldConfig(**__A ) SCREAMING_SNAKE_CASE_ : Optional[int] =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) SCREAMING_SNAKE_CASE_ : Tuple =get_default_vocab_list() else: SCREAMING_SNAKE_CASE_ : Optional[Any] =vocab_list else: SCREAMING_SNAKE_CASE_ : List[str] =None SCREAMING_SNAKE_CASE_ : Optional[int] =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , __A ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : str =super().to_dict() if isinstance(self.esmfold_config , __A ): SCREAMING_SNAKE_CASE_ : Optional[Any] =self.esmfold_config.to_dict() return output @dataclass class lowercase_ : __lowerCamelCase = None __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = 0 __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = 1_2_8 __lowerCamelCase = None def _snake_case ( self ) -> Optional[Any]: if self.trunk is None: SCREAMING_SNAKE_CASE_ : Tuple =TrunkConfig() elif isinstance(self.trunk , __A ): SCREAMING_SNAKE_CASE_ : List[str] =TrunkConfig(**self.trunk ) def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : int =asdict(self ) SCREAMING_SNAKE_CASE_ : Tuple =self.trunk.to_dict() return output @dataclass class lowercase_ : __lowerCamelCase = 4_8 __lowerCamelCase = 1_0_2_4 __lowerCamelCase = 1_2_8 __lowerCamelCase = 3_2 __lowerCamelCase = 3_2 __lowerCamelCase = 3_2 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = False __lowerCamelCase = 4 __lowerCamelCase = 1_2_8 __lowerCamelCase = None def _snake_case ( self ) -> int: if self.structure_module is None: SCREAMING_SNAKE_CASE_ : Dict =StructureModuleConfig() elif isinstance(self.structure_module , __A ): SCREAMING_SNAKE_CASE_ : Optional[Any] =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) SCREAMING_SNAKE_CASE_ : Tuple =self.sequence_state_dim // self.sequence_head_width SCREAMING_SNAKE_CASE_ : str =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def _snake_case ( self ) -> int: SCREAMING_SNAKE_CASE_ : str =asdict(self ) SCREAMING_SNAKE_CASE_ : Optional[int] =self.structure_module.to_dict() return output @dataclass class lowercase_ : __lowerCamelCase = 3_8_4 __lowerCamelCase = 1_2_8 __lowerCamelCase = 1_6 __lowerCamelCase = 1_2_8 __lowerCamelCase = 1_2 __lowerCamelCase = 4 __lowerCamelCase = 8 __lowerCamelCase = 0.1 __lowerCamelCase = 8 __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = 7 __lowerCamelCase = 1_0 __lowerCamelCase = 1E-8 __lowerCamelCase = 1E5 def _snake_case ( self ) -> str: return asdict(self ) def SCREAMING_SNAKE_CASE_ ( ) -> int: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
443
0
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class __lowercase ( __lowerCamelCase ): snake_case_ = """autoformer""" snake_case_ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Optional[int] ,A : Optional[int] = None ,A : Optional[int] = None ,A : str = "student_t" ,A : str = "nll" ,A : int = 1 ,A : List[int] = [1, 2, 3, 4, 5, 6, 7] ,A : bool = True ,A : int = 0 ,A : int = 0 ,A : int = 0 ,A : int = 0 ,A : Optional[List[int]] = None ,A : Optional[List[int]] = None ,A : int = 64 ,A : int = 2 ,A : int = 2 ,A : int = 2 ,A : int = 2 ,A : int = 32 ,A : int = 32 ,A : str = "gelu" ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : int = 100 ,A : float = 0.0_2 ,A : bool = True ,A : List[Any]=True ,A : int = 10 ,A : int = 25 ,A : int = 3 ,**A : List[str] ,): '''simple docstring''' # time series specific configuration UpperCAmelCase__ : List[str] = prediction_length UpperCAmelCase__ : int = context_length if context_length is not None else prediction_length UpperCAmelCase__ : List[Any] = distribution_output UpperCAmelCase__ : Optional[int] = loss UpperCAmelCase__ : Optional[int] = input_size UpperCAmelCase__ : Dict = num_time_features UpperCAmelCase__ : Union[str, Any] = lags_sequence UpperCAmelCase__ : Dict = scaling UpperCAmelCase__ : Tuple = num_dynamic_real_features UpperCAmelCase__ : List[str] = num_static_real_features UpperCAmelCase__ : Union[str, Any] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) UpperCAmelCase__ : List[str] = cardinality else: UpperCAmelCase__ : Dict = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) UpperCAmelCase__ : Optional[int] = embedding_dimension else: UpperCAmelCase__ : Tuple = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase__ : Optional[int] = num_parallel_samples # Transformer architecture configuration UpperCAmelCase__ : str = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase__ : Optional[int] = d_model UpperCAmelCase__ : Optional[Any] = encoder_attention_heads UpperCAmelCase__ : Union[str, Any] = decoder_attention_heads UpperCAmelCase__ : List[Any] = encoder_ffn_dim UpperCAmelCase__ : Optional[int] = decoder_ffn_dim UpperCAmelCase__ : Tuple = encoder_layers UpperCAmelCase__ : List[Any] = decoder_layers UpperCAmelCase__ : Union[str, Any] = dropout UpperCAmelCase__ : List[str] = attention_dropout UpperCAmelCase__ : Dict = activation_dropout UpperCAmelCase__ : str = encoder_layerdrop UpperCAmelCase__ : Union[str, Any] = decoder_layerdrop UpperCAmelCase__ : Union[str, Any] = activation_function UpperCAmelCase__ : Tuple = init_std UpperCAmelCase__ : Union[str, Any] = use_cache # Autoformer UpperCAmelCase__ : int = label_length UpperCAmelCase__ : Optional[Any] = moving_average UpperCAmelCase__ : Optional[int] = autocorrelation_factor super().__init__(is_encoder_decoder=A ,**A ) @property def __lowercase ( self : Tuple ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
194
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class __lowercase ( __lowerCamelCase ): def __init__( self : List[str] ,*A : Optional[int] ,**A : List[str] ): '''simple docstring''' super().__init__(*A ,**A ) self.check_model_type(A ) def __lowercase ( self : Optional[int] ,A : Dict=None ,A : Optional[int]=None ,A : Tuple=None ,**A : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = {}, {} if padding is not None: UpperCAmelCase__ : Union[str, Any] = padding if truncation is not None: UpperCAmelCase__ : List[str] = truncation if top_k is not None: UpperCAmelCase__ : List[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] ,A : Union["Image.Image", str] ,A : str = None ,**A : Union[str, Any] ): '''simple docstring''' if isinstance(A ,(Image.Image, str) ) and isinstance(A ,A ): UpperCAmelCase__ : Any = {"""image""": image, """question""": question} else: UpperCAmelCase__ : Dict = image UpperCAmelCase__ : Dict = super().__call__(A ,**A ) return results def __lowercase ( self : Optional[int] ,A : Optional[Any] ,A : Optional[Any]=False ,A : List[Any]=False ): '''simple docstring''' UpperCAmelCase__ : List[Any] = load_image(inputs["""image"""] ) UpperCAmelCase__ : Optional[Any] = self.tokenizer( inputs["""question"""] ,return_tensors=self.framework ,padding=A ,truncation=A ) UpperCAmelCase__ : int = self.image_processor(images=A ,return_tensors=self.framework ) model_inputs.update(A ) return model_inputs def __lowercase ( self : Dict ,A : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.model(**A ) return model_outputs def __lowercase ( self : int ,A : List[Any] ,A : List[str]=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: UpperCAmelCase__ : Any = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase__ : Optional[int] = model_outputs.logits.sigmoid()[0] UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = probs.topk(A ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase__ : List[str] = scores.tolist() UpperCAmelCase__ : Optional[int] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(A ,A )]
194
1
from __future__ import annotations class lowercase_ : def __init__( self : List[str] , snake_case__ : str , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = text, pattern SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = len(snake_case__ ), len(snake_case__ ) def __a ( self : int , snake_case__ : str ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __a ( self : Dict , snake_case__ : int ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE_ = self.mismatch_in_text(snake_case__ ) if mismatch_index == -1: positions.append(snake_case__ ) else: SCREAMING_SNAKE_CASE_ = self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE: str = '''ABAABA''' SCREAMING_SNAKE_CASE: Tuple = '''AB''' SCREAMING_SNAKE_CASE: List[Any] = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE: Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
360
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE: Optional[int] = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class lowercase_ (SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , **snake_case__ : str ): """simple docstring""" super().__init__(**snake_case__ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : str , snake_case__ : Union[str, List[str], "Image", List["Image"]] , **snake_case__ : Optional[Any] ): """simple docstring""" return super().__call__(snake_case__ , **snake_case__ ) def __a ( self : str , **snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __a ( self : List[str] , snake_case__ : Optional[int] , snake_case__ : Optional[Any]=None , snake_case__ : List[str]="This is a photo of {}." ): """simple docstring""" SCREAMING_SNAKE_CASE_ = load_image(snake_case__ ) SCREAMING_SNAKE_CASE_ = self.image_processor(images=[image] , return_tensors=self.framework ) SCREAMING_SNAKE_CASE_ = candidate_labels SCREAMING_SNAKE_CASE_ = [hypothesis_template.format(snake_case__ ) for x in candidate_labels] SCREAMING_SNAKE_CASE_ = self.tokenizer(snake_case__ , return_tensors=self.framework , padding=snake_case__ ) SCREAMING_SNAKE_CASE_ = [text_inputs] return inputs def __a ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ = model_inputs.pop('candidate_labels' ) SCREAMING_SNAKE_CASE_ = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , snake_case__ ): SCREAMING_SNAKE_CASE_ = text_inputs[0] else: # Batching case. SCREAMING_SNAKE_CASE_ = text_inputs[0][0] SCREAMING_SNAKE_CASE_ = self.model(**snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE_ = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __a ( self : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = model_outputs.pop('candidate_labels' ) SCREAMING_SNAKE_CASE_ = model_outputs['logits'][0] if self.framework == "pt": SCREAMING_SNAKE_CASE_ = logits.softmax(dim=-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE_ = probs.tolist() if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE_ = [scores] elif self.framework == "tf": SCREAMING_SNAKE_CASE_ = stable_softmax(snake_case__ , axis=-1 ) SCREAMING_SNAKE_CASE_ = probs.numpy().tolist() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) SCREAMING_SNAKE_CASE_ = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(snake_case__ , snake_case__ ) , key=lambda snake_case__ : -x[0] ) ] return result
360
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE__ = { """moussaKam/mbarthez""": 1024, """moussaKam/barthez""": 1024, """moussaKam/barthez-orangesum-title""": 1024, } SCREAMING_SNAKE_CASE__ = """▁""" class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Dict = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : Optional[Any] = ['input_ids', 'attention_mask'] lowerCAmelCase__ : int = BarthezTokenizer def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : Union[str, Any]="</s>" , _UpperCAmelCase : List[str]="</s>" , _UpperCAmelCase : Optional[Any]="<s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : str="<pad>" , _UpperCAmelCase : Optional[int]="<mask>" , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_file __lowercase = False if not self.vocab_file else True def a__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
701
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" @slow def UpperCAmelCase_ ( self : Any ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = AutoModel.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : List[Any] ) -> Any: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = TFAutoModelForPreTraining.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = AutoModelForPreTraining.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained( UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : str ) -> List[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = AutoModelWithLMHead.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Optional[int] ) -> str: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained( UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = AutoModelForMaskedLM.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = AutoModelForMaskedLM.from_pretrained( UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained( UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained( UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = TFAutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = AutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase__ ) , 1_4_4_1_0 ) __SCREAMING_SNAKE_CASE = AutoModelWithLMHead.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase__ ) , 1_4_4_1_0 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase__ ) , 1_4_4_1_0 ) __SCREAMING_SNAKE_CASE = AutoModelWithLMHead.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase__ ) , 1_4_4_1_0 )
682
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : List[Any] = AutoencoderKL snake_case__ : Optional[Any] = "sample" snake_case__ : Optional[Any] = 1E-2 @property def UpperCAmelCase_ ( self : Tuple ) -> int: __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = (3_2, 3_2) __SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase__ ) return {"sample": image} @property def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: return (3, 3_2, 3_2) @property def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: return (3, 3_2, 3_2) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = { "block_out_channels": [3_2, 6_4], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } __SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: pass def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def UpperCAmelCase_ ( self : str ) -> List[Any]: # enable deterministic behavior for gradient checkpointing __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE = self.model_class(**UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) assert not model.is_gradient_checkpointing and model.training __SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __SCREAMING_SNAKE_CASE = torch.randn_like(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __SCREAMING_SNAKE_CASE = self.model_class(**UpperCAmelCase__ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(UpperCAmelCase__ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __SCREAMING_SNAKE_CASE = model_a(**UpperCAmelCase__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __SCREAMING_SNAKE_CASE = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __SCREAMING_SNAKE_CASE = dict(model.named_parameters() ) __SCREAMING_SNAKE_CASE = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def UpperCAmelCase_ ( self : List[str] ) -> Any: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) __SCREAMING_SNAKE_CASE = model.to(UpperCAmelCase__ ) model.eval() if torch_device == "mps": __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) __SCREAMING_SNAKE_CASE = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __SCREAMING_SNAKE_CASE = image.to(UpperCAmelCase__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , sample_posterior=UpperCAmelCase__ , generator=UpperCAmelCase__ ).sample __SCREAMING_SNAKE_CASE = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __SCREAMING_SNAKE_CASE = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": __SCREAMING_SNAKE_CASE = torch.tensor( [-0.1_352, 0.0_878, 0.0_419, -0.0_818, -0.1_069, 0.0_688, -0.1_458, -0.4_446, -0.0_026] ) else: __SCREAMING_SNAKE_CASE = torch.tensor( [-0.2_421, 0.4_642, 0.2_507, -0.0_438, 0.0_682, 0.3_160, -0.2_018, -0.0_727, 0.2_485] ) self.assertTrue(torch_all_close(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1E-2 ) ) @slow class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> Any: return F"""gaussian_noise_s={seed}_shape={'_'.join([str(UpperCAmelCase__ ) for s in shape] )}.npy""" def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Optional[Any]=(4, 3, 5_1_2, 5_1_2) , UpperCAmelCase__ : Any=False ) -> List[str]: __SCREAMING_SNAKE_CASE = torch.floataa if fpaa else torch.floataa __SCREAMING_SNAKE_CASE = torch.from_numpy(load_hf_numpy(self.get_file_format(UpperCAmelCase__ , UpperCAmelCase__ ) ) ).to(UpperCAmelCase__ ).to(UpperCAmelCase__ ) return image def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Dict="CompVis/stable-diffusion-v1-4" , UpperCAmelCase__ : Optional[Any]=False ) -> Tuple: __SCREAMING_SNAKE_CASE = "fp16" if fpaa else None __SCREAMING_SNAKE_CASE = torch.floataa if fpaa else torch.floataa __SCREAMING_SNAKE_CASE = AutoencoderKL.from_pretrained( UpperCAmelCase__ , subfolder="vae" , torch_dtype=UpperCAmelCase__ , revision=UpperCAmelCase__ , ) model.to(UpperCAmelCase__ ).eval() return model def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : int=0 ) -> str: if torch_device == "mps": return torch.manual_seed(UpperCAmelCase__ ) return torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) @parameterized.expand( [ # fmt: off [3_3, [-0.1_603, 0.9_878, -0.0_495, -0.0_790, -0.2_709, 0.8_375, -0.2_060, -0.0_824], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [4_7, [-0.2_376, 0.1_168, 0.1_332, -0.4_840, -0.2_508, -0.0_791, -0.0_493, -0.4_089], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.get_sd_vae_model() __SCREAMING_SNAKE_CASE = self.get_sd_image(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_generator(UpperCAmelCase__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , generator=UpperCAmelCase__ , sample_posterior=UpperCAmelCase__ ).sample assert sample.shape == image.shape __SCREAMING_SNAKE_CASE = sample[-1, -2:, -2:, :2].flatten().float().cpu() __SCREAMING_SNAKE_CASE = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(UpperCAmelCase__ , UpperCAmelCase__ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [3_3, [-0.0_513, 0.0_289, 1.3_799, 0.2_166, -0.2_573, -0.0_871, 0.5_103, -0.0_999]], [4_7, [-0.4_128, -0.1_320, -0.3_704, 0.1_965, -0.4_116, -0.2_332, -0.3_340, 0.2_247]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.get_sd_vae_model(fpaa=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_sd_image(UpperCAmelCase__ , fpaa=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_generator(UpperCAmelCase__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , generator=UpperCAmelCase__ , sample_posterior=UpperCAmelCase__ ).sample assert sample.shape == image.shape __SCREAMING_SNAKE_CASE = sample[-1, -2:, :2, -2:].flatten().float().cpu() __SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase__ ) assert torch_all_close(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.1_609, 0.9_866, -0.0_487, -0.0_777, -0.2_716, 0.8_368, -0.2_055, -0.0_814], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [4_7, [-0.2_377, 0.1_147, 0.1_333, -0.4_841, -0.2_506, -0.0_805, -0.0_491, -0.4_085], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any ) -> Dict: __SCREAMING_SNAKE_CASE = self.get_sd_vae_model() __SCREAMING_SNAKE_CASE = self.get_sd_image(UpperCAmelCase__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ).sample assert sample.shape == image.shape __SCREAMING_SNAKE_CASE = sample[-1, -2:, -2:, :2].flatten().float().cpu() __SCREAMING_SNAKE_CASE = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(UpperCAmelCase__ , UpperCAmelCase__ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [1_3, [-0.2_051, -0.1_803, -0.2_311, -0.2_114, -0.3_292, -0.3_574, -0.2_953, -0.3_323]], [3_7, [-0.2_632, -0.2_625, -0.2_199, -0.2_741, -0.4_539, -0.4_990, -0.3_720, -0.4_925]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int ) -> str: __SCREAMING_SNAKE_CASE = self.get_sd_vae_model() __SCREAMING_SNAKE_CASE = self.get_sd_image(UpperCAmelCase__ , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model.decode(UpperCAmelCase__ ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] __SCREAMING_SNAKE_CASE = sample[-1, -2:, :2, -2:].flatten().cpu() __SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase__ ) assert torch_all_close(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [2_7, [-0.0_369, 0.0_207, -0.0_776, -0.0_682, -0.1_747, -0.1_930, -0.1_465, -0.2_039]], [1_6, [-0.1_628, -0.2_134, -0.2_747, -0.2_642, -0.3_774, -0.4_404, -0.3_687, -0.4_277]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any ) -> Dict: __SCREAMING_SNAKE_CASE = self.get_sd_vae_model(fpaa=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_sd_image(UpperCAmelCase__ , shape=(3, 4, 6_4, 6_4) , fpaa=UpperCAmelCase__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model.decode(UpperCAmelCase__ ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] __SCREAMING_SNAKE_CASE = sample[-1, -2:, :2, -2:].flatten().float().cpu() __SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase__ ) assert torch_all_close(UpperCAmelCase__ , UpperCAmelCase__ , atol=5E-3 ) @parameterized.expand([(1_3,), (1_6,), (2_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Union[str, Any] ) -> List[str]: __SCREAMING_SNAKE_CASE = self.get_sd_vae_model(fpaa=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_sd_image(UpperCAmelCase__ , shape=(3, 4, 6_4, 6_4) , fpaa=UpperCAmelCase__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model.decode(UpperCAmelCase__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model.decode(UpperCAmelCase__ ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-1 ) @parameterized.expand([(1_3,), (1_6,), (3_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : Tuple ) -> Dict: __SCREAMING_SNAKE_CASE = self.get_sd_vae_model() __SCREAMING_SNAKE_CASE = self.get_sd_image(UpperCAmelCase__ , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model.decode(UpperCAmelCase__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model.decode(UpperCAmelCase__ ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.3_001, 0.0_918, -2.6_984, -3.9_720, -3.2_099, -5.0_353, 1.7_338, -0.2_065, 3.4_267]], [4_7, [-1.5_030, -4.3_871, -6.0_355, -9.1_157, -1.6_661, -2.7_853, 2.1_607, -5.0_823, 2.5_633]], # fmt: on ] ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.get_sd_vae_model() __SCREAMING_SNAKE_CASE = self.get_sd_image(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_generator(UpperCAmelCase__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model.encode(UpperCAmelCase__ ).latent_dist __SCREAMING_SNAKE_CASE = dist.sample(generator=UpperCAmelCase__ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __SCREAMING_SNAKE_CASE = sample[0, -1, -3:, -3:].flatten().cpu() __SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ )
682
1
"""simple docstring""" def A_ ( __lowercase ): assert column_title.isupper() UpperCamelCase_ : List[str] =0 UpperCamelCase_ : List[Any] =len(__A ) - 1 UpperCamelCase_ : Any =0 while index >= 0: UpperCamelCase_ : Tuple =(ord(column_title[index] ) - 64) * pow(26 , __A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
701
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class a__ ( A__ ): UpperCAmelCase__ = '''dpr''' def __init__( self :Dict , _lowerCamelCase :Optional[Any]=30_522 , _lowerCamelCase :Tuple=768 , _lowerCamelCase :List[Any]=12 , _lowerCamelCase :List[str]=12 , _lowerCamelCase :Dict=3_072 , _lowerCamelCase :Tuple="gelu" , _lowerCamelCase :Union[str, Any]=0.1 , _lowerCamelCase :Optional[Any]=0.1 , _lowerCamelCase :int=512 , _lowerCamelCase :Optional[Any]=2 , _lowerCamelCase :List[str]=0.02 , _lowerCamelCase :List[Any]=1E-1_2 , _lowerCamelCase :Union[str, Any]=0 , _lowerCamelCase :str="absolute" , _lowerCamelCase :int = 0 , **_lowerCamelCase :Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_ : Optional[Any] =vocab_size UpperCamelCase_ : int =hidden_size UpperCamelCase_ : List[Any] =num_hidden_layers UpperCamelCase_ : str =num_attention_heads UpperCamelCase_ : Union[str, Any] =hidden_act UpperCamelCase_ : str =intermediate_size UpperCamelCase_ : Dict =hidden_dropout_prob UpperCamelCase_ : List[Any] =attention_probs_dropout_prob UpperCamelCase_ : Union[str, Any] =max_position_embeddings UpperCamelCase_ : Dict =type_vocab_size UpperCamelCase_ : Union[str, Any] =initializer_range UpperCamelCase_ : Dict =layer_norm_eps UpperCamelCase_ : Optional[int] =projection_dim UpperCamelCase_ : Dict =position_embedding_type
395
0
"""simple docstring""" def __snake_case ( UpperCamelCase__ = 10**9 ) -> int: """simple docstring""" A = 1 A = 2 A = 0 A = 0 A = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value A = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
690
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class A__ ( _lowerCamelCase): A_ : Optional[Any] = 'deformable_detr' A_ : Tuple = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=3_00 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE="resnet50" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=3_00 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.25 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __lowerCAmelCase : List[Any] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = backbone_config.get('model_type' ) __lowerCAmelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase : int = config_class.from_dict(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = use_timm_backbone __lowerCAmelCase : Any = backbone_config __lowerCAmelCase : List[Any] = num_channels __lowerCAmelCase : Optional[Any] = num_queries __lowerCAmelCase : Optional[Any] = max_position_embeddings __lowerCAmelCase : Optional[int] = d_model __lowerCAmelCase : Optional[Any] = encoder_ffn_dim __lowerCAmelCase : Tuple = encoder_layers __lowerCAmelCase : Union[str, Any] = encoder_attention_heads __lowerCAmelCase : int = decoder_ffn_dim __lowerCAmelCase : List[Any] = decoder_layers __lowerCAmelCase : Optional[int] = decoder_attention_heads __lowerCAmelCase : List[str] = dropout __lowerCAmelCase : Optional[Any] = attention_dropout __lowerCAmelCase : Optional[int] = activation_dropout __lowerCAmelCase : Union[str, Any] = activation_function __lowerCAmelCase : Optional[Any] = init_std __lowerCAmelCase : List[str] = init_xavier_std __lowerCAmelCase : List[str] = encoder_layerdrop __lowerCAmelCase : Any = auxiliary_loss __lowerCAmelCase : Dict = position_embedding_type __lowerCAmelCase : str = backbone __lowerCAmelCase : int = use_pretrained_backbone __lowerCAmelCase : int = dilation # deformable attributes __lowerCAmelCase : List[Any] = num_feature_levels __lowerCAmelCase : Dict = encoder_n_points __lowerCAmelCase : Optional[Any] = decoder_n_points __lowerCAmelCase : str = two_stage __lowerCAmelCase : int = two_stage_num_proposals __lowerCAmelCase : Tuple = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher __lowerCAmelCase : str = class_cost __lowerCAmelCase : List[str] = bbox_cost __lowerCAmelCase : List[str] = giou_cost # Loss coefficients __lowerCAmelCase : Any = mask_loss_coefficient __lowerCAmelCase : Any = dice_loss_coefficient __lowerCAmelCase : Optional[Any] = bbox_loss_coefficient __lowerCAmelCase : Tuple = giou_loss_coefficient __lowerCAmelCase : List[str] = eos_coefficient __lowerCAmelCase : str = focal_alpha __lowerCAmelCase : Optional[Any] = disable_custom_kernels super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def __lowerCamelCase ( self ): return self.encoder_attention_heads @property def __lowerCamelCase ( self ): return self.d_model def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowerCAmelCase : Optional[int] = self.backbone_config.to_dict() __lowerCAmelCase : Tuple = self.__class__.model_type return output
707
"""simple docstring""" class A__ : def __init__( self ): __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Any = 0 __lowerCAmelCase : List[Any] = {} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): if vertex not in self.adjacency: __lowerCAmelCase : Dict = {} self.num_vertices += 1 def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.add_vertex(_SCREAMING_SNAKE_CASE ) self.add_vertex(_SCREAMING_SNAKE_CASE ) if head == tail: return __lowerCAmelCase : Union[str, Any] = weight __lowerCAmelCase : str = weight def __lowerCamelCase ( self ): __lowerCAmelCase : int = self.get_edges() for edge in edges: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = edge edges.remove((tail, head, weight) ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase : List[str] = list(edges[i] ) edges.sort(key=lambda _SCREAMING_SNAKE_CASE : e[2] ) for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __lowerCAmelCase : Dict = edges[i][2] + 1 for edge in edges: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : str = edge __lowerCAmelCase : Union[str, Any] = weight __lowerCAmelCase : Optional[int] = weight def __str__( self ): __lowerCAmelCase : List[Any] = '' for tail in self.adjacency: for head in self.adjacency[tail]: __lowerCAmelCase : str = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip('\n' ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCamelCase ( self ): return self.adjacency.keys() @staticmethod def __lowerCamelCase ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): __lowerCAmelCase : List[str] = Graph() if vertices is None: __lowerCAmelCase : int = [] if edges is None: __lowerCAmelCase : Optional[int] = [] for vertex in vertices: g.add_vertex(_SCREAMING_SNAKE_CASE ) for edge in edges: g.add_edge(*_SCREAMING_SNAKE_CASE ) return g class A__ : def __init__( self ): __lowerCAmelCase : Dict = {} __lowerCAmelCase : Optional[int] = {} def __len__( self ): return len(self.parent ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): if item in self.parent: return self.find(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = item __lowerCAmelCase : int = 0 return item def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): if item not in self.parent: return self.make_set(_SCREAMING_SNAKE_CASE ) if item != self.parent[item]: __lowerCAmelCase : Dict = self.find(self.parent[item] ) return self.parent[item] def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = self.find(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = self.find(_SCREAMING_SNAKE_CASE ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __lowerCAmelCase : Tuple = roota return roota if self.rank[roota] < self.rank[roota]: __lowerCAmelCase : str = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __lowerCAmelCase : Optional[int] = roota return roota return None @staticmethod def __lowerCamelCase ( _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = graph.num_vertices __lowerCAmelCase : List[Any] = Graph.UnionFind() __lowerCAmelCase : Tuple = [] while num_components > 1: __lowerCAmelCase : str = {} for vertex in graph.get_vertices(): __lowerCAmelCase : Union[str, Any] = -1 __lowerCAmelCase : int = graph.get_edges() for edge in edges: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = edge edges.remove((tail, head, weight) ) for edge in edges: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = edge __lowerCAmelCase : Optional[int] = union_find.find(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = union_find.find(_SCREAMING_SNAKE_CASE ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCAmelCase : List[str] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCAmelCase : List[str] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : str = cheap_edge[vertex] if union_find.find(_SCREAMING_SNAKE_CASE ) != union_find.find(_SCREAMING_SNAKE_CASE ): union_find.union(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) mst_edges.append(cheap_edge[vertex] ) __lowerCAmelCase : List[str] = num_components - 1 __lowerCAmelCase : Union[str, Any] = Graph.build(edges=_SCREAMING_SNAKE_CASE ) return mst
549
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE_ = (3, 9, -1_1, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE_ = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class lowerCAmelCase : """simple docstring""" _A = 42 _A = 42 class lowerCAmelCase : """simple docstring""" def __init__( self , _A ) -> None: __a : Node | None = None for i in sorted(_A , reverse=_A ): __a : Optional[Any] = Node(_A , self.head ) def __iter__( self ) -> Iterator[int]: __a : Any = self.head while node: yield node.data __a : Union[str, Any] = node.next_node def __len__( self ) -> int: return sum(1 for _ in self ) def __str__( self ) -> str: return " -> ".join([str(_A ) for node in self] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return SortedLinkedList(list(SCREAMING_SNAKE_CASE__ ) + list(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
597
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a : List[str] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a , __a : Tuple = emb.weight.shape __a : Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __a : List[str] = emb.weight.data return lin_layer def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="facebook/mbart-large-en-ro" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False ): __a : Tuple = torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' )['model'] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = state_dict['encoder.embed_tokens.weight'].shape[0] __a : Dict = MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ , vocab_size=SCREAMING_SNAKE_CASE__ ) if mbart_aa and finetuned: __a : str = 'relu' __a : List[Any] = state_dict['decoder.embed_tokens.weight'] __a : Dict = MBartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if finetuned: __a : Tuple = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
597
1
"""simple docstring""" def snake_case ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] ) -> Optional[int]: lowerCamelCase : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def snake_case ( UpperCamelCase__ : str ) -> Dict: return data[1:] + data[0] def snake_case ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ) -> List[Any]: lowerCamelCase : Union[str, Any] = """""" for i in range(len(UpperCamelCase__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def snake_case ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = int("""0b""" + data[0] + data[-1] , 2 ) lowerCamelCase : Optional[int] = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def snake_case ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : str ) -> Union[str, Any]: lowerCamelCase : int = message[:4] lowerCamelCase : int = message[4:] lowerCamelCase : List[str] = apply_table(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Tuple = xor(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : int = apply_sbox(UpperCamelCase__ , temp[:4] ) # noqa: E741 lowerCamelCase : List[str] = apply_sbox(UpperCamelCase__ , temp[4:] ) lowerCamelCase : str = """0""" * (2 - len(UpperCamelCase__ )) + l # noqa: E741 lowerCamelCase : List[Any] = """0""" * (2 - len(UpperCamelCase__ )) + r lowerCamelCase : Optional[Any] = apply_table(l + r , UpperCamelCase__ ) lowerCamelCase : Dict = xor(UpperCamelCase__ , UpperCamelCase__ ) return temp + right if __name__ == "__main__": __lowerCamelCase :Dict = input('Enter 10 bit key: ') __lowerCamelCase :int = input('Enter 8 bit message: ') __lowerCamelCase :List[Any] = [6, 3, 7, 4, 8, 5, 10, 9] __lowerCamelCase :Any = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __lowerCamelCase :List[str] = [2, 4, 3, 1] __lowerCamelCase :List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __lowerCamelCase :Tuple = [4, 1, 3, 5, 7, 2, 8, 6] __lowerCamelCase :str = [4, 1, 2, 3, 2, 3, 4, 1] __lowerCamelCase :List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __lowerCamelCase :str = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __lowerCamelCase :int = apply_table(key, paa_table) __lowerCamelCase :str = temp[:5] __lowerCamelCase :Tuple = temp[5:] __lowerCamelCase :Union[str, Any] = left_shift(left) __lowerCamelCase :List[str] = left_shift(right) __lowerCamelCase :Optional[Any] = apply_table(left + right, pa_table) __lowerCamelCase :str = left_shift(left) __lowerCamelCase :Optional[int] = left_shift(right) __lowerCamelCase :Union[str, Any] = left_shift(left) __lowerCamelCase :int = left_shift(right) __lowerCamelCase :Union[str, Any] = apply_table(left + right, pa_table) # encryption __lowerCamelCase :Union[str, Any] = apply_table(message, IP) __lowerCamelCase :Any = function(expansion, sa, sa, keya, temp) __lowerCamelCase :int = temp[4:] + temp[:4] __lowerCamelCase :List[str] = function(expansion, sa, sa, keya, temp) __lowerCamelCase :Tuple = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption __lowerCamelCase :Union[str, Any] = apply_table(CT, IP) __lowerCamelCase :Union[str, Any] = function(expansion, sa, sa, keya, temp) __lowerCamelCase :int = temp[4:] + temp[:4] __lowerCamelCase :Optional[int] = function(expansion, sa, sa, keya, temp) __lowerCamelCase :List[str] = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
706
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase :str = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class A__ ( __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : List[str] =AlbertTokenizer snake_case__ : Optional[Any] =AlbertTokenizerFast snake_case__ : Optional[int] =True snake_case__ : Any =True snake_case__ : Optional[int] =True def a__ ( self: Dict )-> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase : int = AlbertTokenizer(__a ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self: Tuple , __a: Tuple )-> Union[str, Any]: lowerCamelCase : List[str] = """this is a test""" lowerCamelCase : int = """this is a test""" return input_text, output_text def a__ ( self: Any )-> List[Any]: lowerCamelCase : int = """<pad>""" lowerCamelCase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def a__ ( self: Tuple )-> str: lowerCamelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(__a ) , 30_000 ) def a__ ( self: List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def a__ ( self: Optional[Any] )-> Union[str, Any]: if not self.test_rust_tokenizer: return lowerCamelCase : str = self.get_tokenizer() lowerCamelCase : Tuple = self.get_rust_tokenizer() lowerCamelCase : Union[str, Any] = """I was born in 92000, and this is falsé.""" lowerCamelCase : List[str] = tokenizer.tokenize(__a ) lowerCamelCase : Tuple = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) lowerCamelCase : Dict = tokenizer.encode(__a , add_special_tokens=__a ) lowerCamelCase : List[str] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) lowerCamelCase : Any = self.get_rust_tokenizer() lowerCamelCase : List[str] = tokenizer.encode(__a ) lowerCamelCase : str = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def a__ ( self: Tuple )-> List[Any]: lowerCamelCase : List[str] = AlbertTokenizer(__a , keep_accents=__a ) lowerCamelCase : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [48, 25, 21, 1_289] ) lowerCamelCase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) lowerCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def a__ ( self: Tuple )-> str: lowerCamelCase : str = AlbertTokenizer(__a ) lowerCamelCase : Union[str, Any] = tokenizer.encode("""sequence builders""" ) lowerCamelCase : List[Any] = tokenizer.encode("""multi-sequence build""" ) lowerCamelCase : Any = tokenizer.build_inputs_with_special_tokens(__a ) lowerCamelCase : str = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def a__ ( self: Any )-> Dict: # fmt: off lowerCamelCase : Optional[Any] = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
42
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( lowerCAmelCase_ , unittest.TestCase ): a_ : int = UnCLIPImageVariationPipeline a_ : Optional[int] = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} a_ : Optional[int] = IMAGE_VARIATION_BATCH_PARAMS a_ : Optional[Any] = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] a_ : int = False @property def _UpperCamelCase ( self : Dict ): return 32 @property def _UpperCamelCase ( self : Dict ): return 32 @property def _UpperCamelCase ( self : Union[str, Any] ): return self.time_input_dim @property def _UpperCamelCase ( self : Tuple ): return self.time_input_dim * 4 @property def _UpperCamelCase ( self : Union[str, Any] ): return 1_00 @property def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _UpperCamelCase ( self : Any ): torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(__a ) @property def _UpperCamelCase ( self : Optional[int] ): torch.manual_seed(0 ) lowerCamelCase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(__a ) @property def _UpperCamelCase ( self : Dict ): torch.manual_seed(0 ) lowerCamelCase__ = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCamelCase__ = UnCLIPTextProjModel(**__a ) return model @property def _UpperCamelCase ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCamelCase__ = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCamelCase__ = UNetaDConditionModel(**__a ) return model @property def _UpperCamelCase ( self : Optional[Any] ): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _UpperCamelCase ( self : List[str] ): torch.manual_seed(0 ) lowerCamelCase__ = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _UpperCamelCase ( self : Any ): torch.manual_seed(1 ) lowerCamelCase__ = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = self.dummy_decoder lowerCamelCase__ = self.dummy_text_proj lowerCamelCase__ = self.dummy_text_encoder lowerCamelCase__ = self.dummy_tokenizer lowerCamelCase__ = self.dummy_super_res_first lowerCamelCase__ = self.dummy_super_res_last lowerCamelCase__ = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=10_00 , ) lowerCamelCase__ = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=10_00 , ) lowerCamelCase__ = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCamelCase__ = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : Tuple=True ): lowerCamelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith('mps' ): lowerCamelCase__ = torch.manual_seed(__a ) else: lowerCamelCase__ = torch.Generator(device=__a ).manual_seed(__a ) if pil_image: lowerCamelCase__ = input_image * 0.5 + 0.5 lowerCamelCase__ = input_image.clamp(0 , 1 ) lowerCamelCase__ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCamelCase__ = DiffusionPipeline.numpy_to_pil(__a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = 'cpu' lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**__a ) lowerCamelCase__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__ = self.get_dummy_inputs(__a , pil_image=__a ) lowerCamelCase__ = pipe(**__a ) lowerCamelCase__ = output.images lowerCamelCase__ = self.get_dummy_inputs(__a , pil_image=__a ) lowerCamelCase__ = pipe( **__a , return_dict=__a , )[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = 'cpu' lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**__a ) lowerCamelCase__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__ = self.get_dummy_inputs(__a , pil_image=__a ) lowerCamelCase__ = pipe(**__a ) lowerCamelCase__ = output.images lowerCamelCase__ = self.get_dummy_inputs(__a , pil_image=__a ) lowerCamelCase__ = pipe( **__a , return_dict=__a , )[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = 'cpu' lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**__a ) lowerCamelCase__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__ = self.get_dummy_inputs(__a , pil_image=__a ) lowerCamelCase__ = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCamelCase__ = pipe(**__a ) lowerCamelCase__ = output.images lowerCamelCase__ = self.get_dummy_inputs(__a , pil_image=__a ) lowerCamelCase__ = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCamelCase__ = pipe( **__a , return_dict=__a , )[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCamelCase__ = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = torch.device('cpu' ) class _a : a_ : str = 1 lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**__a ) lowerCamelCase__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__ = torch.Generator(device=__a ).manual_seed(0 ) lowerCamelCase__ = pipe.decoder.dtype lowerCamelCase__ = 1 lowerCamelCase__ = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCamelCase__ = pipe.prepare_latents( __a , dtype=__a , device=__a , generator=__a , latents=__a , scheduler=DummyScheduler() ) lowerCamelCase__ = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCamelCase__ = pipe.prepare_latents( __a , dtype=__a , device=__a , generator=__a , latents=__a , scheduler=DummyScheduler() ) lowerCamelCase__ = self.get_dummy_inputs(__a , pil_image=__a ) lowerCamelCase__ = pipe( **__a , decoder_latents=__a , super_res_latents=__a ).images lowerCamelCase__ = self.get_dummy_inputs(__a , pil_image=__a ) # Don't pass image, instead pass embedding lowerCamelCase__ = pipeline_inputs.pop('image' ) lowerCamelCase__ = pipe.image_encoder(__a ).image_embeds lowerCamelCase__ = pipe( **__a , decoder_latents=__a , super_res_latents=__a , image_embeddings=__a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCamelCase__ = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=__a , expected_max_diff=__a ) @skip_mps def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = torch_device == 'cpu' lowerCamelCase__ = True lowerCamelCase__ = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=__a , relax_max_difference=__a , additional_params_copy_to_batched_inputs=__a , ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCamelCase__ = [2, 3] self._test_inference_batch_consistent( batch_sizes=__a , additional_params_copy_to_batched_inputs=__a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__a ) @skip_mps def _UpperCamelCase ( self : Optional[int] ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def _UpperCamelCase ( self : str ): return super().test_save_load_local() @skip_mps def _UpperCamelCase ( self : int ): return super().test_save_load_optional_components() @slow @require_torch_gpu class _a ( unittest.TestCase ): def _UpperCamelCase ( self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCamelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCamelCase__ = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCamelCase__ = pipeline.to(__a ) pipeline.set_progress_bar_config(disable=__a ) lowerCamelCase__ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ = pipeline( __a , generator=__a , output_type='np' , ) lowerCamelCase__ = output.images[0] assert image.shape == (2_56, 2_56, 3) assert_mean_pixel_difference(__a , __a , 15 )
510
'''simple docstring''' from collections.abc import Callable class __UpperCamelCase : def __init__( self , __a = None ): '''simple docstring''' __a : list = [] # Stores indexes of each item for supporting updates and deletion. __a : dict = {} # Stores current size of heap. __a : List[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __a : Tuple = key or (lambda __a : x) def __UpperCAmelCase ( self , __a ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Dict = int(2 * i + 1 ) return left if 0 < left < self.size else None def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : List[str] = int(2 * i + 2 ) return right if 0 < right < self.size else None def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' __a , __a : int = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __a , __a : Optional[Any] = self.arr[j], self.arr[i] def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Any = self._left(__a ) __a : Union[str, Any] = self._right(__a ) __a : Tuple = i if left is not None and not self._cmp(__a , __a ): __a : int = left if right is not None and not self._cmp(__a , __a ): __a : Any = right return valid_parent def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Optional[int] = self._parent(__a ) while parent is not None and not self._cmp(__a , __a ): self._swap(__a , __a ) __a , __a : Optional[int] = parent, self._parent(__a ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : List[Any] = self._get_valid_parent(__a ) while valid_parent != index: self._swap(__a , __a ) __a , __a : Optional[Any] = valid_parent, self._get_valid_parent(__a ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' if item not in self.pos_map: return __a : Tuple = self.pos_map[item] __a : int = [item, self.key(__a )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__a ) self._heapify_down(__a ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' if item not in self.pos_map: return __a : int = self.pos_map[item] del self.pos_map[item] __a : Optional[int] = self.arr[self.size - 1] __a : Optional[int] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__a ) self._heapify_down(__a ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' __a : Dict = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(__a )] ) else: __a : List[Any] = [item, self.key(__a )] __a : Union[str, Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __UpperCAmelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase (): pass if __name__ == "__main__": import doctest doctest.testmod()
476
0
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCAmelCase_ ( lowercase_ : str , lowercase_ : Dict ): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __SCREAMING_SNAKE_CASE : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) __SCREAMING_SNAKE_CASE : List[str] = torch.permute(__A , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__A ): # linear layer __SCREAMING_SNAKE_CASE : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",) __SCREAMING_SNAKE_CASE : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __SCREAMING_SNAKE_CASE : Dict = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def lowerCAmelCase_ ( lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict ): '''simple docstring''' if "metadata" in layer: __SCREAMING_SNAKE_CASE : List[str] = layer.split('''metadata''' ) __SCREAMING_SNAKE_CASE : List[str] = """""".join(split_layer[0] )[:-1] __SCREAMING_SNAKE_CASE : Tuple = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: __SCREAMING_SNAKE_CASE : Union[str, Any] = layer.split('''kvstore''' ) __SCREAMING_SNAKE_CASE : Any = """""".join(split_layer[0] )[:-1] __SCREAMING_SNAKE_CASE : List[Any] = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: __SCREAMING_SNAKE_CASE : Any = layer.split('''/''' ) __SCREAMING_SNAKE_CASE : Dict = """/""".join(split_layer[:-1] ) __SCREAMING_SNAKE_CASE : List[str] = (split_layer[-1],) if "kvstore/path" in layer: __SCREAMING_SNAKE_CASE : str = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: __SCREAMING_SNAKE_CASE : Optional[int] = """file""" else: __SCREAMING_SNAKE_CASE : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCAmelCase_ ( lowercase_ : Optional[int] , lowercase_ : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = rename_keys(__A ) __SCREAMING_SNAKE_CASE : Optional[Any] = {} for k, v in current_block.items(): __SCREAMING_SNAKE_CASE : Optional[Any] = v __SCREAMING_SNAKE_CASE : Dict = new_current_block torch.save(__A , __A ) def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Dict , lowercase_ : List[Any] = WEIGHTS_NAME ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = convert_file_size_to_int(__A ) __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Tuple = 0 os.makedirs(__A , exist_ok=__A ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : Any = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] __SCREAMING_SNAKE_CASE : Any = flatten_dict(__A , sep='''/''' ) __SCREAMING_SNAKE_CASE : int = {} for layer in checkpoint_info.keys(): __SCREAMING_SNAKE_CASE : Union[str, Any] = get_key_and_tensorstore_dict( __A , __A , __A ) if curr_real_layer_name in all_layers: __SCREAMING_SNAKE_CASE : Tuple = content else: __SCREAMING_SNAKE_CASE : Tuple = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __SCREAMING_SNAKE_CASE : Dict = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __SCREAMING_SNAKE_CASE : Dict = torch.tensor(__A ) __SCREAMING_SNAKE_CASE : Optional[Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __SCREAMING_SNAKE_CASE : Optional[int] = rename_base_flax_keys(tuple(key.split('''/''' ) ) , __A ) __SCREAMING_SNAKE_CASE : List[Any] = """/""".join(__A ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __SCREAMING_SNAKE_CASE : List[str] = os.path.join( __A , weights_name.replace('''.bin''' , F'''-{len(__A )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__A , __A ) sharded_state_dicts.append(current_block.keys() ) del current_block __SCREAMING_SNAKE_CASE : Union[str, Any] = {} __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : List[Any] = raw_weights.to(getattr(__A , __A ) ) current_block_size += weight_size total_size += weight_size # Add the last block __SCREAMING_SNAKE_CASE : Any = os.path.join(__A , weights_name.replace('''.bin''' , F'''-{len(__A )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__A , __A ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__A ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __SCREAMING_SNAKE_CASE : int = {} __SCREAMING_SNAKE_CASE : List[str] = {} for idx, shard in enumerate(__A ): __SCREAMING_SNAKE_CASE : Optional[Any] = weights_name.replace( '''.bin''' , F'''-{idx+1:05d}-of-{len(__A ):05d}.bin''' ) # len(sharded_state_dicts):05d} __SCREAMING_SNAKE_CASE : Tuple = os.path.join(__A , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__A , os.path.join(__A , __A ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = shard for key in shard: __SCREAMING_SNAKE_CASE : List[str] = shard_file # Add the metadata __SCREAMING_SNAKE_CASE : List[str] = {"""total_size""": total_size} __SCREAMING_SNAKE_CASE : Optional[Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__A , __A ) , '''w''' , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE : Optional[int] = json.dumps(__A , indent=2 , sort_keys=__A ) + """\n""" f.write(__A ) return metadata, index if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCAmelCase_ ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) __SCREAMING_SNAKE_CASE : List[str] = TaTokenizer.from_pretrained('''t5-small''' ) __SCREAMING_SNAKE_CASE : int = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" __SCREAMING_SNAKE_CASE : Tuple = tokenizer(__A , return_tensors='''pt''' ).input_ids __SCREAMING_SNAKE_CASE : str = model.generate(__A , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
715
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class snake_case : def __init__( self :Dict , _lowerCamelCase :List[str] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = str(id_ ) __SCREAMING_SNAKE_CASE : Any = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Optional[Any] = {} # {vertex:distance} def __lt__( self :Any , _lowerCamelCase :Any ): return self.key < other.key def __repr__( self :Any ): return self.id def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :str ): self.neighbors.append(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , _lowerCamelCase :Any , _lowerCamelCase :Tuple ): __SCREAMING_SNAKE_CASE : int = weight def lowerCAmelCase_ ( lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Dict ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowercase_ ) graph[b - 1].add_edge(graph[a - 1] , lowercase_ ) def lowerCAmelCase_ ( lowercase_ : list , lowercase_ : Vertex ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = [] for u in graph: __SCREAMING_SNAKE_CASE : Tuple = math.inf __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Dict = graph[:] while q: __SCREAMING_SNAKE_CASE : Tuple = min(lowercase_ ) q.remove(lowercase_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __SCREAMING_SNAKE_CASE : Tuple = u __SCREAMING_SNAKE_CASE : List[str] = u.edges[v.id] for i in range(1 , len(lowercase_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowerCAmelCase_ ( lowercase_ : list , lowercase_ : Vertex ): '''simple docstring''' for u in graph: __SCREAMING_SNAKE_CASE : Optional[Any] = math.inf __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = list(lowercase_ ) hq.heapify(lowercase_ ) while h: __SCREAMING_SNAKE_CASE : int = hq.heappop(lowercase_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __SCREAMING_SNAKE_CASE : Union[str, Any] = u __SCREAMING_SNAKE_CASE : int = u.edges[v.id] hq.heapify(lowercase_ ) for i in range(1 , len(lowercase_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowerCAmelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
401
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } UpperCamelCase__ = { '''facebook/bart-base''': 1_0_2_4, '''facebook/bart-large''': 1_0_2_4, '''facebook/bart-large-mnli''': 1_0_2_4, '''facebook/bart-large-cnn''': 1_0_2_4, '''facebook/bart-large-xsum''': 1_0_2_4, '''yjernite/bart_eli5''': 1_0_2_4, } class a__ ( UpperCamelCase_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = BartTokenizer def __init__( self : List[Any] ,a__ : List[str]=None ,a__ : Optional[Any]=None ,a__ : Optional[int]=None ,a__ : str="replace" ,a__ : Optional[Any]="<s>" ,a__ : List[Any]="</s>" ,a__ : Optional[int]="</s>" ,a__ : Union[str, Any]="<s>" ,a__ : str="<unk>" ,a__ : Union[str, Any]="<pad>" ,a__ : Any="<mask>" ,a__ : str=False ,a__ : Tuple=True ,**a__ : Dict ,) -> Tuple: """simple docstring""" super().__init__( a__ ,a__ ,tokenizer_file=a__ ,errors=a__ ,bos_token=a__ ,eos_token=a__ ,sep_token=a__ ,cls_token=a__ ,unk_token=a__ ,pad_token=a__ ,mask_token=a__ ,add_prefix_space=a__ ,trim_offsets=a__ ,**a__ ,) _lowerCAmelCase:Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' ,a__) != add_prefix_space: _lowerCAmelCase:Union[str, Any] = getattr(a__ ,pre_tok_state.pop('''type''')) _lowerCAmelCase:Optional[int] = add_prefix_space _lowerCAmelCase:Tuple = pre_tok_class(**a__) _lowerCAmelCase:Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCAmelCase:Optional[Any] = '''post_processor''' _lowerCAmelCase:Dict = getattr(self.backend_tokenizer ,a__ ,a__) if tokenizer_component_instance: _lowerCAmelCase:List[Any] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase:Union[str, Any] = tuple(state['''sep''']) if "cls" in state: _lowerCAmelCase:int = tuple(state['''cls''']) _lowerCAmelCase:int = False if state.get('''add_prefix_space''' ,a__) != add_prefix_space: _lowerCAmelCase:Union[str, Any] = add_prefix_space _lowerCAmelCase:List[str] = True if state.get('''trim_offsets''' ,a__) != trim_offsets: _lowerCAmelCase:str = trim_offsets _lowerCAmelCase:Dict = True if changes_to_apply: _lowerCAmelCase:Any = getattr(a__ ,state.pop('''type''')) _lowerCAmelCase:Optional[int] = component_class(**a__) setattr(self.backend_tokenizer ,a__ ,a__) @property def __UpperCamelCase ( self : Any) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''') return None return str(self._mask_token) @mask_token.setter def __UpperCamelCase ( self : Optional[Any] ,a__ : Any) -> int: """simple docstring""" _lowerCAmelCase:Tuple = AddedToken(a__ ,lstrip=a__ ,rstrip=a__) if isinstance(a__ ,a__) else value _lowerCAmelCase:str = value def __UpperCamelCase ( self : List[Any] ,*a__ : Any ,**a__ : Tuple) -> BatchEncoding: """simple docstring""" _lowerCAmelCase:Tuple = kwargs.get('''is_split_into_words''' ,a__) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''') return super()._batch_encode_plus(*a__ ,**a__) def __UpperCamelCase ( self : List[Any] ,*a__ : List[Any] ,**a__ : str) -> BatchEncoding: """simple docstring""" _lowerCAmelCase:Optional[int] = kwargs.get('''is_split_into_words''' ,a__) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''') return super()._encode_plus(*a__ ,**a__) def __UpperCamelCase ( self : Union[str, Any] ,a__ : str ,a__ : Optional[str] = None) -> Tuple[str]: """simple docstring""" _lowerCAmelCase:str = self._tokenizer.model.save(a__ ,name=a__) return tuple(a__) def __UpperCamelCase ( self : List[Any] ,a__ : Tuple ,a__ : List[str]=None) -> str: """simple docstring""" _lowerCAmelCase:Tuple = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : int ,a__ : List[int] ,a__ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _lowerCAmelCase:Tuple = [self.sep_token_id] _lowerCAmelCase:Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
227
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCAmelCase ( snake_case : Optional[Any] , snake_case : Optional[int] ): assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCAmelCase ( snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Tuple ): _lowerCAmelCase:List[str] = tmp_path / '''cache''' _lowerCAmelCase:str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCAmelCase:List[Any] = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=snake_case , keep_in_memory=snake_case ).read() _check_sql_dataset(snake_case , snake_case ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCAmelCase ( snake_case : List[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Tuple ): _lowerCAmelCase:Union[str, Any] = tmp_path / '''cache''' _lowerCAmelCase:Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowerCAmelCase:List[Any] = features.copy() if features else default_expected_features _lowerCAmelCase:Dict = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCAmelCase:Union[str, Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=snake_case , cache_dir=snake_case ).read() _check_sql_dataset(snake_case , snake_case ) def UpperCAmelCase ( snake_case : List[str] ): with contextlib.closing(sqlitea.connect(snake_case ) ) as con: _lowerCAmelCase:Tuple = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def UpperCAmelCase ( snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Dict ): _lowerCAmelCase:Dict = tmp_path / '''cache''' _lowerCAmelCase:Optional[int] = os.path.join(snake_case , '''tmp.sql''' ) _lowerCAmelCase:Union[str, Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=snake_case ).read() SqlDatasetWriter(snake_case , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() _lowerCAmelCase:int = iter_sql_file(snake_case ) _lowerCAmelCase:Any = iter_sql_file(snake_case ) for rowa, rowa in zip(snake_case , snake_case ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase ( snake_case : Optional[int] , snake_case : Any , snake_case : Union[str, Any] ): _lowerCAmelCase:Dict = tmp_path / '''cache''' _lowerCAmelCase:Any = os.path.join(snake_case , '''tmp.sql''' ) _lowerCAmelCase:int = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=snake_case ).read() SqlDatasetWriter(snake_case , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() _lowerCAmelCase:List[str] = iter_sql_file(snake_case ) _lowerCAmelCase:Tuple = iter_sql_file(snake_case ) for rowa, rowa in zip(snake_case , snake_case ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase ( snake_case : Dict , snake_case : Tuple , snake_case : Optional[int] ): _lowerCAmelCase:List[str] = tmp_path / '''cache''' _lowerCAmelCase:List[str] = os.path.join(snake_case , '''tmp.sql''' ) _lowerCAmelCase:Union[str, Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=snake_case ).read() with pytest.raises(snake_case ): SqlDatasetWriter(snake_case , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
227
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "rwkv" __UpperCamelCase = {"max_position_embeddings": "context_length"} def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1e-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ): """simple docstring""" lowerCamelCase = vocab_size lowerCamelCase = context_length lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size lowerCamelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size lowerCamelCase = layer_norm_epsilon lowerCamelCase = rescale_every lowerCamelCase = use_cache lowerCamelCase = bos_token_id lowerCamelCase = eos_token_id super().__init__( tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
533
"""simple docstring""" from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["note_seq"] def __init__( self , *_a , **_a ): """simple docstring""" requires_backends(self , ["""note_seq"""] ) @classmethod def _lowerCAmelCase ( cls , *_a , **_a ): """simple docstring""" requires_backends(cls , ["""note_seq"""] ) @classmethod def _lowerCAmelCase ( cls , *_a , **_a ): """simple docstring""" requires_backends(cls , ["""note_seq"""] )
533
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class _UpperCamelCase ( a_ ): '''simple docstring''' _A : Union[str, Any] = '''van''' def __init__( self : Optional[int] , lowerCAmelCase__ : List[Any]=2_2_4 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : List[str]=[7, 3, 3, 3] , lowerCAmelCase__ : Dict=[4, 2, 2, 2] , lowerCAmelCase__ : List[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , lowerCAmelCase__ : Dict=[3, 3, 1_2, 3] , lowerCAmelCase__ : Optional[int]=[8, 8, 4, 4] , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : str=0.02 , lowerCAmelCase__ : List[Any]=1E-6 , lowerCAmelCase__ : Any=1E-2 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Any=0.0 , **lowerCAmelCase__ : Optional[int] , ): """simple docstring""" super().__init__(**__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = image_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_channels __SCREAMING_SNAKE_CASE : Optional[int] = patch_sizes __SCREAMING_SNAKE_CASE : Tuple = strides __SCREAMING_SNAKE_CASE : List[Any] = hidden_sizes __SCREAMING_SNAKE_CASE : Tuple = depths __SCREAMING_SNAKE_CASE : int = mlp_ratios __SCREAMING_SNAKE_CASE : int = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps __SCREAMING_SNAKE_CASE : Tuple = layer_scale_init_value __SCREAMING_SNAKE_CASE : List[Any] = drop_path_rate __SCREAMING_SNAKE_CASE : Optional[Any] = dropout_rate
578
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
387
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase = prime_factors(_lowerCamelCase ) if is_square_free(_lowerCamelCase ): return -1 if len(_lowerCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
719
import numpy as np def _UpperCAmelCase (UpperCamelCase_ : np.array ): '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
196
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowercase = logging.get_logger(__name__) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] = ["""input_features""", """is_longer"""] def __init__( self , __lowercase=64 , __lowercase=48_000 , __lowercase=480 , __lowercase=10 , __lowercase=1_024 , __lowercase=0.0 , __lowercase=False , __lowercase = 0 , __lowercase = 14_000 , __lowercase = None , __lowercase = "fusion" , __lowercase = "repeatpad" , **__lowercase , ) -> int: super().__init__( feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , return_attention_mask=__lowercase , **__lowercase , ) __UpperCamelCase :str = top_db __UpperCamelCase :Union[str, Any] = truncation __UpperCamelCase :List[str] = padding __UpperCamelCase :int = fft_window_size __UpperCamelCase :Optional[int] = (fft_window_size >> 1) + 1 __UpperCamelCase :str = hop_length __UpperCamelCase :Optional[Any] = max_length_s __UpperCamelCase :Optional[int] = max_length_s * sampling_rate __UpperCamelCase :int = sampling_rate __UpperCamelCase :Any = frequency_min __UpperCamelCase :Optional[Any] = frequency_max __UpperCamelCase :Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowercase , min_frequency=__lowercase , max_frequency=__lowercase , sampling_rate=__lowercase , norm=__lowercase , mel_scale='''htk''' , ) __UpperCamelCase :List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowercase , min_frequency=__lowercase , max_frequency=__lowercase , sampling_rate=__lowercase , norm='''slaney''' , mel_scale='''slaney''' , ) def UpperCamelCase__ ( self) -> Dict[str, Any]: __UpperCamelCase :Tuple = copy.deepcopy(self.__dict__) __UpperCamelCase :Optional[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> np.ndarray: __UpperCamelCase :Optional[int] = spectrogram( __lowercase , window_function(self.fft_window_size , '''hann''') , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__lowercase , log_mel='''dB''' , ) return log_mel_spectrogram.T def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> List[Any]: __UpperCamelCase :str = np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase :Optional[Any] = [0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase :Dict = [0] # randomly choose index for each part __UpperCamelCase :List[Any] = np.random.choice(ranges[0]) __UpperCamelCase :str = np.random.choice(ranges[1]) __UpperCamelCase :Any = np.random.choice(ranges[2]) __UpperCamelCase :List[str] = mel[idx_front : idx_front + chunk_frames, :] __UpperCamelCase :List[Any] = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCamelCase :Optional[int] = mel[idx_back : idx_back + chunk_frames, :] __UpperCamelCase :Tuple = torch.tensor(mel[None, None, :]) __UpperCamelCase :Tuple = torch.nn.functional.interpolate( __lowercase , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=__lowercase) __UpperCamelCase :Tuple = mel_shrink[0][0].numpy() __UpperCamelCase :List[str] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0) return mel_fusion def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCamelCase :Any = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCamelCase :Optional[int] = len(__lowercase) - max_length __UpperCamelCase :int = np.random.randint(0 , overflow + 1) __UpperCamelCase :List[Any] = waveform[idx : idx + max_length] __UpperCamelCase :Union[str, Any] = self._np_extract_fbank_features(__lowercase , self.mel_filters_slaney)[None, :] elif truncation == "fusion": __UpperCamelCase :str = self._np_extract_fbank_features(__lowercase , self.mel_filters) __UpperCamelCase :int = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCamelCase :Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCamelCase :List[Any] = np.stack([mel, mel, mel, mel] , axis=0) __UpperCamelCase :Any = False else: __UpperCamelCase :List[Any] = self._random_mel_fusion(__lowercase , __lowercase , __lowercase) __UpperCamelCase :int = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""") else: __UpperCamelCase :Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCamelCase :List[str] = int(max_length / len(__lowercase)) __UpperCamelCase :Tuple = np.stack(np.tile(__lowercase , n_repeat + 1))[:max_length] if padding == "repeatpad": __UpperCamelCase :Tuple = int(max_length / len(__lowercase)) __UpperCamelCase :Any = np.stack(np.tile(__lowercase , __lowercase)) __UpperCamelCase :str = np.pad(__lowercase , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0) if truncation == "fusion": __UpperCamelCase :str = self._np_extract_fbank_features(__lowercase , self.mel_filters) __UpperCamelCase :int = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0) else: __UpperCamelCase :Union[str, Any] = self._np_extract_fbank_features(__lowercase , self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , **__lowercase , ) -> BatchFeature: __UpperCamelCase :Optional[int] = truncation if truncation is not None else self.truncation __UpperCamelCase :int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') __UpperCamelCase :Union[str, Any] = isinstance(__lowercase , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""") __UpperCamelCase :Optional[Any] = is_batched_numpy or ( isinstance(__lowercase , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __UpperCamelCase :Union[str, Any] = [np.asarray(__lowercase , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(__lowercase , np.ndarray): __UpperCamelCase :Union[str, Any] = np.asarray(__lowercase , dtype=np.floataa) elif isinstance(__lowercase , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __UpperCamelCase :Dict = raw_speech.astype(np.floataa) # always return batch if not is_batched: __UpperCamelCase :List[str] = [np.asarray(__lowercase)] # convert to mel spectrogram, truncate and pad if needed. __UpperCamelCase :Tuple = [ self._get_input_mel(__lowercase , max_length if max_length else self.nb_max_samples , __lowercase , __lowercase) for waveform in raw_speech ] __UpperCamelCase :List[str] = [] __UpperCamelCase :List[Any] = [] for mel, longer in padded_inputs: input_mel.append(__lowercase) is_longer.append(__lowercase) if truncation == "fusion" and sum(__lowercase) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCamelCase :Tuple = np.random.randint(0 , len(__lowercase)) __UpperCamelCase :List[str] = True if isinstance(input_mel[0] , __lowercase): __UpperCamelCase :Optional[int] = [np.asarray(__lowercase , dtype=np.floataa) for feature in input_mel] # is_longer is a list of bool __UpperCamelCase :Dict = [[longer] for longer in is_longer] __UpperCamelCase :Tuple = {'''input_features''': input_mel, '''is_longer''': is_longer} __UpperCamelCase :List[str] = BatchFeature(__lowercase) if return_tensors is not None: __UpperCamelCase :List[str] = input_features.convert_to_tensors(__lowercase) return input_features
167
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __lowercase = None __lowercase = logging.get_logger(__name__) __lowercase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __lowercase = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } __lowercase = '''▁''' class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[int] = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = BigBirdTokenizer a__ : List[str] = ["""input_ids""", """attention_mask"""] a__ : List[int] = [] def __init__( self , __lowercase=None , __lowercase=None , __lowercase="<unk>" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="<pad>" , __lowercase="[SEP]" , __lowercase="[MASK]" , __lowercase="[CLS]" , **__lowercase , ) -> int: __UpperCamelCase :Tuple = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else bos_token __UpperCamelCase :List[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else eos_token __UpperCamelCase :int = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else unk_token __UpperCamelCase :str = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else pad_token __UpperCamelCase :Optional[int] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else cls_token __UpperCamelCase :Union[str, Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else sep_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase :Tuple = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else mask_token super().__init__( __lowercase , tokenizer_file=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __UpperCamelCase :str = vocab_file __UpperCamelCase :int = False if not self.vocab_file else True def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]: __UpperCamelCase :int = [self.sep_token_id] __UpperCamelCase :List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = False) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__lowercase)) + [1] return [1] + ([0] * len(__lowercase)) + [1] + ([0] * len(__lowercase)) + [1] def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]: __UpperCamelCase :Dict = [self.sep_token_id] __UpperCamelCase :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(__lowercase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __UpperCamelCase :Dict = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowercase): copyfile(self.vocab_file , __lowercase) return (out_vocab_file,)
167
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a__ : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class lowercase : """simple docstring""" snake_case_ = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) snake_case_ = field( default=UpperCAmelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) snake_case_ = field( default=UpperCAmelCase_ , metadata={'help': 'The column name of the images in the files.'} ) snake_case_ = field(default=UpperCAmelCase_ , metadata={'help': 'A folder containing the training data.'} ) snake_case_ = field(default=UpperCAmelCase_ , metadata={'help': 'A folder containing the validation data.'} ) snake_case_ = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) snake_case_ = field( default=UpperCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) snake_case_ = field( default=UpperCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" lowerCamelCase__ = {} if self.train_dir is not None: lowerCamelCase__ = self.train_dir if self.validation_dir is not None: lowerCamelCase__ = self.validation_dir lowerCamelCase__ = data_files if data_files else None @dataclass class lowercase : """simple docstring""" snake_case_ = field( default=UpperCAmelCase_ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) snake_case_ = field( default=UpperCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) snake_case_ = field( default=UpperCAmelCase_ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) snake_case_ = field( default=UpperCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) snake_case_ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) snake_case_ = field(default=UpperCAmelCase_ , metadata={'help': 'Name or path of preprocessor config.'} ) snake_case_ = field( default=UpperCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) snake_case_ = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) snake_case_ = field( default=UpperCAmelCase_ , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class lowercase ( UpperCAmelCase_ ): """simple docstring""" snake_case_ = field( default=1e-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def snake_case (UpperCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def snake_case (): '''simple docstring''' lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , UpperCamelCase , UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ = training_args.get_process_log_level() logger.setLevel(UpperCamelCase ) transformers.utils.logging.set_verbosity(UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase__ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCamelCase ) and data_args.train_val_split > 0.0: lowerCamelCase__ = ds["""train"""].train_test_split(data_args.train_val_split ) lowerCamelCase__ = split["""train"""] lowerCamelCase__ = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase__ = ViTMAEConfig.from_pretrained(model_args.config_name , **UpperCamelCase ) elif model_args.model_name_or_path: lowerCamelCase__ = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase ) else: lowerCamelCase__ = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowerCamelCase__ = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCamelCase ) elif model_args.model_name_or_path: lowerCamelCase__ = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCamelCase ) else: lowerCamelCase__ = ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCamelCase__ = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowerCamelCase__ = ViTMAEForPreTraining(UpperCamelCase ) if training_args.do_train: lowerCamelCase__ = ds["""train"""].column_names else: lowerCamelCase__ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowerCamelCase__ = data_args.image_column_name elif "image" in column_names: lowerCamelCase__ = """image""" elif "img" in column_names: lowerCamelCase__ = """img""" else: lowerCamelCase__ = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCamelCase__ = image_processor.size["""shortest_edge"""] else: lowerCamelCase__ = (image_processor.size["""height"""], image_processor.size["""width"""]) lowerCamelCase__ = Compose( [ Lambda(lambda UpperCamelCase : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(UpperCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(UpperCamelCase : List[str] ): lowerCamelCase__ = [transforms(UpperCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowerCamelCase__ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowerCamelCase__ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCamelCase ) # Compute absolute learning rate lowerCamelCase__ = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCamelCase__ = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowerCamelCase__ = Trainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCamelCase , data_collator=UpperCamelCase , ) # Training if training_args.do_train: lowerCamelCase__ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ = last_checkpoint lowerCamelCase__ = trainer.train(resume_from_checkpoint=UpperCamelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCamelCase ) trainer.save_metrics("""eval""" , UpperCamelCase ) # Write model card and (optionally) push to hub lowerCamelCase__ = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase ) else: trainer.create_model_card(**UpperCamelCase ) def snake_case (UpperCamelCase : Tuple ): '''simple docstring''' main() if __name__ == "__main__": main()
235
def snake_case (UpperCamelCase : list , UpperCamelCase : list , UpperCamelCase : int ): '''simple docstring''' lowerCamelCase__ = len(UpperCamelCase ) lowerCamelCase__ = [[0] * n for i in range(UpperCamelCase )] for i in range(UpperCamelCase ): lowerCamelCase__ = y_points[i] for i in range(2 , UpperCamelCase ): for j in range(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
235
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
485
def lowerCamelCase ( UpperCamelCase : int , UpperCamelCase : int ) -> float: return base * power(UpperCamelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') A = int(input('Enter the base: ').strip()) A = int(input('Enter the exponent: ').strip()) A = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents A = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
544
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
658
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
1
def snake_case__ ( UpperCAmelCase : int ): if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError("only integers accepted as input" ) else: lowerCAmelCase__ :str = str(abs(UpperCAmelCase ) ) lowerCAmelCase__ :Union[str, Any] = [list(UpperCAmelCase ) for char in range(len(UpperCAmelCase ) )] for index in range(len(UpperCAmelCase ) ): num_transpositions[index].pop(UpperCAmelCase ) return max( int("".join(list(UpperCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
145
from math import isclose, sqrt def snake_case__ ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float ): lowerCAmelCase__ :Optional[int] = point_y / 4 / point_x lowerCAmelCase__ :Tuple = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase__ :List[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase__ :Optional[int] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase__ :int = outgoing_gradient**2 + 4 lowerCAmelCase__ :List[Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase__ :str = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 lowerCAmelCase__ :Any = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase__ :List[str] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase__ :Dict = x_minus if isclose(UpperCAmelCase , UpperCAmelCase ) else x_plus lowerCAmelCase__ :List[Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case__ ( UpperCAmelCase : float = 1.4 , UpperCAmelCase : float = -9.6 ): lowerCAmelCase__ :int = 0 lowerCAmelCase__ :float = first_x_coord lowerCAmelCase__ :float = first_y_coord lowerCAmelCase__ :float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :List[str] = next_point(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
145
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a : List[str] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def a__ ( a : List[str] , a : Any ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _snake_case : Any = flax_key_tuple[:-1] + ("weight",) _snake_case : str = torch.permute(a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(a ): # linear layer _snake_case : Optional[int] = flax_key_tuple[:-1] + ("weight",) _snake_case : Any = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _snake_case : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def a__ ( a : List[Any] , a : Union[str, Any] , a : List[str] ): """simple docstring""" if "metadata" in layer: _snake_case : Optional[int] = layer.split("metadata" ) _snake_case : Optional[int] = "".join(split_layer[0] )[:-1] _snake_case : int = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _snake_case : Any = layer.split("kvstore" ) _snake_case : str = "".join(split_layer[0] )[:-1] _snake_case : Any = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _snake_case : List[Any] = layer.split("/" ) _snake_case : Tuple = "/".join(split_layer[:-1] ) _snake_case : int = (split_layer[-1],) if "kvstore/path" in layer: _snake_case : Optional[Any] = f'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _snake_case : Tuple = "file" else: _snake_case : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def a__ ( a : List[Any] , a : List[Any] ): """simple docstring""" _snake_case : Union[str, Any] = rename_keys(a ) _snake_case : int = {} for k, v in current_block.items(): _snake_case : Optional[int] = v _snake_case : Optional[int] = new_current_block torch.save(a , a ) def a__ ( a : Dict , a : Tuple , a : List[str] , a : int , a : str = WEIGHTS_NAME ): """simple docstring""" _snake_case : Any = convert_file_size_to_int(a ) _snake_case : Tuple = [] _snake_case : Optional[int] = {} _snake_case : Tuple = 0 _snake_case : Optional[Any] = 0 os.makedirs(a , exist_ok=a ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _snake_case : Any = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _snake_case : Optional[Any] = flatten_dict(a , sep="/" ) _snake_case : Optional[Any] = {} for layer in checkpoint_info.keys(): _snake_case , _snake_case , _snake_case : int = get_key_and_tensorstore_dict( a , a , a ) if curr_real_layer_name in all_layers: _snake_case : Dict = content else: _snake_case : Tuple = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _snake_case : List[str] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _snake_case : Dict = torch.tensor(a ) _snake_case : Dict = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _snake_case , _snake_case : Optional[int] = rename_base_flax_keys(tuple(key.split("/" ) ) , a ) _snake_case : Optional[Any] = "/".join(a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _snake_case : Any = os.path.join( a , weights_name.replace(".bin" , f'-{len(a )+1:05d}-of-???.bin' ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) del current_block _snake_case : List[Any] = {} _snake_case : str = 0 _snake_case : List[str] = raw_weights.to(getattr(a , a ) ) current_block_size += weight_size total_size += weight_size # Add the last block _snake_case : int = os.path.join(a , weights_name.replace(".bin" , f'-{len(a )+1:05d}-of-???.bin' ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _snake_case : str = {} _snake_case : Any = {} for idx, shard in enumerate(a ): _snake_case : Optional[int] = weights_name.replace( ".bin" , f'-{idx+1:05d}-of-{len(a ):05d}.bin' ) # len(sharded_state_dicts):05d} _snake_case : Dict = os.path.join(a , weights_name.replace(".bin" , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(a , os.path.join(a , a ) ) _snake_case : Dict = shard for key in shard: _snake_case : int = shard_file # Add the metadata _snake_case : List[Any] = {"total_size": total_size} _snake_case : Any = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(a , a ) , "w" , encoding="utf-8" ) as f: _snake_case : Union[str, Any] = json.dumps(a , indent=2 , sort_keys=a ) + "\n" f.write(a ) return metadata, index if __name__ == "__main__": _a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) _a : Optional[int] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def a__ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _snake_case : List[str] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _snake_case : str = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _snake_case : List[Any] = TaTokenizer.from_pretrained("t5-small" ) _snake_case : Optional[Any] = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _snake_case : Dict = tokenizer(a , return_tensors="pt" ).input_ids _snake_case : List[Any] = model.generate(a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
87
0
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _UpperCAmelCase : List[Any] = get_logger(__name__) class UpperCAmelCase : """simple docstring""" A__ : Optional[int] = 'dummy_data' A__ : Dict = 'datasets' A__ : List[Any] = False def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = None , _snake_case = False , _snake_case = True , _snake_case = None , ) -> Any: _UpperCamelCase : Tuple = 0 _UpperCamelCase : Any = dataset_name _UpperCamelCase : int = cache_dir _UpperCamelCase : Optional[Any] = use_local_dummy_data _UpperCamelCase : str = config # download_callbacks take a single url as input _UpperCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _UpperCamelCase : Optional[int] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _UpperCamelCase : Union[str, Any] = str(lowercase_ ) # to be downloaded _UpperCamelCase : str = None _UpperCamelCase : str = None @property def _lowercase ( self ) -> Optional[int]: if self._dummy_file is None: _UpperCamelCase : Tuple = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self ) -> int: if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def _lowercase ( self ) -> Optional[Any]: return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def _lowercase ( self ) -> Tuple: _UpperCamelCase : List[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _UpperCamelCase : Optional[int] = cached_path( lowercase_ , cache_dir=self.cache_dir , extract_compressed_file=lowercase_ , force_extract=lowercase_ ) return os.path.join(lowercase_ , self.dummy_file_name ) @property def _lowercase ( self ) -> Dict: return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def _lowercase ( self ) -> Any: if self._bucket_url is None: _UpperCamelCase : Dict = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def _lowercase ( self ) -> Union[str, Any]: # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def _lowercase ( self , _snake_case , *_snake_case ) -> Any: if self.load_existing_dummy_data: # dummy data is downloaded and tested _UpperCamelCase : str = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _UpperCamelCase : Optional[int] = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase_ , lowercase_ ): return self.create_dummy_data_dict(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , (list, tuple) ): return self.create_dummy_data_list(lowercase_ , lowercase_ ) else: return self.create_dummy_data_single(lowercase_ , lowercase_ ) def _lowercase ( self , _snake_case , *_snake_case ) -> Optional[Any]: return self.download_and_extract(lowercase_ ) def _lowercase ( self , _snake_case , _snake_case ) -> str: return self.download_and_extract(lowercase_ ) def _lowercase ( self , _snake_case , *_snake_case , **_snake_case ) -> Any: return path def _lowercase ( self ) -> Any: return {} def _lowercase ( self , _snake_case , _snake_case ) -> Optional[Any]: _UpperCamelCase : Optional[int] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase_ , lowercase_ ): for single_url in single_urls: download_callback(lowercase_ ) else: _UpperCamelCase : Union[str, Any] = single_urls download_callback(lowercase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase_ , lowercase_ ): _UpperCamelCase : Optional[int] = [os.path.join(lowercase_ , urllib.parse.quote_plus(Path(lowercase_ ).name ) ) for x in single_urls] else: _UpperCamelCase : List[Any] = single_urls _UpperCamelCase : Optional[Any] = os.path.join(lowercase_ , urllib.parse.quote_plus(Path(lowercase_ ).name ) ) _UpperCamelCase : Tuple = value # make sure that values are unique if all(isinstance(lowercase_ , lowercase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _UpperCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self , _snake_case , _snake_case ) -> Tuple: _UpperCamelCase : str = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _UpperCamelCase : Optional[int] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , lowercase_ ) ) for url in data_url ) _UpperCamelCase : int = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _UpperCamelCase : List[Any] = [data_url[0]] * len(lowercase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _UpperCamelCase : Any = os.path.join(lowercase_ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(lowercase_ ) return dummy_data_list def _lowercase ( self , _snake_case , _snake_case ) -> Any: for download_callback in self.download_callbacks: download_callback(lowercase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _UpperCamelCase : Optional[Any] = os.path.join(lowercase_ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(lowercase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self ) -> str: pass def _lowercase ( self ) -> Any: pass def _lowercase ( self , _snake_case ) -> Dict: def _iter_archive_members(_snake_case ): # this preserves the order of the members inside the ZIP archive _UpperCamelCase : Tuple = Path(self.dummy_file ).parent _UpperCamelCase : Tuple = path.relative_to(lowercase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _UpperCamelCase : Union[str, Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowercase_ ) _UpperCamelCase : List[Any] = Path(lowercase_ ) _UpperCamelCase : Tuple = _iter_archive_members(lowercase_ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(lowercase_ ).as_posix(), file_path.open('''rb''' ) def _lowercase ( self , _snake_case ) -> List[str]: if not isinstance(lowercase_ , lowercase_ ): _UpperCamelCase : Dict = [paths] for path in paths: if os.path.isfile(lowercase_ ): if os.path.basename(lowercase_ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase_ ): if os.path.basename(lowercase_ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(lowercase_ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(lowercase_ , lowercase_ )
683
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
670
0
"""simple docstring""" import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union a =re.compile(r'^(?P<major>\d+)' r'\.(?P<minor>\d+)' r'\.(?P<patch>\d+)$') @total_ordering @dataclass class __UpperCAmelCase : A__ : str A__ : Optional[str] = None A__ : Optional[Union[str, int]] = None A__ : Optional[Union[str, int]] = None A__ : Optional[Union[str, int]] = None def _a ( self ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ =_str_to_version_tuple(self.version_str ) def __repr__( self ): return F'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def _a ( self ): return self.major, self.minor, self.patch def _a ( self , _lowerCamelCase ): if isinstance(_lowerCamelCase , _lowerCamelCase ): return Version(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): return other raise TypeError(F'''{other} (type {type(_lowerCamelCase )}) cannot be compared to version.''' ) def __eq__( self , _lowerCamelCase ): try: lowerCamelCase__ =self._validate_operand(_lowerCamelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , _lowerCamelCase ): lowerCamelCase__ =self._validate_operand(_lowerCamelCase ) return self.tuple < other.tuple def __hash__( self ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _a ( cls , _lowerCamelCase ): lowerCamelCase__ ={f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _a ( self ): return self.version_str def lowerCamelCase_ ( __lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ =_VERSION_REG.match(__lowerCAmelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(__lowerCAmelCase ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def lowerCamelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return ".".join(str(__lowerCAmelCase ) for v in version_tuple )
719
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ) -> str: '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path lowerCamelCase__ =quote(__lowerCAmelCase ) return hfh.hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" , revision=__lowerCAmelCase )
132
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[int] = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
556
from typing import TYPE_CHECKING from ...utils import _LazyModule a : int = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
556
1
'''simple docstring''' def __UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = len(snake_case_ ) # No of vertices in graph UpperCAmelCase = [0] * n UpperCAmelCase = [False] * n def dfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase = True UpperCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(snake_case_ , snake_case_ , snake_case_ , id_ ) UpperCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge UpperCAmelCase = min(low[at] , low[to] ) UpperCAmelCase = [] for i in range(snake_case_ ): if not visited[i]: dfs(snake_case_ , -1 , snake_case_ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
703
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __lowerCAmelCase ={ "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __lowerCAmelCase =logging.get_logger(__name__) class __magic_name__ ( _a): _UpperCAmelCase : Tuple = 'maskformer' _UpperCAmelCase : Dict = {'hidden_size': 'mask_feature_size'} _UpperCAmelCase : Dict = ['resnet', 'swin'] _UpperCAmelCase : Tuple = ['detr'] def __init__( self : Dict ,__SCREAMING_SNAKE_CASE : int = 2_5_6 ,__SCREAMING_SNAKE_CASE : int = 2_5_6 ,__SCREAMING_SNAKE_CASE : float = 0.1 ,__SCREAMING_SNAKE_CASE : bool = False ,__SCREAMING_SNAKE_CASE : Optional[Dict] = None ,__SCREAMING_SNAKE_CASE : Optional[Dict] = None ,__SCREAMING_SNAKE_CASE : float = 0.02 ,__SCREAMING_SNAKE_CASE : float = 1.0 ,__SCREAMING_SNAKE_CASE : float = 1.0 ,__SCREAMING_SNAKE_CASE : float = 1.0 ,__SCREAMING_SNAKE_CASE : float = 20.0 ,__SCREAMING_SNAKE_CASE : Optional[bool] = None ,**__SCREAMING_SNAKE_CASE : Union[str, Any] ,): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase = SwinConfig( image_size=3_8_4 ,in_channels=3 ,patch_size=4 ,embed_dim=1_2_8 ,depths=[2, 2, 1_8, 2] ,num_heads=[4, 8, 1_6, 3_2] ,window_size=1_2 ,drop_path_rate=0.3 ,out_features=["stage1", "stage2", "stage3", "stage4"] ,) if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): UpperCAmelCase = backbone_config.pop("model_type" ) UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase = config_class.from_dict(__SCREAMING_SNAKE_CASE ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase = ( decoder_config.pop("model_type" ) if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): UpperCAmelCase = CONFIG_MAPPING[decoder_type] UpperCAmelCase = config_class.from_dict(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = backbone_config UpperCAmelCase = decoder_config # main feature dimension for the model UpperCAmelCase = fpn_feature_size UpperCAmelCase = mask_feature_size # initializer UpperCAmelCase = init_std UpperCAmelCase = init_xavier_std # Hungarian matcher && loss UpperCAmelCase = cross_entropy_weight UpperCAmelCase = dice_weight UpperCAmelCase = mask_weight UpperCAmelCase = use_auxiliary_loss UpperCAmelCase = no_object_weight UpperCAmelCase = output_auxiliary_logits UpperCAmelCase = self.decoder_config.encoder_attention_heads UpperCAmelCase = self.decoder_config.num_hidden_layers super().__init__(**__SCREAMING_SNAKE_CASE ) @classmethod def _UpperCAmelCase ( cls : Optional[Any] ,__SCREAMING_SNAKE_CASE : PretrainedConfig ,__SCREAMING_SNAKE_CASE : PretrainedConfig ,**__SCREAMING_SNAKE_CASE : str ): return cls( backbone_config=__SCREAMING_SNAKE_CASE ,decoder_config=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ,) def _UpperCAmelCase ( self : Union[str, Any] ): UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.backbone_config.to_dict() UpperCAmelCase = self.decoder_config.to_dict() UpperCAmelCase = self.__class__.model_type return output
405
0
from __future__ import annotations import typing from collections import Counter def lowerCAmelCase_ ( lowercase: int ) -> typing.Counter[int]: '''simple docstring''' _UpperCamelCase: typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowercase , max_perimeter + 1 ): _UpperCamelCase: List[str] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowercase ): _UpperCamelCase: Optional[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCAmelCase_ ( lowercase: int = 1_000 ) -> int: '''simple docstring''' _UpperCamelCase: Optional[int] = pythagorean_triple(lowercase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
271
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCAmelCase_ ( lowercase: str , lowercase: complex , lowercase: str = "x" , lowercase: float = 10**-10 , lowercase: int = 1 , ) -> complex: '''simple docstring''' _UpperCamelCase: Any = symbols(lowercase ) _UpperCamelCase: str = lambdify(lowercase , lowercase ) _UpperCamelCase: str = lambdify(lowercase , diff(lowercase , lowercase ) ) _UpperCamelCase: Optional[int] = starting_point while True: if diff_function(lowercase ) != 0: _UpperCamelCase: int = prev_guess - multiplicity * func(lowercase ) / diff_function( lowercase ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCamelCase: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson('exp(x) - 1', 1_0, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
271
1
import numpy as np def a__ (__lowercase :np.ndarray , __lowercase :float ) -> np.ndarray: return np.where(vector > 0 , __lowercase , (alpha * (np.exp(__lowercase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
332
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : Dict =logging.get_logger(__name__) _UpperCamelCase : Optional[Any] ={ 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class UpperCAmelCase__ ( __snake_case ): __snake_case : Any = "xmod" def __init__( self ,A__=30522 ,A__=768 ,A__=12 ,A__=12 ,A__=3072 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=512 ,A__=2 ,A__=0.02 ,A__=1E-12 ,A__=1 ,A__=0 ,A__=2 ,A__="absolute" ,A__=True ,A__=None ,A__=False ,A__=2 ,A__=False ,A__=True ,A__=True ,A__=("en_XX",) ,A__=None ,**A__ ,): super().__init__(pad_token_id=A__ ,bos_token_id=A__ ,eos_token_id=A__ ,**A__ ) _A : Union[str, Any] = vocab_size _A : List[str] = hidden_size _A : Union[str, Any] = num_hidden_layers _A : str = num_attention_heads _A : Tuple = hidden_act _A : Optional[int] = intermediate_size _A : List[str] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Dict = max_position_embeddings _A : Optional[int] = type_vocab_size _A : List[str] = initializer_range _A : Tuple = layer_norm_eps _A : int = position_embedding_type _A : str = use_cache _A : int = classifier_dropout _A : Optional[Any] = pre_norm _A : Dict = adapter_reduction_factor _A : List[Any] = adapter_layer_norm _A : Optional[Any] = adapter_reuse_layer_norm _A : Optional[Any] = ln_before_adapter _A : int = list(A__ ) _A : str = default_language class UpperCAmelCase__ ( __snake_case ): @property def A__ ( self ): if self.task == "multiple-choice": _A : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _A : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
332
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = BioGptTokenizer lowerCamelCase__ : List[Any] = False def lowercase_ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] SCREAMING_SNAKE_CASE__ = dict(zip(A_ , range(len(A_ ) ) ) ) SCREAMING_SNAKE_CASE__ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(A_ ) ) def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = '''lower newer''' return input_text, output_text def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = BioGptTokenizer(self.vocab_file , self.merges_file ) SCREAMING_SNAKE_CASE__ = '''lower''' SCREAMING_SNAKE_CASE__ = ['''low''', '''er</w>'''] SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = tokens + ['''<unk>'''] SCREAMING_SNAKE_CASE__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('''sequence builders''' , add_special_tokens=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
100
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def UpperCamelCase__ ( _A: Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase__ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """mock-s3-bucket""" __lowerCamelCase = f'''s3://{mock_bucket}''' __lowerCamelCase = extract_path_from_uri(_A ) assert dataset_path.startswith("""s3://""" ) is False __lowerCamelCase = """./local/path""" __lowerCamelCase = extract_path_from_uri(_A ) assert dataset_path == new_dataset_path def UpperCamelCase__ ( _A: List[Any] ): '''simple docstring''' __lowerCamelCase = is_remote_filesystem(_A ) assert is_remote is True __lowerCamelCase = fsspec.filesystem("""file""" ) __lowerCamelCase = is_remote_filesystem(_A ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , _A ) def UpperCamelCase__ ( _A: List[str] , _A: Tuple , _A: List[Any] , _A: Any , _A: List[Any] , _A: Optional[int] , _A: List[str] ): '''simple docstring''' __lowerCamelCase = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} __lowerCamelCase = input_paths[compression_fs_class.protocol] if input_path is None: __lowerCamelCase = f'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_A ) __lowerCamelCase = fsspec.filesystem(compression_fs_class.protocol , fo=_A ) assert isinstance(_A , _A ) __lowerCamelCase = os.path.basename(_A ) __lowerCamelCase = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(_A , """r""" , encoding="""utf-8""" ) as f, open(_A , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def UpperCamelCase__ ( _A: Optional[Any] , _A: Union[str, Any] , _A: int ): '''simple docstring''' __lowerCamelCase = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} __lowerCamelCase = compressed_file_paths[protocol] __lowerCamelCase = """dataset.jsonl""" __lowerCamelCase = f'''{protocol}://{member_file_path}::{compressed_file_path}''' __lowerCamelCase , *__lowerCamelCase = fsspec.get_fs_token_paths(_A ) assert fs.isfile(_A ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def UpperCamelCase__ ( _A: str , _A: str , _A: Optional[int] , _A: Union[str, Any] ): '''simple docstring''' __lowerCamelCase = hf_api.dataset_info(_A , token=_A ) __lowerCamelCase = HfFileSystem(repo_info=_A , token=_A ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(_A ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_A , _A , clobber=_A ) with pytest.warns(_A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_A ) == 1 assert ( str(warning_info[0].message ) == f'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
479
0
'''simple docstring''' __UpperCAmelCase = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __UpperCAmelCase = frozenset(['prompt', 'negative_prompt']) __UpperCAmelCase = frozenset([]) __UpperCAmelCase = frozenset(['image']) __UpperCAmelCase = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) __UpperCAmelCase = frozenset(['image']) __UpperCAmelCase = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __UpperCAmelCase = frozenset(['prompt', 'image', 'negative_prompt']) __UpperCAmelCase = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __UpperCAmelCase = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) __UpperCAmelCase = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __UpperCAmelCase = frozenset(['image', 'mask_image']) __UpperCAmelCase = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __UpperCAmelCase = frozenset(['example_image', 'image', 'mask_image']) __UpperCAmelCase = frozenset(['class_labels']) __UpperCAmelCase = frozenset(['class_labels']) __UpperCAmelCase = frozenset(['batch_size']) __UpperCAmelCase = frozenset([]) __UpperCAmelCase = frozenset(['batch_size']) __UpperCAmelCase = frozenset([]) __UpperCAmelCase = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __UpperCAmelCase = frozenset(['prompt', 'negative_prompt']) __UpperCAmelCase = frozenset(['input_tokens']) __UpperCAmelCase = frozenset(['input_tokens'])
220
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def SCREAMING_SNAKE_CASE_ ( snake_case_ : np.ndarray ) -> np.ndarray: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def SCREAMING_SNAKE_CASE_ ( snake_case_ : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def SCREAMING_SNAKE_CASE_ ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ) -> np.ndarray: SCREAMING_SNAKE_CASE : List[Any] = np.zeros_like(snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE : Optional[int] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE : Optional[int] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE : int = int(summation > 0 ) return output if __name__ == "__main__": # read original image __UpperCAmelCase = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' __UpperCAmelCase = np.array(Image.open(lena_path)) # kernel to be applied __UpperCAmelCase = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __UpperCAmelCase = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __UpperCAmelCase = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
220
1
def a (lowerCAmelCase__ ): __a = len(lowerCAmelCase__ ) while cur > 1: # Find the maximum number in arr __a = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __a = arr[mi::-1] + arr[mi + 1 : len(lowerCAmelCase__ )] # Reverse whole list __a = arr[cur - 1 :: -1] + arr[cur : len(lowerCAmelCase__ )] cur -= 1 return arr if __name__ == "__main__": SCREAMING_SNAKE_CASE = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
99
'''simple docstring''' def __snake_case ( ): lowerCamelCase_ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowerCamelCase_ = 6 lowerCamelCase_ = 1 lowerCamelCase_ = 1901 lowerCamelCase_ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowerCamelCase_ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowerCamelCase_ = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowerCamelCase_ = day - days_per_month[month - 2] if month > 12: year += 1 lowerCamelCase_ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
675
0
_lowerCAmelCase = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
71
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _snake_case ( __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = (1 - _cos) / 2 _UpperCamelCase = 1 - _cos _UpperCamelCase = 1 + alpha _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = (1 + _cos) / 2 _UpperCamelCase = -1 - _cos _UpperCamelCase = 1 + alpha _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = _sin / 2 _UpperCamelCase = 0 _UpperCamelCase = -ba _UpperCamelCase = 1 + alpha _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = 1 - alpha _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 + alpha _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) , ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = 10 ** (gain_db / 40) _UpperCamelCase = 1 + alpha * big_a _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha * big_a _UpperCamelCase = 1 + alpha / big_a _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha / big_a _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) , ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = 10 ** (gain_db / 40) _UpperCamelCase = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase = 2 * sqrt(__snake_case ) * alpha _UpperCamelCase = big_a * (pmc + aaa) _UpperCamelCase = 2 * big_a * mpc _UpperCamelCase = big_a * (pmc - aaa) _UpperCamelCase = ppmc + aaa _UpperCamelCase = -2 * pmpc _UpperCamelCase = ppmc - aaa _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) , ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = 10 ** (gain_db / 40) _UpperCamelCase = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase = 2 * sqrt(__snake_case ) * alpha _UpperCamelCase = big_a * (ppmc + aaa) _UpperCamelCase = -2 * big_a * pmpc _UpperCamelCase = big_a * (ppmc - aaa) _UpperCamelCase = pmc + aaa _UpperCamelCase = 2 * mpc _UpperCamelCase = pmc - aaa _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
71
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , ): '''simple docstring''' __A : List[Any] = size if size is not None else {'height': 18, 'width': 18} __A : Tuple = parent __A : str = batch_size __A : Optional[int] = num_channels __A : str = image_size __A : List[str] = min_resolution __A : Optional[Any] = max_resolution __A : str = do_resize __A : Dict = size __A : Optional[Any] = apply_ocr def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = LayoutLMvaImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize')) self.assertTrue(hasattr(_UpperCAmelCase , 'size')) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 18, 'width': 18}) __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'height': 42, 'width': 42}) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image) # Test not batched input __A : int = image_processing(image_inputs[0] , return_tensors='pt') self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase) self.assertIsInstance(encoding.boxes , _UpperCAmelCase) # Test batched __A : str = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray) # Test not batched input __A : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __A : Any = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __A : int = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = LayoutLMvaImageProcessor() from datasets import load_dataset __A : str = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test') __A : List[Any] = Image.open(ds[0]['file']).convert('RGB') __A : Optional[int] = image_processing(_UpperCAmelCase , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __A : str = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __A : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase) self.assertListEqual(encoding.boxes , _UpperCAmelCase) # with apply_OCR = False __A : str = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase) __A : List[str] = image_processing(_UpperCAmelCase , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224))
8
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" A = (DPMSolverSDEScheduler,) A = 10 def __a ( self ,**__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Union[str, Any] = { "num_train_timesteps": 1100, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**snake_case__ ) return config def __a ( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def __a ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] ,[0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ ,beta_end=snake_case__ ) def __a ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case__ ) def __a ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def __a ( self ): SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[Any] = sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE : List[str] = model(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE : Dict = scheduler.step(snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE : Tuple = output.prev_sample SCREAMING_SNAKE_CASE : List[str] = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def __a ( self ): SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE : Dict = scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE : List[str] = model(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step(snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE : str = output.prev_sample SCREAMING_SNAKE_CASE : int = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def __a ( self ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : str = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ,device=snake_case__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : List[Any] = self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE : str = model(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE : Any = scheduler.step(snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE : Tuple = output.prev_sample SCREAMING_SNAKE_CASE : Tuple = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def __a ( self ): SCREAMING_SNAKE_CASE : Any = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**snake_case__ ,use_karras_sigmas=snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ,device=snake_case__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Any = self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[Any] = sample.to(snake_case__ ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE : List[str] = model(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE : str = scheduler.step(snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE : str = output.prev_sample SCREAMING_SNAKE_CASE : List[str] = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE : List[str] = torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
719
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __UpperCAmelCase = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = ['pixel_values'] def __init__( self ,__SCREAMING_SNAKE_CASE = True ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR ,__SCREAMING_SNAKE_CASE = True ,__SCREAMING_SNAKE_CASE = 1 / 255 ,__SCREAMING_SNAKE_CASE = True ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = True ,**__SCREAMING_SNAKE_CASE ,): super().__init__(**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = size if size is not None else {'shortest_edge': 224} SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(__SCREAMING_SNAKE_CASE ,default_to_square=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = crop_size if crop_size is not None else {'height': 256, 'width': 256} SCREAMING_SNAKE_CASE : str = get_size_dict(__SCREAMING_SNAKE_CASE ,param_name='crop_size' ) SCREAMING_SNAKE_CASE : str = do_resize SCREAMING_SNAKE_CASE : Dict = size SCREAMING_SNAKE_CASE : int = resample SCREAMING_SNAKE_CASE : List[str] = do_rescale SCREAMING_SNAKE_CASE : List[Any] = rescale_factor SCREAMING_SNAKE_CASE : Optional[Any] = do_center_crop SCREAMING_SNAKE_CASE : Any = crop_size SCREAMING_SNAKE_CASE : List[str] = do_flip_channel_order def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = PIL.Image.BILINEAR ,__SCREAMING_SNAKE_CASE = None ,**__SCREAMING_SNAKE_CASE ,): SCREAMING_SNAKE_CASE : int = get_size_dict(__SCREAMING_SNAKE_CASE ,default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE : str = get_resize_output_image_size(__SCREAMING_SNAKE_CASE ,size=size['shortest_edge'] ,default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE ,size=__SCREAMING_SNAKE_CASE ,resample=__SCREAMING_SNAKE_CASE ,data_format=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ,**__SCREAMING_SNAKE_CASE ,): SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__SCREAMING_SNAKE_CASE ,size=(size['height'], size['width']) ,data_format=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ,**__SCREAMING_SNAKE_CASE ,): return rescale(__SCREAMING_SNAKE_CASE ,scale=__SCREAMING_SNAKE_CASE ,data_format=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): return flip_channel_order(__SCREAMING_SNAKE_CASE ,data_format=__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = ChannelDimension.FIRST ,**__SCREAMING_SNAKE_CASE ,): SCREAMING_SNAKE_CASE : Tuple = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Dict = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : int = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : Union[str, Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else self.size SCREAMING_SNAKE_CASE : Dict = get_size_dict(__SCREAMING_SNAKE_CASE ,default_to_square=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Tuple = get_size_dict(__SCREAMING_SNAKE_CASE ,param_name='crop_size' ) SCREAMING_SNAKE_CASE : Union[str, Any] = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Optional[Any] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Tuple = [self.resize(image=__SCREAMING_SNAKE_CASE ,size=__SCREAMING_SNAKE_CASE ,resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : List[str] = [self.center_crop(image=__SCREAMING_SNAKE_CASE ,size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Dict = [self.rescale(image=__SCREAMING_SNAKE_CASE ,scale=__SCREAMING_SNAKE_CASE ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: SCREAMING_SNAKE_CASE : Optional[int] = [self.flip_channel_order(image=__SCREAMING_SNAKE_CASE ) for image in images] SCREAMING_SNAKE_CASE : Dict = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) for image in images] SCREAMING_SNAKE_CASE : Optional[int] = {'pixel_values': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE ,tensor_type=__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): SCREAMING_SNAKE_CASE : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Tuple = target_sizes.numpy() SCREAMING_SNAKE_CASE : Optional[Any] = [] for idx in range(len(__SCREAMING_SNAKE_CASE ) ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
220
0
'''simple docstring''' import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : Any = GPTaTokenizer __lowercase : List[str] = GPTaTokenizerFast __lowercase : Optional[int] = True __lowercase : Any = {'''add_prefix_space''': True} __lowercase : List[Any] = False def lowerCAmelCase ( self ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] __snake_case = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __snake_case = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __snake_case = '''lower newer''' __snake_case = '''lower newer''' return input_text, output_text def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case = '''lower newer''' __snake_case = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __snake_case = tokenizer.tokenize(__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer(add_prefix_space=__SCREAMING_SNAKE_CASE ) __snake_case = '''lower newer''' # Testing tokenization __snake_case = tokenizer.tokenize(__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing conversion to ids without special tokens __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing conversion to ids with special tokens __snake_case = self.get_rust_tokenizer(add_prefix_space=__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing the unknown token __snake_case = tokens + [rust_tokenizer.unk_token] __snake_case = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' pass def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # Simple input __snake_case = '''This is a simple input''' __snake_case = ['''This is a simple input 1''', '''This is a simple input 2'''] __snake_case = ('''This is a simple input''', '''This is a pair''') __snake_case = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Simple input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Simple input self.assertRaises( __SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' , ) # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Pair input self.assertRaises( __SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' , ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input __snake_case = '''This is a simple input''' __snake_case = ['''This is a simple input looooooooong''', '''This is a simple input'''] __snake_case = ('''This is a simple input''', '''This is a pair''') __snake_case = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] __snake_case = tokenizer.pad_token_id __snake_case = tokenizer(__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=30 , return_tensors='''np''' ) __snake_case = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncate=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) __snake_case = tokenizer(*__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=60 , return_tensors='''np''' ) __snake_case = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncate=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case = '''$$$''' __snake_case = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__SCREAMING_SNAKE_CASE , add_bos_token=__SCREAMING_SNAKE_CASE ) __snake_case = '''This is a simple input''' __snake_case = ['''This is a simple input 1''', '''This is a simple input 2'''] __snake_case = tokenizer.bos_token_id __snake_case = tokenizer(__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer(__SCREAMING_SNAKE_CASE ) self.assertEqual(out_s.input_ids[0] , __SCREAMING_SNAKE_CASE ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __snake_case = tokenizer.decode(out_s.input_ids ) __snake_case = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __SCREAMING_SNAKE_CASE ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' pass def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = [self.get_tokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , add_bos_token=__SCREAMING_SNAKE_CASE )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __snake_case = '''Encode this.''' __snake_case = '''This one too please.''' __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) encoded_sequence += tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode_plus( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_special_tokens_mask=__SCREAMING_SNAKE_CASE , ) __snake_case = encoded_sequence_dict['''input_ids'''] __snake_case = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) __snake_case = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__SCREAMING_SNAKE_CASE ) ] __snake_case = [x for x in filtered_sequence if x is not None] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @require_tokenizers class lowerCAmelCase ( unittest.TestCase): def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=__SCREAMING_SNAKE_CASE ) __snake_case = '''A photo of a cat''' __snake_case = tokenizer.encode( __SCREAMING_SNAKE_CASE , ) self.assertEqual(__SCREAMING_SNAKE_CASE , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('''test_opt''' ) __snake_case = AutoTokenizer.from_pretrained('''./test_opt''' ) __snake_case = tokenizer.encode( __SCREAMING_SNAKE_CASE , ) self.assertEqual(__SCREAMING_SNAKE_CASE , [2, 250, 1345, 9, 10, 4758] ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , use_slow=__SCREAMING_SNAKE_CASE ) __snake_case = '''A photo of a cat''' __snake_case = tokenizer.encode( __SCREAMING_SNAKE_CASE , ) # Same as above self.assertEqual(__SCREAMING_SNAKE_CASE , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''' ) def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=__SCREAMING_SNAKE_CASE ) __snake_case = '''bos''' __snake_case = tokenizer.get_vocab()['''bos'''] __snake_case = '''A photo of a cat''' __snake_case = tokenizer.encode( __SCREAMING_SNAKE_CASE , ) # We changed the bos token self.assertEqual(__SCREAMING_SNAKE_CASE , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('''./tok''' ) __snake_case = AutoTokenizer.from_pretrained('''./tok''' ) self.assertTrue(tokenizer.is_fast ) __snake_case = tokenizer.encode( __SCREAMING_SNAKE_CASE , ) self.assertEqual(__SCREAMING_SNAKE_CASE , [3_1957, 250, 1345, 9, 10, 4758] )
24
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin UpperCAmelCase__ : Optional[int] = False @skip_mps class UpperCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ = StableDiffusionAttendAndExcitePipeline UpperCamelCase_ = False UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowerCAmelCase__ ( cls) -> str: super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase) @classmethod def lowerCAmelCase__ ( cls) -> Tuple: super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase) def lowerCAmelCase__ ( self) -> Any: torch.manual_seed(0) UpperCamelCase__ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase , ) UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0) UpperCamelCase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) UpperCamelCase__ : List[Any] = CLIPTextModel(UpperCamelCase) UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') UpperCamelCase__ : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase=0) -> str: if str(UpperCamelCase).startswith('mps'): UpperCamelCase__ : Tuple = torch.manual_seed(UpperCamelCase) else: UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCamelCase).manual_seed(UpperCamelCase) UpperCamelCase__ : List[Any] = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def lowerCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : Union[str, Any] = self.get_dummy_components() UpperCamelCase__ : Optional[Any] = self.pipeline_class(**UpperCamelCase) pipe.to(UpperCamelCase) pipe.set_progress_bar_config(disable=UpperCamelCase) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCamelCase) UpperCamelCase__ : Union[str, Any] = pipe(**UpperCamelCase).images UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3)) UpperCamelCase__ : str = np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496]) UpperCamelCase__ : List[str] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(UpperCamelCase , 1E-3) def lowerCAmelCase__ ( self) -> Dict: super().test_cpu_offload_forward_pass(expected_max_diff=5E-4) def lowerCAmelCase__ ( self) -> str: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def lowerCAmelCase__ ( self) -> List[str]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4) def lowerCAmelCase__ ( self) -> List[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def lowerCAmelCase__ ( self) -> Optional[Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4) def lowerCAmelCase__ ( self) -> Dict: super().test_save_load_local(expected_max_difference=5E-4) def lowerCAmelCase__ ( self) -> Dict: super().test_save_load_optional_components(expected_max_difference=4E-4) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls) -> Optional[int]: super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase) @classmethod def lowerCAmelCase__ ( cls) -> str: super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase) def lowerCAmelCase__ ( self) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self) -> int: UpperCamelCase__ : Dict = torch.manual_seed(51) UpperCamelCase__ : Dict = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=UpperCamelCase , torch_dtype=torch.floataa) pipe.to('cuda') UpperCamelCase__ : Optional[int] = 'a painting of an elephant with glasses' UpperCamelCase__ : Dict = [5, 7] UpperCamelCase__ : Optional[int] = pipe( prompt=UpperCamelCase , token_indices=UpperCamelCase , guidance_scale=7.5 , generator=UpperCamelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] UpperCamelCase__ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy') assert np.abs((expected_image - image).max()) < 5E-1
410
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase_ : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) lowerCamelCase_ : List[str] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) lowerCamelCase_ : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def UpperCAmelCase__ (self ): print(F"""Found {torch.cuda.device_count()} devices.""" ) lowerCamelCase_ : Tuple = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase__ (self ): print(F"""Found {torch.cuda.device_count()} devices.""" ) lowerCamelCase_ : str = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase__ (self ): print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) lowerCamelCase_ : Optional[Any] = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) if __name__ == "__main__": __lowercase : Dict = Accelerator() __lowercase : str = (accelerator.state.process_index + 2, 10) __lowercase : List[str] = torch.randint(0, 10, shape).to(accelerator.device) __lowercase : Any = '''''' __lowercase : Dict = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __lowercase : int = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __lowercase : Union[str, Any] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
711
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowercase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __lowercase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
0
SCREAMING_SNAKE_CASE__ = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def A ( __UpperCamelCase ) -> int: A__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution SCREAMING_SNAKE_CASE__ = [None] * 1_0_0_0_0_0_0_0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False def A ( __UpperCamelCase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore A__ = chain(next_number(__UpperCamelCase ) ) A__ = number_chain while number < 10_000_000: A__ = number_chain number *= 10 return number_chain def A ( __UpperCamelCase = 10_000_000 ) -> int: for i in range(1 , __UpperCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution() = }')
9
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase_ : """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str=3 , __lowerCamelCase : List[Any]=3_2 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : str=1_0 , __lowerCamelCase : Union[str, Any]=[8, 1_6, 3_2, 6_4] , __lowerCamelCase : Union[str, Any]=[1, 1, 2, 1] , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str="relu" , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=["stage2", "stage3", "stage4"] , __lowerCamelCase : List[Any]=[2, 3, 4] , __lowerCamelCase : int=1 , ): """simple docstring""" _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = embeddings_size _SCREAMING_SNAKE_CASE = hidden_sizes _SCREAMING_SNAKE_CASE = depths _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = out_features _SCREAMING_SNAKE_CASE = out_indices _SCREAMING_SNAKE_CASE = num_groups def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) _SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = BitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = BitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = BitBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = BitBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase_ ( A , A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCamelCase_ = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def lowerCAmelCase_ ( self : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = BitModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def lowerCAmelCase_ ( self : int ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self : int ): """simple docstring""" return @unittest.skip(reason="Bit does not output attentions" ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def lowerCAmelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" pass def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase_ ( self : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(config=__lowerCamelCase ) for name, module in model.named_modules(): if isinstance(__lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" def check_hidden_states_output(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _SCREAMING_SNAKE_CASE = layer_type _SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = BitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( ) -> Any: _SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.default_image_processor _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits _SCREAMING_SNAKE_CASE = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @require_torch class lowercase_ ( A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = (BitBackbone,) if is_torch_available() else () lowerCamelCase_ = BitConfig lowerCamelCase_ = False def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = BitModelTester(self )
418
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
583
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
583
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor _snake_case = random.Random() def _UpperCamelCase ( snake_case__, snake_case__=1.0, snake_case__=None, snake_case__=None ) -> int: if rng is None: __UpperCAmelCase : Union[str, Any] = global_rng __UpperCAmelCase : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _snake_case ( unittest.TestCase ): def __init__( self: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=7 , __lowerCamelCase: str=4_00 , __lowerCamelCase: Union[str, Any]=20_00 , __lowerCamelCase: Optional[int]=24 , __lowerCamelCase: List[Any]=24 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: int=1_60_00 , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: Dict=True , ) -> int: __UpperCAmelCase : List[str] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Tuple = min_seq_length __UpperCAmelCase : str = max_seq_length __UpperCAmelCase : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase : Union[str, Any] = feature_size __UpperCAmelCase : List[Any] = num_mel_bins __UpperCAmelCase : Union[str, Any] = padding_value __UpperCAmelCase : Union[str, Any] = sampling_rate __UpperCAmelCase : Optional[int] = return_attention_mask __UpperCAmelCase : Optional[Any] = do_normalize def _lowerCamelCase ( self: int ) -> List[str]: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: int=False , __lowerCamelCase: Optional[int]=False ) -> Optional[int]: def _flatten(__lowerCamelCase: int ): return list(itertools.chain(*__SCREAMING_SNAKE_CASE ) ) if equal_length: __UpperCAmelCase : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCAmelCase : Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCAmelCase : Tuple = [np.asarray(__SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _snake_case ( __UpperCamelCase , unittest.TestCase ): lowerCamelCase__: List[Any] = SpeechaTextFeatureExtractor if is_speech_available() else None def _lowerCamelCase ( self: Tuple ) -> int: __UpperCAmelCase : str = SpeechaTextFeatureExtractionTester(self ) def _lowerCamelCase ( self: str , __lowerCamelCase: int ) -> List[str]: self.assertTrue(np.all(np.mean(__SCREAMING_SNAKE_CASE , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__SCREAMING_SNAKE_CASE , axis=0 ) - 1 ) < 1e-3 ) ) def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __UpperCAmelCase : Any = [np.asarray(__SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test feature size __UpperCAmelCase : int = feature_extractor(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input __UpperCAmelCase : Any = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features __UpperCAmelCase : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # Test batched __UpperCAmelCase : str = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="np" ).input_features __UpperCAmelCase : Any = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __UpperCAmelCase : str = np.asarray(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[Any] = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="np" ).input_features __UpperCAmelCase : str = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __UpperCAmelCase : Any = ['''longest''', '''max_length''', '''do_not_pad'''] __UpperCAmelCase : Union[str, Any] = [None, 16, None] for max_length, padding in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __UpperCAmelCase : str = feature_extractor( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Dict = inputs.input_features __UpperCAmelCase : Optional[int] = inputs.attention_mask __UpperCAmelCase : Optional[int] = [np.sum(__SCREAMING_SNAKE_CASE ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _lowerCamelCase ( self: Tuple ) -> int: __UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __UpperCAmelCase : Optional[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] __UpperCAmelCase : int = [None, 16, None] for max_length, padding in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __UpperCAmelCase : List[Any] = feature_extractor( __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="np" , return_attention_mask=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : str = inputs.input_features __UpperCAmelCase : str = inputs.attention_mask __UpperCAmelCase : Dict = [np.sum(__SCREAMING_SNAKE_CASE ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _lowerCamelCase ( self: int ) -> Dict: __UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __UpperCAmelCase : Dict = feature_extractor( __SCREAMING_SNAKE_CASE , padding="max_length" , max_length=4 , truncation=__SCREAMING_SNAKE_CASE , return_tensors="np" , return_attention_mask=__SCREAMING_SNAKE_CASE , ) __UpperCAmelCase : int = inputs.input_features __UpperCAmelCase : Any = inputs.attention_mask __UpperCAmelCase : str = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __UpperCAmelCase : Tuple = feature_extractor( __SCREAMING_SNAKE_CASE , padding="longest" , max_length=4 , truncation=__SCREAMING_SNAKE_CASE , return_tensors="np" , return_attention_mask=__SCREAMING_SNAKE_CASE , ) __UpperCAmelCase : int = inputs.input_features __UpperCAmelCase : List[Any] = inputs.attention_mask __UpperCAmelCase : List[Any] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) __UpperCAmelCase : int = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __UpperCAmelCase : List[str] = feature_extractor( __SCREAMING_SNAKE_CASE , padding="longest" , max_length=16 , truncation=__SCREAMING_SNAKE_CASE , return_tensors="np" , return_attention_mask=__SCREAMING_SNAKE_CASE , ) __UpperCAmelCase : List[str] = inputs.input_features __UpperCAmelCase : Optional[Any] = inputs.attention_mask __UpperCAmelCase : Union[str, Any] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def _lowerCamelCase ( self: str ) -> Dict: import torch __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase : str = np.random.rand(1_00 , 32 ).astype(np.floataa ) __UpperCAmelCase : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCAmelCase : Any = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCAmelCase : int = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[Any] ) -> List[str]: from datasets import load_dataset __UpperCAmelCase : Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __UpperCAmelCase : Optional[Any] = ds.sort("id" ).select(range(__SCREAMING_SNAKE_CASE ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ] ) # fmt: on __UpperCAmelCase : Any = self._load_datasamples(1 ) __UpperCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase : List[Any] = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
382
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCamelCase__ = '''src/diffusers''' # Matches is_xxx_available() lowerCamelCase__ = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla lowerCamelCase__ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') lowerCamelCase__ = ''' {0} = None ''' lowerCamelCase__ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' lowerCamelCase__ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def lowercase_ ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" snake_case__ : Tuple =_re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowercase_ ( ): """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ : int =f.readlines() # Get to the point we do the actual imports for type checking snake_case__ : Optional[Any] =0 snake_case__ : Any ={} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block snake_case__ : List[str] =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 snake_case__ : List[Any] =[] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: snake_case__ : List[str] =lines[line_index] snake_case__ : Any =_re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: snake_case__ : List[Any] =objects else: line_index += 1 return backend_specific_objects def lowercase_ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowercase_ ( SCREAMING_SNAKE_CASE : str=None ): """simple docstring""" if backend_specific_objects is None: snake_case__ : int =read_init() # For special correspondence backend to module name as used in the function requires_modulename snake_case__ : Dict ={} for backend, objects in backend_specific_objects.items(): snake_case__ : str ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' snake_case__ : List[Any] ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) snake_case__ : int =dummy_file return dummy_files def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[int]=False ): """simple docstring""" snake_case__ : Dict =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py snake_case__ : int ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. snake_case__ : List[Any] =os.path.join(SCREAMING_SNAKE_CASE , '''utils''' ) snake_case__ : str ={ backend: os.path.join(SCREAMING_SNAKE_CASE , F'''dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py''' ) for backend in dummy_files.keys() } snake_case__ : Tuple ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ : Optional[int] =f.read() else: snake_case__ : Union[str, Any] ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCamelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
381
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __SCREAMING_SNAKE_CASE : List[Any] ='Run commands across TPU VMs for initial setup before running `accelerate launch`.' def UpperCamelCase__ ( lowerCAmelCase__=None ): if subparsers is not None: lowercase = subparsers.add_parser("""tpu-config""" ,description=_description ) else: lowercase = argparse.ArgumentParser("""Accelerate tpu-config command""" ,description=_description ) # Core arguments lowercase = parser.add_argument_group( """Config Arguments""" ,"""Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" ,type=lowercase_ ,default=lowercase_ ,help="""Path to the config file to use for accelerate.""" ,) config_args.add_argument( """--tpu_name""" ,default=lowercase_ ,help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" ,) config_args.add_argument( """--tpu_zone""" ,default=lowercase_ ,help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" ,) lowercase = parser.add_argument_group("""TPU Arguments""" ,"""Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" ,action="""store_true""" ,help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" ,) pod_args.add_argument( """--command_file""" ,default=lowercase_ ,help="""The path to the file containing the commands to run on the pod on startup.""" ,) pod_args.add_argument( """--command""" ,action="""append""" ,nargs="""+""" ,help="""A command to run on the pod. Can be passed multiple times.""" ,) pod_args.add_argument( """--install_accelerate""" ,action="""store_true""" ,help="""Whether to install accelerate on the pod. Defaults to False.""" ,) pod_args.add_argument( """--accelerate_version""" ,default="""latest""" ,help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" ,) pod_args.add_argument( """--debug""" ,action="""store_true""" ,help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase__ ( lowerCAmelCase__ ): lowercase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(lowercase_ ): lowercase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowercase = defaults.command_file if not args.command and defaults.commands is not None: lowercase = defaults.commands if not args.tpu_name: lowercase = defaults.tpu_name if not args.tpu_zone: lowercase = defaults.tpu_zone if args.accelerate_version == "dev": lowercase = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": lowercase = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) ,lowercase_ ): lowercase = f"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file ,"""r""" ) as f: lowercase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] ,lowercase_ ): lowercase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowercase = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f"""pip install {args.accelerate_version}"""] new_cmd += args.command lowercase = """; """.join(lowercase_ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowercase = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"""Running {" ".join(lowercase_ )}""" ) return subprocess.run(lowercase_ ) print("""Successfully setup pod.""" ) def UpperCamelCase__ ( ): lowercase = tpu_command_parser() lowercase = parser.parse_args() tpu_command_launcher(lowercase_ )
720
import argparse import hashlib # hashlib is only used inside the Test class import struct class A_ : def __init__( self : List[str] , snake_case__ : Union[str, Any] ): lowercase = data lowercase = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowercase = b"""\x80""" + b"""\x00""" * (63 - (len(self.data ) + 8) % 64) lowercase = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def SCREAMING_SNAKE_CASE__ ( self : str , snake_case__ : Tuple ): lowercase = list(struct.unpack(""">16L""" , snake_case__ ) ) + [0] * 64 for i in range(16 , 80 ): lowercase = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def SCREAMING_SNAKE_CASE__ ( self : Any ): lowercase = self.padding() lowercase = self.split_blocks() for block in self.blocks: lowercase = self.expand_block(snake_case__ ) lowercase , lowercase , lowercase , lowercase , lowercase = self.h for i in range(0 , 80 ): if 0 <= i < 20: lowercase = (b & c) | ((~b) & d) lowercase = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: lowercase = b ^ c ^ d lowercase = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: lowercase = (b & c) | (b & d) | (c & d) lowercase = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: lowercase = b ^ c ^ d lowercase = 0Xc_a_6_2_c_1_d_6 lowercase , lowercase , lowercase , lowercase , lowercase = ( self.rotate(snake_case__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(snake_case__ , 30 ), c, d, ) lowercase = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def UpperCamelCase__ ( ): lowercase = b"""Test String""" assert SHAaHash(lowerCAmelCase__ ).final_hash() == hashlib.shaa(lowerCAmelCase__ ).hexdigest() # noqa: S324 def UpperCamelCase__ ( ): lowercase = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) lowercase = parser.parse_args() lowercase = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: lowercase = f.read() else: lowercase = bytes(lowerCAmelCase__ ,"""utf-8""" ) print(SHAaHash(lowerCAmelCase__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
72
0
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP UpperCamelCase__ :Union[str, Any] = False try: UpperCamelCase__ :Tuple = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class A: """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = [] ) -> Optional[int]: """simple docstring""" _UpperCamelCase :List[str] = 0 _UpperCamelCase :Tuple = choices _UpperCamelCase :Optional[Any] = prompt if sys.platform == "win32": _UpperCamelCase :Any = '''*''' else: _UpperCamelCase :Any = '''➔ ''' def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "" ) -> str: """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , SCREAMING_SNAKE_CASE__ ) else: forceWrite(self.choices[index] , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" if index == self.position: forceWrite(f" {self.arrow_char} " ) self.write_choice(SCREAMING_SNAKE_CASE__ ) else: forceWrite(f" {self.choices[index]}" ) reset_cursor() def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 ) -> Tuple: """simple docstring""" _UpperCamelCase :Any = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(SCREAMING_SNAKE_CASE__ ) move_cursor(SCREAMING_SNAKE_CASE__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def _UpperCamelCase( self ) -> int: """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def _UpperCamelCase( self ) -> List[str]: """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def _UpperCamelCase( self ) -> Dict: """simple docstring""" move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def _UpperCamelCase( self ) -> int: """simple docstring""" move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(SCREAMING_SNAKE_CASE__ )] for number in range(10 )] ) def _UpperCamelCase( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase :int = int(chr(self.current_selection ) ) _UpperCamelCase :List[Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , SCREAMING_SNAKE_CASE__ ) else: return else: return def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ = 0 ) -> Optional[Any]: """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) _UpperCamelCase :List[Any] = default_choice for i in range(len(self.choices ) ): self.print_choice(SCREAMING_SNAKE_CASE__ ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: _UpperCamelCase :List[Any] = int(builtins.input() ) except ValueError: _UpperCamelCase :Tuple = default_choice else: _UpperCamelCase :Tuple = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(SCREAMING_SNAKE_CASE__ , '''\n''' ) return choice
355
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase__ :Optional[int] = logging.get_logger(__name__) UpperCamelCase__ :int = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def A_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: for attribute in key.split('''.''' ): _UpperCamelCase :Any = getattr(snake_case__ , snake_case__ ) if weight_type is not None: _UpperCamelCase :Any = getattr(snake_case__ , snake_case__ ).shape else: _UpperCamelCase :Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCamelCase :str = value elif weight_type == "weight_g": _UpperCamelCase :Dict = value elif weight_type == "weight_v": _UpperCamelCase :Optional[Any] = value elif weight_type == "bias": _UpperCamelCase :str = value else: _UpperCamelCase :int = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A_ ( snake_case__ , snake_case__ , snake_case__ ) -> Tuple: _UpperCamelCase :Optional[int] = [] _UpperCamelCase :List[str] = fairseq_model.state_dict() _UpperCamelCase :str = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase :Optional[Any] = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCamelCase :Dict = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase :Optional[int] = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase :List[str] = True if "*" in mapped_key: _UpperCamelCase :List[str] = name.split(snake_case__ )[0].split('''.''' )[-2] _UpperCamelCase :Tuple = mapped_key.replace('''*''' , snake_case__ ) if "weight_g" in name: _UpperCamelCase :List[Any] = '''weight_g''' elif "weight_v" in name: _UpperCamelCase :Union[str, Any] = '''weight_v''' elif "weight" in name: _UpperCamelCase :List[Any] = '''weight''' elif "bias" in name: _UpperCamelCase :List[Any] = '''bias''' else: _UpperCamelCase :List[Any] = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(f"Unused weights: {unused_weights}" ) def A_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: _UpperCamelCase :Optional[int] = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase :Optional[int] = name.split('''.''' ) _UpperCamelCase :Optional[Any] = int(items[0] ) _UpperCamelCase :List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCamelCase :Optional[int] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCamelCase :Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _UpperCamelCase :int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCamelCase :Dict = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(snake_case__ ) def A_ ( snake_case__ , snake_case__ ) -> List[str]: _UpperCamelCase :str = SEWConfig() if is_finetuned: _UpperCamelCase :Optional[int] = model.wav_encoder.wav_model.cfg else: _UpperCamelCase :Dict = model.cfg _UpperCamelCase :Dict = fs_config.conv_bias _UpperCamelCase :int = eval(fs_config.conv_feature_layers ) _UpperCamelCase :List[Any] = [x[0] for x in conv_layers] _UpperCamelCase :Optional[int] = [x[1] for x in conv_layers] _UpperCamelCase :Optional[int] = [x[2] for x in conv_layers] _UpperCamelCase :str = '''gelu''' _UpperCamelCase :Optional[int] = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _UpperCamelCase :List[Any] = 0.0 _UpperCamelCase :Optional[int] = fs_config.activation_fn.name _UpperCamelCase :str = fs_config.encoder_embed_dim _UpperCamelCase :Dict = 0.02 _UpperCamelCase :Optional[int] = fs_config.encoder_ffn_embed_dim _UpperCamelCase :str = 1E-5 _UpperCamelCase :int = fs_config.encoder_layerdrop _UpperCamelCase :Union[str, Any] = fs_config.encoder_attention_heads _UpperCamelCase :List[str] = fs_config.conv_pos_groups _UpperCamelCase :List[Any] = fs_config.conv_pos _UpperCamelCase :List[str] = len(snake_case__ ) _UpperCamelCase :Optional[int] = fs_config.encoder_layers _UpperCamelCase :Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCamelCase :List[Any] = model.cfg _UpperCamelCase :List[Any] = fs_config.final_dropout _UpperCamelCase :Dict = fs_config.layerdrop _UpperCamelCase :Any = fs_config.activation_dropout _UpperCamelCase :List[str] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCamelCase :Optional[Any] = fs_config.attention_dropout _UpperCamelCase :List[Any] = fs_config.dropout_input _UpperCamelCase :Dict = fs_config.dropout _UpperCamelCase :int = fs_config.mask_channel_length _UpperCamelCase :Tuple = fs_config.mask_channel_prob _UpperCamelCase :int = fs_config.mask_length _UpperCamelCase :Dict = fs_config.mask_prob _UpperCamelCase :List[Any] = '''Wav2Vec2FeatureExtractor''' _UpperCamelCase :Optional[Any] = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def A_ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=True ) -> int: if is_finetuned: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase :List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase :str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCamelCase :Any = SEWConfig.from_pretrained(snake_case__ ) else: _UpperCamelCase :List[str] = convert_config(model[0] , snake_case__ ) _UpperCamelCase :List[str] = model[0].eval() _UpperCamelCase :Optional[Any] = True if config.feat_extract_norm == '''layer''' else False _UpperCamelCase :str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) if is_finetuned: if dict_path: _UpperCamelCase :int = Dictionary.load(snake_case__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase :List[Any] = target_dict.pad_index _UpperCamelCase :str = target_dict.bos_index _UpperCamelCase :int = target_dict.pad_index _UpperCamelCase :Dict = target_dict.bos_index _UpperCamelCase :int = target_dict.eos_index _UpperCamelCase :str = len(target_dict.symbols ) _UpperCamelCase :Optional[int] = os.path.join(snake_case__ , '''vocab.json''' ) if not os.path.isdir(snake_case__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case__ ) ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , snake_case__ ) _UpperCamelCase :int = WavaVecaCTCTokenizer( snake_case__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=snake_case__ , ) _UpperCamelCase :Dict = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) processor.save_pretrained(snake_case__ ) _UpperCamelCase :Tuple = SEWForCTC(snake_case__ ) else: _UpperCamelCase :str = SEWModel(snake_case__ ) feature_extractor.save_pretrained(snake_case__ ) recursively_load_weights(snake_case__ , snake_case__ , snake_case__ ) hf_model.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase__ :List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase__ :Tuple = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
355
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : Any = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowerCamelCase ( SCREAMING_SNAKE_CASE): UpperCAmelCase : Dict = 'biogpt' def __init__( self : List[str] , __snake_case : List[Any]=42384 , __snake_case : Optional[Any]=1024 , __snake_case : List[str]=24 , __snake_case : Optional[Any]=16 , __snake_case : Union[str, Any]=4096 , __snake_case : int="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Optional[int]=1024 , __snake_case : List[str]=0.02 , __snake_case : Optional[Any]=1E-1_2 , __snake_case : List[Any]=True , __snake_case : List[str]=True , __snake_case : List[str]=0.0 , __snake_case : List[str]=0.0 , __snake_case : Any=1 , __snake_case : int=0 , __snake_case : Optional[Any]=2 , **__snake_case : List[Any] , ) -> List[str]: _a : List[str] = vocab_size _a : List[Any] = max_position_embeddings _a : List[str] = hidden_size _a : str = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : Optional[int] = intermediate_size _a : Optional[Any] = hidden_act _a : List[str] = hidden_dropout_prob _a : Union[str, Any] = attention_probs_dropout_prob _a : List[Any] = initializer_range _a : Any = layer_norm_eps _a : Optional[Any] = scale_embedding _a : Optional[int] = use_cache _a : Optional[int] = layerdrop _a : Dict = activation_dropout super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
704
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : str = 'convbert' def __init__( self : Optional[Any] , __snake_case : Union[str, Any]=30522 , __snake_case : Any=768 , __snake_case : Optional[Any]=12 , __snake_case : Tuple=12 , __snake_case : Optional[Any]=3072 , __snake_case : List[str]="gelu" , __snake_case : int=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[Any]=512 , __snake_case : Union[str, Any]=2 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=1E-1_2 , __snake_case : Any=1 , __snake_case : List[str]=0 , __snake_case : Union[str, Any]=2 , __snake_case : Union[str, Any]=768 , __snake_case : Dict=2 , __snake_case : Union[str, Any]=9 , __snake_case : Union[str, Any]=1 , __snake_case : Union[str, Any]=None , **__snake_case : Optional[Any] , ) -> List[Any]: super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , ) _a : str = vocab_size _a : str = hidden_size _a : List[str] = num_hidden_layers _a : Any = num_attention_heads _a : Optional[int] = intermediate_size _a : Dict = hidden_act _a : List[Any] = hidden_dropout_prob _a : str = attention_probs_dropout_prob _a : Dict = max_position_embeddings _a : Tuple = type_vocab_size _a : Optional[int] = initializer_range _a : Any = layer_norm_eps _a : Optional[int] = embedding_size _a : int = head_ratio _a : List[str] = conv_kernel_size _a : Any = num_groups _a : Tuple = classifier_dropout class lowerCamelCase ( SCREAMING_SNAKE_CASE ): @property def snake_case_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
249
0
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging UpperCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class a ( __UpperCAmelCase ): def __init__( self : Tuple , snake_case__ : CLIPSegForImageSegmentation , snake_case__ : CLIPSegProcessor , snake_case__ : AutoencoderKL , snake_case__ : CLIPTextModel , snake_case__ : CLIPTokenizer , snake_case__ : UNetaDConditionModel , snake_case__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case__ : StableDiffusionSafetyChecker , snake_case__ : CLIPImageProcessor , ): """simple docstring""" super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: __lowerCAmelCase = ( F"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" F" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , snake_case__ , standard_warn=snake_case__ ) __lowerCAmelCase = dict(scheduler.config ) __lowerCAmelCase = 1 __lowerCAmelCase = FrozenDict(snake_case__ ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: __lowerCAmelCase = ( F"The configuration file of this scheduler: {scheduler} has not set the configuration" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , snake_case__ , standard_warn=snake_case__ ) __lowerCAmelCase = dict(scheduler.config ) __lowerCAmelCase = True __lowerCAmelCase = FrozenDict(snake_case__ ) if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=snake_case__ , segmentation_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" self.enable_attention_slicing(snake_case__ ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) __lowerCAmelCase = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[int] , snake_case__ : Union[str, List[str]] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image] , snake_case__ : str , snake_case__ : int = 512 , snake_case__ : int = 512 , snake_case__ : int = 50 , snake_case__ : float = 7.5 , snake_case__ : Optional[Union[str, List[str]]] = None , snake_case__ : Optional[int] = 1 , snake_case__ : float = 0.0 , snake_case__ : Optional[torch.Generator] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , snake_case__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case__ : int = 1 , **snake_case__ : Any , ): """simple docstring""" __lowerCAmelCase = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) __lowerCAmelCase = self.segmentation_model(**snake_case__ ) __lowerCAmelCase = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __lowerCAmelCase = self.numpy_to_pil(snake_case__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __lowerCAmelCase = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , height=snake_case__ , width=snake_case__ , num_inference_steps=snake_case__ , guidance_scale=snake_case__ , negative_prompt=snake_case__ , num_images_per_prompt=snake_case__ , eta=snake_case__ , generator=snake_case__ , latents=snake_case__ , output_type=snake_case__ , return_dict=snake_case__ , callback=snake_case__ , callback_steps=snake_case__ , )
611
class a : def __init__( self : Union[str, Any] , snake_case__ : str ): """simple docstring""" __lowerCAmelCase = arr.split("," ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = [int(self.array[0] )] * len(self.array ) __lowerCAmelCase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __lowerCAmelCase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __lowerCAmelCase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": UpperCamelCase_ = input("please input some numbers:") UpperCamelCase_ = SubArray(whole_array) UpperCamelCase_ = array.solve_sub_array() print(("the results is:", re))
611
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['MaskFormerFeatureExtractor'] __UpperCamelCase = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] __UpperCamelCase = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
713
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" @staticmethod @abstractmethod def snake_case__ ( snake_case ): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self ): '''simple docstring''' raise NotImplementedError()
185
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[Any] = (DDIMParallelScheduler,) lowerCamelCase : Union[str, Any] = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def lowercase__ ( self : Optional[int] , **_lowercase : Any ): SCREAMING_SNAKE_CASE__ : int = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**_lowercase ) return config def lowercase__ ( self : Optional[Any] , **_lowercase : Optional[int] ): SCREAMING_SNAKE_CASE__ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : str = self.get_scheduler_config(**_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = 10, 0.0 SCREAMING_SNAKE_CASE__ : str = self.dummy_model() SCREAMING_SNAKE_CASE__ : str = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step(_lowercase , _lowercase , _lowercase , _lowercase ).prev_sample return sample def lowercase__ ( self : List[str] ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowercase ) def lowercase__ ( self : Optional[Any] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Any = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = scheduler_class(**_lowercase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def lowercase__ ( self : Optional[Any] ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def lowercase__ ( self : Optional[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def lowercase__ ( self : List[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def lowercase__ ( self : List[str] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def lowercase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowercase ) def lowercase__ ( self : Union[str, Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowercase ) def lowercase__ ( self : str ): self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def lowercase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=_lowercase ) def lowercase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=_lowercase , num_inference_steps=_lowercase ) def lowercase__ ( self : Any ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowercase , eta=_lowercase ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Tuple = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1E-5 def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = 10, 0.0 scheduler.set_timesteps(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = self.dummy_model() SCREAMING_SNAKE_CASE__ : str = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE__ : List[str] = samplea.shape[0] SCREAMING_SNAKE_CASE__ : int = torch.stack([samplea, samplea, samplea] , dim=0 ) SCREAMING_SNAKE_CASE__ : Tuple = torch.arange(_lowercase )[0:3, None].repeat(1 , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler.batch_step_no_noise(_lowercase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowercase ) SCREAMING_SNAKE_CASE__ : Dict = torch.sum(torch.abs(_lowercase ) ) SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.full_loop() SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.sum(torch.abs(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Any = self.full_loop(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.sum(torch.abs(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def lowercase__ ( self : Optional[Any] ): # We specify different beta, so that the first alpha is 0.99 SCREAMING_SNAKE_CASE__ : List[str] = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 ) SCREAMING_SNAKE_CASE__ : Dict = torch.sum(torch.abs(_lowercase ) ) SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def lowercase__ ( self : Tuple ): # We specify different beta, so that the first alpha is 0.99 SCREAMING_SNAKE_CASE__ : Dict = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 ) SCREAMING_SNAKE_CASE__ : List[str] = torch.sum(torch.abs(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Any = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
35
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
504
0
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: list[int] , SCREAMING_SNAKE_CASE: str ): """simple docstring""" _lowerCAmelCase = int(SCREAMING_SNAKE_CASE ) # Initialize Result _lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(SCREAMING_SNAKE_CASE ): # Find denominations while int(SCREAMING_SNAKE_CASE ) >= int(SCREAMING_SNAKE_CASE ): total_value -= int(SCREAMING_SNAKE_CASE ) answer.append(SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _snake_case = [] _snake_case = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): _snake_case = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'Denomination {i}: ').strip())) _snake_case = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter _snake_case = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] _snake_case = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'Following is minimal change for {value}: ') _snake_case = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
491
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} _snake_case = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } _snake_case = { '''facebook/nllb-large-en-ro''': 1_0_2_4, '''facebook/nllb-200-distilled-600M''': 1_0_2_4, } # fmt: off _snake_case = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_: Optional[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_: Optional[Any] = NllbTokenizer SCREAMING_SNAKE_CASE_: List[int] = [] SCREAMING_SNAKE_CASE_: List[int] = [] def __init__( self : List[str] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : Dict="</s>" , UpperCAmelCase_ : Dict="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : Tuple="<pad>" , UpperCAmelCase_ : Union[str, Any]="<mask>" , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Tuple=False , **UpperCAmelCase_ : Any , ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _lowerCAmelCase = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _lowerCAmelCase = vocab_file _lowerCAmelCase = False if not self.vocab_file else True _lowerCAmelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCamelCase ( self : Any ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def __lowerCamelCase ( self : List[Any] , UpperCAmelCase_ : str ) -> None: """simple docstring""" _lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCamelCase ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCamelCase ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] , UpperCAmelCase_ : Optional[str] , **UpperCAmelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase = src_lang _lowerCAmelCase = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _lowerCAmelCase = self.convert_tokens_to_ids(UpperCAmelCase_ ) _lowerCAmelCase = tgt_lang_id return inputs def __lowerCamelCase ( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str = "eng_Latn" , UpperCAmelCase_ : Optional[List[str]] = None , UpperCAmelCase_ : str = "fra_Latn" , **UpperCAmelCase_ : List[str] , ) -> BatchEncoding: """simple docstring""" _lowerCAmelCase = src_lang _lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def __lowerCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCamelCase ( self : int , UpperCAmelCase_ : Optional[Any] ) -> None: """simple docstring""" _lowerCAmelCase = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id] _lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCamelCase ( self : Optional[int] , UpperCAmelCase_ : str ) -> None: """simple docstring""" _lowerCAmelCase = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id] _lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCamelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return _lowerCAmelCase = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
491
1
import os import re import shutil import sys import tempfile import unittest import black A__ : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. A__ : int = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, '''models/bert/''' ) ) lowercase__ = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase, '''src/transformers/models/bert/modeling_bert.py''' ), os.path.join(self.transformer_dir, '''models/bert/modeling_bert.py''' ), ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def lowercase__ ( self : Optional[int], lowerCamelCase : Optional[Any], lowerCamelCase : Dict, lowerCamelCase : Tuple, lowerCamelCase : List[Any]=None ): '''simple docstring''' lowercase__ = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowercase__ = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowercase__ = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119 ) lowercase__ = black.format_str(lowerCamelCase, mode=lowerCamelCase ) lowercase__ = os.path.join(self.transformer_dir, '''new_code.py''' ) with open(lowerCamelCase, '''w''', newline='''\n''' ) as f: f.write(lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name, overwrite=lowerCamelCase ) with open(lowerCamelCase, '''r''' ) as f: self.assertTrue(f.read(), lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' # Base copy consistency self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''', '''BertLMPredictionHead''', REFERENCE_CODE + '''\n''', ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''', '''BertLMPredictionHead''', lowerCamelCase, ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''', '''TestModelLMPredictionHead''', re.sub('''Bert''', '''TestModel''', lowerCamelCase ), ) # Copy consistency with a really long name lowercase__ = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""", F"""{long_class_name}LMPredictionHead""", re.sub('''Bert''', lowerCamelCase, lowerCamelCase ), ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''', '''TestModelLMPredictionHead''', lowerCamelCase, overwrite_result=re.sub('''Bert''', '''TestModel''', lowerCamelCase ), ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) lowercase__ , lowercase__ = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['''format_model_list'''] ) self.assertFalse(lowerCamelCase ) self.assertEqual(lowerCamelCase, lowerCamelCase ) lowercase__ , lowercase__ = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowercase__ , lowercase__ = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase, lowerCamelCase )
183
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING lowercase__ = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def lowercase__ ( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Any, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = AudioClassificationPipeline(model=lowerCamelCase, feature_extractor=lowerCamelCase ) # test with a raw waveform lowercase__ = np.zeros((34_000,) ) lowercase__ = np.zeros((14_000,) ) return audio_classifier, [audioa, audio] def lowercase__ ( self : str, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = examples lowercase__ = audio_classifier(lowerCamelCase ) # by default a model is initialized with num_labels=2 self.assertEqual( lowerCamelCase, [ {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, ], ) lowercase__ = audio_classifier(lowerCamelCase, top_k=1 ) self.assertEqual( lowerCamelCase, [ {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, ], ) self.run_torchaudio(lowerCamelCase ) @require_torchaudio def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any] ): '''simple docstring''' import datasets # test with a local file lowercase__ = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) lowercase__ = dataset[0]['''audio''']['''array'''] lowercase__ = audio_classifier(lowerCamelCase ) self.assertEqual( lowerCamelCase, [ {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, ], ) @require_torch def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = '''anton-l/wav2vec2-random-tiny-classifier''' lowercase__ = pipeline('''audio-classification''', model=lowerCamelCase ) lowercase__ = np.ones((8_000,) ) lowercase__ = audio_classifier(lowerCamelCase, top_k=4 ) lowercase__ = [ {'''score''': 0.0842, '''label''': '''no'''}, {'''score''': 0.0838, '''label''': '''up'''}, {'''score''': 0.0837, '''label''': '''go'''}, {'''score''': 0.0834, '''label''': '''right'''}, ] lowercase__ = [ {'''score''': 0.0845, '''label''': '''stop'''}, {'''score''': 0.0844, '''label''': '''on'''}, {'''score''': 0.0841, '''label''': '''right'''}, {'''score''': 0.0834, '''label''': '''left'''}, ] self.assertIn(nested_simplify(lowerCamelCase, decimals=4 ), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) lowercase__ = {'''array''': np.ones((8_000,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} lowercase__ = audio_classifier(lowerCamelCase, top_k=4 ) self.assertIn(nested_simplify(lowerCamelCase, decimals=4 ), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def lowercase__ ( self : List[str] ): '''simple docstring''' import datasets lowercase__ = '''superb/wav2vec2-base-superb-ks''' lowercase__ = pipeline('''audio-classification''', model=lowerCamelCase ) lowercase__ = datasets.load_dataset('''anton-l/superb_dummy''', '''ks''', split='''test''' ) lowercase__ = np.array(dataset[3]['''speech'''], dtype=np.floataa ) lowercase__ = audio_classifier(lowerCamelCase, top_k=4 ) self.assertEqual( nested_simplify(lowerCamelCase, decimals=3 ), [ {'''score''': 0.981, '''label''': '''go'''}, {'''score''': 0.007, '''label''': '''up'''}, {'''score''': 0.006, '''label''': '''_unknown_'''}, {'''score''': 0.001, '''label''': '''down'''}, ], ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass
183
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str]=7 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : Dict=18 , __UpperCamelCase : Optional[Any]=30 , __UpperCamelCase : List[Any]=400 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : int=None , __UpperCamelCase : str=True , ) -> Optional[int]: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = apply_ocr def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __UpperCamelCase ( self : int ) -> Union[str, Any]: A = LayoutLMvaImageProcessingTester(self ) @property def __UpperCamelCase ( self : List[str] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : Tuple ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'apply_ocr' ) ) def __UpperCamelCase ( self : int ) -> Optional[Any]: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __UpperCamelCase ( self : Any ) -> Any: pass def __UpperCamelCase ( self : Tuple ) -> Optional[int]: # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , __UpperCamelCase ) self.assertIsInstance(encoding.boxes , __UpperCamelCase ) # Test batched A = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCamelCase ( self : List[str] ) -> Any: # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCamelCase ( self : int ) -> Any: # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCamelCase ( self : List[str] ) -> Dict: # with apply_OCR = True A = LayoutLMvaImageProcessor() from datasets import load_dataset A = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) A = Image.open(ds[0]['file'] ).convert('RGB' ) A = image_processing(__UpperCamelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 A = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 A = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __UpperCamelCase ) self.assertListEqual(encoding.boxes , __UpperCamelCase ) # with apply_OCR = False A = LayoutLMvaImageProcessor(apply_ocr=__UpperCamelCase ) A = image_processing(__UpperCamelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
711
from collections import deque from .hash_table import HashTable class lowerCAmelCase__ ( _lowerCamelCase ): def __init__( self : Dict , *__UpperCamelCase : Tuple , **__UpperCamelCase : List[Any] ) -> Union[str, Any]: super().__init__(*__UpperCamelCase , **__UpperCamelCase ) def __UpperCamelCase ( self : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] ) -> int: A = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__UpperCamelCase ) A = self.values[key] def __UpperCamelCase ( self : Any ) -> List[str]: return ( sum(self.charge_factor - len(__UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def __UpperCamelCase ( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]=None ) -> Union[str, Any]: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__UpperCamelCase ) == 0 ): return key return super()._collision_resolution(__UpperCamelCase , __UpperCamelCase )
224
0
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.0_2 , __a=1e-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = num_heads __lowerCAmelCase = window_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = use_absolute_embeddings __lowerCAmelCase = patch_norm __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = is_training __lowerCAmelCase = scope __lowerCAmelCase = use_labels __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = encoder_stride def snake_case ( self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def snake_case ( self ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = SwinvaModel(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a ) __lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] =( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __UpperCAmelCase : str =( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str =False __UpperCAmelCase : List[Any] =False __UpperCAmelCase : Any =False __UpperCAmelCase : Tuple =False def snake_case ( self ): __lowerCAmelCase = SwinvaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a , embed_dim=37 ) def snake_case ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def snake_case ( self ): pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.attentions __lowerCAmelCase = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = config.window_size**2 __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __lowerCAmelCase = len(__a ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): __lowerCAmelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __lowerCAmelCase = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length __lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __lowerCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reshaped_hidden_states[0].shape __lowerCAmelCase = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCAmelCase = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True self.check_hidden_states_output(__a , __a , __a , __a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCAmelCase = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def snake_case ( self ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(__a ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case ( self ): return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def snake_case ( self ): __lowerCAmelCase = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( __a ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __lowerCAmelCase = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**__a ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __a ) __lowerCAmelCase = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
636
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =(KDPMaDiscreteScheduler,) __UpperCAmelCase : Optional[Any] =1_0 def snake_case ( self , **__a ): __lowerCAmelCase = { "num_train_timesteps": 11_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**__a ) return config def snake_case ( self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def snake_case ( self ): for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def snake_case ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def snake_case ( self ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) __lowerCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase = scheduler.scale_model_input(__a , __a ) __lowerCAmelCase = model(__a , __a ) __lowerCAmelCase = scheduler.step(__a , __a , __a ) __lowerCAmelCase = output.prev_sample __lowerCAmelCase = torch.sum(torch.abs(__a ) ) __lowerCAmelCase = torch.mean(torch.abs(__a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def snake_case ( self ): if torch_device == "mps": return __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase = scheduler.scale_model_input(__a , __a ) __lowerCAmelCase = model(__a , __a ) __lowerCAmelCase = scheduler.step(__a , __a , __a ) __lowerCAmelCase = output.prev_sample __lowerCAmelCase = torch.sum(torch.abs(__a ) ) __lowerCAmelCase = torch.mean(torch.abs(__a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def snake_case ( self ): if torch_device == "mps": return __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowerCAmelCase = scheduler.scale_model_input(__a , __a ) __lowerCAmelCase = model(__a , __a ) __lowerCAmelCase = scheduler.step(__a , __a , __a ) __lowerCAmelCase = output.prev_sample __lowerCAmelCase = torch.sum(torch.abs(__a ) ) __lowerCAmelCase = torch.mean(torch.abs(__a ) ) if str(__a ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
636
1
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int, lowerCamelCase : Any, lowerCamelCase : Tuple=13, lowerCamelCase : str=[30, 30], lowerCamelCase : Optional[Any]=2, lowerCamelCase : Any=3, lowerCamelCase : int=True, lowerCamelCase : int=True, lowerCamelCase : Union[str, Any]=32, lowerCamelCase : Optional[Any]=5, lowerCamelCase : List[str]=4, lowerCamelCase : Any=37, lowerCamelCase : List[Any]="gelu", lowerCamelCase : int=0.1, lowerCamelCase : Dict=0.1, lowerCamelCase : List[Any]=10, lowerCamelCase : Tuple=0.02, lowerCamelCase : int=3, lowerCamelCase : Optional[Any]=None, lowerCamelCase : str=8, lowerCamelCase : Tuple=10, )-> Optional[int]: lowerCamelCase__ : Union[str, Any] =parent lowerCamelCase__ : List[Any] =batch_size lowerCamelCase__ : Optional[Any] =image_size lowerCamelCase__ : str =patch_size lowerCamelCase__ : Union[str, Any] =num_channels lowerCamelCase__ : Optional[int] =is_training lowerCamelCase__ : Union[str, Any] =use_labels lowerCamelCase__ : Optional[int] =hidden_size lowerCamelCase__ : List[Any] =num_hidden_layers lowerCamelCase__ : Tuple =num_attention_heads lowerCamelCase__ : Tuple =intermediate_size lowerCamelCase__ : List[Any] =hidden_act lowerCamelCase__ : Tuple =hidden_dropout_prob lowerCamelCase__ : List[str] =attention_probs_dropout_prob lowerCamelCase__ : Any =type_sequence_label_size lowerCamelCase__ : Tuple =initializer_range lowerCamelCase__ : Optional[int] =num_labels lowerCamelCase__ : int =scope lowerCamelCase__ : Dict =n_targets lowerCamelCase__ : List[str] =num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase__ : Any =(image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase__ : Union[str, Any] =num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] )-> List[Any]: lowerCamelCase__ : Any =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase__ : Any =None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase__ : Tuple =[] for i in range(self.batch_size ): lowerCamelCase__ : Tuple ={} lowerCamelCase__ : int =torch.randint( high=self.num_labels, size=(self.n_targets,), device=lowerCamelCase ) lowerCamelCase__ : Dict =torch.rand(self.n_targets, 4, device=lowerCamelCase ) labels.append(lowerCamelCase ) lowerCamelCase__ : List[str] =self.get_config() return config, pixel_values, labels def snake_case ( self : Dict )-> int: return YolosConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, num_detection_tokens=self.num_detection_tokens, num_labels=self.num_labels, ) def snake_case ( self : int, lowerCamelCase : List[str], lowerCamelCase : Optional[int], lowerCamelCase : List[str] )-> Dict: lowerCamelCase__ : List[Any] =YolosModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCamelCase__ : str =model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : List[str], lowerCamelCase : Optional[Any] )-> List[Any]: lowerCamelCase__ : List[Any] =YolosForObjectDetection(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCamelCase__ : str =model(pixel_values=lowerCamelCase ) lowerCamelCase__ : Optional[int] =model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase__ : List[str] =model(pixel_values=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : List[Any] )-> str: lowerCamelCase__ : int =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str =config_and_inputs lowerCamelCase__ : Any ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _a = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def snake_case ( self : Tuple, lowerCamelCase : List[Any], lowerCamelCase : Dict, lowerCamelCase : List[str]=False )-> Optional[Any]: lowerCamelCase__ : Any =super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase__ : int =[] for i in range(self.model_tester.batch_size ): lowerCamelCase__ : Union[str, Any] ={} lowerCamelCase__ : List[str] =torch.ones( size=(self.model_tester.n_targets,), device=lowerCamelCase, dtype=torch.long ) lowerCamelCase__ : str =torch.ones( self.model_tester.n_targets, 4, device=lowerCamelCase, dtype=torch.float ) labels.append(lowerCamelCase ) lowerCamelCase__ : List[Any] =labels return inputs_dict def snake_case ( self : Any )-> List[Any]: lowerCamelCase__ : str =YolosModelTester(self ) lowerCamelCase__ : Optional[int] =ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def snake_case ( self : Optional[int] )-> Optional[Any]: self.config_tester.run_common_tests() def snake_case ( self : List[str] )-> Optional[Any]: # YOLOS does not use inputs_embeds pass def snake_case ( self : List[str] )-> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] =model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCamelCase__ : Optional[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear ) ) def snake_case ( self : str )-> List[Any]: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] =model_class(lowerCamelCase ) lowerCamelCase__ : Dict =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Tuple =[*signature.parameters.keys()] lowerCamelCase__ : Any =['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def snake_case ( self : List[str] )-> int: lowerCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def snake_case ( self : Dict )-> int: lowerCamelCase__ , lowerCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[int] =True # in YOLOS, the seq_len is different lowerCamelCase__ : List[str] =self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase__ : List[Any] =True lowerCamelCase__ : Any =False lowerCamelCase__ : Any =True lowerCamelCase__ : Optional[int] =model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Tuple =model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowerCamelCase__ : Dict =outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__ : List[Any] =True lowerCamelCase__ : List[Any] =model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Any =model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowerCamelCase__ : Union[str, Any] =outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) lowerCamelCase__ : Union[str, Any] =len(lowerCamelCase ) # Check attention is always last and order is fine lowerCamelCase__ : List[Any] =True lowerCamelCase__ : Optional[Any] =True lowerCamelCase__ : List[str] =model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[int] =model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowerCamelCase__ : int =1 self.assertEqual(out_len + added_hidden_states, len(lowerCamelCase ) ) lowerCamelCase__ : Optional[Any] =outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def snake_case ( self : List[Any] )-> Union[str, Any]: def check_hidden_states_output(lowerCamelCase : str, lowerCamelCase : Dict, lowerCamelCase : str ): lowerCamelCase__ : Optional[Any] =model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : List[Any] =model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowerCamelCase__ : int =outputs.hidden_states lowerCamelCase__ : Tuple =getattr( self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) # YOLOS has a different seq_length lowerCamelCase__ : Optional[Any] =self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) lowerCamelCase__ , lowerCamelCase__ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Tuple =True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : List[str] =True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def snake_case ( self : Union[str, Any] )-> str: lowerCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*lowerCamelCase ) @slow def snake_case ( self : Optional[Any] )-> Dict: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any =YolosModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case ( self : Tuple )-> Union[str, Any]: return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Union[str, Any] )-> str: lowerCamelCase__ : str =YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(lowerCamelCase ) lowerCamelCase__ : Tuple =self.default_image_processor lowerCamelCase__ : List[str] =prepare_img() lowerCamelCase__ : Optional[Any] =image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ : List[str] =model(inputs.pixel_values ) # verify outputs lowerCamelCase__ : Tuple =torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowerCamelCase__ : Optional[int] =torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]], device=lowerCamelCase, ) lowerCamelCase__ : int =torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]], device=lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], lowerCamelCase, atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], lowerCamelCase, atol=1E-4 ) ) # verify postprocessing lowerCamelCase__ : Union[str, Any] =image_processor.post_process_object_detection( lowerCamelCase, threshold=0.3, target_sizes=[image.size[::-1]] )[0] lowerCamelCase__ : Optional[Any] =torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(lowerCamelCase ) lowerCamelCase__ : Tuple =[75, 75, 17, 63, 17] lowerCamelCase__ : Tuple =torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(lowerCamelCase ) self.assertEqual(len(results['''scores'''] ), 5 ) self.assertTrue(torch.allclose(results['''scores'''], lowerCamelCase, atol=1E-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist(), lowerCamelCase ) self.assertTrue(torch.allclose(results['''boxes'''][0, :], lowerCamelCase ) )
625
"""simple docstring""" import colorsys from PIL import Image # type: ignore def snake_case__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Optional[Any] =x lowerCamelCase__ : Any =y for step in range(__lowerCamelCase ): # noqa: B007 lowerCamelCase__ : List[Any] =a * a - b * b + x lowerCamelCase__ : Optional[int] =2 * a * b + y lowerCamelCase__ : Union[str, Any] =a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def snake_case__ ( __lowerCamelCase : float ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def snake_case__ ( __lowerCamelCase : float ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(__lowerCamelCase , 1 , 1 ) ) def snake_case__ ( __lowerCamelCase : int = 800 , __lowerCamelCase : int = 600 , __lowerCamelCase : float = -0.6 , __lowerCamelCase : float = 0 , __lowerCamelCase : float = 3.2 , __lowerCamelCase : int = 50 , __lowerCamelCase : bool = True , ): """simple docstring""" lowerCamelCase__ : Optional[Any] =Image.new('''RGB''' , (image_width, image_height) ) lowerCamelCase__ : Optional[int] =img.load() # loop through the image-coordinates for image_x in range(__lowerCamelCase ): for image_y in range(__lowerCamelCase ): # determine the figure-coordinates based on the image-coordinates lowerCamelCase__ : Optional[Any] =figure_width / image_width * image_height lowerCamelCase__ : Dict =figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCamelCase__ : Optional[int] =figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCamelCase__ : Any =get_distance(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCamelCase__ : int =get_color_coded_rgb(__lowerCamelCase ) else: lowerCamelCase__ : Optional[int] =get_black_and_white_rgb(__lowerCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowercase : Optional[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
625
1
'''simple docstring''' from bisect import bisect from itertools import accumulate def __a ( _UpperCamelCase: Any , _UpperCamelCase: Optional[int] , _UpperCamelCase: List[Any] , _UpperCamelCase: List[str] ) -> Tuple: """simple docstring""" _snake_case = sorted(zip(_UpperCamelCase , _UpperCamelCase ) , key=lambda _UpperCamelCase : x[0] / x[1] , reverse=_UpperCamelCase ) _snake_case , _snake_case = [i[0] for i in r], [i[1] for i in r] _snake_case = list(accumulate(_UpperCamelCase ) ) _snake_case = bisect(_UpperCamelCase , _UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
185
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str=None ) -> int: """simple docstring""" super().__init__( _lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , index=_lowerCAmelCase , init_retrieval=_lowerCAmelCase , ) __lowercase = None def _a ( self : int , _lowerCAmelCase : int ) -> Any: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __lowercase = self._infer_socket_ifname() # avoid clash with the NCCL port __lowercase = str(distributed_port + 1 ) __lowercase = dist.new_group(ranks=_lowerCAmelCase , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _a ( self : Tuple ) -> List[str]: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=torch.floataa ) -> Tuple: """simple docstring""" __lowercase = torch.empty(_lowerCAmelCase , dtype=_lowerCAmelCase ) dist.scatter(_lowerCAmelCase , src=0 , scatter_list=_lowerCAmelCase , group=self.process_group ) return target_tensor def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __lowercase = next((addr for addr in addrs if addr.startswith("""e""" )) , _lowerCAmelCase ) return ifname def _a ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __lowercase , __lowercase = self._main_retrieve(_lowerCAmelCase , _lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCAmelCase ) # distributed training __lowercase = dist.get_world_size(group=self.process_group ) # gather logic __lowercase = None if self._is_main(): __lowercase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_lowerCAmelCase )] dist.gather(torch.tensor(_lowerCAmelCase ) , dst=0 , gather_list=_lowerCAmelCase , group=self.process_group ) # scatter logic __lowercase = question_hidden_states.shape[0] __lowercase = [] __lowercase = [] if self._is_main(): assert len(_lowerCAmelCase ) == world_size __lowercase , __lowercase = self._main_retrieve(torch.cat(_lowerCAmelCase ).numpy() , _lowerCAmelCase ) __lowercase , __lowercase = torch.tensor(_lowerCAmelCase ), torch.tensor(_lowerCAmelCase ) __lowercase = self._chunk_tensor(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = self._chunk_tensor(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = self._scattered(_lowerCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) __lowercase = self._scattered(_lowerCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_lowerCAmelCase )
80
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __lowercase ( _A ): lowercase = 'vivit' def __init__( self : Any , __lowerCamelCase : List[str]=2_24 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : int=[2, 16, 16] , __lowerCamelCase : Tuple=3 , __lowerCamelCase : int=7_68 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : int=30_72 , __lowerCamelCase : Union[str, Any]="gelu_fast" , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : str=1E-06 , __lowerCamelCase : Tuple=True , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = num_frames lowercase = tubelet_size lowercase = num_channels lowercase = qkv_bias super().__init__(**__lowerCamelCase )
720
from __future__ import annotations from collections import deque class __lowercase : def __init__( self : Dict , __lowerCamelCase : list[str] ) -> List[str]: '''simple docstring''' lowercase = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(__lowerCamelCase ) self.set_fail_transitions() def __a ( self : str , __lowerCamelCase : int , __lowerCamelCase : str ) -> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __a ( self : List[Any] , __lowerCamelCase : str ) -> None: '''simple docstring''' lowercase = 0 for character in keyword: lowercase = self.find_next_state(__lowerCamelCase , __lowerCamelCase ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase = len(self.adlist ) - 1 else: lowercase = next_state self.adlist[current_state]["output"].append(__lowerCamelCase ) def __a ( self : int ) -> None: '''simple docstring''' lowercase = deque() for node in self.adlist[0]["next_states"]: q.append(__lowerCamelCase ) lowercase = 0 while q: lowercase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__lowerCamelCase ) lowercase = self.adlist[r]['''fail_state'''] while ( self.find_next_state(__lowerCamelCase , self.adlist[child]['''value'''] ) is None and state != 0 ): lowercase = self.adlist[state]['''fail_state'''] lowercase = self.find_next_state( __lowerCamelCase , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: lowercase = 0 lowercase = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def __a ( self : List[str] , __lowerCamelCase : str ) -> dict[str, list[int]]: '''simple docstring''' lowercase = {} # returns a dict with keywords and list of its occurrences lowercase = 0 for i in range(len(__lowerCamelCase ) ): while ( self.find_next_state(__lowerCamelCase , string[i] ) is None and current_state != 0 ): lowercase = self.adlist[current_state]['''fail_state'''] lowercase = self.find_next_state(__lowerCamelCase , string[i] ) if next_state is None: lowercase = 0 else: lowercase = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase = [] result[key].append(i - len(__lowerCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
479
0
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports snake_case_ : Optional[Any] = ''' import os ''' snake_case_ : Optional[Any] = ''' def foo(): import os return False ''' snake_case_ : str = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case_ : Tuple = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case_ : Optional[Any] = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case_ : List[str] = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case_ : Optional[Any] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case_ : Optional[int] = ''' import os try: import bar except: raise ValueError() ''' snake_case_ : Optional[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case_ : List[Any] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case_ : int = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , A_ ) def lowercase__( _UpperCamelCase : int , _UpperCamelCase : Optional[Any] )-> Tuple: """simple docstring""" _UpperCamelCase = os.path.join(A_ , "test_file.py" ) with open(A_ , "w" ) as _tmp_file: _tmp_file.write(A_ ) _UpperCamelCase = get_imports(A_ ) assert parsed_imports == ["os"]
138
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_=None , A_=None ): if attention_mask is None: lowerCAmelCase__ : Optional[int] = tf.cast(tf.math.not_equal(A_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = OPTConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : str ,lowercase_ : List[Any] ,lowercase_ : Optional[int]=1_3 ,lowercase_ : str=7 ,lowercase_ : int=True ,lowercase_ : List[str]=False ,lowercase_ : Optional[int]=9_9 ,lowercase_ : Union[str, Any]=1_6 ,lowercase_ : Any=2 ,lowercase_ : Tuple=4 ,lowercase_ : Union[str, Any]=4 ,lowercase_ : int="gelu" ,lowercase_ : Tuple=0.1 ,lowercase_ : Optional[Any]=0.1 ,lowercase_ : List[str]=2_0 ,lowercase_ : Union[str, Any]=2 ,lowercase_ : Union[str, Any]=1 ,lowercase_ : Tuple=0 ,lowercase_ : List[Any]=1_6 ,lowercase_ : Union[str, Any]=1_6 ,): lowerCAmelCase__ : Dict = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : Dict = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Optional[Any] = use_labels lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : Optional[int] = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : Union[str, Any] = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : int = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : int = max_position_embeddings lowerCAmelCase__ : Any = eos_token_id lowerCAmelCase__ : List[Any] = pad_token_id lowerCAmelCase__ : Any = bos_token_id lowerCAmelCase__ : Dict = embed_dim lowerCAmelCase__ : int = word_embed_proj_dim lowerCAmelCase__ : Union[str, Any] = False def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) lowerCAmelCase__ : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) lowerCAmelCase__ : int = tf.concat([input_ids, eos_tensor] ,axis=1 ) lowerCAmelCase__ : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,embed_dim=self.embed_dim ,word_embed_proj_dim=self.word_embed_proj_dim ,is_encoder_decoder=lowercase_ ,**self.config_updates ,) lowerCAmelCase__ : Optional[Any] = prepare_opt_inputs_dict(lowercase_ ,lowercase_ ) return config, inputs_dict def __lowerCAmelCase ( self : List[Any] ,lowercase_ : int ,lowercase_ : List[Any] ): lowerCAmelCase__ : Tuple = TFOPTModel(config=lowercase_ ) lowerCAmelCase__ : Tuple = inputs_dict['''input_ids'''] lowerCAmelCase__ : Optional[int] = input_ids[:1, :] lowerCAmelCase__ : List[str] = inputs_dict['''attention_mask'''][:1, :] lowerCAmelCase__ : Any = 1 # first forward pass lowerCAmelCase__ : Dict = model(lowercase_ ,attention_mask=lowercase_ ,use_cache=lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ : List[Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowerCAmelCase__ : Tuple = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and lowerCAmelCase__ : Optional[Any] = tf.concat([input_ids, next_tokens] ,axis=-1 ) lowerCAmelCase__ : Tuple = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) lowerCAmelCase__ : Any = model(lowercase_ ,attention_mask=lowercase_ )[0] lowerCAmelCase__ : Any = model(lowercase_ ,attention_mask=lowercase_ ,past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice lowerCAmelCase__ : str = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) lowerCAmelCase__ : List[str] = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase__ : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ ,lowercase_ ,rtol=1E-3 ) @require_tf class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowercase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowercase__ = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = 10 def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : List[Any] = TFOPTModelTester(self ) lowerCAmelCase__ : Optional[Any] = ConfigTester(self ,config_class=lowercase_ ) def __lowerCAmelCase ( self : str ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ : Optional[Any] ,lowercase_ : List[Any] ): if hasattr(lowercase_ ,'''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ ,'''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase__ : Optional[int] = model_class(config=lowercase_ ) lowerCAmelCase__ : List[Any] = _get_word_embedding_weight(lowercase_ ,model.get_input_embeddings() ) lowerCAmelCase__ : Optional[Any] = _get_word_embedding_weight(lowercase_ ,model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = _get_word_embedding_weight(lowercase_ ,model.get_input_embeddings() ) lowerCAmelCase__ : List[Any] = _get_word_embedding_weight(lowercase_ ,model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase__ : Optional[Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] ,lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase__ : Optional[Any] = True for pa, pa in zip(old_input_embeddings.value() ,new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase__ : str = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] ,lowercase_ ) lowerCAmelCase__ : Dict = True for pa, pa in zip(old_output_embeddings.value() ,new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase__ : List[Any] = False self.assertTrue(lowercase_ ) def __SCREAMING_SNAKE_CASE ( A_ ): return tf.constant(A_ , dtype=tf.intaa ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowercase__ = 99 def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Dict = tf.ones((4, 1) ,dtype=tf.intaa ) * 2 lowerCAmelCase__ : Any = tf.concat([ids_tensor((4, 6) ,self.vocab_size - 3 ) + 3, eos_column_vector] ,axis=1 ) lowerCAmelCase__ : str = input_ids.shape[0] lowerCAmelCase__ : str = OPTConfig( vocab_size=self.vocab_size ,hidden_size=2_4 ,num_hidden_layers=2 ,num_attention_heads=2 ,ffn_dim=3_2 ,max_position_embeddings=4_8 ,eos_token_id=2 ,pad_token_id=1 ,bos_token_id=0 ,) return config, input_ids, batch_size @require_sentencepiece @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Tuple = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) lowerCAmelCase__ : str = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase__ : List[Any] = tf.not_equal(lowercase_ ,model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase__ : List[str] = model(input_ids=lowercase_ ,attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase__ : Optional[int] = (1, 1_1, 5_1_2) self.assertEqual(output.shape ,lowercase_ ) lowerCAmelCase__ : Any = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] ,lowercase_ ,atol=4E-3 ) ) lowerCAmelCase__ : Any = tf.function(lowercase_ ,jit_compile=lowercase_ ) lowerCAmelCase__ : Optional[Any] = xla_generate(lowercase_ ,lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] ,lowercase_ ,atol=4E-2 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Optional[Any] ): super().setUp() lowerCAmelCase__ : Optional[int] = '''facebook/opt-350m''' def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[int] = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase__ : Union[str, Any] = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase__ : int = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase__ : Optional[Any] = tokenizer(lowercase_ ,return_tensors='''tf''' ,padding=lowercase_ ,add_special_tokens=lowercase_ ) lowerCAmelCase__ : int = tf.math.reduce_mean(model(inputs.input_ids ,attention_mask=inputs.attention_mask )[0] ,axis=-1 ) lowerCAmelCase__ : List[str] = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(lowercase_ ,lowercase_ ,atol=1E-4 ) ) lowerCAmelCase__ : int = tf.function(lowercase_ ,jit_compile=lowercase_ ) lowerCAmelCase__ : Tuple = tf.math.reduce_mean(xla_generate(inputs.input_ids ,attention_mask=inputs.attention_mask )[0] ,axis=-1 ) self.assertTrue(np.allclose(lowercase_ ,lowercase_ ,atol=1E-4 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self : List[str] ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Union[str, Any] = '''facebook/opt-125m''' lowerCAmelCase__ : str = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] lowerCAmelCase__ : Any = [] lowerCAmelCase__ : int = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase__ : int = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase__ : Union[str, Any] = tokenizer(lowercase_ ,return_tensors='''tf''' ).input_ids lowerCAmelCase__ : Any = model.generate(lowercase_ ,max_length=1_0 ) lowerCAmelCase__ : Optional[int] = tokenizer.batch_decode(lowercase_ ,skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Union[str, Any] = '''facebook/opt-350m''' lowerCAmelCase__ : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase__ : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase__ : Optional[Any] = '''left''' # use different length sentences to test batching lowerCAmelCase__ : Dict = [ '''Hello, my dog is a little''', '''Today, I''', ] lowerCAmelCase__ : Union[str, Any] = tokenizer(lowercase_ ,return_tensors='''tf''' ,padding=lowercase_ ) lowerCAmelCase__ : Optional[Any] = inputs['''input_ids'''] lowerCAmelCase__ : str = model.generate(input_ids=lowercase_ ,attention_mask=inputs['''attention_mask'''] ) lowerCAmelCase__ : Optional[Any] = tokenizer(sentences[0] ,return_tensors='''tf''' ).input_ids lowerCAmelCase__ : Optional[Any] = model.generate(input_ids=lowercase_ ) lowerCAmelCase__ : Optional[int] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] ,tf.intaa ) ) lowerCAmelCase__ : Any = tokenizer(sentences[1] ,return_tensors='''tf''' ).input_ids lowerCAmelCase__ : Optional[int] = model.generate(input_ids=lowercase_ ,max_length=model.config.max_length - num_paddings ) lowerCAmelCase__ : Any = tokenizer.batch_decode(lowercase_ ,skip_special_tokens=lowercase_ ) lowerCAmelCase__ : List[Any] = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=lowercase_ ) lowerCAmelCase__ : Optional[Any] = tokenizer.decode(output_padded[0] ,skip_special_tokens=lowercase_ ) lowerCAmelCase__ : List[Any] = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowercase_ ,lowercase_ ) self.assertListEqual(lowercase_ ,[non_padded_sentence, padded_sentence] ) def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : List[Any] = '''facebook/opt-350m''' lowerCAmelCase__ : Tuple = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] lowerCAmelCase__ : int = [] lowerCAmelCase__ : int = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase__ : List[str] = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase__ : Optional[Any] = tokenizer(lowercase_ ,return_tensors='''tf''' ).input_ids lowerCAmelCase__ : Optional[Any] = model.generate(lowercase_ ,max_length=1_0 ) lowerCAmelCase__ : str = tokenizer.batch_decode(lowercase_ ,skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ ,lowercase_ )
450
0
'''simple docstring''' import argparse from collections import defaultdict import yaml UpperCamelCase__ ='docs/source/en/_toctree.yml' def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = defaultdict(snake_case__ ) for doc in model_doc: counts[doc["local"]] += 1 _SCREAMING_SNAKE_CASE : Any = [key for key, value in counts.items() if value > 1] _SCREAMING_SNAKE_CASE : Optional[Any] = [] for duplicate_key in duplicates: _SCREAMING_SNAKE_CASE : Dict = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(snake_case__ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(snake_case__, key=lambda __lowerCamelCase : s["title"].lower() ) def lowerCamelCase__ (__lowerCamelCase=False ): with open(snake_case__, encoding="utf-8" ) as f: _SCREAMING_SNAKE_CASE : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc _SCREAMING_SNAKE_CASE : int = 0 while content[api_idx]["title"] != "API": api_idx += 1 _SCREAMING_SNAKE_CASE : List[Any] = content[api_idx]["""sections"""] # Then to the model doc _SCREAMING_SNAKE_CASE : Optional[int] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _SCREAMING_SNAKE_CASE : List[str] = api_doc[model_idx]["""sections"""] _SCREAMING_SNAKE_CASE : List[str] = [(idx, section) for idx, section in enumerate(snake_case__ ) if """sections""" in section] _SCREAMING_SNAKE_CASE : Optional[Any] = False for idx, modality_doc in modalities_docs: _SCREAMING_SNAKE_CASE : int = modality_doc["""sections"""] _SCREAMING_SNAKE_CASE : Tuple = clean_model_doc_toc(snake_case__ ) if old_modality_doc != new_modality_doc: _SCREAMING_SNAKE_CASE : Optional[Any] = True if overwrite: _SCREAMING_SNAKE_CASE : Optional[int] = new_modality_doc if diff: if overwrite: _SCREAMING_SNAKE_CASE : Optional[int] = model_doc _SCREAMING_SNAKE_CASE : Union[str, Any] = api_doc with open(snake_case__, "w", encoding="utf-8" ) as f: f.write(yaml.dump(snake_case__, allow_unicode=snake_case__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ =parser.parse_args() check_model_doc(args.fix_and_overwrite)
706
def lowerCamelCase__ (__lowerCamelCase = 10**9 ): _SCREAMING_SNAKE_CASE : List[str] = 1 _SCREAMING_SNAKE_CASE : Any = 2 _SCREAMING_SNAKE_CASE : List[Any] = 0 _SCREAMING_SNAKE_CASE : Dict = 0 _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _SCREAMING_SNAKE_CASE : Tuple = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"{solution() = }")
381
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = '''ylacombe/bark-small''' snake_case__ = tempfile.mkdtemp() snake_case__ = '''en_speaker_1''' snake_case__ = '''This is a test string''' snake_case__ = '''speaker_embeddings_path.json''' snake_case__ = '''speaker_embeddings''' def SCREAMING_SNAKE_CASE__ ( self:Any , **_a:List[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.get_tokenizer() snake_case__ = BarkProcessor(tokenizer=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) snake_case__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) snake_case__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) snake_case__ = 35 snake_case__ = 2 snake_case__ = 8 snake_case__ = { '''semantic_prompt''': np.ones(_a ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset snake_case__ = processor(text=self.input_string , voice_preset=_a ) snake_case__ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_a , np.array([] ) ).tolist() ) # test loading voice preset from npz file snake_case__ = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(_a , **_a ) snake_case__ = processor(text=self.input_string , voice_preset=_a ) snake_case__ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_a , np.array([] ) ).tolist() ) # test loading voice preset from the hub snake_case__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = self.get_tokenizer() snake_case__ = BarkProcessor(tokenizer=_a ) snake_case__ = processor(text=self.input_string ) snake_case__ = tokenizer( self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
33
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A: str = logging.get_logger(__name__) A: Optional[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : List[Any] = 'mra' def __init__( self , _SCREAMING_SNAKE_CASE=50265 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="full" , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : List[str] = position_embedding_type UpperCAmelCase : List[Any] = block_per_row UpperCAmelCase : int = approx_mode UpperCAmelCase : Optional[Any] = initial_prior_first_n_blocks UpperCAmelCase : Optional[Any] = initial_prior_diagonal_n_blocks
713
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer A: List[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[int] = 'AutoTokenizer' __lowerCAmelCase : str = ['tokenizer'] __lowerCAmelCase : Any = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = speaker_embeddings @classmethod def SCREAMING_SNAKE_CASE ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , **_SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' if speaker_embeddings_dict_path is not None: UpperCAmelCase : Any = get_file_from_repo( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , subfolder=kwargs.pop("""subfolder""" , _SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("""cache_dir""" , _SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("""force_download""" , _SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("""proxies""" , _SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("""resume_download""" , _SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("""local_files_only""" , _SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("""use_auth_token""" , _SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("""revision""" , _SCREAMING_SNAKE_CASE ) , ) if speaker_embeddings_path is None: logger.warning( F"`{os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) UpperCAmelCase : Optional[int] = None else: with open(_SCREAMING_SNAKE_CASE ) as speaker_embeddings_json: UpperCAmelCase : List[str] = json.load(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : List[str] = None UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return cls(tokenizer=_SCREAMING_SNAKE_CASE , speaker_embeddings=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , _SCREAMING_SNAKE_CASE="speaker_embeddings" , _SCREAMING_SNAKE_CASE = False , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """v2""" ) , exist_ok=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = {} UpperCAmelCase : Union[str, Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": UpperCAmelCase : Optional[Any] = self._load_voice_preset(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , _SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}.npy" ) UpperCAmelCase : Tuple = tmp_dict with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """w""" ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) super().save_pretrained(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[int] = self.speaker_embeddings[voice_preset] UpperCAmelCase : List[Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) UpperCAmelCase : List[str] = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , _SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("""cache_dir""" , _SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("""force_download""" , _SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("""proxies""" , _SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("""resume_download""" , _SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("""local_files_only""" , _SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("""use_auth_token""" , _SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("""revision""" , _SCREAMING_SNAKE_CASE ) , ) if path is None: raise ValueError( F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) UpperCAmelCase : List[str] = np.load(_SCREAMING_SNAKE_CASE ) return voice_preset_dict def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE = None ) -> List[str]: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="pt" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: '''simple docstring''' if voice_preset is not None and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): UpperCAmelCase : Dict = self._load_voice_preset(_SCREAMING_SNAKE_CASE ) else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not voice_preset.endswith(""".npz""" ): UpperCAmelCase : Tuple = voice_preset + """.npz""" UpperCAmelCase : Union[str, Any] = np.load(_SCREAMING_SNAKE_CASE ) if voice_preset is not None: self._validate_voice_preset_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = self.tokenizer( _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if voice_preset is not None: UpperCAmelCase : List[Any] = voice_preset return encoded_text
359
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowerCamelCase = None __lowerCamelCase = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowerCamelCase = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class _snake_case : """simple docstring""" lowerCamelCase_ = True lowerCamelCase_ = None # Automatically constructed lowerCamelCase_ = "PIL.Image.Image" lowerCamelCase_ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCamelCase_ = field(default='''Image''' ,init=a_ ,repr=a_ ) def __call__( self ) -> Tuple: """simple docstring""" return self.pa_type def lowercase_ ( self , a ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(a , a ): _A = np.array(a ) if isinstance(a , a ): return {"path": value, "bytes": None} elif isinstance(a , a ): return {"path": None, "bytes": value} elif isinstance(a , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a ) elif isinstance(a , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def lowercase_ ( self , a , a=None ) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: _A = {} _A = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(a ): _A = PIL.Image.open(a ) else: _A = path.split('''::''' )[-1] try: _A = string_to_dict(a , config.HUB_DATASETS_URL )["""repo_id"""] _A = token_per_repo_id.get(a ) except ValueError: _A = None with xopen(a , '''rb''' , use_auth_token=a ) as f: _A = BytesIO(f.read() ) _A = PIL.Image.open(bytes_ ) else: _A = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase_ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def lowercase_ ( self , a ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): _A = pa.array([None] * len(a ) , type=pa.binary() ) _A = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _A = pa.array([None] * len(a ) , type=pa.string() ) _A = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: _A = storage.field('''bytes''' ) else: _A = pa.array([None] * len(a ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: _A = storage.field('''path''' ) else: _A = pa.array([None] * len(a ) , type=pa.string() ) _A = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _A = pa.array( [encode_np_array(np.array(a ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _A = pa.array([None] * len(a ) , type=pa.string() ) _A = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(a , self.pa_type ) def lowercase_ ( self , a ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a ): with xopen(a , '''rb''' ) as f: _A = f.read() return bytes_ _A = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _A = pa.array( [os.path.basename(a ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) _A = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(a , self.pa_type ) def UpperCAmelCase__ ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _A = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCAmelCase__ ( __snake_case ) -> bytes: _A = BytesIO() if image.format in list_image_compression_formats(): _A = image.format else: _A = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__A , format=__A ) return buffer.getvalue() def UpperCAmelCase__ ( __snake_case ) -> dict: if hasattr(__A , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__A )} def UpperCAmelCase__ ( __snake_case ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) _A = array.dtype _A = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER _A = dtype.kind _A = dtype.itemsize _A = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _A = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _A = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _A = dtype_byteorder + dtype_kind + str(__A ) _A = np.dtype(__A ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) _A = PIL.Image.fromarray(array.astype(__A ) ) return {"path": None, "bytes": image_to_bytes(__A )} def UpperCAmelCase__ ( __snake_case ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: _A = first_non_null_value(__A ) if isinstance(__A , __A ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__A , np.ndarray ): _A = no_op_if_value_is_null(__A ) return [obj_to_image_dict_func(__A ) for obj in objs] elif isinstance(__A , PIL.Image.Image ): _A = no_op_if_value_is_null(__A ) return [obj_to_image_dict_func(__A ) for obj in objs] else: return objs else: return objs
317
def snake_case_ (__A : list[int] , __A : list[int] ) -> None: __lowerCAmelCase : Union[str, Any] = len(__A ) print("""The following activities are selected:""" ) # The first activity is always selected __lowerCAmelCase : str = 0 print(__A , end=""",""" ) # Consider rest of the activities for j in range(__A ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__A , end=""",""" ) __lowerCAmelCase : Tuple = j if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = [1, 3, 0, 5, 8, 5] __UpperCAmelCase = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
0
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class snake_case_ : """simple docstring""" pass
455
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = """ClapFeatureExtractor""" _lowerCamelCase = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self ,lowercase ,lowercase): """simple docstring""" super().__init__(lowercase ,lowercase) def __call__( self ,lowercase=None ,lowercase=None ,lowercase=None ,**lowercase): """simple docstring""" UpperCAmelCase_ : Dict = kwargs.pop("sampling_rate" ,lowercase) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none.") if text is not None: UpperCAmelCase_ : List[str] = self.tokenizer(lowercase ,return_tensors=lowercase ,**lowercase) if audios is not None: UpperCAmelCase_ : str = self.feature_extractor( lowercase ,sampling_rate=lowercase ,return_tensors=lowercase ,**lowercase) if text is not None and audios is not None: UpperCAmelCase_ : Optional[int] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase) ,tensor_type=lowercase) def A_ ( self ,*lowercase ,**lowercase): """simple docstring""" return self.tokenizer.batch_decode(*lowercase ,**lowercase) def A_ ( self ,*lowercase ,**lowercase): """simple docstring""" return self.tokenizer.decode(*lowercase ,**lowercase) @property def A_ ( self): """simple docstring""" UpperCAmelCase_ : str = self.tokenizer.model_input_names UpperCAmelCase_ : str = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
455
1
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def UpperCamelCase ( _lowerCAmelCase : str, _lowerCAmelCase : Any=False ) -> Tuple: try: _UpperCAmelCase : List[str] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase : Tuple = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase : Any = strtobool(_lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value lowerCamelCase__ : Tuple = parse_flag_from_env('''RUN_SLOW''', default=False) def UpperCamelCase ( _lowerCAmelCase : str ) -> str: return unittest.skip("""Test was skipped""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : str ) -> Any: return unittest.skipUnless(_run_slow_tests, """test is slow""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : List[str] ) -> Any: return unittest.skipUnless(not torch.cuda.is_available(), """test requires only a CPU""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Union[str, Any] ) -> int: return unittest.skipUnless(torch.cuda.is_available(), """test requires a GPU""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: return unittest.skipUnless(is_xpu_available(), """test requires a XPU""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : int ) -> Union[str, Any]: return unittest.skipUnless(is_mps_available(), """test requires a `mps` backend support in `torch`""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : List[Any] ) -> Dict: return unittest.skipUnless( is_transformers_available() and is_datasets_available(), """test requires the Hugging Face suite""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : int ) -> str: return unittest.skipUnless(is_bnb_available(), """test requires the bitsandbytes library""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Dict ) -> Dict: return unittest.skipUnless(is_tpu_available(), """test requires TPU""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : List[str] ) -> Optional[Any]: return unittest.skipUnless(torch.cuda.device_count() == 1, """test requires a GPU""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Optional[Any] ) -> Any: return unittest.skipUnless(torch.xpu.device_count() == 1, """test requires a XPU""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Dict ) -> int: return unittest.skipUnless(torch.cuda.device_count() > 1, """test requires multiple GPUs""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Optional[int] ) -> Optional[Any]: return unittest.skipUnless(torch.xpu.device_count() > 1, """test requires multiple XPUs""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Optional[Any] ) -> int: return unittest.skipUnless(is_safetensors_available(), """test requires safetensors""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Tuple ) -> str: return unittest.skipUnless(is_deepspeed_available(), """test requires DeepSpeed""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: return unittest.skipUnless(is_torch_version(""">=""", """1.12.0""" ), """test requires torch version >= 1.12.0""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : str=None, _lowerCAmelCase : Optional[Any]=None ) -> Tuple: if test_case is None: return partial(_lowerCAmelCase, version=_lowerCAmelCase ) return unittest.skipUnless(is_torch_version(""">=""", _lowerCAmelCase ), f'''test requires torch version >= {version}''' )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : int ) -> List[str]: return unittest.skipUnless(is_tensorboard_available(), """test requires Tensorboard""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : str ) -> List[str]: return unittest.skipUnless(is_wandb_available(), """test requires wandb""" )(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : List[str] ) -> str: return unittest.skipUnless(is_comet_ml_available(), """test requires comet_ml""" )(_lowerCAmelCase ) lowerCamelCase__ : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def UpperCamelCase ( _lowerCAmelCase : Tuple ) -> str: return unittest.skipUnless( _atleast_one_tracker_available, """test requires at least one tracker to be available and for `comet_ml` to not be installed""", )(_lowerCAmelCase ) class _UpperCAmelCase ( unittest.TestCase): __a : Optional[Any] = True @classmethod def __snake_case ( cls ) -> Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = tempfile.mkdtemp() @classmethod def __snake_case ( cls ) -> Optional[Any]: '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ) -> Tuple: '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_A ) class _UpperCAmelCase ( unittest.TestCase): def __snake_case ( self ) -> str: '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _UpperCAmelCase ( unittest.TestCase): def __snake_case ( self , _A ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = mocks if isinstance(_A , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def UpperCamelCase ( _lowerCAmelCase : Union[str, Any] ) -> Tuple: _UpperCAmelCase : Optional[Any] = AcceleratorState() _UpperCAmelCase : Optional[Any] = tensor[None].clone().to(state.device ) _UpperCAmelCase : str = gather(_lowerCAmelCase ).cpu() _UpperCAmelCase : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i], _lowerCAmelCase ): return False return True class _UpperCAmelCase : def __init__( self , _A , _A , _A ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = returncode _UpperCAmelCase : int = stdout _UpperCAmelCase : Union[str, Any] = stderr async def UpperCamelCase ( _lowerCAmelCase : List[str], _lowerCAmelCase : Any ) -> Tuple: while True: _UpperCAmelCase : Union[str, Any] = await stream.readline() if line: callback(_lowerCAmelCase ) else: break async def UpperCamelCase ( _lowerCAmelCase : int, _lowerCAmelCase : Optional[int]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : str=None, _lowerCAmelCase : int=False, _lowerCAmelCase : int=False ) -> _RunOutput: if echo: print("""\nRunning: """, """ """.join(_lowerCAmelCase ) ) _UpperCAmelCase : Union[str, Any] = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=_lowerCAmelCase, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=_lowerCAmelCase, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Union[str, Any] = [] def tee(_lowerCAmelCase : Tuple, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : List[str], _lowerCAmelCase : Any="" ): _UpperCAmelCase : Dict = line.decode("""utf-8""" ).rstrip() sink.append(_lowerCAmelCase ) if not quiet: print(_lowerCAmelCase, _lowerCAmelCase, file=_lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout, lambda _lowerCAmelCase : tee(_lowerCAmelCase, _lowerCAmelCase, sys.stdout, label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr, lambda _lowerCAmelCase : tee(_lowerCAmelCase, _lowerCAmelCase, sys.stderr, label="""stderr:""" ) ) ), ], timeout=_lowerCAmelCase, ) return _RunOutput(await p.wait(), _lowerCAmelCase, _lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Dict=None, _lowerCAmelCase : Optional[int]=180, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : Optional[int]=True ) -> _RunOutput: _UpperCAmelCase : Dict = asyncio.get_event_loop() _UpperCAmelCase : Union[str, Any] = loop.run_until_complete( _stream_subprocess(_lowerCAmelCase, env=_lowerCAmelCase, stdin=_lowerCAmelCase, timeout=_lowerCAmelCase, quiet=_lowerCAmelCase, echo=_lowerCAmelCase ) ) _UpperCAmelCase : str = """ """.join(_lowerCAmelCase ) if result.returncode > 0: _UpperCAmelCase : Union[str, Any] = """\n""".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class _UpperCAmelCase ( __a): pass def UpperCamelCase ( _lowerCAmelCase : List[str], _lowerCAmelCase : Optional[Any]=False ) -> List[Any]: try: _UpperCAmelCase : int = subprocess.check_output(_lowerCAmelCase, stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_lowerCAmelCase, """decode""" ): _UpperCAmelCase : Dict = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCAmelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
238
"""simple docstring""" import argparse import datetime def UpperCamelCase ( _lowerCAmelCase : str ) -> str: _UpperCAmelCase : List[str] = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } _UpperCAmelCase : List[str] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCAmelCase ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month _UpperCAmelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) _UpperCAmelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day _UpperCAmelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator _UpperCAmelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year _UpperCAmelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation _UpperCAmelCase : List[str] = datetime.date(int(_lowerCAmelCase ), int(_lowerCAmelCase ), int(_lowerCAmelCase ) ) # Start math if m <= 2: _UpperCAmelCase : int = y - 1 _UpperCAmelCase : List[str] = m + 12 # maths var _UpperCAmelCase : int = int(str(_lowerCAmelCase )[:2] ) _UpperCAmelCase : int = int(str(_lowerCAmelCase )[2:] ) _UpperCAmelCase : int = int(2.6 * m - 5.39 ) _UpperCAmelCase : int = int(c / 4 ) _UpperCAmelCase : int = int(k / 4 ) _UpperCAmelCase : int = int(d + k ) _UpperCAmelCase : int = int(t + u + v + x ) _UpperCAmelCase : int = int(z - (2 * c) ) _UpperCAmelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response _UpperCAmelCase : str = f'''Your date {date_input}, is a {days[str(_lowerCAmelCase )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : str = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) lowerCamelCase__ : int = parser.parse_args() zeller(args.date_input)
238
1
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar SCREAMING_SNAKE_CASE_ : Any = TypeVar('T') class a ( Generic[T] ): """simple docstring""" def __init__( self: List[str] , UpperCamelCase: T ): """simple docstring""" A__ = data A__ = self A__ = 0 class a ( Generic[T] ): """simple docstring""" def __init__( self: Optional[int] ): """simple docstring""" A__ = {} def UpperCamelCase ( self: Dict , UpperCamelCase: T ): """simple docstring""" A__ = DisjointSetTreeNode(UpperCamelCase ) def UpperCamelCase ( self: int , UpperCamelCase: T ): """simple docstring""" A__ = self.map[data] if elem_ref != elem_ref.parent: A__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: DisjointSetTreeNode[T] , UpperCamelCase: DisjointSetTreeNode[T] ): """simple docstring""" if nodea.rank > nodea.rank: A__ = nodea else: A__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCamelCase ( self: str , UpperCamelCase: T , UpperCamelCase: T ): """simple docstring""" self.link(self.find_set(UpperCamelCase ) , self.find_set(UpperCamelCase ) ) class a ( Generic[T] ): """simple docstring""" def __init__( self: Any ): """simple docstring""" A__ = {} def UpperCamelCase ( self: Tuple , UpperCamelCase: T ): """simple docstring""" if node not in self.connections: A__ = {} def UpperCamelCase ( self: List[str] , UpperCamelCase: T , UpperCamelCase: T , UpperCamelCase: int ): """simple docstring""" self.add_node(UpperCamelCase ) self.add_node(UpperCamelCase ) A__ = weight A__ = weight def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = [] A__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda UpperCamelCase : x[2] ) # creating the disjoint set A__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(UpperCamelCase ) # MST generation A__ = 0 A__ = 0 A__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: A__ , A__ , A__ = edges[index] index += 1 A__ = disjoint_set.find_set(UpperCamelCase ) A__ = disjoint_set.find_set(UpperCamelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(UpperCamelCase , UpperCamelCase , UpperCamelCase ) disjoint_set.union(UpperCamelCase , UpperCamelCase ) return graph
500
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Any = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys SCREAMING_SNAKE_CASE_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
500
1
from datetime import datetime as dt import os from github import Github A : Optional[Any] = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def UpperCamelCase__ ( ) -> Dict: _lowercase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowercase = g.get_repo("""huggingface/transformers""" ) _lowercase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowercase = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE_ : i.created_at , reverse=snake_case__ ) _lowercase = comments[0] if len(snake_case__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
287
"""simple docstring""" from maths.prime_check import is_prime def _snake_case ( snake_case__ : int ): if not isinstance(snake_case__ , snake_case__ ): A = F'Input value of [number={number}] must be an integer' raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
91
0
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''new-model''' if is_tf_available(): class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = NewModelConfig @require_tf class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self : int ) ->int: UpperCAmelCase_ = '''bert-base-cased''' UpperCAmelCase_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = TFAutoModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def lowerCAmelCase__ ( self : int ) ->Any: UpperCAmelCase_ = '''bert-base-cased''' UpperCAmelCase_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = TFAutoModelForPreTraining.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def lowerCAmelCase__ ( self : Tuple ) ->str: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def lowerCAmelCase__ ( self : Tuple ) ->str: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def lowerCAmelCase__ ( self : Optional[Any] ) ->List[str]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def lowerCAmelCase__ ( self : Tuple ) ->int: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def lowerCAmelCase__ ( self : List[str] ) ->Any: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = TFAutoModelForSequenceClassification.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def lowerCAmelCase__ ( self : List[str] ) ->Any: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow @require_tensorflow_probability def lowerCAmelCase__ ( self : Optional[Any] ) ->int: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(UpperCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase__ ( self : int ) ->Optional[int]: UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase__ ) , 1_4410 ) def lowerCAmelCase__ ( self : int ) ->int: UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase__ ) , 1_4410 ) def lowerCAmelCase__ ( self : List[str] ) ->List[Any]: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel UpperCAmelCase_ = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = copy.deepcopy(model.config ) UpperCAmelCase_ = ['''FunnelBaseModel'''] UpperCAmelCase_ = TFAutoModel.from_config(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase__ ) UpperCAmelCase_ = TFAutoModel.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase__ ( self : str ) ->Optional[int]: try: AutoConfig.register('''new-model''' , UpperCAmelCase__ ) UpperCAmelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(UpperCAmelCase__ ): auto_class.register(UpperCAmelCase__ , UpperCAmelCase__ ) auto_class.register(UpperCAmelCase__ , UpperCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase__ ): auto_class.register(UpperCAmelCase__ , UpperCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase_ = BertModelTester(self ).get_config() UpperCAmelCase_ = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase_ = auto_class.from_config(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase__ ) UpperCAmelCase_ = auto_class.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowerCAmelCase__ ( self : Optional[int] ) ->Tuple: with self.assertRaisesRegex( UpperCAmelCase__ , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase_ = TFAutoModel.from_pretrained('''bert-base''' ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->str: with self.assertRaisesRegex( UpperCAmelCase__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase_ = TFAutoModel.from_pretrained(UpperCAmelCase__ , revision='''aaaaaa''' ) def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: with self.assertRaisesRegex( UpperCAmelCase__ , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): UpperCAmelCase_ = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->str: with self.assertRaisesRegex(UpperCAmelCase__ , '''Use `from_pt=True` to load this model''' ): UpperCAmelCase_ = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def lowerCAmelCase__ ( self : List[str] ) ->Dict: # Make sure we have cached the model. UpperCAmelCase_ = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase_ = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase_ = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: UpperCAmelCase_ = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
708
'''simple docstring''' import re def __lowerCamelCase ( _UpperCamelCase : str ): '''simple docstring''' return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''' , str_ )] def __lowerCamelCase ( _UpperCamelCase : str ): '''simple docstring''' UpperCAmelCase_ = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : bool , _UpperCamelCase : str ): '''simple docstring''' try: UpperCAmelCase_ = split_input(_UpperCamelCase ) if upper: UpperCAmelCase_ = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCAmelCase_ = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __lowerCamelCase ( _UpperCamelCase : str ): '''simple docstring''' return to_simple_case(_UpperCamelCase ) def __lowerCamelCase ( _UpperCamelCase : str ): '''simple docstring''' try: UpperCAmelCase_ = to_simple_case(_UpperCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : bool ): '''simple docstring''' return to_complex_case(_UpperCamelCase , _UpperCamelCase , '''_''' ) def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : bool ): '''simple docstring''' return to_complex_case(_UpperCamelCase , _UpperCamelCase , '''-''' ) if __name__ == "__main__": __import__("doctest").testmod()
43
0
def a (lowerCAmelCase__ ): if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
99
"""simple docstring""" import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
624
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase : Tuple =logging.getLogger(__name__) def A__ ( __A , __A ): '''simple docstring''' return (preds == labels).mean() @dataclass class __snake_case : '''simple docstring''' _snake_case = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case = field( default=__lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case = field( default=__lowerCamelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case = field( default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __snake_case : '''simple docstring''' _snake_case = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) _snake_case = field(metadata={'help': 'Should contain the data files for the task.'} ) _snake_case = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case = field( default=__lowerCamelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , A__ ) # Set seed set_seed(training_args.seed ) try: _lowerCamelCase : Union[str, Any] = processors[data_args.task_name]() _lowerCamelCase : Optional[Any] = processor.get_labels() _lowerCamelCase : str = len(A__ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Union[str, Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) # Get datasets _lowerCamelCase : Union[str, Any] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=A__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _lowerCamelCase : Union[str, Any] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=A__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__A ) -> Dict: _lowerCamelCase : Union[str, Any] = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(A__ , p.label_ids )} # Data collator _lowerCamelCase : str = DataCollatorWithPadding(A__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _lowerCamelCase : List[Any] = Trainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , data_collator=A__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCamelCase : Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCamelCase : Any = trainer.evaluate() _lowerCamelCase : str = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(A__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , A__ , A__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(A__ ) return results def A__ ( __A ): '''simple docstring''' main() if __name__ == "__main__": main()
713
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""] _lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments) lowerCAmelCase : int =parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any =multiprocessing.cpu_count() lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : str =time.time() lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase : Dict =time.time() lowerCAmelCase : Dict =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
15
0
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] ) -> List[Any]: """simple docstring""" super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self : str , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : Optional[torch.Generator] = None , lowerCAmelCase__ : int = 5_0 , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : Optional[Any] , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" _UpperCAmelCase : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowerCAmelCase__ , ) _UpperCAmelCase : Dict = image.to(self.device ) # set step values self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase : Dict = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : Dict = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample _UpperCAmelCase : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : Any = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=lowerCAmelCase__ ), "This is a local test"
494
'''simple docstring''' def __UpperCAmelCase ( a_: int ): if not isinstance(a_, a_ ): _UpperCAmelCase : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(a_ ) if number < 0: return False _UpperCAmelCase : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
494
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def a ( __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict ) -> Union[str, Any]: for attribute in key.split(""".""" ): __magic_name__: List[str] = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: __magic_name__: Dict = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: __magic_name__: List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __magic_name__: Optional[Any] = value elif weight_type == "weight_g": __magic_name__: Optional[int] = value elif weight_type == "weight_v": __magic_name__: Union[str, Any] = value elif weight_type == "bias": __magic_name__: List[Any] = value else: __magic_name__: Optional[Any] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def a ( __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple ) -> Union[str, Any]: __magic_name__: List[Any] = [] __magic_name__: Union[str, Any] = fairseq_model.state_dict() __magic_name__: Union[str, Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __magic_name__: List[str] = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) __magic_name__: List[str] = True else: for key, mapped_key in MAPPING.items(): __magic_name__: Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __magic_name__: Dict = True if "*" in mapped_key: __magic_name__: List[Any] = name.split(__UpperCAmelCase )[0].split(""".""" )[-2] __magic_name__: Any = mapped_key.replace("""*""" , __UpperCAmelCase ) if "weight_g" in name: __magic_name__: Any = """weight_g""" elif "weight_v" in name: __magic_name__: Any = """weight_v""" elif "weight" in name: __magic_name__: Optional[int] = """weight""" elif "bias" in name: __magic_name__: int = """bias""" else: __magic_name__: Optional[Any] = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def a ( __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any ) -> str: __magic_name__: str = full_name.split("""conv_layers.""" )[-1] __magic_name__: Tuple = name.split(""".""" ) __magic_name__: Dict = int(items[0] ) __magic_name__: List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __magic_name__: Dict = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __magic_name__: List[str] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __magic_name__: List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __magic_name__: Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) def a ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str ) -> List[Any]: __magic_name__: Any = SEWConfig() if is_finetuned: __magic_name__: int = model.wav_encoder.wav_model.cfg else: __magic_name__: Optional[Any] = model.cfg __magic_name__: Optional[Any] = fs_config.conv_bias __magic_name__: Union[str, Any] = eval(fs_config.conv_feature_layers ) __magic_name__: List[str] = [x[0] for x in conv_layers] __magic_name__: str = [x[1] for x in conv_layers] __magic_name__: Dict = [x[2] for x in conv_layers] __magic_name__: Tuple = """gelu""" __magic_name__: int = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __magic_name__: List[Any] = 0.0 __magic_name__: str = fs_config.activation_fn.name __magic_name__: Union[str, Any] = fs_config.encoder_embed_dim __magic_name__: Any = 0.02 __magic_name__: Union[str, Any] = fs_config.encoder_ffn_embed_dim __magic_name__: Optional[Any] = 1E-5 __magic_name__: int = fs_config.encoder_layerdrop __magic_name__: Optional[Any] = fs_config.encoder_attention_heads __magic_name__: Dict = fs_config.conv_pos_groups __magic_name__: Any = fs_config.conv_pos __magic_name__: int = len(__UpperCAmelCase ) __magic_name__: int = fs_config.encoder_layers __magic_name__: Optional[Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __magic_name__: Tuple = model.cfg __magic_name__: List[Any] = fs_config.final_dropout __magic_name__: Optional[int] = fs_config.layerdrop __magic_name__: Union[str, Any] = fs_config.activation_dropout __magic_name__: Dict = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __magic_name__: Any = fs_config.attention_dropout __magic_name__: int = fs_config.dropout_input __magic_name__: Any = fs_config.dropout __magic_name__: Any = fs_config.mask_channel_length __magic_name__: Optional[int] = fs_config.mask_channel_prob __magic_name__: Any = fs_config.mask_length __magic_name__: Dict = fs_config.mask_prob __magic_name__: List[str] = """Wav2Vec2FeatureExtractor""" __magic_name__: Any = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def a ( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : int=True ) -> List[Any]: if is_finetuned: __magic_name__, __magic_name__, __magic_name__: int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __magic_name__, __magic_name__, __magic_name__: str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __magic_name__: int = SEWConfig.from_pretrained(__UpperCAmelCase ) else: __magic_name__: List[str] = convert_config(model[0] , __UpperCAmelCase ) __magic_name__: Optional[Any] = model[0].eval() __magic_name__: Any = True if config.feat_extract_norm == """layer""" else False __magic_name__: Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) if is_finetuned: if dict_path: __magic_name__: Union[str, Any] = Dictionary.load(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __magic_name__: str = target_dict.pad_index __magic_name__: List[str] = target_dict.bos_index __magic_name__: Optional[int] = target_dict.pad_index __magic_name__: Tuple = target_dict.bos_index __magic_name__: str = target_dict.eos_index __magic_name__: List[str] = len(target_dict.symbols ) __magic_name__: int = os.path.join(__UpperCAmelCase , """vocab.json""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __UpperCAmelCase ) __magic_name__: Tuple = WavaVecaCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__UpperCAmelCase , ) __magic_name__: str = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) __magic_name__: List[Any] = SEWForCTC(__UpperCAmelCase ) else: __magic_name__: Optional[int] = SEWModel(__UpperCAmelCase ) feature_extractor.save_pretrained(__UpperCAmelCase ) recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __lowerCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
213
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = IFInpaintingSuperResolutionPipeline UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) UpperCAmelCase__ = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: return self._get_superresolution_dummy_components() def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any=0 ) -> Dict: if str(__snake_case ).startswith("""mps""" ): __magic_name__: int = torch.manual_seed(__snake_case ) else: __magic_name__: List[Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__: Tuple = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase__ ( self : Dict ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCamelCase__ ( self : Tuple ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase__ ( self : int ) -> str: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase__ ( self : Any ) -> List[Any]: self._test_save_load_local() def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
213
1
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments a : Optional[int] = logging.getLogger(__name__) @dataclass class _a ( _lowerCAmelCase ): A = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) A = field(default=_lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) A = field(default=_lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) A = field(default=_lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) A = field( default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
556
from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) class _a ( _lowerCAmelCase ): A = '''timm_backbone''' def __init__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = backbone UpperCAmelCase_: Optional[Any] = num_channels UpperCAmelCase_: Optional[Any] = features_only UpperCAmelCase_: Any = use_pretrained_backbone UpperCAmelCase_: List[str] = True UpperCAmelCase_: Union[str, Any] = out_indices if out_indices is not None else (-1,)
556
1
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def A ( _UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: super().__init__() __lowerCAmelCase : Optional[int] = module __lowerCAmelCase : int = nn.Sequential( nn.Linear(module.in_features , __A , bias=__A ) , nn.Linear(__A , module.out_features , bias=__A ) , ) __lowerCAmelCase : int = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def snake_case ( self , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return self.module(__A , *__A , **__A ) + self.adapter(__A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _snake_case = '''bigscience/bloom-1b7''' # Constant values _snake_case = 2.109_659_552_692_574 _snake_case = '''Hello my name is''' _snake_case = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) _snake_case = 10 def snake_case ( self ) -> int: # Models and tokenizer __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class UpperCamelCase__ ( UpperCamelCase_ ): '''simple docstring''' def snake_case ( self ) -> List[Any]: super().setUp() # Models and tokenizer __lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__A , device_map='auto' ) def snake_case ( self ) -> Tuple: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def snake_case ( self ) -> List[str]: __lowerCAmelCase : List[str] = self.model_abit.config self.assertTrue(hasattr(__A , 'quantization_config' ) ) __lowerCAmelCase : Optional[int] = config.to_dict() __lowerCAmelCase : List[Any] = config.to_diff_dict() __lowerCAmelCase : Optional[int] = config.to_json_string() def snake_case ( self ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit __lowerCAmelCase : Tuple = self.model_fpaa.get_memory_footprint() __lowerCAmelCase : Dict = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowerCAmelCase : Optional[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def snake_case ( self ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def snake_case ( self ) -> Union[str, Any]: __lowerCAmelCase : Optional[int] = self.tokenizer(self.input_text , return_tensors='pt' ) __lowerCAmelCase : Optional[int] = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__A ) , self.EXPECTED_OUTPUTS ) def snake_case ( self ) -> Optional[int]: __lowerCAmelCase : Tuple = BitsAndBytesConfig() __lowerCAmelCase : str = True __lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__A , device_map='auto' ) __lowerCAmelCase : Optional[int] = self.tokenizer(self.input_text , return_tensors='pt' ) __lowerCAmelCase : List[str] = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__A ) , self.EXPECTED_OUTPUTS ) def snake_case ( self ) -> Dict: with self.assertRaises(__A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__A ) def snake_case ( self ) -> Union[str, Any]: __lowerCAmelCase : Optional[Any] = BitsAndBytesConfig() with self.assertRaises(__A ): __lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__A , load_in_abit=__A , device_map='auto' , bnb_abit_quant_type='nf4' , ) def snake_case ( self ) -> Tuple: with self.assertRaises(__A ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(__A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__A ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(__A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowerCAmelCase : List[str] = self.tokenizer(self.input_text , return_tensors='pt' ) __lowerCAmelCase : Optional[int] = self.model_fpaa.to(torch.floataa ) __lowerCAmelCase : Union[str, Any] = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowerCAmelCase : Union[str, Any] = self.model_fpaa.to('cpu' ) # Check this does not throw an error __lowerCAmelCase : Union[str, Any] = self.model_fpaa.half() # Check this does not throw an error __lowerCAmelCase : int = self.model_fpaa.float() def snake_case ( self ) -> Tuple: __lowerCAmelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=__A , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case ( cls ) -> int: __lowerCAmelCase : Optional[int] = "t5-small" __lowerCAmelCase : Tuple = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense __lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(cls.model_name ) __lowerCAmelCase : Optional[Any] = "Translate in German: Hello, my dog is cute" def snake_case ( self ) -> List[Any]: gc.collect() torch.cuda.empty_cache() def snake_case ( self ) -> Any: from transformers import TaForConditionalGeneration __lowerCAmelCase : Tuple = TaForConditionalGeneration._keep_in_fpaa_modules __lowerCAmelCase : Dict = None # test with `t5-small` __lowerCAmelCase : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__A , device_map='auto' ) __lowerCAmelCase : List[str] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowerCAmelCase : Any = model.generate(**__A ) # test with `flan-t5-small` __lowerCAmelCase : Union[str, Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__A , device_map='auto' ) __lowerCAmelCase : Any = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowerCAmelCase : int = model.generate(**__A ) __lowerCAmelCase : Optional[int] = modules def snake_case ( self ) -> int: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowerCAmelCase : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__A , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowerCAmelCase : Tuple = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowerCAmelCase : str = model.generate(**__A ) # test with `flan-t5-small` __lowerCAmelCase : Optional[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__A , device_map='auto' ) __lowerCAmelCase : str = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowerCAmelCase : List[Any] = model.generate(**__A ) class UpperCamelCase__ ( UpperCamelCase_ ): '''simple docstring''' def snake_case ( self ) -> str: super().setUp() # model_name __lowerCAmelCase : Union[str, Any] = "bigscience/bloom-560m" __lowerCAmelCase : int = "t5-small" # Different types of model __lowerCAmelCase : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=__A , device_map='auto' ) # Sequence classification model __lowerCAmelCase : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__A , device_map='auto' ) # CausalLM model __lowerCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__A , device_map='auto' ) # Seq2seq model __lowerCAmelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__A , device_map='auto' ) def snake_case ( self ) -> List[str]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def snake_case ( self ) -> Any: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class UpperCamelCase__ ( UpperCamelCase_ ): '''simple docstring''' def snake_case ( self ) -> List[Any]: super().setUp() def snake_case ( self ) -> Union[str, Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def snake_case ( self ) -> Any: __lowerCAmelCase : List[Any] = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowerCAmelCase : List[Any] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class UpperCamelCase__ ( UpperCamelCase_ ): '''simple docstring''' def snake_case ( self ) -> List[Any]: super().setUp() def snake_case ( self ) -> List[str]: __lowerCAmelCase : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__A , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowerCAmelCase : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __lowerCAmelCase : Optional[Any] = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__A ) , self.EXPECTED_OUTPUTS ) class UpperCamelCase__ ( UpperCamelCase_ ): '''simple docstring''' def snake_case ( self ) -> Optional[int]: __lowerCAmelCase : Optional[Any] = "facebook/opt-350m" super().setUp() def snake_case ( self ) -> str: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowerCAmelCase : Dict = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowerCAmelCase : Dict = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__A ) ): __lowerCAmelCase : List[str] = LoRALayer(module.q_proj , rank=16 ) __lowerCAmelCase : Optional[int] = LoRALayer(module.k_proj , rank=16 ) __lowerCAmelCase : int = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowerCAmelCase : Any = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowerCAmelCase : Optional[int] = model.forward(**__A ) out.logits.norm().backward() for module in model.modules(): if isinstance(__A , __A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class UpperCamelCase__ ( UpperCamelCase_ ): '''simple docstring''' _snake_case = '''gpt2-xl''' _snake_case = 3.3_191_854_854_152_187
703
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A_ = None A_ = logging.get_logger(__name__) A_ = "▁" A_ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } A_ = { "google/pegasus-xsum": 5_12, } class UpperCamelCase__ ( a ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = PegasusTokenizer _snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="<mask_2>" , SCREAMING_SNAKE_CASE="<mask_1>" , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1_03 , **SCREAMING_SNAKE_CASE , ) -> List[str]: __lowerCAmelCase : List[str] = offset if additional_special_tokens is not None: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError( F"""additional_special_tokens should be of type {type(SCREAMING_SNAKE_CASE )}, but is""" F""" {type(SCREAMING_SNAKE_CASE )}""" ) __lowerCAmelCase : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(SCREAMING_SNAKE_CASE ) ) != len(SCREAMING_SNAKE_CASE ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) __lowerCAmelCase : Tuple = additional_special_tokens_extended else: __lowerCAmelCase : List[str] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , mask_token_sent=SCREAMING_SNAKE_CASE , offset=SCREAMING_SNAKE_CASE , additional_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = vocab_file __lowerCAmelCase : Union[str, Any] = False if not self.vocab_file else True def snake_case ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: __lowerCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' F""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase : Optional[Any] = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
123
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=18 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=400 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=True ,) -> List[Any]: UpperCAmelCase_ : int = size if size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Dict = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Any = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Any = apply_ocr def a__ ( self ) -> Dict: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self ) -> str: UpperCAmelCase_ : List[str] = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> int: UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_resize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''size''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''apply_ocr''' ) ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 18} ) UpperCAmelCase_ : str = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) def a__ ( self ) -> Any: pass def a__ ( self ) -> Tuple: # Initialize image_processing UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) self.assertIsInstance(encoding.words ,_SCREAMING_SNAKE_CASE ) self.assertIsInstance(encoding.boxes ,_SCREAMING_SNAKE_CASE ) # Test batched UpperCAmelCase_ : Union[str, Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) def a__ ( self ) -> Dict: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) # Test not batched input UpperCAmelCase_ : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched UpperCAmelCase_ : str = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) def a__ ( self ) -> List[Any]: # Initialize image_processing UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,torch.Tensor ) # Test not batched input UpperCAmelCase_ : Dict = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched UpperCAmelCase_ : Optional[int] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) def a__ ( self ) -> int: # with apply_OCR = True UpperCAmelCase_ : Optional[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCAmelCase_ : str = load_dataset('''hf-internal-testing/fixtures_docvqa''' ,split='''test''' ) UpperCAmelCase_ : Tuple = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) UpperCAmelCase_ : Tuple = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCAmelCase_ : List[str] = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 UpperCAmelCase_ : Optional[int] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,_SCREAMING_SNAKE_CASE ) self.assertListEqual(encoding.boxes ,_SCREAMING_SNAKE_CASE ) # with apply_OCR = False UpperCAmelCase_ : Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
30
from __future__ import annotations def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE ) ): series.append(f'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE ) )}''' if series else '''1''' ) return series if __name__ == "__main__": import doctest doctest.testmod() A_ : Any = int(input('Enter the last number (nth term) of the P-Series')) A_ : List[str] = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
303
0
"""simple docstring""" from math import pi, sqrt, tan def __snake_case ( SCREAMING_SNAKE_CASE: float ): """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __snake_case ( SCREAMING_SNAKE_CASE: float ): """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __snake_case ( SCREAMING_SNAKE_CASE: float ): """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _lowerCAmelCase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ): """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __snake_case ( SCREAMING_SNAKE_CASE: float ): """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ): """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _lowerCAmelCase = (sidea + sidea + sidea) / 2 _lowerCAmelCase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ): """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __snake_case ( SCREAMING_SNAKE_CASE: float ): """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __snake_case ( SCREAMING_SNAKE_CASE: float , SCREAMING_SNAKE_CASE: float ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __snake_case ( SCREAMING_SNAKE_CASE: int , SCREAMING_SNAKE_CASE: float ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f'Rectangle: {area_rectangle(1_0, 2_0) = }') print(f'Square: {area_square(1_0) = }') print(f'Triangle: {area_triangle(1_0, 1_0) = }') print(f'Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }') print(f'Parallelogram: {area_parallelogram(1_0, 2_0) = }') print(f'Rhombus: {area_rhombus(1_0, 2_0) = }') print(f'Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }') print(f'Circle: {area_circle(2_0) = }') print(f'Ellipse: {area_ellipse(1_0, 2_0) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(f'Cube: {surface_area_cube(2_0) = }') print(f'Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }') print(f'Sphere: {surface_area_sphere(2_0) = }') print(f'Hemisphere: {surface_area_hemisphere(2_0) = }') print(f'Cone: {surface_area_cone(1_0, 2_0) = }') print(f'Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }') print(f'Cylinder: {surface_area_cylinder(1_0, 2_0) = }') print(f'Torus: {surface_area_torus(2_0, 1_0) = }') print(f'Equilateral Triangle: {area_reg_polygon(3, 1_0) = }') print(f'Square: {area_reg_polygon(4, 1_0) = }') print(f'Reqular Pentagon: {area_reg_polygon(5, 1_0) = }')
491
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[Any]=99 , UpperCAmelCase_ : int=64 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : List[Any]=64 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Tuple=None , ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCamelCase ( self : List[str] ) -> Any: """simple docstring""" return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def __lowerCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self : Any ) -> Tuple: """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = MPNetModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCAmelCase = model(UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = MPNetForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCAmelCase = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) -> Any: """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = MPNetForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCAmelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] ) -> Dict: """simple docstring""" _lowerCAmelCase = self.num_choices _lowerCAmelCase = MPNetForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = MPNetForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCAmelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self : str ) -> List[str]: """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_: int = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_: Optional[Any] = False SCREAMING_SNAKE_CASE_: Dict = True def __lowerCamelCase ( self : str ) -> List[Any]: """simple docstring""" _lowerCAmelCase = MPNetModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def __lowerCamelCase ( self : Dict ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def __lowerCamelCase ( self : Tuple ) -> str: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*UpperCAmelCase_ ) def __lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*UpperCAmelCase_ ) def __lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*UpperCAmelCase_ ) def __lowerCamelCase ( self : Any ) -> List[str]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*UpperCAmelCase_ ) def __lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*UpperCAmelCase_ ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = MPNetModel.from_pretrained('microsoft/mpnet-base' ) _lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _lowerCAmelCase = model(UpperCAmelCase_ )[0] _lowerCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _lowerCAmelCase = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
491
1
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :List[Any] = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->Tuple: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = emb.weight.shape lowerCAmelCase__ :int = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = emb.weight.data return lin_layer def __A (_SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :List[str] = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) lowerCAmelCase__ :Dict = Namespace(**checkpoint['cfg']['model'] ) lowerCAmelCase__ :Optional[int] = checkpoint['model'] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = state_dict['decoder.embed_tokens.weight'].shape[0] lowerCAmelCase__ :Dict = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} lowerCAmelCase__ :int = XGLMConfig( vocab_size=_SCREAMING_SNAKE_CASE , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowerCAmelCase__ :Tuple = XGLMForCausalLM(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) print(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Tuple = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __A = parser.parse_args() __A = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
93
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _UpperCamelCase : Optional[Any] = logging.getLogger(__name__) _UpperCamelCase : List[Any] = "Hello world! cécé herlolip" _UpperCamelCase : int = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def snake_case ( snake_case : int , snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = BertAbsConfig( temp_dir='.' , finetune_bert=snake_case , large=snake_case , share_emb=snake_case , use_bert_emb=snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowerCAmelCase = torch.load(snake_case , lambda snake_case , snake_case : storage ) lowerCAmelCase = AbsSummarizer(snake_case , torch.device('cpu' ) , snake_case ) original.eval() lowerCAmelCase = BertAbsSummarizer(snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) lowerCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs lowerCAmelCase = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case )) ) lowerCAmelCase = torch.tensor(snake_case ).unsqueeze(0 ) lowerCAmelCase = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case )) ) lowerCAmelCase = torch.tensor(snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowerCAmelCase = encoder_input_ids lowerCAmelCase = decoder_input_ids lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowerCAmelCase = original(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case )[0] lowerCAmelCase = original.generator(snake_case ) lowerCAmelCase = new_model( snake_case , snake_case , snake_case , snake_case , snake_case )[0] lowerCAmelCase = new_model.generator(snake_case ) lowerCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(snake_case ) ) lowerCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(snake_case ) ) lowerCAmelCase = torch.allclose(snake_case , snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _UpperCamelCase : Optional[int] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
284
0
"""simple docstring""" def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _a = [0] * len(_lowerCAmelCase ) _a = [] _a = [] _a = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCAmelCase ) ): if indegree[i] == 0: queue.append(_lowerCAmelCase ) while queue: _a = queue.pop(0 ) cnt += 1 topo.append(_lowerCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_lowerCAmelCase ) if cnt != len(_lowerCAmelCase ): print('''Cycle exists''' ) else: print(_lowerCAmelCase ) # Adjacency List of Graph __snake_case = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
285
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[int] = ['image_processor', 'tokenizer'] A_ : Union[str, Any] = 'ChineseCLIPImageProcessor' A_ : Union[str, Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> List[str]: _a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) _a = kwargs.pop('''feature_extractor''' ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) _a = self.image_processor def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> List[str]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: _a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: _a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def _UpperCAmelCase ( self ) -> List[str]: _a = self.tokenizer.model_input_names _a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCAmelCase ( self ) -> Tuple: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class
285
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class __lowerCamelCase ( lowerCAmelCase ): a__: Dict = 'xmod' def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.0_2 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=("en_XX",) , UpperCAmelCase=None , **UpperCAmelCase , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = use_cache lowerCamelCase_ = classifier_dropout lowerCamelCase_ = pre_norm lowerCamelCase_ = adapter_reduction_factor lowerCamelCase_ = adapter_layer_norm lowerCamelCase_ = adapter_reuse_layer_norm lowerCamelCase_ = ln_before_adapter lowerCamelCase_ = list(UpperCAmelCase ) lowerCamelCase_ = default_language class __lowerCamelCase ( lowerCAmelCase ): @property def UpperCAmelCase__ ( self ): if self.task == "multiple-choice": lowerCamelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
29
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } _SCREAMING_SNAKE_CASE = { "google/rembert": 256, } _SCREAMING_SNAKE_CASE = "▁" class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = RemBertTokenizer def __init__( self : List[Any] , __snake_case : int=None , __snake_case : Union[str, Any]=None , __snake_case : Tuple=True , __snake_case : Dict=True , __snake_case : str=False , __snake_case : Union[str, Any]="[CLS]" , __snake_case : Optional[int]="[SEP]" , __snake_case : str="<unk>" , __snake_case : Dict="[SEP]" , __snake_case : Dict="<pad>" , __snake_case : Union[str, Any]="[CLS]" , __snake_case : int="[MASK]" , **__snake_case : Optional[int] , )-> Tuple: # Mask token behave like a normal word, i.e. include the space before it snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) snake_case = do_lower_case snake_case = remove_space snake_case = keep_accents snake_case = vocab_file snake_case = False if not self.vocab_file else True def lowerCAmelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None )-> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def lowerCAmelCase ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None )-> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error("""Vocabulary path ({}) should be a directory""".format(__snake_case ) ) return snake_case = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
369
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : str = {"vocab_file": "spiece.model"} __lowerCAmelCase : Union[str, Any] = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 __lowerCAmelCase : str = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } __lowerCAmelCase : int = "▁" class a_ ( __UpperCamelCase ): UpperCamelCase_ : str = VOCAB_FILES_NAMES UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : str , snake_case__ : List[Any] , snake_case__ : Optional[int]="</s>" , snake_case__ : List[str]="<unk>" , snake_case__ : Union[str, Any]="<pad>" , snake_case__ : Tuple=100 , snake_case__ : Dict=None , snake_case__ : Optional[Dict[str, Any]] = None , snake_case__ : Union[str, Any]=True , **snake_case__ : Tuple , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase__ = [F"""<extra_id_{i}>""" for i in range(snake_case__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCAmelCase__ = len(set(filter(lambda snake_case__ : bool("""extra_id""" in str(snake_case__ ) ) , snake_case__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) lowerCAmelCase__ = legacy lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , extra_ids=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case__ , **snake_case__ , ) lowerCAmelCase__ = vocab_file lowerCAmelCase__ = extra_ids lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : str ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowerCAmelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , snake_case__ , ) return max_model_length @property def _SCREAMING_SNAKE_CASE ( self : str ): return self.sp_model.get_piece_size() + self._extra_ids def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE ( self : Tuple ): return list( set(filter(lambda snake_case__ : bool(re.search(R"""<extra_id_\d+>""" , snake_case__ ) ) is not None , self.additional_special_tokens ) ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return [self._convert_token_to_id(snake_case__ ) for token in self.get_sentinel_tokens()] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List[int] ): if len(snake_case__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCAmelCase__ = self._add_eos_if_not_present(snake_case__ ) if token_ids_a is None: return token_ids_a else: lowerCAmelCase__ = self._add_eos_if_not_present(snake_case__ ) return token_ids_a + token_ids_a def __getstate__( self : str ): lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : Dict , snake_case__ : Tuple ): lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : "TextInput" , **snake_case__ : Any ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: lowerCAmelCase__ = SPIECE_UNDERLINE + text.replace(snake_case__ , """ """ ) return super().tokenize(snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Dict , **snake_case__ : Optional[Any] ): if not self.legacy: lowerCAmelCase__ = text.startswith(snake_case__ ) if is_first: lowerCAmelCase__ = text[1:] lowerCAmelCase__ = self.sp_model.encode(snake_case__ , out_type=snake_case__ ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(snake_case__ ): lowerCAmelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : str ): if token.startswith("""<extra_id_""" ): lowerCAmelCase__ = re.match(R"""<extra_id_(\d+)>""" , snake_case__ ) lowerCAmelCase__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Dict ): if index < self.sp_model.get_piece_size(): lowerCAmelCase__ = self.sp_model.IdToPiece(snake_case__ ) else: lowerCAmelCase__ = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Optional[int] ): lowerCAmelCase__ = [] lowerCAmelCase__ = """""" lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(snake_case__ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ): if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , """wb""" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
674
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
674
1
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): snake_case : Tuple ={ "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } snake_case : Any =input_paths_and_base_extractors[compression_format] if input_path is None: snake_case : Any =F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_lowerCamelCase ) assert base_extractor.is_extractable(_lowerCamelCase ) snake_case : Tuple =tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(_lowerCamelCase , _lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case : Union[str, Any] =file_path.read_text(encoding='''utf-8''' ) else: snake_case : Any =output_path.read_text(encoding='''utf-8''' ) snake_case : Optional[int] =text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): snake_case : str ={ "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } snake_case : List[Any] =input_paths[compression_format] if input_path is None: snake_case : List[str] =F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_lowerCamelCase ) snake_case : Tuple =Extractor.infer_extractor_format(_lowerCamelCase ) assert extractor_format is not None snake_case : int =tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case : str =file_path.read_text(encoding='''utf-8''' ) else: snake_case : Dict =output_path.read_text(encoding='''utf-8''' ) snake_case : Union[str, Any] =text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def _a ( lowerCamelCase_ , lowerCamelCase_ ): import tarfile snake_case : Optional[Any] =tmp_path / "data_dot_dot" directory.mkdir() snake_case : Optional[int] =directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(_lowerCamelCase , '''w''' ) as f: f.add(_lowerCamelCase , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def _a ( lowerCamelCase_ ): import tarfile snake_case : Optional[Any] =tmp_path / "data_sym_link" directory.mkdir() snake_case : List[Any] =directory / "tar_file_with_sym_link.tar" os.symlink('''..''' , directory / '''subdir''' , target_is_directory=_lowerCamelCase ) with tarfile.TarFile(_lowerCamelCase , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Union[str, Any] ={ "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } snake_case : Any =insecure_tar_files[insecure_tar_file] snake_case : Tuple =tmp_path / "extracted" TarExtractor.extract(_lowerCamelCase , _lowerCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _a ( lowerCamelCase_ ): snake_case : Dict =tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 snake_case : Dict =( B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open('''wb''' ) as f: f.write(_lowerCamelCase ) assert zipfile.is_zipfile(str(_lowerCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(_lowerCamelCase ) # but we're right
349
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
0
"""simple docstring""" import re from filelock import FileLock try: import nltk _snake_case : Dict = True except (ImportError, ModuleNotFoundError): _snake_case : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def A__ ( UpperCamelCase ): re.sub("<n>" , "" , UpperCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase ) )
718
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case : List[Any] = logging.get_logger(__name__) _snake_case : Optional[int] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[int] = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } _snake_case : Union[str, Any] = { 'gpt2': 1024, 'gpt2-medium': 1024, 'gpt2-large': 1024, 'gpt2-xl': 1024, 'distilgpt2': 1024, } class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = GPTaTokenizer def __init__( self :Optional[Any] , __UpperCamelCase :Optional[int]=None , __UpperCamelCase :Dict=None , __UpperCamelCase :Optional[Any]=None , __UpperCamelCase :str="<|endoftext|>" , __UpperCamelCase :Tuple="<|endoftext|>" , __UpperCamelCase :Dict="<|endoftext|>" , __UpperCamelCase :Union[str, Any]=False , **__UpperCamelCase :Union[str, Any] , ): super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , unk_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) A = kwargs.pop("add_bos_token" , __UpperCamelCase ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: A = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) ) A = add_prefix_space A = pre_tok_class(**__UpperCamelCase ) A = add_prefix_space def lowerCamelCase ( self :Any , *__UpperCamelCase :Optional[int] , **__UpperCamelCase :Any ): A = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase ( self :Dict , *__UpperCamelCase :List[str] , **__UpperCamelCase :Optional[int] ): A = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :str , __UpperCamelCase :Optional[str] = None ): A = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def lowerCamelCase ( self :Dict , __UpperCamelCase :"Conversation" ): A = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) + [self.eos_token_id] ) if len(__UpperCamelCase ) > self.model_max_length: A = input_ids[-self.model_max_length :] return input_ids
524
0
"""simple docstring""" from collections.abc import Sequence def UpperCAmelCase ( snake_case : Union[str, Any] = None ): if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) _lowerCAmelCase:Optional[int] = nums[0] for i in range(1 , len(snake_case ) ): _lowerCAmelCase:List[str] = nums[i] _lowerCAmelCase:List[str] = max(snake_case , ans + num , snake_case ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCamelCase__ = int(input('''Enter number of elements : ''').strip()) UpperCamelCase__ = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
227
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ : List[str] =imread(r'''digital_image_processing/image_data/lena_small.jpg''') A__ : Union[str, Any] =cvtColor(img, COLOR_BGR2GRAY) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def UpperCamelCase__ ( ): """simple docstring""" with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase , 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCAmelCase = canny.canny(lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def UpperCamelCase__ ( ): """simple docstring""" assert gg.gaussian_filter(lowerCAmelCase , 5 , sigma=0.9 ).all() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _lowerCAmelCase = conv.img_convolve(lowerCAmelCase , lowerCAmelCase ).astype(lowerCAmelCase ) assert res.any() def UpperCamelCase__ ( ): """simple docstring""" assert med.median_filter(lowerCAmelCase , 3 ).any() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = sob.sobel_filter(lowerCAmelCase ) assert grad.any() and theta.any() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = sp.make_sepia(lowerCAmelCase , 20 ) assert sepia.all() def UpperCamelCase__ ( lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" _lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCamelCase__ ( lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" _lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. _lowerCAmelCase = imread(lowerCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = image[x_coordinate][y_coordinate] _lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) assert lbp_image.any()
207
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""image_processor""", """tokenizer"""] UpperCamelCase__ = """FlavaImageProcessor""" UpperCamelCase__ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict , __UpperCamelCase : Any=None , __UpperCamelCase : Dict=None , **__UpperCamelCase : Any )->str: _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCamelCase , ) _UpperCAmelCase = kwargs.pop('''feature_extractor''' ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.image_processor def __call__( self : List[str] , __UpperCamelCase : Optional[ImageInput] = None , __UpperCamelCase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[bool, str, PaddingStrategy] = False , __UpperCamelCase : Union[bool, str, TruncationStrategy] = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 0 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[str, TensorType]] = None , **__UpperCamelCase : Optional[int] , )->Optional[int]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _UpperCAmelCase = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) if images is not None: _UpperCAmelCase = self.image_processor( __UpperCamelCase , return_image_mask=__UpperCamelCase , return_codebook_pixels=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) if text is not None and images is not None: encoding.update(__UpperCamelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def lowercase__ ( self : Any , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Union[str, Any] )->Optional[int]: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , *__UpperCamelCase : Any , **__UpperCamelCase : Optional[Any] )->Any: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowercase__ ( self : str )->Any: _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int )->Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCamelCase , ) return self.image_processor_class @property def lowercase__ ( self : Optional[int] )->Union[str, Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCamelCase , ) return self.image_processor
95
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def is_in_circle(_SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> bool: _UpperCAmelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase = proportion * 4 print(f'The estimated value of pi is {pi_estimate}' ) print(f'The numpy value of pi is {pi}' ) print(f'The total error is {abs(pi - pi_estimate )}' ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Callable[[float], float] , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 ): '''simple docstring''' def identity_function(_SCREAMING_SNAKE_CASE : float ) -> float: return x _UpperCAmelCase = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {expected_value}' ) print(f'Total error is {abs(estimated_value - expected_value )}' ) print('''******************''' ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def function_to_integrate(_SCREAMING_SNAKE_CASE : float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {pi}' ) print(f'Total error is {abs(estimated_value - pi )}' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
95
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class _A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @staticmethod @abstractmethod def lowercase ( A_ : ArgumentParser ) -> Optional[Any]: raise NotImplementedError() @abstractmethod def lowercase ( self : List[Any] ) -> List[Any]: raise NotImplementedError()
564
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) SCREAMING_SNAKE_CASE: Optional[int] = 2_9_9_7_9_2_4_5_8 # Symbols SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE: Tuple = symbols('''ct x y z''') def _a ( lowerCAmelCase )-> float: if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def _a ( lowerCAmelCase )-> float: return 1 / sqrt(1 - beta(lowerCAmelCase ) ** 2 ) def _a ( lowerCAmelCase )-> np.ndarray: return np.array( [ [gamma(lowerCAmelCase ), -gamma(lowerCAmelCase ) * beta(lowerCAmelCase ), 0, 0], [-gamma(lowerCAmelCase ) * beta(lowerCAmelCase ), gamma(lowerCAmelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def _a ( lowerCAmelCase , lowerCAmelCase = None )-> np.ndarray: # Ensure event is not empty if event is None: SCREAMING_SNAKE_CASE_ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(lowerCAmelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: SCREAMING_SNAKE_CASE: int = transform(2_9_9_7_9_2_4_5) print('''Example of four vector: ''') print(f"""ct' = {four_vector[0]}""") print(f"""x' = {four_vector[1]}""") print(f"""y' = {four_vector[2]}""") print(f"""z' = {four_vector[3]}""") # Substitute symbols with numerical values SCREAMING_SNAKE_CASE: List[Any] = {ct: c, x: 1, y: 1, z: 1} SCREAMING_SNAKE_CASE: Optional[Any] = [four_vector[i].subs(sub_dict) for i in range(4)] print(f"""\n{numerical_vector}""")
360
0
'''simple docstring''' import numpy as np import qiskit def _SCREAMING_SNAKE_CASE ( A : int = 8 , A : int | None = None ) -> str: """simple docstring""" __snake_case : str = np.random.default_rng(seed=A ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __snake_case : Optional[int] = 6 * key_len # Measurement basis for Alice's qubits. __snake_case : str = rng.integers(2 , size=A ) # The set of states Alice will prepare. __snake_case : Dict = rng.integers(2 , size=A ) # Measurement basis for Bob's qubits. __snake_case : Tuple = rng.integers(2 , size=A ) # Quantum Circuit to simulate BB84 __snake_case : List[str] = qiskit.QuantumCircuit(A , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A ): if alice_state[index] == 1: bbaa_circ.x(A ) if alice_basis[index] == 1: bbaa_circ.h(A ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A ): if bob_basis[index] == 1: bbaa_circ.h(A ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __snake_case : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __snake_case : List[Any] = qiskit.execute(A , A , shots=1 , seed_simulator=A ) # Returns the result of measurement. __snake_case : List[Any] = job.result().get_counts(A ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __snake_case : Optional[Any] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A , A , A ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __snake_case : Any = gen_key[:key_len] if len(A ) >= key_len else gen_key.ljust(A , '0' ) return key if __name__ == "__main__": print(f'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
709
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A = logging.get_logger(__name__) class a_ ( UpperCamelCase_ ): _snake_case = ["""pixel_values"""] def __init__(self , __a = True , __a = None , __a = None , __a = PILImageResampling.BILINEAR , __a = True , __a = 1 / 2_5_5 , __a = True , __a = None , __a = None , **__a , ) -> None: """simple docstring""" super().__init__(**__a) __snake_case : Tuple = size if size is not None else {'shortest_edge': 3_8_4} __snake_case : List[Any] = get_size_dict(__a , default_to_square=__a) __snake_case : int = do_resize __snake_case : List[str] = size # Default value set here for backwards compatibility where the value in config is None __snake_case : Any = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 __snake_case : Tuple = resample __snake_case : Dict = do_rescale __snake_case : Any = rescale_factor __snake_case : str = do_normalize __snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__ (self , __a , __a , __a , __a = PILImageResampling.BICUBIC , __a = None , **__a , ) -> np.ndarray: """simple docstring""" __snake_case : Dict = get_size_dict(__a , default_to_square=__a) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""") __snake_case : List[str] = size['shortest_edge'] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __snake_case : Any = int(shortest_edge / crop_pct) __snake_case : Any = get_resize_output_image_size(__a , size=__a , default_to_square=__a) __snake_case : int = resize(image=__a , size=__a , resample=__a , data_format=__a , **__a) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__a , size=(shortest_edge, shortest_edge) , data_format=__a , **__a) else: # warping (no cropping) when evaluated at 384 or larger return resize( __a , size=(shortest_edge, shortest_edge) , resample=__a , data_format=__a , **__a) def SCREAMING_SNAKE_CASE__ (self , __a , __a , __a = None , **__a , ) -> Any: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a) def SCREAMING_SNAKE_CASE__ (self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def SCREAMING_SNAKE_CASE__ (self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> PIL.Image.Image: """simple docstring""" __snake_case : Optional[int] = do_resize if do_resize is not None else self.do_resize __snake_case : Dict = crop_pct if crop_pct is not None else self.crop_pct __snake_case : Tuple = resample if resample is not None else self.resample __snake_case : Any = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Any = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : Optional[int] = image_mean if image_mean is not None else self.image_mean __snake_case : Optional[Any] = image_std if image_std is not None else self.image_std __snake_case : List[str] = size if size is not None else self.size __snake_case : Any = get_size_dict(__a , default_to_square=__a) __snake_case : Dict = make_list_of_images(__a) if not valid_images(__a): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. __snake_case : Tuple = [to_numpy_array(__a) for image in images] if do_resize: __snake_case : Optional[int] = [self.resize(image=__a , size=__a , crop_pct=__a , resample=__a) for image in images] if do_rescale: __snake_case : Optional[int] = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: __snake_case : Any = [self.normalize(image=__a , mean=__a , std=__a) for image in images] __snake_case : Dict = [to_channel_dimension_format(__a , __a) for image in images] __snake_case : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=__a , tensor_type=__a)
61
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = "▁" _a = {"vocab_file": "spiece.model"} _a = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } _a = { "google/reformer-crime-and-punishment": 524_288, } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self , __lowerCAmelCase , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase=[] , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.piece_to_id(__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' if index < self.sp_model.get_piece_size(): lowerCamelCase__ = self.sp_model.IdToPiece(__lowerCAmelCase ) return token def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCAmelCase ) + token lowerCamelCase__ = [] else: current_sub_tokens.append(__lowerCAmelCase ) out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
481
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowerCAmelCase__() -> str: '''simple docstring''' lowerCamelCase__ = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__snake_case ) lowerCamelCase__ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__snake_case ) env_command_parser(subparsers=__snake_case ) launch_command_parser(subparsers=__snake_case ) tpu_command_parser(subparsers=__snake_case ) test_command_parser(subparsers=__snake_case ) # Let's go lowerCamelCase__ = parser.parse_args() if not hasattr(__snake_case ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__snake_case ) if __name__ == "__main__": main()
481
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a = get_logger() a = None class lowercase_ ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( F'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _A = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _A = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) _A = str(jax.devices()[0] ) _A = jnp_array_kwargs @staticmethod def lowerCAmelCase_ ( ): import jax return {str(__A ): device for device in jax.devices()} def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _A = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _A = {"dtype": jnp.intaa} else: _A = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _A = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): _A = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _A = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , '__array__' ) and not isinstance(__A , jax.Array ): _A = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : pa.Table ): _A = self.numpy_arrow_extractor().extract_row(__A ) _A = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : pa.Table ): _A = self.numpy_arrow_extractor().extract_column(__A ) _A = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) _A = self.recursive_tensorize(__A ) _A = self._consolidate(__A ) return column def lowerCAmelCase_ ( self : str , _UpperCAmelCase : pa.Table ): _A = self.numpy_arrow_extractor().extract_batch(__A ) _A = self.python_features_decoder.decode_batch(__A ) _A = self.recursive_tensorize(__A ) for column_name in batch: _A = self._consolidate(batch[column_name] ) return batch
703
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
505
0
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) snake_case_ = flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} snake_case_ = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } snake_case_ = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key snake_case_ = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): snake_case_ = new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): snake_case_ = new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number snake_case_ = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number snake_case_ = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = flax_dict[key] snake_case_ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): snake_case_ = torch.from_numpy(converted_dict[key].T ) else: snake_case_ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False ): snake_case_ = get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: snake_case_ = PixaStructVisionConfig() snake_case_ = PixaStructTextConfig() else: snake_case_ = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) snake_case_ = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) snake_case_ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) snake_case_ = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) snake_case_ = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) snake_case_ = PixaStructImageProcessor() snake_case_ = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: snake_case_ = 4096 snake_case_ = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('''Model saved in {}'''.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') lowerCAmelCase_ = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
39
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
1
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : str = model.config lowercase__ : Optional[int] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ : Optional[int] = MBartConfig( is_decoder=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , add_cross_attention=_lowerCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_lowerCAmelCase , add_final_layer_norm=_lowerCAmelCase , ) return encoder_config, decoder_config def a_ ( _lowerCAmelCase : int ): '''simple docstring''' if "encoder.model" in name: lowercase__ : str = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: lowercase__ : Any = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: lowercase__ : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowercase__ : List[str] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: lowercase__ : str = 'encoder.' + name if "attn.proj" in name: lowercase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: lowercase__ : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowercase__ : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowercase__ : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowercase__ : List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowercase__ : Any = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": lowercase__ : List[str] = 'encoder.layernorm.weight' if name == "encoder.norm.bias": lowercase__ : List[Any] = 'encoder.layernorm.bias' return name def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : Dict = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: lowercase__ : str = key.split('.' ) lowercase__ : int = int(key_split[3] ) lowercase__ : Tuple = int(key_split[5] ) lowercase__ : Any = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ : Optional[Any] = val[:dim, :] lowercase__ : List[Any] = val[dim : dim * 2, :] lowercase__ : Tuple = val[-dim:, :] else: lowercase__ : Union[str, Any] = val[:dim] lowercase__ : List[str] = val[dim : dim * 2] lowercase__ : Tuple = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ : List[Any] = val return orig_state_dict def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : List[Any]=False ): '''simple docstring''' lowercase__ : Optional[Any] = DonutModel.from_pretrained(_lowerCAmelCase ).eval() # load HuggingFace model lowercase__ , lowercase__ : Dict = get_configs(_lowerCAmelCase ) lowercase__ : Dict = DonutSwinModel(_lowerCAmelCase ) lowercase__ : str = MBartForCausalLM(_lowerCAmelCase ) lowercase__ : Union[str, Any] = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() lowercase__ : int = original_model.state_dict() lowercase__ : Optional[int] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # verify results on scanned document lowercase__ : Union[str, Any] = load_dataset('hf-internal-testing/example-documents' ) lowercase__ : str = dataset['test'][0]['image'].convert('RGB' ) lowercase__ : List[Any] = XLMRobertaTokenizerFast.from_pretrained(_lowerCAmelCase , from_slow=_lowerCAmelCase ) lowercase__ : Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ : List[str] = DonutProcessor(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : int = processor(_lowerCAmelCase , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ : Dict = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' lowercase__ : Tuple = 'When is the coffee break?' lowercase__ : str = task_prompt.replace('{user_input}' , _lowerCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ : Union[str, Any] = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ : List[Any] = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ : Optional[int] = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ : Optional[int] = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ : str = 'hello world' else: raise ValueError('Model name not supported' ) lowercase__ : str = original_model.decoder.tokenizer(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors='pt' )[ 'input_ids' ] lowercase__ : Optional[int] = original_model.encoder.model.patch_embed(_lowerCAmelCase ) lowercase__ , lowercase__ : str = model.encoder.embeddings(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) # verify encoder hidden states lowercase__ : Union[str, Any] = original_model.encoder(_lowerCAmelCase ) lowercase__ : Optional[Any] = model.encoder(_lowerCAmelCase ).last_hidden_state assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) # verify decoder hidden states lowercase__ : Tuple = original_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).logits lowercase__ : str = model(_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _UpperCamelCase : int = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
645
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
1
"""simple docstring""" import enum import shutil import sys snake_case , snake_case = shutil.get_terminal_size() snake_case = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class UpperCAmelCase ( enum.Enum ): A__ : List[Any] = 0 A__ : List[str] = 1 def snake_case ( lowerCAmelCase_ , lowerCAmelCase_="" ) -> List[Any]: sys.stdout.write(str(lowerCAmelCase_ ) + end ) sys.stdout.flush() def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="" ) -> List[Any]: forceWrite(f"""\u001b[{color}m{content}\u001b[0m""" , lowerCAmelCase_ ) def snake_case ( ) -> Dict: forceWrite('''\r''' ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def snake_case ( ) -> Tuple: forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def snake_case ( ) -> int: reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
103
from PIL import Image def A__ ( _a : Image , _a : float ): '''simple docstring''' def brightness(_a : int ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_a ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 __lowerCamelCase : str = change_brightness(img, 1_00) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
385
0
"""simple docstring""" from math import isclose, sqrt def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = point_y / 4 / point_x UpperCAmelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase = outgoing_gradient**2 + 4 UpperCAmelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase = x_minus if isclose(_snake_case , _snake_case ) else x_plus UpperCAmelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _a ( _snake_case = 1.4 , _snake_case = -9.6 ): """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = first_x_coord UpperCAmelCase = first_y_coord UpperCAmelCase = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = next_point(_snake_case , _snake_case , _snake_case ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
74
"""simple docstring""" import math def _a ( _snake_case ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( _snake_case = 0.1 ): """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
74
1
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") SCREAMING_SNAKE_CASE__ : Optional[int] = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: SCREAMING_SNAKE_CASE__ : Any = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) SCREAMING_SNAKE_CASE__ : Dict = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
79
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=a_ ) class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) __UpperCAmelCase = Features({'image': Image()} ) __UpperCAmelCase = Features({'labels': ClassLabel} ) __UpperCAmelCase = "image" __UpperCAmelCase = "labels" def __snake_case ( self : int, _snake_case : Union[str, Any] ): '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column], _snake_case ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case : List[str] =copy.deepcopy(self ) snake_case : List[str] =self.label_schema.copy() snake_case : int =features[self.label_column] snake_case : List[Any] =label_schema return task_template @property def __snake_case ( self : str ): '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
349
0
def __UpperCamelCase ( _lowerCAmelCase ) -> List[Any]: """simple docstring""" A : Union[str, Any] = [int(lowerCamelCase_ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(lowerCamelCase_ ) == 4 and all(0 <= int(lowerCamelCase_ ) <= 254 for octet in octets ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Union[str, Any] = input().strip() SCREAMING_SNAKE_CASE_:Tuple = """valid""" if is_ip_va_address_valid(ip) else """invalid""" print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
712
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
520
0