code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from math import sqrt def a_ ( _lowerCAmelCase : int = 100_0000 ): '''simple docstring''' lowercase__ : int = 0 lowercase__ : int = 0 lowercase__ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
599
"""simple docstring""" import argparse import json from tqdm import tqdm def a_ ( ): '''simple docstring''' lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=_lowerCAmelCase , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=_lowerCAmelCase , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=_lowerCAmelCase , help='where to store parsed gold_data_path file' , ) lowercase__ : Union[str, Any] = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowercase__ : List[str] = json.load(_lowerCAmelCase ) for dpr_record in tqdm(_lowerCAmelCase ): lowercase__ : Any = dpr_record['question'] lowercase__ : Optional[Any] = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(_lowerCAmelCase ) + '\n' ) if __name__ == "__main__": main()
599
1
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowercase( unittest.TestCase ): '''simple docstring''' def __init__( self , __a , __a=100 , __a=13 , __a=30 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=3 , ): __lowerCamelCase : str = parent __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[str] = batch_size __lowerCamelCase : Tuple = image_size __lowerCamelCase : int = patch_size __lowerCamelCase : List[str] = num_channels __lowerCamelCase : Union[str, Any] = is_training __lowerCamelCase : Dict = use_labels __lowerCamelCase : Dict = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : int = num_attention_heads __lowerCamelCase : str = intermediate_size __lowerCamelCase : Any = hidden_act __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : int = type_sequence_label_size __lowerCamelCase : int = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : List[str] = (image_size // patch_size) ** 2 __lowerCamelCase : Union[str, Any] = num_patches + 1 def snake_case_ ( self ): __lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Tuple = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : str = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values, labels def snake_case_ ( self , __a , __a , __a ): __lowerCamelCase : Any = FlaxBeitModel(config=__a ) __lowerCamelCase : Union[str, Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , __a , __a , __a ): __lowerCamelCase : Union[str, Any] = FlaxBeitForMaskedImageModeling(config=__a ) __lowerCamelCase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def snake_case_ ( self , __a , __a , __a ): __lowerCamelCase : str = self.type_sequence_label_size __lowerCamelCase : int = FlaxBeitForImageClassification(config=__a ) __lowerCamelCase : int = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : Dict = 1 __lowerCamelCase : List[Any] = FlaxBeitForImageClassification(__a ) __lowerCamelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = model(__a ) def snake_case_ ( self ): __lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : Optional[int] = config_and_inputs __lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowercase( lowercase__ , unittest.TestCase ): '''simple docstring''' __a : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def snake_case_ ( self ): __lowerCamelCase : str = FlaxBeitModelTester(self ) __lowerCamelCase : str = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def snake_case_ ( self ): self.config_tester.run_common_tests() def snake_case_ ( self ): __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[int] = model_class(__a ) __lowerCamelCase : List[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[str] = [*signature.parameters.keys()] __lowerCamelCase : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def snake_case_ ( self ): __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : List[str] = self._prepare_for_class(__a , __a ) __lowerCamelCase : List[Any] = model_class(__a ) @jax.jit def model_jitted(__a , **__a ): return model(pixel_values=__a , **__a ) with self.subTest('JIT Enabled' ): __lowerCamelCase : Union[str, Any] = model_jitted(**__a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : str = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case_ ( self ): __lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case_ ( self ): __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def snake_case_ ( self ): __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def snake_case_ ( self ): for model_class_name in self.all_model_classes: __lowerCamelCase : List[str] = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) __lowerCamelCase : str = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__a ) def UpperCAmelCase ( ) -> Any: __lowerCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case_ ( self ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def snake_case_ ( self ): __lowerCamelCase : List[str] = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) __lowerCamelCase : int = self.default_image_processor __lowerCamelCase : Tuple = prepare_img() __lowerCamelCase : str = image_processor(images=__a , return_tensors='np' ).pixel_values # prepare bool_masked_pos __lowerCamelCase : int = np.ones((1, 196) , dtype=__a ) # forward pass __lowerCamelCase : Any = model(pixel_values=__a , bool_masked_pos=__a ) __lowerCamelCase : List[Any] = outputs.logits # verify the logits __lowerCamelCase : List[Any] = (1, 196, 8192) self.assertEqual(logits.shape , __a ) __lowerCamelCase : str = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , __a , atol=1E-2 ) ) @slow def snake_case_ ( self ): __lowerCamelCase : int = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) __lowerCamelCase : Union[str, Any] = self.default_image_processor __lowerCamelCase : Dict = prepare_img() __lowerCamelCase : Optional[int] = image_processor(images=__a , return_tensors='np' ) # forward pass __lowerCamelCase : Dict = model(**__a ) __lowerCamelCase : int = outputs.logits # verify the logits __lowerCamelCase : Optional[int] = (1, 1000) self.assertEqual(logits.shape , __a ) __lowerCamelCase : List[str] = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , __a , atol=1E-4 ) ) __lowerCamelCase : Tuple = 281 self.assertEqual(logits.argmax(-1 ).item() , __a ) @slow def snake_case_ ( self ): __lowerCamelCase : Union[str, Any] = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) __lowerCamelCase : Union[str, Any] = self.default_image_processor __lowerCamelCase : Optional[int] = prepare_img() __lowerCamelCase : Optional[int] = image_processor(images=__a , return_tensors='np' ) # forward pass __lowerCamelCase : str = model(**__a ) __lowerCamelCase : List[str] = outputs.logits # verify the logits __lowerCamelCase : Union[str, Any] = (1, 21841) self.assertEqual(logits.shape , __a ) __lowerCamelCase : Any = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , __a , atol=1E-4 ) ) __lowerCamelCase : Tuple = 2396 self.assertEqual(logits.argmax(-1 ).item() , __a )
263
"""simple docstring""" import random from typing import Any def UpperCAmelCase ( A__: list ) -> list[Any]: for _ in range(len(A__ ) ): __lowerCamelCase : List[Any] = random.randint(0 , len(A__ ) - 1 ) __lowerCamelCase : Optional[Any] = random.randint(0 , len(A__ ) - 1 ) __lowerCamelCase , __lowerCamelCase : Any = data[b], data[a] return data if __name__ == "__main__": a_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] a_ : int = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
263
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any]=None , lowercase : Dict=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=lowercase ) @dataclass class A: '''simple docstring''' UpperCamelCase = field( metadata={'''help''': '''The csv file to plot.'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) UpperCamelCase = list_field( default=UpperCamelCase , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' try: int(lowercase ) return True except ValueError: return False def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' try: float(lowercase ) return True except ValueError: return False class A: '''simple docstring''' def __init__( self : Optional[int] , A_ : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = args lowerCamelCase_ = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: lowerCamelCase_ = csv.DictReader(A_ ) for row in reader: lowerCamelCase_ = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None lowerCamelCase_ = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None lowerCamelCase_ = float(row['result'] ) def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = plt.subplots() lowerCamelCase_ = 'Time usage' if self.args.is_time else 'Memory usage' lowerCamelCase_ = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowerCamelCase_ = sorted(set(self.result_dict[model_name]['bsz'] ) ) lowerCamelCase_ = sorted(set(self.result_dict[model_name]['seq_len'] ) ) lowerCamelCase_ = self.result_dict[model_name]['result'] ((lowerCamelCase_) , (lowerCamelCase_)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowerCamelCase_ = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowerCamelCase_ = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=A_ , ) else: lowerCamelCase_ = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((lowerCamelCase_) , (lowerCamelCase_)) = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) lowerCamelCase_ = np.asarray(A_ , A_ )[: len(A_ )] plt.scatter( A_ , A_ , label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(A_ , A_ , '--' ) title_str += f""" {label_model_name} vs.""" lowerCamelCase_ = title_str[:-4] lowerCamelCase_ = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(A_ ) plt.xlabel(A_ ) plt.ylabel(A_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = HfArgumentParser(lowercase ) lowerCamelCase_ = parser.parse_args_into_dataclasses()[0] lowerCamelCase_ = Plot(args=lowercase ) plot.plot() if __name__ == "__main__": main()
70
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = LxmertTokenizer __UpperCamelCase = LxmertTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' super().setUp() a__ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : int , A__ : int ) -> int: '''simple docstring''' a__ : List[Any] = '''UNwant\u00E9d,running''' a__ : Optional[int] = '''unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self : int ) -> Dict: '''simple docstring''' a__ : Optional[int] = self.tokenizer_class(self.vocab_file ) a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] ) def __lowerCAmelCase ( self : Any ) -> Dict: '''simple docstring''' if not self.test_rust_tokenizer: return a__ : Union[str, Any] = self.get_tokenizer() a__ : Union[str, Any] = self.get_rust_tokenizer() a__ : str = '''I was born in 92000, and this is falsé.''' a__ : Tuple = tokenizer.tokenize(A__ ) a__ : Tuple = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) a__ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ ) a__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) a__ : List[str] = self.get_rust_tokenizer() a__ : str = tokenizer.encode(A__ ) a__ : int = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ )
688
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCAmelCase : Optional[int] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : Optional[int] = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = ["MaskFormerFeatureExtractor"] _lowerCAmelCase : Dict = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] _lowerCAmelCase : List[str] = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
364
0
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase__ = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } lowerCAmelCase__ = '''▁''' class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ['input_ids', 'attention_mask'] def __init__( self : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any]="</s>" ,lowercase__ : Union[str, Any]="<unk>" ,lowercase__ : int="<pad>" ,lowercase__ : Dict=1_0_0 ,lowercase__ : Optional[int]=None ,lowercase__ : Optional[Dict[str, Any]] = None ,lowercase__ : Optional[Any]=True ,**lowercase__ : Optional[int] ,): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowercase = [F"<extra_id_{i}>" for i in range(lowercase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __lowercase = len(set(filter(lambda lowercase__ : bool('''extra_id''' in str(lowercase__ ) ) ,lowercase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( F"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to" ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) __lowercase = legacy __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase__ ,unk_token=lowercase__ ,pad_token=lowercase__ ,extra_ids=lowercase__ ,additional_special_tokens=lowercase__ ,sp_model_kwargs=self.sp_model_kwargs ,legacy=lowercase__ ,**lowercase__ ,) __lowercase = vocab_file __lowercase = extra_ids __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __lowercase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F" {pretrained_model_name_or_path} automatically truncating your input to" F" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" F" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' ,lowercase__ ,) return max_model_length @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ,lowercase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ ,token_ids_a=lowercase__ ,already_has_special_tokens=lowercase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase__ )) + [1] return ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return list( set(filter(lambda lowercase__ : bool(re.search(r'''<extra_id_\d+>''' ,lowercase__ ) ) is not None ,self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): return [self._convert_token_to_id(lowercase__ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[int] ): if len(lowercase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = self._add_eos_if_not_present(lowercase__ ) if token_ids_a is None: return token_ids_a else: __lowercase = self._add_eos_if_not_present(lowercase__ ) return token_ids_a + token_ids_a def __getstate__( self : List[str] ): __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : List[Any] ,lowercase__ : List[Any] ): __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : "TextInput" ,**lowercase__ : Any ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __lowercase = SPIECE_UNDERLINE + text.replace(lowercase__ ,''' ''' ) return super().tokenize(lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,**lowercase__ : str ): if not self.legacy: __lowercase = text.startswith(lowercase__ ) if is_first: __lowercase = text[1:] __lowercase = self.sp_model.encode(lowercase__ ,out_type=lowercase__ ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(lowercase__ ): __lowercase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Tuple ): if token.startswith('''<extra_id_''' ): __lowercase = re.match(r'''<extra_id_(\d+)>''' ,lowercase__ ) __lowercase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Any ): if index < self.sp_model.get_piece_size(): __lowercase = self.sp_model.IdToPiece(lowercase__ ) else: __lowercase = F"<extra_id_{self.vocab_size - 1 - index}>" return token def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Any ): __lowercase = [] __lowercase = '''''' __lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__ ) + token __lowercase = True __lowercase = [] else: current_sub_tokens.append(lowercase__ ) __lowercase = False out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : str ,lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( lowercase__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
41
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A (__UpperCAmelCase ): _SCREAMING_SNAKE_CASE = ["""image_processor""", """tokenizer"""] _SCREAMING_SNAKE_CASE = """LayoutLMv3ImageProcessor""" _SCREAMING_SNAKE_CASE = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self , lowercase_=None , lowercase_=None , **lowercase_ ) -> Tuple: '''simple docstring''' _snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase_ , ) _snake_case : int = kwargs.pop('''feature_extractor''' ) _snake_case : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase_ , lowercase_ ) def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor _snake_case : Tuple = self.image_processor(images=lowercase_ , return_tensors=lowercase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase_ , lowercase_ ): _snake_case : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) _snake_case : Any = features['''words'''] _snake_case : Union[str, Any] = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel values _snake_case : Any = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: _snake_case : Tuple = self.get_overflowing_images(lowercase_ , encoded_inputs['''overflow_to_sample_mapping'''] ) _snake_case : List[str] = images return encoded_inputs def __a ( self , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' _snake_case : int = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F''' {len(lowercase_ )} and {len(lowercase_ )}''' ) return images_with_overflow def __a ( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def __a ( self , *lowercase_ , **lowercase_ ) -> int: '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def __a ( self ) -> int: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __a ( self ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase_ , ) return self.image_processor_class @property def __a ( self ) -> str: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase_ , ) return self.image_processor
326
0
import flax.linen as nn import jax import jax.numpy as jnp class UpperCamelCase ( nn.Module ): __UpperCamelCase =42 __UpperCamelCase =jnp.floataa def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE = hidden_states.shape SCREAMING_SNAKE_CASE = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) SCREAMING_SNAKE_CASE = self.conv(__lowerCamelCase ) return hidden_states class UpperCamelCase ( nn.Module ): __UpperCamelCase =42 __UpperCamelCase =jnp.floataa def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.conv(__lowerCamelCase ) return hidden_states class UpperCamelCase ( nn.Module ): __UpperCamelCase =42 __UpperCamelCase =None __UpperCamelCase =0.0 __UpperCamelCase =None __UpperCamelCase =jnp.floataa def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) SCREAMING_SNAKE_CASE = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE = nn.Dense(__lowerCamelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob ) SCREAMING_SNAKE_CASE = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut SCREAMING_SNAKE_CASE = None if use_nin_shortcut: SCREAMING_SNAKE_CASE = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[int] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any]=True ): """simple docstring""" SCREAMING_SNAKE_CASE = hidden_states SCREAMING_SNAKE_CASE = self.norma(__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.swish(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.conva(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) SCREAMING_SNAKE_CASE = hidden_states + temb SCREAMING_SNAKE_CASE = self.norma(__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.swish(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.dropout(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: SCREAMING_SNAKE_CASE = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
702
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } a_ : Union[str, Any] = {"allegro/herbert-base-cased": 514} a_ : List[Any] = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =HerbertTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : str="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
0
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch snake_case = True except ImportError: snake_case = False try: from torch.hub import _get_torch_home snake_case = _get_torch_home() except ImportError: snake_case = os.path.expanduser( os.getenv('''TORCH_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''torch''')) ) snake_case = os.path.join(torch_cache_home, '''transformers''') snake_case = '''https://cdn.huggingface.co''' snake_case = '''https://s3.amazonaws.com/models.huggingface.co/bert''' snake_case = '''/'''.join(str(Path(__file__).resolve()).split('''/''')[:-1]) snake_case = os.path.join(PATH, '''config.yaml''') snake_case = os.path.join(PATH, '''attributes.txt''') snake_case = os.path.join(PATH, '''objects.txt''') snake_case = os.getenv('''PYTORCH_PRETRAINED_BERT_CACHE''', default_cache_path) snake_case = os.getenv('''PYTORCH_TRANSFORMERS_CACHE''', PYTORCH_PRETRAINED_BERT_CACHE) snake_case = os.getenv('''TRANSFORMERS_CACHE''', PYTORCH_TRANSFORMERS_CACHE) snake_case = '''pytorch_model.bin''' snake_case = '''config.yaml''' def snake_case ( lowerCAmelCase_=OBJECTS , lowerCAmelCase_=ATTRIBUTES ) -> Optional[int]: _snake_case = [] with open(lowerCAmelCase_ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) _snake_case = [] with open(lowerCAmelCase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def snake_case ( lowerCAmelCase_ ) -> int: _snake_case = OrderedDict() with open(lowerCAmelCase_ , '''rb''' ) as f: _snake_case = pkl.load(lowerCAmelCase_ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): _snake_case = ckp.pop(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , np.ndarray ): _snake_case = torch.tensor(lowerCAmelCase_ ) else: assert isinstance(lowerCAmelCase_ , torch.tensor ), type(lowerCAmelCase_ ) _snake_case = v return r class UpperCAmelCase : A__ : int = {} def __init__( self : Optional[int] , __lowerCamelCase : dict , __lowerCamelCase : str = "root" , __lowerCamelCase : Any=0 ): """simple docstring""" _snake_case = name _snake_case = level _snake_case = {} for k, v in dictionary.items(): if v is None: raise ValueError() _snake_case = copy.deepcopy(__lowerCamelCase ) _snake_case = copy.deepcopy(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = Config(__lowerCamelCase , name=__lowerCamelCase , level=level + 1 ) _snake_case = v setattr(self , __lowerCamelCase , __lowerCamelCase ) _snake_case = d def __repr__( self : Optional[Any] ): """simple docstring""" return str(list((self._pointer.keys()) ) ) def __setattr__( self : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" _snake_case = val _snake_case = val _snake_case = key.split('''.''' ) _snake_case = len(__lowerCamelCase ) - 1 _snake_case = self._pointer if len(__lowerCamelCase ) > 1: for i, l in enumerate(__lowerCamelCase ): if hasattr(self , __lowerCamelCase ) and isinstance(getattr(self , __lowerCamelCase ) , __lowerCamelCase ): setattr(getattr(self , __lowerCamelCase ) , '''.'''.join(levels[i:] ) , __lowerCamelCase ) if l == last_level: _snake_case = val else: _snake_case = pointer[l] def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return self._pointer def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : int ): """simple docstring""" with open(f"""{file_name}""" , '''w''' ) as stream: dump(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict ): """simple docstring""" with open(f"""{file_name}""" , '''w''' ) as stream: json.dump(__lowerCamelCase , __lowerCamelCase ) @staticmethod def __UpperCAmelCase ( __lowerCamelCase : List[str] ): """simple docstring""" with open(__lowerCamelCase ) as stream: _snake_case = load(__lowerCamelCase , Loader=__lowerCamelCase ) return data def __str__( self : Tuple ): """simple docstring""" _snake_case = ''' ''' if self._name != "root": _snake_case = f"""{t * (self._level-1)}{self._name}:\n""" else: _snake_case = '''''' _snake_case = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__lowerCamelCase , __lowerCamelCase ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(__lowerCamelCase ).__name__})\n""" _snake_case = level return r[:-1] @classmethod def __UpperCAmelCase ( cls : Any , __lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ): """simple docstring""" _snake_case , _snake_case = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) return cls(__lowerCamelCase ) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , __lowerCamelCase : str , **__lowerCamelCase : Union[str, Any] ): """simple docstring""" _snake_case = kwargs.pop('''cache_dir''' , __lowerCamelCase ) _snake_case = kwargs.pop('''force_download''' , __lowerCamelCase ) _snake_case = kwargs.pop('''resume_download''' , __lowerCamelCase ) _snake_case = kwargs.pop('''proxies''' , __lowerCamelCase ) _snake_case = kwargs.pop('''local_files_only''' , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ): _snake_case = os.path.join(__lowerCamelCase , __lowerCamelCase ) elif os.path.isfile(__lowerCamelCase ) or is_remote_url(__lowerCamelCase ): _snake_case = pretrained_model_name_or_path else: _snake_case = hf_bucket_url(__lowerCamelCase , filename=__lowerCamelCase , use_cdn=__lowerCamelCase ) try: # Load from URL or cache if already cached _snake_case = cached_path( __lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , local_files_only=__lowerCamelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _snake_case = Config.load_yaml(__lowerCamelCase ) except EnvironmentError: _snake_case = '''Can\'t load config for''' raise EnvironmentError(__lowerCamelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(__lowerCamelCase ), kwargs def snake_case ( lowerCAmelCase_ ) -> Optional[int]: _snake_case = torch.load('''dump.pt''' , map_location=in_tensor.device ) _snake_case = in_tensor.numpy() _snake_case = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , rtol=0.01 , atol=0.1 ), ( f"""{sum([1 for x in np.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %""" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def snake_case ( lowerCAmelCase_ ) -> str: _snake_case = urlparse(lowerCAmelCase_ ) return parsed.scheme in ("http", "https") def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True ) -> str: _snake_case = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _snake_case = '''/''' not in model_id if legacy_format: return f"""{endpoint}/{model_id}-{filename}""" else: return f"""{endpoint}/{model_id}/{filename}""" def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=0 , lowerCAmelCase_=None , ) -> Optional[Any]: _snake_case = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase_ , lowerCAmelCase_ ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): ua += "; " + user_agent _snake_case = {'''user-agent''': ua} if resume_size > 0: _snake_case = '''bytes=%d-''' % (resume_size,) _snake_case = requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ , proxies=lowerCAmelCase_ , headers=lowerCAmelCase_ ) if response.status_code == 416: # Range not satisfiable return _snake_case = response.headers.get('''Content-Length''' ) _snake_case = resume_size + int(lowerCAmelCase_ ) if content_length is not None else None _snake_case = tqdm( unit='''B''' , unit_scale=lowerCAmelCase_ , total=lowerCAmelCase_ , initial=lowerCAmelCase_ , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase_ ) ) temp_file.write(lowerCAmelCase_ ) progress.close() def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=10 , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=False , ) -> Dict: if cache_dir is None: _snake_case = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = str(lowerCAmelCase_ ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _snake_case = None if not local_files_only: try: _snake_case = requests.head(lowerCAmelCase_ , allow_redirects=lowerCAmelCase_ , proxies=lowerCAmelCase_ , timeout=lowerCAmelCase_ ) if response.status_code == 200: _snake_case = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _snake_case = url_to_filename(lowerCAmelCase_ , lowerCAmelCase_ ) # get cache path to put the file _snake_case = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase_ ): return cache_path else: _snake_case = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase_ ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowerCAmelCase_ ) > 0: return os.path.join(lowerCAmelCase_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _snake_case = cache_path + '''.lock''' with FileLock(lowerCAmelCase_ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _snake_case = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase_ , '''a+b''' ) as f: yield f _snake_case = _resumable_file_manager if os.path.exists(lowerCAmelCase_ ): _snake_case = os.stat(lowerCAmelCase_ ).st_size else: _snake_case = 0 else: _snake_case = partial(tempfile.NamedTemporaryFile , dir=lowerCAmelCase_ , delete=lowerCAmelCase_ ) _snake_case = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , lowerCAmelCase_ , temp_file.name , ) http_get( lowerCAmelCase_ , lowerCAmelCase_ , proxies=lowerCAmelCase_ , resume_size=lowerCAmelCase_ , user_agent=lowerCAmelCase_ , ) os.replace(temp_file.name , lowerCAmelCase_ ) _snake_case = {'''url''': url, '''etag''': etag} _snake_case = cache_path + '''.json''' with open(lowerCAmelCase_ , '''w''' ) as meta_file: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) return cache_path def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=None ) -> int: _snake_case = url.encode('''utf-8''' ) _snake_case = shaaaa(lowerCAmelCase_ ) _snake_case = url_hash.hexdigest() if etag: _snake_case = etag.encode('''utf-8''' ) _snake_case = shaaaa(lowerCAmelCase_ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> Optional[Any]: if cache_dir is None: _snake_case = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = str(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = str(lowerCAmelCase_ ) if is_remote_url(lowerCAmelCase_ ): # URL, so get it from the cache (downloading if necessary) _snake_case = get_from_cache( lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , user_agent=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) elif os.path.exists(lowerCAmelCase_ ): # File, and it exists. _snake_case = url_or_filename elif urlparse(lowerCAmelCase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase_ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase_ ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase_ ) and not tarfile.is_tarfile(lowerCAmelCase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _snake_case , _snake_case = os.path.split(lowerCAmelCase_ ) _snake_case = output_file.replace('''.''' , '''-''' ) + '''-extracted''' _snake_case = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) if os.path.isdir(lowerCAmelCase_ ) and os.listdir(lowerCAmelCase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions _snake_case = output_path + '''.lock''' with FileLock(lowerCAmelCase_ ): shutil.rmtree(lowerCAmelCase_ , ignore_errors=lowerCAmelCase_ ) os.makedirs(lowerCAmelCase_ ) if is_zipfile(lowerCAmelCase_ ): with ZipFile(lowerCAmelCase_ , '''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase_ ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase_ ): _snake_case = tarfile.open(lowerCAmelCase_ ) tar_file.extractall(lowerCAmelCase_ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase_ ) ) return output_path_extracted return output_path def snake_case ( lowerCAmelCase_ , lowerCAmelCase_="," ) -> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) if os.path.isfile(lowerCAmelCase_ ): with open(lowerCAmelCase_ ) as f: _snake_case = eval(f.read() ) else: _snake_case = requests.get(lowerCAmelCase_ ) try: _snake_case = requests.json() except Exception: _snake_case = req.content.decode() assert data is not None, "could not connect" try: _snake_case = eval(lowerCAmelCase_ ) except Exception: _snake_case = data.split('''\n''' ) req.close() return data def snake_case ( lowerCAmelCase_ ) -> List[str]: _snake_case = requests.get(lowerCAmelCase_ ) _snake_case = np.array(Image.open(BytesIO(response.content ) ) ) return img def snake_case ( lowerCAmelCase_ ) -> List[str]: _snake_case = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase_ ) with open(lowerCAmelCase_ , '''rb''' ) as stream: _snake_case = pkl.load(lowerCAmelCase_ ) _snake_case = weights.pop('''model''' ) _snake_case = {} for k, v in model.items(): _snake_case = torch.from_numpy(lowerCAmelCase_ ) if "running_var" in k: _snake_case = torch.tensor([0] ) _snake_case = k.replace('''running_var''' , '''num_batches_tracked''' ) _snake_case = zero return new def snake_case ( ) -> str: print(f"""{os.path.abspath(os.path.join(lowerCAmelCase_ , os.pardir ) )}/demo.ipynb""" ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_="RGB" ) -> Any: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) if os.path.isfile(lowerCAmelCase_ ): _snake_case = cva.imread(lowerCAmelCase_ ) else: _snake_case = get_image_from_url(lowerCAmelCase_ ) assert img is not None, f"""could not connect to: {im}""" _snake_case = cva.cvtColor(lowerCAmelCase_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": _snake_case = img[:, :, ::-1] return img def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=1 ) -> Tuple: return (images[i : i + batch] for i in range(0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ))
103
"""simple docstring""" from math import sqrt def snake_case ( lowerCAmelCase_ = 1000000 ) -> int: _snake_case = 0 _snake_case = 0 _snake_case = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowerCAmelCase_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
103
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name __snake_case = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : Dict, _lowerCAmelCase : Dict=8 ): """simple docstring""" _a = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _a = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: super().__init__() self.register_modules( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , movq=__UpperCAmelCase , ) _a = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if latents is None: _a = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _a = latents.to(__UpperCAmelCase ) _a = latents * scheduler.init_noise_sigma return latents def _UpperCAmelCase ( self , __UpperCAmelCase=0 ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _a = torch.device(F'cuda:{gpu_id}' ) _a = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=0 ) -> Dict: if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _a = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=__UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _a = None for cpu_offloaded_model in [self.unet, self.movq]: _a , _a = cpu_offload_with_hook(__UpperCAmelCase , __UpperCAmelCase , prev_module_hook=__UpperCAmelCase ) # We'll offload the last model manually. _a = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self ) -> int: if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__UpperCAmelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 512 , __UpperCAmelCase = 512 , __UpperCAmelCase = 100 , __UpperCAmelCase = 4.0 , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , ) -> str: _a = self._execution_device _a = guidance_scale > 1.0 if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = torch.cat(__UpperCAmelCase , dim=0 ) _a = image_embeds.shape[0] * num_images_per_prompt if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = torch.cat(__UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: _a = image_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) _a = negative_image_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) _a = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__UpperCAmelCase ) self.scheduler.set_timesteps(__UpperCAmelCase , device=__UpperCAmelCase ) _a = self.scheduler.timesteps _a = self.unet.config.in_channels _a , _a = downscale_height_and_width(__UpperCAmelCase , __UpperCAmelCase , self.movq_scale_factor ) # create initial latent _a = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = {'''image_embeds''': image_embeds} _a = self.unet( sample=__UpperCAmelCase , timestep=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , added_cond_kwargs=__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0] if do_classifier_free_guidance: _a , _a = noise_pred.split(latents.shape[1] , dim=1 ) _a , _a = noise_pred.chunk(2 ) _a , _a = variance_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _a = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _a , _a = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase , )[0] # post-processing _a = self.movq.decode(__UpperCAmelCase , force_not_quantize=__UpperCAmelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _a = image * 0.5 + 0.5 _a = image.clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _a = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
285
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''spiece.model'''} __snake_case = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } __snake_case = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __snake_case = '''▁''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : int = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _a = ( AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase , normalized=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token ) _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def _UpperCAmelCase ( self ) -> str: return len(self.sp_model ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: _a = self.__dict__.copy() _a = None return state def __setstate__( self , __UpperCAmelCase ) -> Tuple: _a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]: if self.remove_space: _a = ''' '''.join(inputs.strip().split() ) else: _a = inputs _a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: _a = unicodedata.normalize('''NFKD''' , __UpperCAmelCase ) _a = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: _a = outputs.lower() return outputs def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _a = self.preprocess_text(__UpperCAmelCase ) _a = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) _a = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): _a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _a = cur_pieces[1:] else: _a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str: return self.sp_model.PieceToId(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> int: return self.sp_model.IdToPiece(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: _a = [] _a = '''''' _a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token _a = True _a = [] else: current_sub_tokens.append(__UpperCAmelCase ) _a = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
285
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = '▁' _lowercase = {'vocab_file': 'spiece.model'} _lowercase = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } _lowercase = { 'google/reformer-crime-and-punishment': 524_288, } class lowerCamelCase__ ( A__ ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __a : Optional[Any] , __a : Optional[Any]="</s>" , __a : Optional[int]="<unk>" , __a : Dict=[] , __a : Optional[Dict[str, Any]] = None , **__a : Dict , ): '''simple docstring''' lowerCamelCase__: Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__a , unk_token=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) lowerCamelCase__: List[str] = vocab_file lowerCamelCase__: Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.sp_model.get_piece_size() def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowerCamelCase__: Optional[int] = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): '''simple docstring''' lowerCamelCase__: Any = self.__dict__.copy() lowerCamelCase__: Optional[Any] = None return state def __setstate__( self : int , __a : List[Any] ): '''simple docstring''' lowerCamelCase__: Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase__: int = {} lowerCamelCase__: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase_ ( self : Dict , __a : str ): '''simple docstring''' return self.sp_model.encode(__a , out_type=__a ) def lowerCamelCase_ ( self : Any , __a : List[Any] ): '''simple docstring''' return self.sp_model.piece_to_id(__a ) def lowerCamelCase_ ( self : Union[str, Any] , __a : Tuple ): '''simple docstring''' if index < self.sp_model.get_piece_size(): lowerCamelCase__: Optional[Any] = self.sp_model.IdToPiece(__a ) return token def lowerCamelCase_ ( self : Dict , __a : Any ): '''simple docstring''' lowerCamelCase__: List[Any] = [] lowerCamelCase__: str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__a ) + token lowerCamelCase__: List[str] = [] else: current_sub_tokens.append(__a ) out_string += self.sp_model.decode(__a ) return out_string.strip() def lowerCamelCase_ ( self : Optional[Any] , __a : str , __a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase__: int = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , """wb""" ) as fi: lowerCamelCase__: Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
306
from __future__ import annotations _lowercase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _lowercase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __lowerCAmelCase ( _UpperCamelCase ) -> list[float]: '''simple docstring''' lowerCamelCase__: str = [] lowerCamelCase__: List[str] = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): lowerCamelCase__: float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: lowerCamelCase__: Dict = arr[j] break result.append(_UpperCamelCase ) return result def __lowerCAmelCase ( _UpperCamelCase ) -> list[float]: '''simple docstring''' lowerCamelCase__: Tuple = [] for i, outer in enumerate(_UpperCamelCase ): lowerCamelCase__: float = -1 for inner in arr[i + 1 :]: if outer < inner: lowerCamelCase__: Dict = inner break result.append(_UpperCamelCase ) return result def __lowerCAmelCase ( _UpperCamelCase ) -> list[float]: '''simple docstring''' lowerCamelCase__: Optional[Any] = len(_UpperCamelCase ) lowerCamelCase__: list[float] = [] lowerCamelCase__: list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowerCamelCase__: Dict = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _lowercase = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
306
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''PerceiverFeatureExtractor'''] SCREAMING_SNAKE_CASE_ = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
"""simple docstring""" import datasets SCREAMING_SNAKE_CASE_ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' SCREAMING_SNAKE_CASE_ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' SCREAMING_SNAKE_CASE_ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def A__ ( A__ , A__ ) -> Tuple: '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def __A ( self , snake_case_ , snake_case_ ) -> Dict: return {"accuracy": simple_accuracy(snake_case_ , snake_case_ )}
579
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType snake_case = logging.get_logger(__name__) snake_case = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off snake_case = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] snake_case = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = '''whisper''' SCREAMING_SNAKE_CASE_ : str = ['''past_key_values'''] SCREAMING_SNAKE_CASE_ : Any = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int ,__A : Dict=5_1865 ,__A : List[str]=80 ,__A : str=6 ,__A : List[str]=4 ,__A : int=6 ,__A : Optional[Any]=4 ,__A : int=1536 ,__A : List[str]=1536 ,__A : Optional[Any]=0.0 ,__A : Union[str, Any]=0.0 ,__A : int=5_0257 ,__A : Dict=True ,__A : int=True ,__A : int="gelu" ,__A : Union[str, Any]=256 ,__A : Optional[int]=0.0 ,__A : Any=0.0 ,__A : Optional[int]=0.0 ,__A : List[Any]=0.02 ,__A : Optional[int]=False ,__A : int=1500 ,__A : Union[str, Any]=448 ,__A : Optional[Any]=5_0256 ,__A : List[str]=5_0256 ,__A : Dict=5_0256 ,__A : int=None ,__A : Optional[Any]=[220, 5_0256] ,__A : Optional[Any]=False ,__A : Dict=256 ,__A : Tuple=False ,__A : Union[str, Any]=0.05 ,__A : Optional[Any]=10 ,__A : int=2 ,__A : Optional[int]=0.0 ,__A : Optional[int]=10 ,__A : Any=0 ,__A : Optional[int]=7 ,**__A : str ,) -> List[Any]: _lowercase = vocab_size _lowercase = num_mel_bins _lowercase = d_model _lowercase = encoder_layers _lowercase = encoder_attention_heads _lowercase = decoder_layers _lowercase = decoder_attention_heads _lowercase = decoder_ffn_dim _lowercase = encoder_ffn_dim _lowercase = dropout _lowercase = attention_dropout _lowercase = activation_dropout _lowercase = activation_function _lowercase = init_std _lowercase = encoder_layerdrop _lowercase = decoder_layerdrop _lowercase = use_cache _lowercase = encoder_layers _lowercase = scale_embedding # scale factor will be sqrt(d_model) if True _lowercase = max_source_positions _lowercase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. _lowercase = classifier_proj_size _lowercase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase = apply_spec_augment _lowercase = mask_time_prob _lowercase = mask_time_length _lowercase = mask_time_min_masks _lowercase = mask_feature_prob _lowercase = mask_feature_length _lowercase = mask_feature_min_masks _lowercase = median_filter_width super().__init__( pad_token_id=__A ,bos_token_id=__A ,eos_token_id=__A ,is_encoder_decoder=__A ,decoder_start_token_id=__A ,suppress_tokens=__A ,begin_suppress_tokens=__A ,**__A ,) class A_ ( UpperCAmelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: _lowercase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: _lowercase = {0: 'batch'} else: _lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__A ,direction='inputs' ) return common_inputs def __UpperCAmelCase ( self : Tuple ,__A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,__A : int = -1 ,__A : int = -1 ,__A : bool = False ,__A : Optional["TensorType"] = None ,__A : int = 2_2050 ,__A : float = 5.0 ,__A : int = 220 ,) -> Mapping[str, Any]: _lowercase = OrderedDict() _lowercase = OnnxConfig.generate_dummy_inputs( self ,preprocessor=preprocessor.feature_extractor ,batch_size=__A ,framework=__A ,sampling_rate=__A ,time_duration=__A ,frequency=__A ,) _lowercase = encoder_inputs['input_features'].shape[2] _lowercase = encoder_sequence_length // 2 if self.use_past else seq_length _lowercase = super().generate_dummy_inputs( preprocessor.tokenizer ,__A ,__A ,__A ,__A ) _lowercase = encoder_inputs.pop('input_features' ) _lowercase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: _lowercase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def __UpperCAmelCase ( self : Union[str, Any] ) -> float: return 1e-3
67
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = IFInpaintingSuperResolutionPipeline __UpperCamelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCAmelCase__ ( self : Union[str, Any] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[int] , snake_case_ : str=0 ): if str(snake_case_ ).startswith("""mps""" ): UpperCamelCase_: Union[str, Any] = torch.manual_seed(snake_case_ ) else: UpperCamelCase_: Tuple = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase_: Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCamelCase_: int = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCamelCase_: str = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCamelCase_: Dict = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self : Tuple ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCAmelCase__ ( self : Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self : List[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase__ ( self : str ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase__ ( self : str ): self._test_save_load_local() def lowerCAmelCase__ ( self : Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
548
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ :Optional[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Union[str, Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Optional[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys a_ :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
def a ( A__ = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: '''simple docstring''' try: SCREAMING_SNAKE_CASE__ : str = int(A__ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 SCREAMING_SNAKE_CASE__ : Any = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 SCREAMING_SNAKE_CASE__ : Optional[int] = i while n % i == 0: SCREAMING_SNAKE_CASE__ : List[str] = n // i i += 1 return int(A__ ) if __name__ == "__main__": print(F'''{solution() = }''')
250
1
'''simple docstring''' from __future__ import annotations from typing import Any class a_ : def __init__( self , UpperCAmelCase = 6 ): a_ = None a_ = None self.create_linked_list(UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = Node() a_ = current_node a_ = current_node a_ = current_node for _ in range(1 , UpperCAmelCase ): a_ = Node() a_ = current_node a_ = previous_node a_ = current_node a_ = self.front a_ = previous_node def lowerCAmelCase__ ( self ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowerCAmelCase__ ( self ): self.check_can_perform_operation() return self.front.data if self.front else None def lowerCAmelCase__ ( self , UpperCAmelCase ): if self.rear is None: return self.check_is_full() if not self.is_empty(): a_ = self.rear.next if self.rear: a_ = data def lowerCAmelCase__ ( self ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: a_ = self.front.data a_ = None return data a_ = self.front a_ = old_front.next a_ = old_front.data a_ = None return data def lowerCAmelCase__ ( self ): if self.is_empty(): raise Exception("""Empty Queue""" ) def lowerCAmelCase__ ( self ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class a_ : def __init__( self ): a_ = None a_ = None a_ = None if __name__ == "__main__": import doctest doctest.testmod()
263
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowercase__ =logging.get_logger(__name__) # General docstring lowercase__ ='PoolFormerConfig' # Base docstring lowercase__ ='sail/poolformer_s12' lowercase__ =[1, 5_12, 7, 7] # Image classification docstring lowercase__ ='sail/poolformer_s12' lowercase__ ='tabby, tabby cat' lowercase__ =[ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCamelCase_ ( A__ , A__ = 0.0 , A__ = False ): if drop_prob == 0.0 or not training: return input a_ = 1 - drop_prob a_ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets a_ = keep_prob + torch.rand(A__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize a_ = input.div(A__ ) * random_tensor return output class a_ ( nn.Module ): def __init__( self , UpperCAmelCase = None ): super().__init__() a_ = drop_prob def lowerCAmelCase__ ( self , UpperCAmelCase ): return drop_path(UpperCAmelCase , self.drop_prob , self.training ) def lowerCAmelCase__ ( self ): return "p={}".format(self.drop_prob ) class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ): super().__init__() a_ = patch_size if isinstance(UpperCAmelCase , collections.abc.Iterable ) else (patch_size, patch_size) a_ = stride if isinstance(UpperCAmelCase , collections.abc.Iterable ) else (stride, stride) a_ = padding if isinstance(UpperCAmelCase , collections.abc.Iterable ) else (padding, padding) a_ = nn.Convad(UpperCAmelCase , UpperCAmelCase , kernel_size=UpperCAmelCase , stride=UpperCAmelCase , padding=UpperCAmelCase ) a_ = norm_layer(UpperCAmelCase ) if norm_layer else nn.Identity() def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = self.projection(UpperCAmelCase ) a_ = self.norm(UpperCAmelCase ) return embeddings class a_ ( nn.GroupNorm ): def __init__( self , UpperCAmelCase , **UpperCAmelCase ): super().__init__(1 , UpperCAmelCase , **UpperCAmelCase ) class a_ ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() a_ = nn.AvgPoolad(UpperCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase ): return self.pool(UpperCAmelCase ) - hidden_states class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): super().__init__() a_ = nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) a_ = nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) a_ = PoolFormerDropPath(UpperCAmelCase ) if isinstance(config.hidden_act , UpperCAmelCase ): a_ = ACTaFN[config.hidden_act] else: a_ = config.hidden_act def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = self.conva(UpperCAmelCase ) a_ = self.act_fn(UpperCAmelCase ) a_ = self.drop(UpperCAmelCase ) a_ = self.conva(UpperCAmelCase ) a_ = self.drop(UpperCAmelCase ) return hidden_states class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): super().__init__() a_ = PoolFormerPooling(UpperCAmelCase ) a_ = PoolFormerOutput(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = PoolFormerGroupNorm(UpperCAmelCase ) a_ = PoolFormerGroupNorm(UpperCAmelCase ) # Useful for training neural nets a_ = PoolFormerDropPath(UpperCAmelCase ) if drop_path > 0.0 else nn.Identity() a_ = config.use_layer_scale if config.use_layer_scale: a_ = nn.Parameter( config.layer_scale_init_value * torch.ones((UpperCAmelCase) ) , requires_grad=UpperCAmelCase ) a_ = nn.Parameter( config.layer_scale_init_value * torch.ones((UpperCAmelCase) ) , requires_grad=UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase ): if self.use_layer_scale: a_ = self.pooling(self.before_norm(UpperCAmelCase ) ) a_ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection a_ = hidden_states + self.drop_path(UpperCAmelCase ) a_ = () a_ = self.output(self.after_norm(UpperCAmelCase ) ) a_ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection a_ = hidden_states + self.drop_path(UpperCAmelCase ) a_ = (output,) + outputs return outputs else: a_ = self.drop_path(self.pooling(self.before_norm(UpperCAmelCase ) ) ) # First residual connection a_ = pooling_output + hidden_states a_ = () # Second residual connection inside the PoolFormerOutput block a_ = self.drop_path(self.output(self.after_norm(UpperCAmelCase ) ) ) a_ = hidden_states + layer_output a_ = (output,) + outputs return outputs class a_ ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() a_ = config # stochastic depth decay rule a_ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings a_ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) a_ = nn.ModuleList(UpperCAmelCase ) # Transformer blocks a_ = [] a_ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers a_ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( UpperCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(UpperCAmelCase ) ) a_ = nn.ModuleList(UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=True ): a_ = () if output_hidden_states else None a_ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): a_ , a_ = layers # Get patch embeddings from hidden_states a_ = embedding_layer(UpperCAmelCase ) # Send the embeddings through the blocks for _, blk in enumerate(UpperCAmelCase ): a_ = blk(UpperCAmelCase ) a_ = layer_outputs[0] if output_hidden_states: a_ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=UpperCAmelCase , hidden_states=UpperCAmelCase ) class a_ ( UpperCamelCase__ ): lowerCamelCase__ : Union[str, Any] = PoolFormerConfig lowerCamelCase__ : Optional[Any] = 'poolformer' lowerCamelCase__ : List[Any] = 'pixel_values' lowerCamelCase__ : int = True def lowerCAmelCase__ ( self , UpperCAmelCase ): if isinstance(UpperCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=False ): if isinstance(UpperCAmelCase , UpperCAmelCase ): a_ = value lowercase__ =r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase__ =r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , UpperCamelCase__ , ) class a_ ( UpperCamelCase__ ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) a_ = config a_ = PoolFormerEncoder(UpperCAmelCase ) # Initialize weights and apply final processing self.post_init() def lowerCAmelCase__ ( self ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ): a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) a_ = self.encoder( UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase , ) a_ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) class a_ ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() a_ = nn.Linear(config.hidden_size , config.hidden_size ) def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = self.dense(UpperCAmelCase ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , UpperCamelCase__ , ) class a_ ( UpperCamelCase__ ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) a_ = config.num_labels a_ = PoolFormerModel(UpperCAmelCase ) # Final norm a_ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head a_ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ): a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.poolformer( UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase , ) a_ = outputs[0] a_ = self.classifier(self.norm(UpperCAmelCase ).mean([-2, -1] ) ) a_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a_ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a_ = """single_label_classification""" else: a_ = """multi_label_classification""" if self.config.problem_type == "regression": a_ = MSELoss() if self.num_labels == 1: a_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: a_ = loss_fct(UpperCAmelCase , UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": a_ = CrossEntropyLoss() a_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a_ = BCEWithLogitsLoss() a_ = loss_fct(UpperCAmelCase , UpperCAmelCase ) if not return_dict: a_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states )
263
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class a__ ( _snake_case ): """simple docstring""" A__ : Union[str, Any] = '''biogpt''' def __init__( self :Tuple , lowercase__ :Dict=4_2384 , lowercase__ :Optional[int]=1024 , lowercase__ :int=24 , lowercase__ :List[Any]=16 , lowercase__ :str=4096 , lowercase__ :List[str]="gelu" , lowercase__ :Tuple=0.1 , lowercase__ :Optional[int]=0.1 , lowercase__ :Dict=1024 , lowercase__ :List[Any]=0.02 , lowercase__ :int=1E-12 , lowercase__ :Any=True , lowercase__ :List[Any]=True , lowercase__ :Optional[int]=0.0 , lowercase__ :Optional[Any]=0.0 , lowercase__ :List[Any]=1 , lowercase__ :Dict=0 , lowercase__ :List[Any]=2 , **lowercase__ :Dict , ): lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = scale_embedding lowercase = use_cache lowercase = layerdrop lowercase = activation_dropout super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ )
314
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
1
import sys UpperCamelCase = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : List[Any] = 1 for digit in s: product *= int(SCREAMING_SNAKE_CASE ) return product def __magic_name__ ( SCREAMING_SNAKE_CASE = N ) -> int: _lowercase : Dict = -sys.maxsize - 1 _lowercase : Tuple = n[:13] _lowercase : List[Any] = 13 while cur_index < len(SCREAMING_SNAKE_CASE ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _lowercase : List[str] = substr[1:] + n[cur_index] cur_index += 1 else: _lowercase : str = max(SCREAMING_SNAKE_CASE , str_eval(SCREAMING_SNAKE_CASE ) ) _lowercase : Dict = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
66
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['OwlViTFeatureExtractor'] a = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __A : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __A : Dict = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __UpperCamelCase ( _A : int , _A : str , _A : int=8 ) ->List[str]: """simple docstring""" lowerCamelCase_ =height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCamelCase_ =width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _SCREAMING_SNAKE_CASE ( __lowercase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Optional[Any]: super().__init__() self.register_modules( unet=__a , scheduler=__a , movq=__a , ) lowerCamelCase_ =2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Dict: if latents is None: lowerCamelCase_ =randn_tensor(__a , generator=__a , device=__a , dtype=__a ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCamelCase_ =latents.to(__a ) lowerCamelCase_ =latents * scheduler.init_noise_sigma return latents def _snake_case ( self , _SCREAMING_SNAKE_CASE=0 )-> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCamelCase_ =torch.device(f'cuda:{gpu_id}' ) lowerCamelCase_ =[ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__a , __a ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=0 )-> List[str]: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCamelCase_ =torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase_ =None for cpu_offloaded_model in [self.unet, self.movq]: lowerCamelCase_ =cpu_offload_with_hook(__a , __a , prev_module_hook=__a ) # We'll offload the last model manually. lowerCamelCase_ =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self )-> Union[str, Any]: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__a ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , )-> Optional[int]: lowerCamelCase_ =self._execution_device lowerCamelCase_ =guidance_scale > 1.0 if isinstance(__a , __a ): lowerCamelCase_ =torch.cat(__a , dim=0 ) lowerCamelCase_ =image_embeds.shape[0] * num_images_per_prompt if isinstance(__a , __a ): lowerCamelCase_ =torch.cat(__a , dim=0 ) if do_classifier_free_guidance: lowerCamelCase_ =image_embeds.repeat_interleave(__a , dim=0 ) lowerCamelCase_ =negative_image_embeds.repeat_interleave(__a , dim=0 ) lowerCamelCase_ =torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__a ) self.scheduler.set_timesteps(__a , device=__a ) lowerCamelCase_ =self.scheduler.timesteps lowerCamelCase_ =self.unet.config.in_channels lowerCamelCase_ =downscale_height_and_width(__a , __a , self.movq_scale_factor ) # create initial latent lowerCamelCase_ =self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __a , __a , __a , self.scheduler , ) for i, t in enumerate(self.progress_bar(__a ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ ={"""image_embeds""": image_embeds} lowerCamelCase_ =self.unet( sample=__a , timestep=__a , encoder_hidden_states=__a , added_cond_kwargs=__a , return_dict=__a , )[0] if do_classifier_free_guidance: lowerCamelCase_ =noise_pred.split(latents.shape[1] , dim=1 ) lowerCamelCase_ =noise_pred.chunk(2 ) lowerCamelCase_ =variance_pred.chunk(2 ) lowerCamelCase_ =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase_ =torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase_ =noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ =self.scheduler.step( __a , __a , __a , generator=__a , )[0] # post-processing lowerCamelCase_ =self.movq.decode(__a , force_not_quantize=__a )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: lowerCamelCase_ =image * 0.5 + 0.5 lowerCamelCase_ =image.clamp(0 , 1 ) lowerCamelCase_ =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase_ =self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Tuple = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
75
0
"""simple docstring""" def UpperCAmelCase_ ( __a : str ): '''simple docstring''' _lowerCamelCase : List[Any] = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCAmelCase_ ( __a : str ): '''simple docstring''' _lowerCamelCase : Tuple = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _lowerCamelCase : Union[str, Any] = remove_duplicates(key.upper() ) _lowerCamelCase : Optional[int] = len(__a ) # First fill cipher with key characters _lowerCamelCase : Dict = {alphabet[i]: char for i, char in enumerate(__a )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__a ) , 26 ): _lowerCamelCase : Optional[int] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _lowerCamelCase : Optional[int] = alphabet[i - offset] _lowerCamelCase : Optional[Any] = char return cipher_alphabet def UpperCAmelCase_ ( __a : str , __a : dict[str, str] ): '''simple docstring''' return "".join(cipher_map.get(__a , __a ) for ch in message.upper() ) def UpperCAmelCase_ ( __a : str , __a : dict[str, str] ): '''simple docstring''' _lowerCamelCase : Any = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__a , __a ) for ch in message.upper() ) def UpperCAmelCase_ ( ): '''simple docstring''' _lowerCamelCase : Dict = input('Enter message to encode or decode: ' ).strip() _lowerCamelCase : Dict = input('Enter keyword: ' ).strip() _lowerCamelCase : Dict = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: _lowerCamelCase : Tuple = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) _lowerCamelCase : str = create_cipher_map(__a ) print(func(__a , __a ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
437
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): _lowerCamelCase : Any = 'laion/clap-htsat-unfused' _lowerCamelCase : Optional[Any] = tempfile.mkdtemp() def _lowerCAmelCase ( self , **A ): return RobertaTokenizer.from_pretrained(self.checkpoint , **A ) def _lowerCAmelCase ( self , **A ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A ) def _lowerCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = self.get_feature_extractor() _lowerCamelCase : List[str] = ClapProcessor(tokenizer=A , feature_extractor=A ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : str = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCamelCase : str = self.get_feature_extractor(do_normalize=A , padding_value=1.0 ) _lowerCamelCase : List[Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = self.get_feature_extractor() _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase : Any = ClapProcessor(tokenizer=A , feature_extractor=A ) _lowerCamelCase : int = floats_list((3, 1000) ) _lowerCamelCase : str = feature_extractor(A , return_tensors='np' ) _lowerCamelCase : List[str] = processor(audios=A , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCAmelCase ( self ): _lowerCamelCase : Any = self.get_feature_extractor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = ClapProcessor(tokenizer=A , feature_extractor=A ) _lowerCamelCase : List[str] = 'This is a test string' _lowerCamelCase : Any = processor(text=A ) _lowerCamelCase : Optional[int] = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = self.get_feature_extractor() _lowerCamelCase : Union[str, Any] = self.get_tokenizer() _lowerCamelCase : Optional[int] = ClapProcessor(tokenizer=A , feature_extractor=A ) _lowerCamelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : int = processor.batch_decode(A ) _lowerCamelCase : int = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Union[str, Any] = self.get_feature_extractor() _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : int = ClapProcessor(tokenizer=A , feature_extractor=A ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
437
1
from __future__ import annotations from collections.abc import Generator def _a ( ) -> Generator[int, None, None]: """simple docstring""" lowerCamelCase__ : dict[int, int] = {} lowerCamelCase__ : Optional[Any] = 2 while True: lowerCamelCase__ : Optional[int] = factor_map.pop(UpperCAmelCase , UpperCAmelCase ) if factor: lowerCamelCase__ : Dict = factor + prime while x in factor_map: x += factor lowerCamelCase__ : Dict = factor else: lowerCamelCase__ : Any = prime yield prime prime += 1 def _a ( UpperCAmelCase = 1E1_0 ) -> int: """simple docstring""" lowerCamelCase__ : str = sieve() lowerCamelCase__ : Any = 1 while True: lowerCamelCase__ : List[Any] = next(UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
719
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _A : int = logging.get_logger(__name__) _A : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _A : Optional[int] = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } _A : Any = { 'roberta-base': 5_12, 'roberta-large': 5_12, 'roberta-large-mnli': 5_12, 'distilroberta-base': 5_12, 'roberta-base-openai-detector': 5_12, 'roberta-large-openai-detector': 5_12, } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : str = VOCAB_FILES_NAMES _UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : int = ["input_ids", "attention_mask"] _UpperCAmelCase : List[str] = RobertaTokenizer def __init__( self : List[str] , A : List[str]=None , A : List[Any]=None , A : Optional[int]=None , A : Tuple="replace" , A : int="<s>" , A : Any="</s>" , A : Optional[int]="</s>" , A : Tuple="<s>" , A : int="<unk>" , A : Optional[int]="<pad>" , A : Tuple="<mask>" , A : Optional[Any]=False , A : Optional[int]=True , **A : Optional[int] , ) ->Dict: super().__init__( A , A , tokenizer_file=A , errors=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , add_prefix_space=A , trim_offsets=A , **A , ) lowerCamelCase__ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , A ) != add_prefix_space: lowerCamelCase__ : Union[str, Any] = getattr(A , pre_tok_state.pop('''type''' ) ) lowerCamelCase__ : Optional[int] = add_prefix_space lowerCamelCase__ : List[str] = pre_tok_class(**A ) lowerCamelCase__ : Any = add_prefix_space lowerCamelCase__ : Any = '''post_processor''' lowerCamelCase__ : str = getattr(self.backend_tokenizer , A , A ) if tokenizer_component_instance: lowerCamelCase__ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase__ : Any = tuple(state['''sep'''] ) if "cls" in state: lowerCamelCase__ : Tuple = tuple(state['''cls'''] ) lowerCamelCase__ : Tuple = False if state.get('''add_prefix_space''' , A ) != add_prefix_space: lowerCamelCase__ : Optional[Any] = add_prefix_space lowerCamelCase__ : Optional[Any] = True if state.get('''trim_offsets''' , A ) != trim_offsets: lowerCamelCase__ : Tuple = trim_offsets lowerCamelCase__ : str = True if changes_to_apply: lowerCamelCase__ : Optional[int] = getattr(A , state.pop('''type''' ) ) lowerCamelCase__ : str = component_class(**A ) setattr(self.backend_tokenizer , A , A ) @property def __lowerCamelCase ( self : List[str] ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCamelCase ( self : int , A : List[Any] ) ->List[Any]: lowerCamelCase__ : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else value lowerCamelCase__ : int = value def __lowerCamelCase ( self : Tuple , *A : List[Any] , **A : Optional[Any] ) ->BatchEncoding: lowerCamelCase__ : Dict = kwargs.get('''is_split_into_words''' , A ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A , **A ) def __lowerCamelCase ( self : Tuple , *A : List[Any] , **A : Tuple ) ->BatchEncoding: lowerCamelCase__ : Optional[Any] = kwargs.get('''is_split_into_words''' , A ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*A , **A ) def __lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None ) ->Tuple[str]: lowerCamelCase__ : List[str] = self._tokenizer.model.save(A , name=A ) return tuple(A ) def __lowerCamelCase ( self : Dict , A : List[str] , A : List[Any]=None ) ->List[str]: lowerCamelCase__ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self : Optional[int] , A : List[int] , A : Optional[List[int]] = None ) ->List[int]: lowerCamelCase__ : int = [self.sep_token_id] lowerCamelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
130
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : int = ["image_processor", "tokenizer"] lowerCAmelCase__ : List[Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : List[Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : str ,UpperCamelCase : int=None ,UpperCamelCase : Tuple=None ,**UpperCamelCase : Optional[Any] ) -> int: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,UpperCamelCase ,) _lowercase : int = kwargs.pop('feature_extractor' ) _lowercase : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase ,UpperCamelCase ) def __call__( self : Optional[int] ,UpperCamelCase : int ,UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,UpperCamelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None ,UpperCamelCase : Union[List[List[int]], List[List[List[int]]]] = None ,UpperCamelCase : Optional[Union[List[int], List[List[int]]]] = None ,UpperCamelCase : bool = True ,UpperCamelCase : Union[bool, str, PaddingStrategy] = False ,UpperCamelCase : Union[bool, str, TruncationStrategy] = None ,UpperCamelCase : Optional[int] = None ,UpperCamelCase : int = 0 ,UpperCamelCase : Optional[int] = None ,UpperCamelCase : Optional[bool] = None ,UpperCamelCase : Optional[bool] = None ,UpperCamelCase : bool = False ,UpperCamelCase : bool = False ,UpperCamelCase : bool = False ,UpperCamelCase : bool = False ,UpperCamelCase : bool = True ,UpperCamelCase : Optional[Union[str, TensorType]] = None ,**UpperCamelCase : Dict ,) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor _lowercase : List[str] = self.image_processor(images=UpperCamelCase ,return_tensors=UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase ,UpperCamelCase ): _lowercase : Union[str, Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) _lowercase : Union[str, Any] = features['words'] _lowercase : List[Any] = self.tokenizer( text=text if text is not None else features['words'] ,text_pair=text_pair if text_pair is not None else None ,boxes=boxes if boxes is not None else features['boxes'] ,word_labels=UpperCamelCase ,add_special_tokens=UpperCamelCase ,padding=UpperCamelCase ,truncation=UpperCamelCase ,max_length=UpperCamelCase ,stride=UpperCamelCase ,pad_to_multiple_of=UpperCamelCase ,return_token_type_ids=UpperCamelCase ,return_attention_mask=UpperCamelCase ,return_overflowing_tokens=UpperCamelCase ,return_special_tokens_mask=UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,return_length=UpperCamelCase ,verbose=UpperCamelCase ,return_tensors=UpperCamelCase ,**UpperCamelCase ,) # add pixel values _lowercase : Any = features.pop('pixel_values' ) if return_overflowing_tokens is True: _lowercase : Union[str, Any] = self.get_overflowing_images(UpperCamelCase ,encoded_inputs['overflow_to_sample_mapping'] ) _lowercase : Tuple = images return encoded_inputs def _lowerCamelCase ( self : int ,UpperCamelCase : Any ,UpperCamelCase : str ) -> Union[str, Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _lowercase : Dict = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCamelCase )} and {len(UpperCamelCase )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[str] ,*UpperCamelCase : Any ,**UpperCamelCase : Union[str, Any] ) -> Tuple: return self.tokenizer.batch_decode(*UpperCamelCase ,**UpperCamelCase ) def _lowerCamelCase ( self : str ,*UpperCamelCase : List[Any] ,**UpperCamelCase : Union[str, Any] ) -> List[str]: return self.tokenizer.decode(*UpperCamelCase ,**UpperCamelCase ) @property def _lowerCamelCase ( self : List[str] ) -> Dict: return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : int ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,UpperCamelCase ,) return self.image_processor_class @property def _lowerCamelCase ( self : Any ) -> Any: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,UpperCamelCase ,) return self.image_processor
125
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets A = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' A = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' A = R''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ) ,homepage='https://github.com/hendrycks/math' ,codebase_urls=['https://github.com/hendrycks/math'] ,) def _lowerCamelCase ( self : int ,UpperCamelCase : int ,UpperCamelCase : Optional[int] ) -> Optional[Any]: _lowercase : Optional[int] = 0.0 for i, j in zip(UpperCamelCase ,UpperCamelCase ): n_correct += 1.0 if math_equivalence.is_equiv(UpperCamelCase ,UpperCamelCase ) else 0.0 _lowercase : Any = n_correct / len(UpperCamelCase ) return { "accuracy": accuracy, }
125
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): '''simple docstring''' debug_launcher(test_script.main ) def snake_case_ ( self ): '''simple docstring''' debug_launcher(test_ops.main )
111
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _a : Optional[Any] = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def snake_case__ ( UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any]=None ): require_version(deps[pkg] , UpperCAmelCase )
111
1
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Any , UpperCAmelCase : int = 768 , ): super().__init__() A_ = nn.Parameter(torch.zeros(1 , UpperCAmelCase ) ) A_ = nn.Parameter(torch.ones(1 , UpperCAmelCase ) ) def __A ( self : Optional[Any] , UpperCAmelCase : Optional[Union[str, torch.device]] = None , UpperCAmelCase : Optional[torch.dtype] = None , ): A_ = nn.Parameter(self.mean.to(UpperCAmelCase ).to(UpperCAmelCase ) ) A_ = nn.Parameter(self.std.to(UpperCAmelCase ).to(UpperCAmelCase ) ) return self def __A ( self : Any , UpperCAmelCase : int ): A_ = (embeds - self.mean) * 1.0 / self.std return embeds def __A ( self : Dict , UpperCAmelCase : int ): A_ = (embeds * self.std) + self.mean return embeds
86
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class __lowerCAmelCase : lowerCamelCase_ : str lowerCamelCase_ : str = None @staticmethod def lowerCamelCase () -> Any: '''simple docstring''' raise NotImplementedError def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' raise NotImplementedError def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' raise NotImplementedError def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def lowerCamelCase (cls ) -> List[Any]: '''simple docstring''' return F'''`pip install {cls.pip_package or cls.name}`''' class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[int] = '''optuna''' @staticmethod def lowerCamelCase () -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_optuna(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' return default_hp_space_optuna(__magic_name__ ) class __lowerCAmelCase ( _a ): lowerCamelCase_ : Any = '''ray''' lowerCamelCase_ : List[str] = '''\'ray[tune]\'''' @staticmethod def lowerCamelCase () -> List[Any]: '''simple docstring''' return is_ray_available() def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' return run_hp_search_ray(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' return default_hp_space_ray(__magic_name__ ) class __lowerCAmelCase ( _a ): lowerCamelCase_ : Tuple = '''sigopt''' @staticmethod def lowerCamelCase () -> Optional[int]: '''simple docstring''' return is_sigopt_available() def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' return run_hp_search_sigopt(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' return default_hp_space_sigopt(__magic_name__ ) class __lowerCAmelCase ( _a ): lowerCamelCase_ : Tuple = '''wandb''' @staticmethod def lowerCamelCase () -> Dict: '''simple docstring''' return is_wandb_available() def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' return run_hp_search_wandb(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> Optional[Any]: '''simple docstring''' return default_hp_space_wandb(__magic_name__ ) lowerCAmelCase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCamelCase_ ( ) -> str: """simple docstring""" snake_case_ : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_UpperCamelCase ) > 0: snake_case_ : Dict = available_backends[0].name if len(_UpperCamelCase ) > 1: logger.info( f'''{len(_UpperCamelCase )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
60
0
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase ( _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __UpperCAmelCase : List[str] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , lowerCamelCase__ ) if matches: __UpperCAmelCase : Dict = float(matches[1] ) __UpperCAmelCase : Tuple = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Optional[int] = 1_0_0_1 __UpperCAmelCase : int = """imagenet-1k-id2label.json""" __UpperCAmelCase : List[str] = """huggingface/label-files""" __UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : Any = {int(lowerCamelCase__ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = """background""" __UpperCAmelCase : int = idalabel __UpperCAmelCase : str = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : List[Any] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any]=False ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = get_mobilenet_va_config(lowerCamelCase__ ) # Load 🤗 model __UpperCAmelCase : Tuple = MobileNetVaForImageClassification(lowerCamelCase__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : int = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 3_2} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) __UpperCAmelCase : Dict = model(**lowerCamelCase__ ) __UpperCAmelCase : Any = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : str = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Optional[int] = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: __UpperCAmelCase : List[str] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) __UpperCAmelCase : Optional[int] = """google/""" + model_name image_processor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
721
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> str: '''simple docstring''' if not (isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) __UpperCAmelCase : List[str] = len(_UpperCamelCase ) __UpperCAmelCase : List[str] = len(_UpperCamelCase ) __UpperCAmelCase : Dict = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : List[Any] = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __UpperCAmelCase : Optional[Any] = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __UpperCAmelCase : Optional[int] = i __UpperCAmelCase : Any = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
299
0
def UpperCamelCase ( snake_case__ : int ,snake_case__ : int ): '''simple docstring''' return 1 if input_a == input_a else 0 def UpperCamelCase ( ): '''simple docstring''' assert xnor_gate(0 ,0 ) == 1 assert xnor_gate(0 ,1 ) == 0 assert xnor_gate(1 ,0 ) == 0 assert xnor_gate(1 ,1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
455
def UpperCamelCase ( snake_case__ : float ,snake_case__ : int ): '''simple docstring''' if digit_amount > 0: return round(number - int(snake_case__ ) ,snake_case__ ) return number - int(snake_case__ ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
455
1
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str]=9_9 , _lowerCAmelCase : Dict=1_3 , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : int=9 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Union[str, Any]=3_2 , _lowerCAmelCase : Optional[int]=5 , _lowerCAmelCase : Optional[Any]=4 , _lowerCAmelCase : Any=3_7 , _lowerCAmelCase : List[str]=8 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Optional[int]=0.002 , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[Any]=0 , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : int=None , ): '''simple docstring''' __lowercase =parent __lowercase =batch_size __lowercase =encoder_seq_length __lowercase =decoder_seq_length # For common tests __lowercase =self.decoder_seq_length __lowercase =is_training __lowercase =use_attention_mask __lowercase =use_labels __lowercase =vocab_size __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =d_ff __lowercase =relative_attention_num_buckets __lowercase =dropout_rate __lowercase =initializer_factor __lowercase =eos_token_id __lowercase =pad_token_id __lowercase =decoder_start_token_id __lowercase =None __lowercase =decoder_layers def __lowerCamelCase ( self : int): '''simple docstring''' return TaConfig.from_pretrained('google/umt5-base') def __lowerCamelCase ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Dict=None , ): '''simple docstring''' if attention_mask is None: __lowercase =input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: __lowercase =decoder_input_ids.ne(config.pad_token_id) if head_mask is None: __lowercase =torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_lowerCAmelCase) if decoder_head_mask is None: __lowercase =torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_lowerCAmelCase) if cross_attn_head_mask is None: __lowercase =torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_lowerCAmelCase) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size) __lowercase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowercase =input_ids.clamp(self.pad_token_id + 1) __lowercase =decoder_input_ids.clamp(self.pad_token_id + 1) __lowercase =self.get_config() __lowercase =config.num_attention_heads __lowercase =self.prepare_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) return config, input_dict def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase , __lowercase =self.prepare_config_and_inputs() return config, inputs_dict def __lowerCamelCase ( self : List[str]): '''simple docstring''' return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __lowerCamelCase ( self : List[str]): '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , ): '''simple docstring''' __lowercase =UMTaModel(config=_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() __lowercase =model( input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , ) __lowercase =model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase) __lowercase =result.last_hidden_state __lowercase =result.past_key_values __lowercase =result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_lowerCAmelCase) , config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]) , 4) def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , ): '''simple docstring''' __lowercase =UMTaModel(config=_lowerCAmelCase).get_decoder().to(_lowerCAmelCase).eval() # first forward pass __lowercase =model(_lowerCAmelCase , use_cache=_lowerCAmelCase) __lowercase =model(_lowerCAmelCase) __lowercase =model(_lowerCAmelCase , use_cache=_lowerCAmelCase) self.parent.assertTrue(len(_lowerCAmelCase) == len(_lowerCAmelCase)) self.parent.assertTrue(len(_lowerCAmelCase) == len(_lowerCAmelCase) + 1) __lowercase , __lowercase =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase =ids_tensor((self.batch_size, 1) , config.vocab_size) # append to next input_ids and __lowercase =torch.cat([input_ids, next_tokens] , dim=-1) __lowercase =model(_lowerCAmelCase)['last_hidden_state'] __lowercase =model(_lowerCAmelCase , past_key_values=_lowerCAmelCase)['last_hidden_state'] # select random slice __lowercase =ids_tensor((1,) , output_from_past.shape[-1]).item() __lowercase =output_from_no_past[:, -1, random_slice_idx].detach() __lowercase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3)) def __lowerCamelCase ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , ): '''simple docstring''' __lowercase =UMTaModel(config=_lowerCAmelCase).to(_lowerCAmelCase).half().eval() __lowercase =model(**_lowerCAmelCase)['last_hidden_state'] self.parent.assertFalse(torch.isnan(_lowerCAmelCase).any().item()) @require_torch class _UpperCamelCase ( A , A , A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowerCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () lowerCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests lowerCAmelCase__ = [0.8, 0.9] def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =UMTaModelTester(self) @unittest.skip('Test has a segmentation fault on torch 1.8.0') def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() __lowercase =UMTaModel(config_and_inputs[0]).to(_lowerCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _lowerCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=_lowerCAmelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision') def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_lowerCAmelCase) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =['encoder_attentions', 'decoder_attentions', 'cross_attentions'] __lowercase =self.model_tester.prepare_config_and_inputs() __lowercase =config_and_inputs[0] __lowercase =UMTaForConditionalGeneration(_lowerCAmelCase).eval() model.to(_lowerCAmelCase) __lowercase ={ 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=_lowerCAmelCase), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_lowerCAmelCase), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_lowerCAmelCase), } for attn_name, (name, mask) in zip(_lowerCAmelCase , head_masking.items()): __lowercase ={name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowercase =torch.ones( config.num_decoder_layers , config.num_heads , device=_lowerCAmelCase) __lowercase =model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=_lowerCAmelCase , return_dict_in_generate=_lowerCAmelCase , **_lowerCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowercase =out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]) , 0.0) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.') def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged') def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=_lowerCAmelCase).to(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=_lowerCAmelCase , legacy=_lowerCAmelCase) __lowercase =[ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] __lowercase =tokenizer(_lowerCAmelCase , return_tensors='pt' , padding=_lowerCAmelCase).input_ids # fmt: off __lowercase =torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ]) # fmt: on torch.testing.assert_allclose(_lowerCAmelCase , _lowerCAmelCase) __lowercase =model.generate(input_ids.to(_lowerCAmelCase)) __lowercase =[ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] __lowercase =tokenizer.batch_decode(_lowerCAmelCase) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase)
454
'''simple docstring''' import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict): '''simple docstring''' __lowercase =(0, 0) __lowercase =None __lowercase =0 __lowercase =0 __lowercase =0 def __eq__( self : List[str] , _lowerCAmelCase : Optional[Any]): '''simple docstring''' return self.position == cell.position def __lowerCamelCase ( self : Dict): '''simple docstring''' print(self.position) class _UpperCamelCase : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : List[str]=(5, 5)): '''simple docstring''' __lowercase =np.zeros(_lowerCAmelCase) __lowercase =world_size[0] __lowercase =world_size[1] def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' print(self.w) def __lowerCamelCase ( self : int , _lowerCAmelCase : List[str]): '''simple docstring''' __lowercase =[ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __lowercase =cell.position[0] __lowercase =cell.position[1] __lowercase =[] for n in neughbour_cord: __lowercase =current_x + n[0] __lowercase =current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __lowercase =Cell() __lowercase =(x, y) __lowercase =cell neighbours.append(_lowerCAmelCase) return neighbours def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =[] __lowercase =[] _open.append(_lowerCAmelCase ) while _open: __lowercase =np.argmin([n.f for n in _open] ) __lowercase =_open[min_f] _closed.append(_open.pop(_lowerCAmelCase ) ) if current == goal: break for n in world.get_neigbours(_lowerCAmelCase ): for c in _closed: if c == n: continue __lowercase =current.g + 1 __lowercase , __lowercase =n.position __lowercase , __lowercase =goal.position __lowercase =(ya - ya) ** 2 + (xa - xa) ** 2 __lowercase =n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowerCAmelCase ) __lowercase =[] while current.parent is not None: path.append(current.position ) __lowercase =current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowerCamelCase = Gridworld() # Start position and goal lowerCamelCase = Cell() lowerCamelCase = (0, 0) lowerCamelCase = Cell() lowerCamelCase = (4, 4) print(f"path from {start.position} to {goal.position}") lowerCamelCase = astar(world, start, goal) # Just for visual reasons. for i in s: lowerCamelCase = 1 print(world.w)
454
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def UpperCAmelCase_ ( ): lowercase_ = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=_snake_case , default=_snake_case , required=_snake_case , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=_snake_case , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=_snake_case , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=_snake_case , default=4_2 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=_snake_case , default=0 , help="""cuda_id.""" , ) lowercase_ = parser.parse_args() return args def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if not len(_snake_case ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) lowercase_ , lowercase_ = imgs[0].size lowercase_ = Image.new("""RGB""" , size=(cols * w, rows * h) ) lowercase_ , lowercase_ = grid.size for i, img in enumerate(_snake_case ): grid.paste(_snake_case , box=(i % cols * w, i // cols * h) ) return grid def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__="robotic cat with wings" , UpperCAmelCase__=7.5 , UpperCAmelCase__=5_0 , UpperCAmelCase__=1 , UpperCAmelCase__=4_2 , ): lowercase_ = torch.Generator(pipeline.device ).manual_seed(_snake_case ) lowercase_ = pipeline( _snake_case , guidance_scale=_snake_case , num_inference_steps=_snake_case , generator=_snake_case , num_images_per_prompt=_snake_case , ).images lowercase_ = int(math.sqrt(_snake_case ) ) lowercase_ = image_grid(_snake_case , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images a = parse_args() # Load models and create wrapper for stable diffusion a = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') a = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') a = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') a = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') a = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) a = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): a = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: a = unet.to(torch.device('cuda', args.cuda_id)) a = pipeline.to(unet.device) a = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) a = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
412
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase : Optional[int] = "__DUMMY_TRANSFORMERS_USER__" _lowerCAmelCase : Dict = "Dummy User" _lowerCAmelCase : Union[str, Any] = "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" _lowerCAmelCase : List[Any] = "https://hub-ci.huggingface.co" _lowerCAmelCase : Union[str, Any] = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" _lowerCAmelCase : int = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" _lowerCAmelCase : Dict = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def UpperCamelCase_( _snake_case : str ): """simple docstring""" monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , _snake_case ) @pytest.fixture def UpperCamelCase_( _snake_case : Any ): """simple docstring""" monkeypatch.setattr('datasets.config.HF_ENDPOINT' , _snake_case ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , _snake_case ) @pytest.fixture def UpperCamelCase_( _snake_case : int ): """simple docstring""" monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , _snake_case ) @pytest.fixture def UpperCamelCase_( _snake_case : List[str] , _snake_case : List[Any] ): """simple docstring""" HfFolder.save_token(_snake_case ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def UpperCamelCase_( ): """simple docstring""" return HfApi(endpoint=_snake_case ) @pytest.fixture(scope='session' ) def UpperCamelCase_( _snake_case : HfApi ): """simple docstring""" __a =HfFolder.get_token() HfFolder.save_token(_snake_case ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_snake_case ) @pytest.fixture def UpperCamelCase_( _snake_case : Optional[int] ): """simple docstring""" def _cleanup_repo(_snake_case : Optional[int] ): hf_api.delete_repo(_snake_case , token=_snake_case , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def UpperCamelCase_( _snake_case : int ): """simple docstring""" @contextmanager def _temporary_repo(_snake_case : Optional[int] ): try: yield repo_id finally: cleanup_repo(_snake_case ) return _temporary_repo @pytest.fixture(scope='session' ) def UpperCamelCase_( _snake_case : HfApi , _snake_case : Optional[int] , _snake_case : List[Any] ): """simple docstring""" __a =F'repo_txt_data-{int(time.time() * 1_0e3 )}' __a =F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(_snake_case , token=_snake_case , repo_type='dataset' , private=_snake_case ) hf_api.upload_file( token=_snake_case , path_or_fileobj=str(_snake_case ) , path_in_repo='data/text_data.txt' , repo_id=_snake_case , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(_snake_case , token=_snake_case , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase_( _snake_case : List[str] , _snake_case : List[Any] , _snake_case : Optional[int] ): """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def UpperCamelCase_( _snake_case : HfApi , _snake_case : List[str] , _snake_case : Union[str, Any] ): """simple docstring""" __a =F'repo_zipped_txt_data-{int(time.time() * 1_0e3 )}' __a =F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(_snake_case , token=_snake_case , repo_type='dataset' , private=_snake_case ) hf_api.upload_file( token=_snake_case , path_or_fileobj=str(_snake_case ) , path_in_repo='data.zip' , repo_id=_snake_case , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(_snake_case , token=_snake_case , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase_( _snake_case : str , _snake_case : int , _snake_case : List[str] ): """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def UpperCamelCase_( _snake_case : HfApi , _snake_case : Dict , _snake_case : Optional[Any] ): """simple docstring""" __a =F'repo_zipped_img_data-{int(time.time() * 1_0e3 )}' __a =F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(_snake_case , token=_snake_case , repo_type='dataset' , private=_snake_case ) hf_api.upload_file( token=_snake_case , path_or_fileobj=str(_snake_case ) , path_in_repo='data.zip' , repo_id=_snake_case , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(_snake_case , token=_snake_case , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] ): """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
242
0
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase (snake_case__ : Tuple , snake_case__ : str , snake_case__ : List[Any] ) -> Any: '''simple docstring''' if gpta_config_file == "": lowerCAmelCase = GPTaConfig() else: lowerCAmelCase = GPTaConfig.from_json_file(snake_case__ ) lowerCAmelCase = GPTaModel(snake_case__ ) # Load weights from numpy load_tf_weights_in_gpta(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model lowerCAmelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowerCAmelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , snake_case__ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) a = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
701
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowercase (snake_case__ : str , snake_case__ : float | Decimal , snake_case__ : float = 10**-10 ) -> float: '''simple docstring''' lowerCAmelCase = a while True: lowerCAmelCase = Decimal(snake_case__ ) - ( Decimal(eval(snake_case__ ) ) / Decimal(eval(str(diff(snake_case__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case__ ) ) < precision: # noqa: S307 return float(snake_case__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}""") # Find Square Root of 5 print(f"""The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}""") # Exponential Roots print(f"""The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}""")
529
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE__ : Any = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def a__ ( snake_case__ : Optional[int] ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__ ) def a__ ( snake_case__ : int ): from diffusers.utils.testing_utils import pytest_terminal_summary_main _UpperCAmelCase : int = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__ )
643
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( A ): __SCREAMING_SNAKE_CASE = '''conditional_detr''' __SCREAMING_SNAKE_CASE = ['''past_key_values'''] __SCREAMING_SNAKE_CASE = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , A_=True , A_=None , A_=3 , A_=3_00 , A_=6 , A_=20_48 , A_=8 , A_=6 , A_=20_48 , A_=8 , A_=0.0 , A_=0.0 , A_=True , A_="relu" , A_=2_56 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.0_2 , A_=1.0 , A_=False , A_="sine" , A_="resnet50" , A_=True , A_=False , A_=2 , A_=5 , A_=2 , A_=1 , A_=1 , A_=2 , A_=5 , A_=2 , A_=0.2_5 , **A_ , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase : int = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A_ , A_ ): _UpperCAmelCase : Tuple = backbone_config.get("""model_type""" ) _UpperCAmelCase : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase : Optional[Any] = config_class.from_dict(A_ ) _UpperCAmelCase : Tuple = use_timm_backbone _UpperCAmelCase : List[str] = backbone_config _UpperCAmelCase : Any = num_channels _UpperCAmelCase : Tuple = num_queries _UpperCAmelCase : Dict = d_model _UpperCAmelCase : Dict = encoder_ffn_dim _UpperCAmelCase : Tuple = encoder_layers _UpperCAmelCase : List[Any] = encoder_attention_heads _UpperCAmelCase : Union[str, Any] = decoder_ffn_dim _UpperCAmelCase : Optional[int] = decoder_layers _UpperCAmelCase : List[str] = decoder_attention_heads _UpperCAmelCase : Optional[Any] = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Union[str, Any] = init_xavier_std _UpperCAmelCase : Tuple = encoder_layerdrop _UpperCAmelCase : Tuple = decoder_layerdrop _UpperCAmelCase : Tuple = encoder_layers _UpperCAmelCase : Any = auxiliary_loss _UpperCAmelCase : List[str] = position_embedding_type _UpperCAmelCase : int = backbone _UpperCAmelCase : Any = use_pretrained_backbone _UpperCAmelCase : int = dilation # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Optional[Any] = bbox_cost _UpperCAmelCase : Tuple = giou_cost # Loss coefficients _UpperCAmelCase : Union[str, Any] = mask_loss_coefficient _UpperCAmelCase : int = dice_loss_coefficient _UpperCAmelCase : List[Any] = cls_loss_coefficient _UpperCAmelCase : List[Any] = bbox_loss_coefficient _UpperCAmelCase : int = giou_loss_coefficient _UpperCAmelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=A_ , **A_ ) @property def __snake_case( self ): return self.encoder_attention_heads @property def __snake_case( self ): return self.d_model def __snake_case( self ): _UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _UpperCAmelCase : Optional[int] = self.backbone_config.to_dict() _UpperCAmelCase : Dict = self.__class__.model_type return output class _SCREAMING_SNAKE_CASE ( A ): __SCREAMING_SNAKE_CASE = version.parse('''1.11''' ) @property def __snake_case( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __snake_case( self ): return 1e-5 @property def __snake_case( self ): return 12
643
1
"""simple docstring""" def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : int = 0 for i in range(1 , 1001 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
194
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) class __lowercase ( __lowerCamelCase ): snake_case_ = """timm_backbone""" def __init__( self : List[str] ,A : Any=None ,A : List[Any]=3 ,A : Any=True ,A : Union[str, Any]=True ,A : List[Any]=None ,**A : Optional[int] ,): '''simple docstring''' super().__init__(**A ) UpperCAmelCase__ : Optional[int] = backbone UpperCAmelCase__ : Dict = num_channels UpperCAmelCase__ : Optional[int] = features_only UpperCAmelCase__ : Tuple = use_pretrained_backbone UpperCAmelCase__ : str = True UpperCAmelCase__ : List[str] = out_indices if out_indices is not None else (-1,)
194
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem SCREAMING_SNAKE_CASE : Tuple = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 SCREAMING_SNAKE_CASE : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: if "://" in dataset_path: _lowercase : Dict = dataset_path.split('://' )[1] return dataset_path def UpperCamelCase_( lowerCamelCase_ ) -> int: if fs is not None and fs.protocol != "file": return True else: return False def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: _lowercase : str = not is_remote_filesystem(A__ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(A__ ) , fs._strip_protocol(A__ ) ) else: fs.mv(A__ , A__ , recursive=A__ ) def UpperCamelCase_( ) -> Any: if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _lowercase : Optional[Any] = None _lowercase : Dict = None _lowercase : Optional[Any] = threading.Lock()
89
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A : Dict = logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : List[Any] , **__lowerCamelCase : Any ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE = deprecated_arg[3:] SCREAMING_SNAKE_CASE = not kwargs.pop(__lowerCamelCase ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) SCREAMING_SNAKE_CASE = kwargs.pop("tpu_name" , self.tpu_name ) SCREAMING_SNAKE_CASE = kwargs.pop("device_idx" , self.device_idx ) SCREAMING_SNAKE_CASE = kwargs.pop("eager_mode" , self.eager_mode ) SCREAMING_SNAKE_CASE = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**__lowerCamelCase ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Name of TPU"} , ) lowerCamelCase__ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Benchmark models in eager model."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _snake_case ( self : Optional[int] ): requires_backends(self , ["tf"] ) SCREAMING_SNAKE_CASE = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE = None return tpu @cached_property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}" ) return strategy @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def _snake_case ( self : Optional[Any] ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def _snake_case ( self : List[str] ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _snake_case ( self : Dict ): return self.n_gpu > 0
16
0
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore lowerCamelCase_ = namedtuple('''covid_data''', '''cases deaths recovered''') def snake_case ( A__ = "https://www.worldometers.info/coronavirus/" ): UpperCAmelCase_ : int = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(A__ ).content ).xpath(A__ ) ) lowerCamelCase_ = '''Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}''' print(fmt.format(*covid_stats()))
463
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
463
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __magic_name__: str = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> int: super().__init__() self.register_modules( vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , ) def __magic_name__ ( self , lowerCAmelCase__ = "auto" ) -> Optional[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __magic_name__ : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: self.enable_attention_slicing(lowerCAmelCase__ ) @torch.no_grad() def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = 5_12 , lowerCAmelCase__ = 5_12 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = 7.5 , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Dict: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Optional[Any] = 1 elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : List[Any] = len(lowerCAmelCase__ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__ )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(lowerCAmelCase__ )}.' ) # get prompt text embeddings __magic_name__ : str = self.tokenizer( lowerCAmelCase__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __magic_name__ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __magic_name__ : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __magic_name__ : List[Any] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __magic_name__ : List[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __magic_name__ ,__magic_name__ ,__magic_name__ : List[str] = text_embeddings.shape __magic_name__ : int = text_embeddings.repeat(1 , lowerCAmelCase__ , 1 ) __magic_name__ : List[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __magic_name__ : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __magic_name__ : List[str] if negative_prompt is None: __magic_name__ : str = [""""""] elif type(lowerCAmelCase__ ) is not type(lowerCAmelCase__ ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase__ )} !=' F' {type(lowerCAmelCase__ )}.' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : List[Any] = [negative_prompt] elif batch_size != len(lowerCAmelCase__ ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase__ )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: __magic_name__ : Dict = negative_prompt __magic_name__ : List[Any] = text_input_ids.shape[-1] __magic_name__ : List[str] = self.tokenizer( lowerCAmelCase__ , padding="""max_length""" , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="""pt""" , ) __magic_name__ : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __magic_name__ : List[Any] = uncond_embeddings.shape[1] __magic_name__ : Dict = uncond_embeddings.repeat(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) __magic_name__ : List[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __magic_name__ : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __magic_name__ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __magic_name__ : Union[str, Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __magic_name__ : Tuple = torch.randn( lowerCAmelCase__ , generator=lowerCAmelCase__ , device="""cpu""" , dtype=lowerCAmelCase__ ).to(self.device ) __magic_name__ : Tuple = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device="""cpu""" , dtype=lowerCAmelCase__ ).to( self.device ) else: __magic_name__ : Union[str, Any] = torch.randn( lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) __magic_name__ : List[Any] = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) else: if latents_reference.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __magic_name__ : int = latents_reference.to(self.device ) __magic_name__ : Union[str, Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __magic_name__ : Any = (latents_shape[3] - latents_shape_reference[3]) // 2 __magic_name__ : str = (latents_shape[2] - latents_shape_reference[2]) // 2 __magic_name__ : Union[str, Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __magic_name__ : Any = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __magic_name__ : Optional[Any] = 0 if dx < 0 else dx __magic_name__ : Optional[Any] = 0 if dy < 0 else dy __magic_name__ : int = max(-dx , 0 ) __magic_name__ : Dict = max(-dy , 0 ) # import pdb # pdb.set_trace() __magic_name__ : List[Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __magic_name__ : int = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __magic_name__ : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __magic_name__ : Optional[int] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __magic_name__ : List[str] = {} if accepts_eta: __magic_name__ : List[Any] = eta for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance __magic_name__ : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __magic_name__ : Optional[Any] = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual __magic_name__ : Optional[Any] = self.unet(lowerCAmelCase__ , lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ ).sample # perform guidance if do_classifier_free_guidance: __magic_name__ ,__magic_name__ : Tuple = noise_pred.chunk(2 ) __magic_name__ : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : Any = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Optional[Any] = 1 / 0.1_8_2_1_5 * latents __magic_name__ : Any = self.vae.decode(lowerCAmelCase__ ).sample __magic_name__ : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __magic_name__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __magic_name__ : List[str] = self.feature_extractor(self.numpy_to_pil(lowerCAmelCase__ ) , return_tensors="""pt""" ).to( self.device ) __magic_name__ ,__magic_name__ : List[Any] = self.safety_checker( images=lowerCAmelCase__ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __magic_name__ : str = None if output_type == "pil": __magic_name__ : Optional[Any] = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCAmelCase__ , nsfw_content_detected=lowerCAmelCase__ )
324
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __magic_name__: Optional[int] = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __magic_name__: Optional[Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } __magic_name__: List[Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } __magic_name__: Union[str, Any] = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class snake_case__ ( _lowerCAmelCase ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Tuple = PRETRAINED_INIT_CONFIGURATION lowercase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Dict = SqueezeBertTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__="[UNK]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="[PAD]" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> List[str]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase__ ) != tokenize_chinese_chars ): __magic_name__ : Any = getattr(lowerCAmelCase__ , normalizer_state.pop("""type""" ) ) __magic_name__ : Any = do_lower_case __magic_name__ : List[str] = strip_accents __magic_name__ : int = tokenize_chinese_chars __magic_name__ : int = normalizer_class(**lowerCAmelCase__ ) __magic_name__ : Optional[int] = do_lower_case def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[Any]: __magic_name__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : int = [self.sep_token_id] __magic_name__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: __magic_name__ : Optional[Any] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
324
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
280
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = RoCBertTokenizer _a = None _a = False _a = True _a = filter_non_english def lowerCAmelCase__ ( self ): '''simple docstring''' super().setUp() UpperCamelCase__ :List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] UpperCamelCase__ :Optional[Any] = {} UpperCamelCase__ :str = {} for i, value in enumerate(UpperCamelCase_ ): UpperCamelCase__ :List[Any] = i UpperCamelCase__ :List[str] = i UpperCamelCase__ :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ :Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) UpperCamelCase__ :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCamelCase_ , UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCamelCase_ , UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase__ :Optional[int] = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCamelCase_ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCamelCase_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCamelCase_ ) , [5, 6, 2, 5, 7, 8] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCamelCase__ :List[str] = {} for i, token in enumerate(UpperCamelCase_ ): UpperCamelCase__ :Tuple = i UpperCamelCase__ :Any = RoCBertWordpieceTokenizer(vocab=UpperCamelCase_ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCamelCase_ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: UpperCamelCase__ :List[str] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCamelCase_ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def lowerCAmelCase__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ :Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' UpperCamelCase__ :List[str] = tokenizer_r.encode_plus( UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , ) UpperCamelCase__ :int = tokenizer_r.do_lower_case if hasattr(UpperCamelCase_ , '''do_lower_case''' ) else False UpperCamelCase__ :str = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = ['''的''', '''人''', '''有'''] UpperCamelCase__ :Tuple = ''''''.join(UpperCamelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :str = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Any = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = tokenizer_p.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = tokenizer_r.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :Any = tokenizer_r.convert_ids_to_tokens(UpperCamelCase_ ) UpperCamelCase__ :str = tokenizer_p.convert_ids_to_tokens(UpperCamelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Dict = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = tokenizer_r.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = tokenizer_p.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :Any = tokenizer_r.convert_ids_to_tokens(UpperCamelCase_ ) UpperCamelCase__ :int = tokenizer_p.convert_ids_to_tokens(UpperCamelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCamelCase__ :Optional[Any] = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(UpperCamelCase_ ) ] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase__ :Union[str, Any] = tokenizer.encode('''你好''' , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :Dict = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): UpperCamelCase__ :Optional[int] = '''你好,你是谁''' UpperCamelCase__ :Optional[int] = tokenizer.tokenize(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) UpperCamelCase__ :Any = tokenizer.convert_tokens_to_shape_ids(UpperCamelCase_ ) UpperCamelCase__ :int = tokenizer.convert_tokens_to_pronunciation_ids(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = tokenizer.prepare_for_model( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = tokenizer.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
280
1
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __A ( SCREAMING_SNAKE_CASE_ ): # to overwrite at feature extractactor specific tests UpperCAmelCase__ = None UpperCAmelCase__ = None @property def lowerCamelCase__ ( self : Dict ) -> Any: return self.feat_extract_tester.prepare_feat_extract_dict() def lowerCamelCase__ ( self : List[Any] ) -> Any: __magic_name__: Dict = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__snake_case , """feature_size""" ) ) self.assertTrue(hasattr(__snake_case , """sampling_rate""" ) ) self.assertTrue(hasattr(__snake_case , """padding_value""" ) ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: __magic_name__: List[Any] = self.feat_extract_tester.prepare_inputs_for_common() __magic_name__: List[str] = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__: str = feat_extract.model_input_names[0] __magic_name__: Any = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__snake_case ) == len(__snake_case ) for x, y in zip(__snake_case , processed_features[input_name] ) ) ) __magic_name__: List[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__snake_case ) __magic_name__: str = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) __magic_name__: List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: __magic_name__: Optional[int] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def lowerCamelCase__ ( self : Tuple ) -> List[Any]: __magic_name__: Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__snake_case ) __magic_name__: Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__: Dict = feat_extract.model_input_names[0] __magic_name__: Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) __magic_name__: Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: __magic_name__: int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def lowerCamelCase__ ( self : Optional[int] ) -> Optional[int]: __magic_name__: Dict = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__snake_case ) __magic_name__: Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__: Optional[Any] = feat_extract.model_input_names[0] __magic_name__: Tuple = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" ) __magic_name__: Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: __magic_name__: Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Optional[Any]=False ) -> Any: def _inputs_have_equal_length(__snake_case : int ): __magic_name__: Union[str, Any] = len(input[0] ) for input_slice in input[1:]: if len(__snake_case ) != length: return False return True def _inputs_are_equal(__snake_case : Tuple , __snake_case : List[str] ): if len(__snake_case ) != len(__snake_case ): return False for input_slice_a, input_slice_a in zip(__snake_case , __snake_case ): if not np.allclose(np.asarray(__snake_case ) , np.asarray(__snake_case ) , atol=1E-3 ): return False return True __magic_name__: str = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__: Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=__snake_case ) __magic_name__: Tuple = feat_extract.model_input_names[0] __magic_name__: Tuple = BatchFeature({input_name: speech_inputs} ) __magic_name__: List[str] = self.feat_extract_tester.seq_length_diff __magic_name__: Optional[Any] = self.feat_extract_tester.max_seq_length + pad_diff __magic_name__: Tuple = self.feat_extract_tester.min_seq_length __magic_name__: List[str] = self.feat_extract_tester.batch_size __magic_name__: int = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __magic_name__: Union[str, Any] = feat_extract.pad(__snake_case , padding=__snake_case ) __magic_name__: Optional[Any] = input_a[input_name] __magic_name__: str = feat_extract.pad(__snake_case , padding="""longest""" ) __magic_name__: str = input_a[input_name] __magic_name__: Optional[int] = feat_extract.pad(__snake_case , padding="""max_length""" , max_length=len(speech_inputs[-1] ) ) __magic_name__: Any = input_a[input_name] __magic_name__: str = feat_extract.pad(__snake_case , padding="""longest""" , return_tensors="""np""" ) __magic_name__: Any = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , padding="""max_length""" )[input_name] __magic_name__: Union[str, Any] = feat_extract.pad( __snake_case , padding="""max_length""" , max_length=__snake_case , return_tensors="""np""" ) __magic_name__: Tuple = input_a[input_name] self.assertFalse(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_are_equal(__snake_case , __snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy __magic_name__: Optional[int] = feat_extract.pad(__snake_case , pad_to_multiple_of=1_0 ) __magic_name__: int = input_a[input_name] __magic_name__: Tuple = feat_extract.pad(__snake_case , padding="""longest""" , pad_to_multiple_of=1_0 ) __magic_name__: List[Any] = input_a[input_name] __magic_name__: Tuple = feat_extract.pad( __snake_case , padding="""max_length""" , pad_to_multiple_of=1_0 , max_length=__snake_case ) __magic_name__: int = input_a[input_name] __magic_name__: Tuple = feat_extract.pad( __snake_case , padding="""max_length""" , pad_to_multiple_of=1_0 , max_length=__snake_case , return_tensors="""np""" , ) __magic_name__: List[Any] = input_a[input_name] self.assertTrue(all(len(__snake_case ) % 1_0 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(__snake_case , __snake_case ) ) __magic_name__: Tuple = pad_max_length if pad_max_length % 1_0 == 0 else (pad_max_length // 1_0 + 1) * 1_0 self.assertTrue(all(len(__snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct __magic_name__: Optional[int] = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def lowerCamelCase__ ( self : Any , __snake_case : Optional[int]=False ) -> Optional[Any]: def _inputs_have_equal_length(__snake_case : Union[str, Any] ): __magic_name__: Tuple = len(input[0] ) for input_slice in input[1:]: if len(__snake_case ) != length: return False return True def _inputs_are_equal(__snake_case : List[str] , __snake_case : Optional[int] ): if len(__snake_case ) != len(__snake_case ): return False for input_slice_a, input_slice_a in zip(__snake_case , __snake_case ): if not np.allclose(np.asarray(__snake_case ) , np.asarray(__snake_case ) , atol=1E-3 ): return False return True __magic_name__: List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__: List[str] = self.feat_extract_tester.prepare_inputs_for_common(numpify=__snake_case ) __magic_name__: str = feat_extract.model_input_names[0] __magic_name__: Optional[int] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest __magic_name__: Optional[int] = feat_extract.pad( __snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=__snake_case ) __magic_name__: int = input_a[input_name] __magic_name__: Optional[int] = feat_extract.pad(__snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) ) __magic_name__: Dict = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertFalse(_inputs_have_equal_length(__snake_case ) ) # truncate to smallest with np __magic_name__: Union[str, Any] = feat_extract.pad( __snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=__snake_case , ) __magic_name__: Optional[Any] = input_a[input_name] __magic_name__: Dict = feat_extract.pad( __snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" ) __magic_name__: Optional[Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__snake_case ) ) # truncate to middle __magic_name__: List[str] = feat_extract.pad( __snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=__snake_case , return_tensors="""np""" , ) __magic_name__: Tuple = input_a[input_name] __magic_name__: Optional[int] = feat_extract.pad( __snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=__snake_case ) __magic_name__: Any = input_a[input_name] __magic_name__: Tuple = feat_extract.pad( __snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" ) __magic_name__: Tuple = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_are_equal(__snake_case , __snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , truncation=__snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , padding="""longest""" , truncation=__snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , padding="""longest""" , truncation=__snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , padding="""max_length""" , truncation=__snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __magic_name__: Tuple = 1_2 __magic_name__: Optional[Any] = feat_extract.pad( __snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) __magic_name__: Tuple = input_a[input_name] __magic_name__: List[str] = feat_extract.pad( __snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__snake_case , ) __magic_name__: Optional[Any] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __magic_name__: List[Any] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: __magic_name__: List[Any] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertFalse(_inputs_have_equal_length(__snake_case ) ) def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: self._check_padding(numpify=__snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: self._check_padding(numpify=__snake_case ) def lowerCamelCase__ ( self : Optional[int] ) -> int: self._check_truncation(numpify=__snake_case ) def lowerCamelCase__ ( self : int ) -> int: self._check_truncation(numpify=__snake_case ) @require_torch def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: __magic_name__: List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__: Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() __magic_name__: Optional[int] = feat_extract.model_input_names[0] __magic_name__: Optional[Any] = BatchFeature({input_name: speech_inputs} ) __magic_name__: List[Any] = feat_extract.pad(__snake_case , padding="""longest""" , return_tensors="""np""" )[input_name] __magic_name__: Any = feat_extract.pad(__snake_case , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def lowerCamelCase__ ( self : Union[str, Any] ) -> int: __magic_name__: Dict = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__: str = self.feat_extract_tester.prepare_inputs_for_common() __magic_name__: Any = feat_extract.model_input_names[0] __magic_name__: Union[str, Any] = BatchFeature({input_name: speech_inputs} ) __magic_name__: int = feat_extract.pad(__snake_case , padding="""longest""" , return_tensors="""np""" )[input_name] __magic_name__: Tuple = feat_extract.pad(__snake_case , padding="""longest""" , return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: __magic_name__: Optional[Any] = self.feat_extract_dict __magic_name__: Optional[Any] = True __magic_name__: List[str] = self.feature_extraction_class(**__snake_case ) __magic_name__: List[str] = self.feat_extract_tester.prepare_inputs_for_common() __magic_name__: Union[str, Any] = [len(__snake_case ) for x in speech_inputs] __magic_name__: int = feat_extract.model_input_names[0] __magic_name__: List[str] = BatchFeature({input_name: speech_inputs} ) __magic_name__: Tuple = feat_extract.pad(__snake_case , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , __snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: __magic_name__: Any = self.feat_extract_dict __magic_name__: Optional[Any] = True __magic_name__: str = self.feature_extraction_class(**__snake_case ) __magic_name__: Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() __magic_name__: str = [len(__snake_case ) for x in speech_inputs] __magic_name__: Union[str, Any] = feat_extract.model_input_names[0] __magic_name__: Optional[int] = BatchFeature({input_name: speech_inputs} ) __magic_name__: Union[str, Any] = min(__snake_case ) __magic_name__: Dict = feat_extract.pad( __snake_case , padding="""max_length""" , max_length=__snake_case , truncation=__snake_case , return_tensors="""np""" ) self.assertIn("""attention_mask""" , __snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
96
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
0
'''simple docstring''' import argparse import os import re import packaging.version SCREAMING_SNAKE_CASE__ = 'examples/' SCREAMING_SNAKE_CASE__ = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } SCREAMING_SNAKE_CASE__ = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } SCREAMING_SNAKE_CASE__ = 'README.md' def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[Any]: with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase = f.read() UpperCamelCase ,UpperCamelCase = REPLACE_PATTERNS[pattern] UpperCamelCase = replace.replace("""VERSION""" , __UpperCamelCase ) UpperCamelCase = re_pattern.sub(__UpperCamelCase , __UpperCamelCase ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__UpperCamelCase ) def lowercase__ ( __UpperCamelCase )-> Dict: for folder, directories, fnames in os.walk(__UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , pattern="""examples""" ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase=False )-> int: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if not patch: update_version_in_examples(__UpperCamelCase ) def lowercase__ ( )-> List[Any]: UpperCamelCase = """🤗 Transformers currently provides the following architectures""" UpperCamelCase = """1. Want to contribute a new model?""" with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase = f.readlines() # Find the start of the list. UpperCamelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCamelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): UpperCamelCase = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__UpperCamelCase ) def lowercase__ ( )-> str: with open(REPLACE_FILES["""init"""] , """r""" ) as f: UpperCamelCase = f.read() UpperCamelCase = REPLACE_PATTERNS["""init"""][0].search(__UpperCamelCase ).groups()[0] return packaging.version.parse(__UpperCamelCase ) def lowercase__ ( __UpperCamelCase=False )-> Union[str, Any]: UpperCamelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: UpperCamelCase = default_version.base_version elif patch: UpperCamelCase = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: UpperCamelCase = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. UpperCamelCase = input(F"Which version are you releasing? [{default_version}]" ) if len(__UpperCamelCase ) == 0: UpperCamelCase = default_version print(F"Updating version to {version}." ) global_version_update(__UpperCamelCase , patch=__UpperCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def lowercase__ ( )-> Any: UpperCamelCase = get_version() UpperCamelCase = F"{current_version.major}.{current_version.minor + 1}.0.dev0" UpperCamelCase = current_version.base_version # Check with the user we got that right. UpperCamelCase = input(F"Which version are we developing now? [{dev_version}]" ) if len(__UpperCamelCase ) == 0: UpperCamelCase = dev_version print(F"Updating version to {version}." ) global_version_update(__UpperCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') SCREAMING_SNAKE_CASE__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
35
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-1' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-2' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-3' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-4' class a_ ( lowerCamelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> Any: """simple docstring""" super()._init_() UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , requires_safety_checker=_SCREAMING_SNAKE_CASE , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , _SCREAMING_SNAKE_CASE ) for k in self.config.keys() if not k.startswith("""_""" )} def A__ ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> Optional[Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: """simple docstring""" self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" UpperCamelCase = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(_SCREAMING_SNAKE_CASE ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
35
1
"""simple docstring""" import os def a__ ( ) -> Optional[int]: __lowerCAmelCase: Tuple = os.path.dirname(os.path.realpath(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , "triangle.txt" ) with open(__SCREAMING_SNAKE_CASE ) as f: __lowerCAmelCase: List[Any] = f.readlines() __lowerCAmelCase: int = [] for line in triangle: __lowerCAmelCase: List[str] = [] for number in line.strip().split(" " ): numbers_from_line.append(int(__SCREAMING_SNAKE_CASE ) ) a.append(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): for j in range(len(a[i] ) ): __lowerCAmelCase: Any = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowerCAmelCase: Optional[Any] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return max(a[-1] ) if __name__ == "__main__": print(solution())
346
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : List[str] = (DDPMScheduler,) def lowercase_ ( self : List[str] , **UpperCamelCase__ : str)-> str: '''simple docstring''' __lowerCAmelCase: List[Any] = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCamelCase__) return config def lowercase_ ( self : int)-> Dict: '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase__) def lowercase_ ( self : Tuple)-> str: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__) def lowercase_ ( self : str)-> Optional[int]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase__) def lowercase_ ( self : Union[str, Any])-> int: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase__) def lowercase_ ( self : Tuple)-> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__) def lowercase_ ( self : str)-> str: '''simple docstring''' self.check_over_configs(thresholding=UpperCamelCase__) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase__ , prediction_type=UpperCamelCase__ , sample_max_value=UpperCamelCase__ , ) def lowercase_ ( self : List[str])-> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__) def lowercase_ ( self : Optional[Any])-> Union[str, Any]: '''simple docstring''' for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase__) def lowercase_ ( self : Union[str, Any])-> List[Any]: '''simple docstring''' __lowerCAmelCase: Dict = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config() __lowerCAmelCase: Dict = scheduler_class(**UpperCamelCase__) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7) - 0.00979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9) - 0.02)) < 1e-5 def lowercase_ ( self : Optional[int])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: int = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config() __lowerCAmelCase: Optional[int] = scheduler_class(**UpperCamelCase__) __lowerCAmelCase: List[str] = len(UpperCamelCase__) __lowerCAmelCase: List[Any] = self.dummy_model() __lowerCAmelCase: Tuple = self.dummy_sample_deter __lowerCAmelCase: Tuple = torch.manual_seed(0) for t in reversed(range(UpperCamelCase__)): # 1. predict noise residual __lowerCAmelCase: List[str] = model(UpperCamelCase__ , UpperCamelCase__) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase: List[Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowerCAmelCase: List[Any] = pred_prev_sample __lowerCAmelCase: List[str] = torch.sum(torch.abs(UpperCamelCase__)) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCamelCase__)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def lowercase_ ( self : int)-> Any: '''simple docstring''' __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: str = self.get_scheduler_config(prediction_type="v_prediction") __lowerCAmelCase: Dict = scheduler_class(**UpperCamelCase__) __lowerCAmelCase: Dict = len(UpperCamelCase__) __lowerCAmelCase: Any = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter __lowerCAmelCase: str = torch.manual_seed(0) for t in reversed(range(UpperCamelCase__)): # 1. predict noise residual __lowerCAmelCase: str = model(UpperCamelCase__ , UpperCamelCase__) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase: Tuple = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowerCAmelCase: Optional[Any] = pred_prev_sample __lowerCAmelCase: Union[str, Any] = torch.sum(torch.abs(UpperCamelCase__)) __lowerCAmelCase: Dict = torch.mean(torch.abs(UpperCamelCase__)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' __lowerCAmelCase: List[str] = self.scheduler_classes[0] __lowerCAmelCase: List[Any] = self.get_scheduler_config() __lowerCAmelCase: List[Any] = scheduler_class(**UpperCamelCase__) __lowerCAmelCase: Optional[int] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase__) __lowerCAmelCase: str = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase__): if i == len(UpperCamelCase__) - 1: __lowerCAmelCase: str = -1 else: __lowerCAmelCase: str = timesteps[i + 1] __lowerCAmelCase: List[Any] = scheduler.previous_timestep(UpperCamelCase__) __lowerCAmelCase: List[str] = prev_t.item() self.assertEqual(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Union[str, Any])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: int = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase__ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCamelCase__) def lowercase_ ( self : Any)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: List[str] = self.scheduler_classes[0] __lowerCAmelCase: Any = self.get_scheduler_config() __lowerCAmelCase: Dict = scheduler_class(**UpperCamelCase__) __lowerCAmelCase: List[str] = [1_0_0, 8_7, 5_0, 1, 0] __lowerCAmelCase: Tuple = len(UpperCamelCase__) with self.assertRaises(UpperCamelCase__ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCamelCase__ , timesteps=UpperCamelCase__) def lowercase_ ( self : Optional[Any])-> int: '''simple docstring''' __lowerCAmelCase: List[str] = self.scheduler_classes[0] __lowerCAmelCase: Any = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCamelCase__) __lowerCAmelCase: Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase__ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCamelCase__)
346
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ = logging.getLogger() def UpperCAmelCase_ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE__ ={} SCREAMING_SNAKE_CASE__ =os.path.join(__UpperCamelCase, """all_results.json""" ) if os.path.exists(__UpperCamelCase ): with open(__UpperCamelCase, """r""" ) as f: SCREAMING_SNAKE_CASE__ =json.load(__UpperCamelCase ) else: raise ValueError(f"""can't find {path}""" ) return results lowerCamelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __a ( __lowerCamelCase ): """simple docstring""" def __A ( self : int ) -> Optional[Any]: '''simple docstring''' import xla_spawn SCREAMING_SNAKE_CASE__ =self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ =f""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_UpperCamelCase ,"""argv""" ,_UpperCamelCase ): SCREAMING_SNAKE_CASE__ =time() xla_spawn.main() SCREAMING_SNAKE_CASE__ =time() SCREAMING_SNAKE_CASE__ =get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start ,5_0_0 ) def __A ( self : List[str] ) -> Tuple: '''simple docstring''' import xla_spawn SCREAMING_SNAKE_CASE__ =""" ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(_UpperCamelCase ,"""argv""" ,_UpperCamelCase ): xla_spawn.main()
588
def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
588
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( a : Union[str, Any] ): a__ = str(__UpperCAmelCase ) return len(__UpperCAmelCase ) == 9 and set(__UpperCAmelCase ) == set('123456789' ) def lowerCAmelCase_ ( ): for base_num in range(9999 , 4999 , -1 ): a__ = 100002 * base_num if is_9_pandigital(__UpperCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): a__ = 1002003 * base_num if is_9_pandigital(__UpperCAmelCase ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
394
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() a = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] a = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: """simple docstring""" snake_case: Any ={ 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case: Dict =int(re.match(R'.*layer_(\d*).*' , __UpperCAmelCase )[1] ) layer_number -= 3 return f'''h.{layer_number}.''' + key def a_ ( __UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" if dtype == torch.bool: return 1 / 8 snake_case: Optional[Any] =re.search(R'[^\d](\d+)$' , str(__UpperCAmelCase ) ) if bit_search is None: raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' ) snake_case: str =int(bit_search.groups()[0] ) return bit_size // 8 def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: """simple docstring""" if bloom_config_file == "": snake_case: Tuple =BloomConfig() else: snake_case: List[Any] =BloomConfig.from_json_file(__UpperCAmelCase ) if shard_model: snake_case: Any =os.listdir(__UpperCAmelCase ) snake_case: Any =sorted(filter(lambda __UpperCAmelCase : s.startswith('layer' ) and "model_00" in s , __UpperCAmelCase ) ) snake_case: int ={'weight_map': {}, 'metadata': {}} snake_case: Dict =0 snake_case: List[str] =None snake_case: Any =BloomConfig() for j, file in enumerate(__UpperCAmelCase ): print('Processing file: {}'.format(__UpperCAmelCase ) ) snake_case: Any =None for i in range(__UpperCAmelCase ): # load all TP files snake_case: Optional[int] =file.replace('model_00' , f'''model_0{i}''' ) snake_case: List[str] =torch.load(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , map_location='cpu' ) # Rename keys in the transformers names snake_case: int =list(temp.keys() ) for key in keys: snake_case: List[Any] =temp.pop(__UpperCAmelCase ) if tensors is None: snake_case: Tuple =temp else: for key in tensors.keys(): if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case: Optional[int] =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case: str =torch.cat([tensors[key], temp[key]] , dim=__UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case: Dict =tensors[key] / pretraining_tp torch.save( __UpperCAmelCase , os.path.join( __UpperCAmelCase , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(__UpperCAmelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case: List[str] =tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case: List[Any] ='pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(__UpperCAmelCase ) ).zfill(5 ) ) snake_case: Tuple =BloomConfig() snake_case: Union[str, Any] =pytorch_dump_folder_path + '/' + CONFIG_NAME snake_case: Any =total_size with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(__UpperCAmelCase , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: snake_case: Tuple =json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + '\n' f.write(__UpperCAmelCase ) else: snake_case: Optional[Any] =BloomModel(__UpperCAmelCase ) snake_case: Any =os.listdir(__UpperCAmelCase ) snake_case: Optional[int] =sorted(filter(lambda __UpperCAmelCase : s.startswith('layer' ) and "model_00" in s , __UpperCAmelCase ) ) snake_case: str =None for i, file in enumerate(__UpperCAmelCase ): snake_case: List[str] =None for i in range(__UpperCAmelCase ): # load all TP files snake_case: int =file.replace('model_00' , f'''model_0{i}''' ) snake_case: Optional[Any] =torch.load(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , map_location='cpu' ) # Rename keys in the transformers names snake_case: List[str] =list(temp.keys() ) for key in keys: snake_case: int =temp.pop(__UpperCAmelCase ) if tensors is None: snake_case: Any =temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case: List[Any] =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case: Tuple =torch.cat([tensors[key], temp[key]] , dim=__UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case: int =tensors[key] / pretraining_tp snake_case: Optional[Any] =model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: snake_case: Optional[Any] =set(other_keys.missing_keys ) else: snake_case: Any =missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) snake_case: Optional[int] =pytorch_dump_folder_path + '/' + WEIGHTS_NAME snake_case: Any =pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: snake_case: Optional[Any] =model.to(config.torch_dtype ) torch.save(model.state_dict() , __UpperCAmelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) a = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
350
0
from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} def snake_case ( snake_case__ :Tuple , snake_case__ :Dict , snake_case__ :List[str] = None , ) -> Optional[Any]: _A = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''') _A = formatter_cls for alias in set(aliases + [format_type]): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''') _A = format_type def snake_case ( snake_case__ :int , snake_case__ :Any , snake_case__ :Tuple = None) -> Union[str, Any]: _A = aliases if aliases is not None else [] for alias in set(aliases + [format_type]): _A = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: _SCREAMING_SNAKE_CASE = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: _SCREAMING_SNAKE_CASE = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: _SCREAMING_SNAKE_CASE = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def snake_case ( snake_case__ :Any) -> Union[str, Any]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def snake_case ( snake_case__ :Optional[Any] , **snake_case__ :int) -> Tuple: _A = get_format_type_from_alias(lowerCAmelCase_) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowerCAmelCase_) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None)}, but got \'{format_type}\'''')
703
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class a ( __lowerCAmelCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[str]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def UpperCAmelCase ( self ) -> Optional[int]: _A = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: _A = self._create_example_records() _A = Dataset.from_list(lowerCAmelCase_ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(lowerCAmelCase_ ): self.assertDictEqual(lowerCAmelCase_ , example_records[i] ) def UpperCAmelCase ( self ) -> str: _A = self._create_example_records() _A = Dataset.from_list(lowerCAmelCase_ ) _A = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def UpperCAmelCase ( self ) -> Any: # checks what happens with missing columns _A = [{"""col_1""": 1}, {"""col_2""": """x"""}] _A = Dataset.from_list(lowerCAmelCase_ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def UpperCAmelCase ( self ) -> Tuple: # checks if the type can be inferred from the second record _A = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _A = Dataset.from_list(lowerCAmelCase_ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def UpperCAmelCase ( self ) -> Any: _A = Dataset.from_list([] ) self.assertEqual(len(lowerCAmelCase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
83
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
530
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase ) -> bool: '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
530
1
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _snake_case : Dict = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[Any] = "AutoTokenizer" __UpperCAmelCase : Dict = ["tokenizer"] __UpperCAmelCase : Union[str, Any] = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self : str , lowerCamelCase : int , lowerCamelCase : int=None ) -> Optional[int]: super().__init__(__A ) __snake_case : Optional[Any] = speaker_embeddings @classmethod def __snake_case ( cls : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]="speaker_embeddings_path.json" , **lowerCamelCase : Union[str, Any] ) -> Tuple: if speaker_embeddings_dict_path is not None: __snake_case : int = get_file_from_repo( __A , __A , subfolder=kwargs.pop("subfolder" , __A ) , cache_dir=kwargs.pop("cache_dir" , __A ) , force_download=kwargs.pop("force_download" , __A ) , proxies=kwargs.pop("proxies" , __A ) , resume_download=kwargs.pop("resume_download" , __A ) , local_files_only=kwargs.pop("local_files_only" , __A ) , use_auth_token=kwargs.pop("use_auth_token" , __A ) , revision=kwargs.pop("revision" , __A ) , ) if speaker_embeddings_path is None: logger.warning( F'`{os.path.join(__A , __A )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' ) __snake_case : Dict = None else: with open(__A ) as speaker_embeddings_json: __snake_case : Union[str, Any] = json.load(__A ) else: __snake_case : Optional[int] = None __snake_case : Any = AutoTokenizer.from_pretrained(__A , **__A ) return cls(tokenizer=__A , speaker_embeddings=__A ) def __snake_case ( self : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any]="speaker_embeddings_path.json" , lowerCamelCase : int="speaker_embeddings" , lowerCamelCase : bool = False , **lowerCamelCase : Tuple , ) -> List[str]: if self.speaker_embeddings is not None: os.makedirs(os.path.join(__A , __A , "v2" ) , exist_ok=__A ) __snake_case : Dict = {} __snake_case : Any = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": __snake_case : Union[str, Any] = self._load_voice_preset(__A ) __snake_case : List[str] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , __A , F'{prompt_key}_{key}' ) , voice_preset[key] , allow_pickle=__A , ) __snake_case : List[str] = os.path.join(__A , F'{prompt_key}_{key}.npy' ) __snake_case : Any = tmp_dict with open(os.path.join(__A , __A ) , "w" ) as fp: json.dump(__A , __A ) super().save_pretrained(__A , __A , **__A ) def __snake_case ( self : Any , lowerCamelCase : str = None , **lowerCamelCase : Optional[int] ) -> int: __snake_case : Optional[int] = self.speaker_embeddings[voice_preset] __snake_case : int = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' ) __snake_case : List[str] = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , __A ) , cache_dir=kwargs.pop("cache_dir" , __A ) , force_download=kwargs.pop("force_download" , __A ) , proxies=kwargs.pop("proxies" , __A ) , resume_download=kwargs.pop("resume_download" , __A ) , local_files_only=kwargs.pop("local_files_only" , __A ) , use_auth_token=kwargs.pop("use_auth_token" , __A ) , revision=kwargs.pop("revision" , __A ) , ) if path is None: raise ValueError( F'`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' ) __snake_case : int = np.load(__A ) return voice_preset_dict def __snake_case ( self : Any , lowerCamelCase : Optional[dict] = None ) -> Tuple: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'Voice preset unrecognized, missing {key} as a key.' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) def __call__( self : Tuple , lowerCamelCase : List[Any]=None , lowerCamelCase : Optional[int]=None , lowerCamelCase : str="pt" , lowerCamelCase : Tuple=256 , lowerCamelCase : Dict=False , lowerCamelCase : List[Any]=True , lowerCamelCase : Dict=False , **lowerCamelCase : Tuple , ) -> Tuple: if voice_preset is not None and not isinstance(__A , __A ): if ( isinstance(__A , __A ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): __snake_case : Optional[Any] = self._load_voice_preset(__A ) else: if isinstance(__A , __A ) and not voice_preset.endswith(".npz" ): __snake_case : List[str] = voice_preset + ".npz" __snake_case : List[Any] = np.load(__A ) if voice_preset is not None: self._validate_voice_preset_dict(__A , **__A ) __snake_case : List[str] = BatchFeature(data=__A , tensor_type=__A ) __snake_case : Dict = self.tokenizer( __A , return_tensors=__A , padding="max_length" , max_length=__A , return_attention_mask=__A , return_token_type_ids=__A , add_special_tokens=__A , **__A , ) if voice_preset is not None: __snake_case : Any = voice_preset return encoded_text
711
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a (_lowerCAmelCase ): """simple docstring""" def __snake_case ( self : str ) -> Dict: __snake_case : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , "embed_dim" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , "num_heads" ) ) class a : """simple docstring""" def __init__( self : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any=13 , lowerCamelCase : Any=64 , lowerCamelCase : int=3 , lowerCamelCase : Tuple=[16, 48, 96] , lowerCamelCase : Optional[int]=[1, 3, 6] , lowerCamelCase : List[str]=[1, 2, 10] , lowerCamelCase : Any=[7, 3, 3] , lowerCamelCase : Any=[4, 2, 2] , lowerCamelCase : Optional[Any]=[2, 1, 1] , lowerCamelCase : str=[2, 2, 2] , lowerCamelCase : Dict=[False, False, True] , lowerCamelCase : Dict=[0.0, 0.0, 0.0] , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : Tuple=1E-12 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=2 , ) -> Optional[int]: __snake_case : Tuple = parent __snake_case : List[str] = batch_size __snake_case : Optional[int] = image_size __snake_case : Optional[int] = patch_sizes __snake_case : Union[str, Any] = patch_stride __snake_case : int = patch_padding __snake_case : Optional[Any] = is_training __snake_case : Optional[Any] = use_labels __snake_case : Tuple = num_labels __snake_case : Union[str, Any] = num_channels __snake_case : Tuple = embed_dim __snake_case : List[str] = num_heads __snake_case : Dict = stride_kv __snake_case : Optional[int] = depth __snake_case : List[Any] = cls_token __snake_case : List[Any] = attention_drop_rate __snake_case : Any = initializer_range __snake_case : str = layer_norm_eps def __snake_case ( self : List[str] ) -> str: __snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Tuple = None if self.use_labels: __snake_case : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self : Tuple ) -> Optional[Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __snake_case ( self : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : str ) -> Tuple: __snake_case : int = CvtModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[str] = model(lowerCamelCase ) __snake_case : List[Any] = (self.image_size, self.image_size) __snake_case , __snake_case : List[str] = image_size[0], image_size[1] for i in range(len(self.depth ) ): __snake_case : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __snake_case : Union[str, Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __snake_case ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : int ) -> Optional[Any]: __snake_case : str = self.num_labels __snake_case : Any = CvtForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : str = config_and_inputs __snake_case : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = (CvtModel, CvtForImageClassification) if is_torch_available() else () __UpperCAmelCase : List[str] = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : List[Any] = False def __snake_case ( self : str ) -> List[str]: __snake_case : Tuple = CvtModelTester(self ) __snake_case : Tuple = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def __snake_case ( self : Union[str, Any] ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : Tuple ) -> Union[str, Any]: return @unittest.skip(reason="Cvt does not output attentions" ) def __snake_case ( self : Optional[int] ) -> List[str]: pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def __snake_case ( self : List[str] ) -> Any: pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def __snake_case ( self : int ) -> List[Any]: pass def __snake_case ( self : int ) -> int: __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(lowerCamelCase ) __snake_case : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __snake_case ( self : str ) -> Dict: __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __snake_case ( self : int ) -> Optional[Any]: def check_hidden_states_output(lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] ): __snake_case : Any = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __snake_case : List[Any] = outputs.hidden_states __snake_case : Optional[int] = len(self.model_tester.depth ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : List[str] = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Optional[Any]: __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __snake_case ( self : List[str] ) -> Optional[int]: pass @slow def __snake_case ( self : Tuple ) -> List[str]: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = CvtModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowerCAmelCase_ ( ): __snake_case : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a (unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : Optional[Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __snake_case ( self : int ) -> Tuple: __snake_case : Optional[Any] = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase ) __snake_case : Optional[int] = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : Dict = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : Any = model(**lowerCamelCase ) # verify the logits __snake_case : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __snake_case : Optional[Any] = torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) )
203
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
626
"""simple docstring""" import doctest from collections import deque import numpy as np class snake_case : def __init__(self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [2, 1, 2, -1] SCREAMING_SNAKE_CASE_ = [1, 2, 3, 4] def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = len(self.first_signal ) SCREAMING_SNAKE_CASE_ = len(self.second_signal ) SCREAMING_SNAKE_CASE_ = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE_ = [[0] * max_length for i in range(SCREAMING_SNAKE_CASE_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = deque(self.second_signal ) rotated_signal.rotate(SCREAMING_SNAKE_CASE_ ) for j, item in enumerate(SCREAMING_SNAKE_CASE_ ): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE_ = np.matmul(np.transpose(SCREAMING_SNAKE_CASE_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(SCREAMING_SNAKE_CASE_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
626
1
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = RobertaPreLayerNormConfig.from_pretrained( SCREAMING_SNAKE_CASE__ , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __lowerCamelCase : Optional[Any] = torch.load(hf_hub_download(repo_id=SCREAMING_SNAKE_CASE__ , filename='pytorch_model.bin' ) ) __lowerCamelCase : int = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __lowerCamelCase : Optional[Any] = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __lowerCamelCase : int = tensor_value __lowerCamelCase : Optional[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ , state_dict=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # convert tokenizer __lowerCamelCase : int = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase_ = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
230
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): if point: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): __lowerCamelCase : List[Any] = ( 'Expected a list of numbers as input, found ' f'{type(SCREAMING_SNAKE_CASE__ ).__name__}' ) raise TypeError(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase : Tuple = f'Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE__ ).__name__}' raise TypeError(SCREAMING_SNAKE_CASE__ ) else: raise ValueError('Missing an input' ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
230
1
def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase = False ) ->bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis __magic_name__ : Optional[Any] = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] __magic_name__ : int = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCAmelCase, 1 ): if n < _p: # then we have our last prime to check __magic_name__ : List[Any] = primes[:idx] break __magic_name__ , __magic_name__ : Any = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __magic_name__ : str = False for r in range(UpperCAmelCase ): __magic_name__ : Union[str, Any] = pow(UpperCAmelCase, d * 2**r, UpperCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __magic_name__ : str = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCAmelCase ( ) ->None: """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
154
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Union[str, Any] ="xlm" lowerCamelCase__ : Any ={ "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self , lowerCamelCase=30145 , lowerCamelCase=2048 , lowerCamelCase=12 , lowerCamelCase=16 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=1 , lowerCamelCase=True , lowerCamelCase=512 , lowerCamelCase=2048**-0.5 , lowerCamelCase=1e-12 , lowerCamelCase=0.0_2 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=5 , lowerCamelCase=True , lowerCamelCase="first" , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=5 , lowerCamelCase=5 , lowerCamelCase=0 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=0 , **lowerCamelCase , ) -> Dict: """simple docstring""" __magic_name__ : List[Any] = vocab_size __magic_name__ : str = emb_dim __magic_name__ : Union[str, Any] = n_layers __magic_name__ : Optional[Any] = n_heads __magic_name__ : Dict = dropout __magic_name__ : List[str] = attention_dropout __magic_name__ : Optional[Any] = gelu_activation __magic_name__ : Any = sinusoidal_embeddings __magic_name__ : List[Any] = causal __magic_name__ : Optional[Any] = asm __magic_name__ : Tuple = n_langs __magic_name__ : Union[str, Any] = use_lang_emb __magic_name__ : str = layer_norm_eps __magic_name__ : int = bos_index __magic_name__ : int = eos_index __magic_name__ : Any = pad_index __magic_name__ : int = unk_index __magic_name__ : Tuple = mask_index __magic_name__ : int = is_encoder __magic_name__ : Any = max_position_embeddings __magic_name__ : List[Any] = embed_init_std __magic_name__ : int = init_std __magic_name__ : Optional[Any] = summary_type __magic_name__ : List[str] = summary_use_proj __magic_name__ : Optional[Any] = summary_activation __magic_name__ : Union[str, Any] = summary_proj_to_labels __magic_name__ : int = summary_first_dropout __magic_name__ : Dict = start_n_top __magic_name__ : int = end_n_top __magic_name__ : Optional[int] = mask_token_id __magic_name__ : Dict = lang_id if "n_words" in kwargs: __magic_name__ : str = kwargs['''n_words'''] super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , **lowerCamelCase ) class A__ ( __SCREAMING_SNAKE_CASE ): @property def lowercase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __magic_name__ : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __magic_name__ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
154
1
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case): # Initialise PyTorch model __snake_case = BigBirdConfig.from_json_file(snake_case) print(f"Building PyTorch model from configuration: {config}") if is_trivia_qa: __snake_case = BigBirdForQuestionAnswering(snake_case) else: __snake_case = BigBirdForPreTraining(snake_case) # Load weights from tf checkpoint load_tf_weights_in_big_bird(snake_case, snake_case, is_trivia_qa=snake_case) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(snake_case) if __name__ == "__main__": __lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) __lowercase : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
93
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Tuple ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : int ) -> Tuple: __snake_case = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) __snake_case = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_euler''' ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.manual_seed(0 ) __snake_case = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase ( self : Optional[Any] ) -> Tuple: __snake_case = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __snake_case = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_euler''' ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.manual_seed(0 ) __snake_case = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowercase ( self : List[str] ) -> Optional[Any]: __snake_case = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __snake_case = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.manual_seed(0 ) __snake_case = sd_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=A_ , ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
93
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __A ( snake_case_ ): '''simple docstring''' lowerCAmelCase_ = 42 class __A ( snake_case_ , snake_case_ ): '''simple docstring''' @register_to_config def __init__( self , __lowerCAmelCase = 1_6 , __lowerCAmelCase = 8_8 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 3_2 , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = "geglu" , __lowerCAmelCase = True , __lowerCAmelCase = True , ): '''simple docstring''' super().__init__() lowerCamelCase__ = num_attention_heads lowerCamelCase__ = attention_head_dim lowerCamelCase__ = num_attention_heads * attention_head_dim lowerCamelCase__ = in_channels lowerCamelCase__ = torch.nn.GroupNorm(num_groups=__lowerCAmelCase , num_channels=__lowerCAmelCase , eps=1E-6 , affine=__lowerCAmelCase ) lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) # 3. Define transformers blocks lowerCamelCase__ = nn.ModuleList( [ BasicTransformerBlock( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dropout=__lowerCAmelCase , cross_attention_dim=__lowerCAmelCase , activation_fn=__lowerCAmelCase , attention_bias=__lowerCAmelCase , double_self_attention=__lowerCAmelCase , norm_elementwise_affine=__lowerCAmelCase , ) for d in range(__lowerCAmelCase ) ] ) lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=1 , __lowerCAmelCase=None , __lowerCAmelCase = True , ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = hidden_states.shape lowerCamelCase__ = batch_frames // num_frames lowerCamelCase__ = hidden_states lowerCamelCase__ = hidden_states[None, :].reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCamelCase__ = self.norm(__lowerCAmelCase ) lowerCamelCase__ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = self.proj_in(__lowerCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowerCamelCase__ = block( __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , timestep=__lowerCAmelCase , cross_attention_kwargs=__lowerCAmelCase , class_labels=__lowerCAmelCase , ) # 3. Output lowerCamelCase__ = self.proj_out(__lowerCAmelCase ) lowerCamelCase__ = ( hidden_states[None, None, :] .reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCamelCase__ = hidden_states.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__lowerCAmelCase )
481
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase = random.Random() if is_torch_available(): import torch def __UpperCAmelCase ( a_ , a_=1.0 , a_=None , a_=None): if rng is None: snake_case_ = global_rng snake_case_ = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , a , a=7 , a=4_00 , a=20_00 , a=1 , a=0.0 , a=1_60_00 , a=True , a=True , ) -> Tuple: snake_case_ = parent snake_case_ = batch_size snake_case_ = min_seq_length snake_case_ = max_seq_length snake_case_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ = feature_size snake_case_ = padding_value snake_case_ = sampling_rate snake_case_ = return_attention_mask snake_case_ = do_normalize def _UpperCamelCase ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCamelCase ( self , a=False , a=False ) -> Optional[int]: def _flatten(a ): return list(itertools.chain(*a ) ) if equal_length: snake_case_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ = [np.asarray(a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = ASTFeatureExtractor def _UpperCamelCase ( self ) -> Optional[int]: snake_case_ = ASTFeatureExtractionTester(self ) def _UpperCamelCase ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = [np.asarray(a ) for speech_input in speech_inputs] # Test not batched input snake_case_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values snake_case_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) # Test batched snake_case_ = feat_extract(a , padding=a , return_tensors='np' ).input_values snake_case_ = feat_extract(a , padding=a , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a , a ): self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case_ = np.asarray(a ) snake_case_ = feat_extract(a , return_tensors='np' ).input_values snake_case_ = feat_extract(a , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a , a ): self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) @require_torch def _UpperCamelCase ( self ) -> List[str]: import torch snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = np.random.rand(1_00 ).astype(np.floataa ) snake_case_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _UpperCamelCase ( self , a ) -> Tuple: from datasets import load_dataset snake_case_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech snake_case_ = ds.sort('id' ).select(range(a ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def _UpperCamelCase ( self ) -> Optional[int]: # fmt: off snake_case_ = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on snake_case_ = self._load_datasamples(1 ) snake_case_ = ASTFeatureExtractor() snake_case_ = feature_extractor(a , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a , atol=1E-4 ) )
198
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename _UpperCamelCase = "http://www.mocksite.com/file1.txt" _UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" _UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class __lowercase : _UpperCamelCase = 200 _UpperCamelCase = {"""Content-Length""": """100"""} _UpperCamelCase = {} def UpperCamelCase__ ( self , **A_ ) ->str: '''simple docstring''' return [bytes(A_ , '''utf-8''' )] def _lowercase ( *lowercase__ , **lowercase__ ): return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): import requests monkeypatch.setattr(lowercase__ , '''request''' , lowercase__ ) __lowerCAmelCase : List[Any] = URL if issubclass(lowercase__ , lowercase__ ): __lowerCAmelCase : Dict = url elif issubclass(lowercase__ , lowercase__ ): __lowerCAmelCase : int = [url] elif issubclass(lowercase__ , lowercase__ ): __lowerCAmelCase : List[Any] = {'''train''': url} __lowerCAmelCase : List[Any] = '''dummy''' __lowerCAmelCase : Tuple = '''downloads''' __lowerCAmelCase : List[str] = tmp_path __lowerCAmelCase : Optional[int] = DownloadConfig( cache_dir=os.path.join(lowercase__ , lowercase__ ) , use_etag=lowercase__ , ) __lowerCAmelCase : Any = DownloadManager(dataset_name=lowercase__ , download_config=lowercase__ ) __lowerCAmelCase : Dict = dl_manager.download(lowercase__ ) __lowerCAmelCase : Optional[Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : int = [downloaded_paths] __lowerCAmelCase : Optional[Any] = [urls] elif isinstance(lowercase__ , lowercase__ ): assert "train" in downloaded_paths.keys() __lowerCAmelCase : Dict = downloaded_paths.values() __lowerCAmelCase : str = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowercase__ , lowercase__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __lowerCAmelCase : str = Path(lowercase__ ) __lowerCAmelCase : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __lowerCAmelCase : Optional[Any] = downloaded_path.read_text() assert content == CONTENT __lowerCAmelCase : Tuple = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() __lowerCAmelCase : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Dict = str(lowercase__ ) if issubclass(lowercase__ , lowercase__ ): __lowerCAmelCase : int = filename elif issubclass(lowercase__ , lowercase__ ): __lowerCAmelCase : List[str] = [filename] elif issubclass(lowercase__ , lowercase__ ): __lowerCAmelCase : List[Any] = {'''train''': filename} __lowerCAmelCase : Union[str, Any] = '''dummy''' __lowerCAmelCase : List[Any] = xz_file.parent __lowerCAmelCase : Union[str, Any] = '''extracted''' __lowerCAmelCase : Optional[int] = DownloadConfig( cache_dir=lowercase__ , use_etag=lowercase__ , ) __lowerCAmelCase : Any = DownloadManager(dataset_name=lowercase__ , download_config=lowercase__ ) __lowerCAmelCase : Dict = dl_manager.extract(lowercase__ ) __lowerCAmelCase : str = paths for extracted_paths in [extracted_paths]: if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Dict = [extracted_paths] __lowerCAmelCase : Union[str, Any] = [paths] elif isinstance(lowercase__ , lowercase__ ): assert "train" in extracted_paths.keys() __lowerCAmelCase : Tuple = extracted_paths.values() __lowerCAmelCase : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowercase__ , lowercase__ ): assert extracted_path == dl_manager.extracted_paths[input_path] __lowerCAmelCase : Optional[Any] = Path(lowercase__ ) __lowerCAmelCase : Union[str, Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowercase__ , etag=lowercase__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __lowerCAmelCase : Union[str, Any] = extracted_path.read_text() __lowerCAmelCase : List[Any] = text_file.read_text() assert extracted_file_content == expected_file_content def _lowercase ( lowercase__ , lowercase__ ): assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(lowercase__ , start=1 ): __lowerCAmelCase : Tuple = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Dict = request.getfixturevalue(lowercase__ ) __lowerCAmelCase : Dict = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowercase__ ) , start=1 ): _test_jsonl(lowercase__ , lowercase__ ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : str = request.getfixturevalue(lowercase__ ) __lowerCAmelCase : Dict = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowercase__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowercase__ ) , start=1 ): _test_jsonl(lowercase__ , lowercase__ ) assert num_tar == 1 assert num_jsonl == 2 def _lowercase ( lowercase__ ): __lowerCAmelCase : int = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowercase__ ) , start=1 ): assert os.path.basename(lowercase__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
583
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _UpperCamelCase = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __lowercase : def __init__( self , A_ , A_=16 , A_=13 , A_=7 , A_=14 , A_=10 , A_=19 , A_=5 , A_=4 , A_=True , A_=16 , A_=2 , A_=4 , A_=4 , A_="gelu" , A_=0.1 , A_=0.1 , A_=[1, 2, 3, 4, 5] , A_=25 , A_=5 , ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[Any] = d_model __lowerCAmelCase : Any = parent __lowerCAmelCase : List[Any] = batch_size __lowerCAmelCase : int = prediction_length __lowerCAmelCase : str = context_length __lowerCAmelCase : Any = cardinality __lowerCAmelCase : Tuple = num_time_features __lowerCAmelCase : List[str] = lags_sequence __lowerCAmelCase : Any = embedding_dimension __lowerCAmelCase : Dict = is_training __lowerCAmelCase : Optional[int] = hidden_size __lowerCAmelCase : List[str] = num_hidden_layers __lowerCAmelCase : List[Any] = num_attention_heads __lowerCAmelCase : Tuple = intermediate_size __lowerCAmelCase : int = hidden_act __lowerCAmelCase : Optional[int] = hidden_dropout_prob __lowerCAmelCase : List[str] = attention_probs_dropout_prob __lowerCAmelCase : Optional[Any] = context_length __lowerCAmelCase : Any = prediction_length + label_length __lowerCAmelCase : Union[str, Any] = label_length __lowerCAmelCase : Any = moving_average __lowerCAmelCase : Optional[int] = autocorrelation_factor def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCamelCase__ ( self , A_ ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : str = config.context_length + max(config.lags_sequence ) __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase : Dict = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase : Tuple = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase : str = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase : Tuple = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase : Optional[int] = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.get_config() __lowerCAmelCase : Tuple = self.prepare_autoformer_inputs_dict(A_ ) return config, inputs_dict def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : int = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self , A_ , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = AutoformerModel(config=A_ ).to(A_ ).eval() __lowerCAmelCase : Optional[int] = model(**A_ ) __lowerCAmelCase : Dict = outputs.encoder_last_hidden_state __lowerCAmelCase : int = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Tuple = model.get_encoder() encoder.save_pretrained(A_ ) __lowerCAmelCase : List[Any] = AutoformerEncoder.from_pretrained(A_ ).to(A_ ) __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Any = model.create_network_inputs(**A_ ) __lowerCAmelCase, __lowerCAmelCase : Dict = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase : Dict = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase : Optional[Any] = encoder(inputs_embeds=A_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase : List[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase : List[str] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase : Dict = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase : str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Dict = model.get_decoder() decoder.save_pretrained(A_ ) __lowerCAmelCase : Any = AutoformerDecoder.from_pretrained(A_ ).to(A_ ) __lowerCAmelCase : List[str] = decoder( trend=A_ , inputs_embeds=A_ , encoder_hidden_states=A_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __lowercase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _UpperCamelCase = (AutoformerForPrediction,) if is_torch_available() else () _UpperCamelCase = {"""feature-extraction""": AutoformerModel} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : int = AutoformerModelTester(self ) __lowerCAmelCase : Dict = ConfigTester(self , config_class=A_ , has_text_modality=A_ ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase : Optional[Any] = model_class(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ ) __lowerCAmelCase, __lowerCAmelCase : Optional[Any] = model_class.from_pretrained(A_ , output_loading_info=A_ ) self.assertEqual(info['''missing_keys'''] , [] ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A_ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' pass def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = inspect.signature(getattr(A_ , '''forward''' ) ) # The main input is the name of the argument after `self` __lowerCAmelCase : Optional[Any] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : str = model_class(A_ ) __lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] __lowerCAmelCase : str = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A_ )] , A_ ) def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Any = True __lowerCAmelCase : Tuple = getattr(self.model_tester , '''seq_length''' , A_ ) __lowerCAmelCase : Tuple = getattr(self.model_tester , '''decoder_seq_length''' , A_ ) __lowerCAmelCase : Any = getattr(self.model_tester , '''encoder_seq_length''' , A_ ) __lowerCAmelCase : List[str] = getattr(self.model_tester , '''d_model''' , A_ ) __lowerCAmelCase : int = getattr(self.model_tester , '''num_attention_heads''' , A_ ) __lowerCAmelCase : Union[str, Any] = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase : Any = True __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Optional[int] = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): __lowerCAmelCase : str = model(**self._prepare_for_class(A_ , A_ ) ) __lowerCAmelCase : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Union[str, Any] = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): __lowerCAmelCase : Any = model(**self._prepare_for_class(A_ , A_ ) ) __lowerCAmelCase : Dict = outputs.encoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase : Optional[Any] = len(A_ ) __lowerCAmelCase : List[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A_ , A_ ) # decoder attentions __lowerCAmelCase : List[str] = outputs.decoder_attentions self.assertIsInstance(A_ , (list, tuple) ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase : Any = outputs.cross_attentions self.assertIsInstance(A_ , (list, tuple) ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase : List[str] = True __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Dict = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): __lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + 2 , len(A_ ) ) __lowerCAmelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def _lowercase ( lowercase__="train-batch.pt" ): __lowerCAmelCase : List[str] = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=lowercase__ , repo_type='''dataset''' ) __lowerCAmelCase : Tuple = torch.load(lowercase__ , map_location=lowercase__ ) return batch @require_torch @slow class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A_ ) __lowerCAmelCase : Tuple = prepare_batch() with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] __lowerCAmelCase : Dict = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A_ ) __lowerCAmelCase : Union[str, Any] = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=A_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , A_ , atol=A_ ) ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Tuple = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A_ ) __lowerCAmelCase : Dict = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): __lowerCAmelCase : List[Any] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state __lowerCAmelCase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A_ ) __lowerCAmelCase : Any = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=A_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , A_ , atol=A_ ) ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Dict = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A_ ) __lowerCAmelCase : Dict = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): __lowerCAmelCase : Optional[int] = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) __lowerCAmelCase : Optional[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A_ ) __lowerCAmelCase : Optional[Any] = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=A_ ) __lowerCAmelCase : Tuple = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A_ , rtol=1e-1 ) )
583
1
import inspect import unittest class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> Dict: try: import diffusers # noqa: F401 except ImportError: assert False def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: import diffusers from diffusers.dependency_versions_table import deps __a = inspect.getmembers(UpperCAmelCase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __a = 'k-diffusion' elif backend == "invisible_watermark": __a = 'invisible-watermark' assert backend in deps, f'''{backend} is not in the deps table!'''
559
import re from filelock import FileLock try: import nltk lowerCamelCase_ : int = True except (ImportError, ModuleNotFoundError): lowerCamelCase_ : Any = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def lowerCAmelCase( __lowerCamelCase ): re.sub('<n>' , '' , __lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__lowerCamelCase ) )
559
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase (metaclass=a__ ): _lowercase : str = ["""note_seq"""] def __init__( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
710
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase : List[str] = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''config.json''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Optional[Any] = 2 if unlogit: _snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ ) _snake_case : Optional[Any] = 0 return -plogp.sum(dim=-1 ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ): """simple docstring""" _snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: _snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : Dict = None _snake_case : Dict = 0.0 _snake_case : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : Any = 2 _snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(lowerCAmelCase_ ) logger.info('''Head ranked by importance scores''' ) _snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : List[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) _snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold ) _snake_case : int = torch.ones_like(lowerCAmelCase_ ) _snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : int = original_score while current_score >= original_score * args.masking_threshold: _snake_case : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Dict = float('''Inf''' ) _snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : str = new_head_mask.view_as(lowerCAmelCase_ ) _snake_case : Dict = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : Any = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : int = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : Tuple = 1 / loss _snake_case : Dict = datetime.now() - before_time _snake_case : List[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) _snake_case : List[str] = sum(p.numel() for p in model.parameters() ) _snake_case : int = datetime.now() _snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) _snake_case : Optional[int] = 1 / loss _snake_case : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def _a ( ): """simple docstring""" _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : List[str] = torch.device('''cuda''' , args.local_rank ) _snake_case : int = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : Optional[int] = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: _snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Prepare dataset _snake_case : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),) _snake_case : Tuple = TensorDataset(*lowerCAmelCase_ ) _snake_case : List[str] = RandomSampler(lowerCAmelCase_ ) _snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
47
0
def __UpperCAmelCase ( __A ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] UpperCAmelCase__ = grid[0] for row_n in range(1 , len(__A ) ): UpperCAmelCase__ = grid[row_n] UpperCAmelCase__ = fill_row(__A , __A ) UpperCAmelCase__ = grid[row_n] return grid[-1][-1] def __UpperCAmelCase ( __A , __A ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(__A ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
475
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= 42 A__= 42 def __init__( self : Tuple , _lowercase : UNetaDModel , _lowercase : ScoreSdeVeScheduler ): """simple docstring""" super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self : Dict , _lowercase : int = 1 , _lowercase : int = 20_00 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , **_lowercase : Any , ): """simple docstring""" UpperCAmelCase__ = self.unet.config.sample_size UpperCAmelCase__ = (batch_size, 3, img_size, img_size) UpperCAmelCase__ = self.unet UpperCAmelCase__ = randn_tensor(_lowercase , generator=_lowercase ) * self.scheduler.init_noise_sigma UpperCAmelCase__ = sample.to(self.device ) self.scheduler.set_timesteps(_lowercase ) self.scheduler.set_sigmas(_lowercase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase__ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase__ = self.unet(_lowercase , _lowercase ).sample UpperCAmelCase__ = self.scheduler.step_correct(_lowercase , _lowercase , generator=_lowercase ).prev_sample # prediction step UpperCAmelCase__ = model(_lowercase , _lowercase ).sample UpperCAmelCase__ = self.scheduler.step_pred(_lowercase , _lowercase , _lowercase , generator=_lowercase ) UpperCAmelCase__ , UpperCAmelCase__ = output.prev_sample, output.prev_sample_mean UpperCAmelCase__ = sample_mean.clamp(0 , 1 ) UpperCAmelCase__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(_lowercase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_lowercase )
475
1
from __future__ import annotations def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = 2 __lowerCamelCase : str = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowercase__ ) if n > 1: factors.append(lowercase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
719
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
230
0
'''simple docstring''' import unittest import numpy as np def _lowerCAmelCase ( __magic_name__ : np.ndarray , __magic_name__ : np.ndarray , __magic_name__ : np.ndarray , __magic_name__ : np.ndarray | None = None , ) -> np.ndarray: lowercase : List[str] =np.shape(__magic_name__ ) lowercase : Optional[Any] =np.shape(__magic_name__ ) lowercase : Dict =np.shape(__magic_name__ ) if shape_a[0] != shape_b[0]: lowercase : Optional[Any] =( '''Expected the same number of rows for A and B. ''' f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(__magic_name__ ) if shape_b[1] != shape_c[1]: lowercase : Optional[Any] =( '''Expected the same number of columns for B and C. ''' f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(__magic_name__ ) lowercase : List[str] =pseudo_inv if a_inv is None: try: lowercase : Optional[Any] =np.linalg.inv(__magic_name__ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : Optional[Any] =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase : Dict =np.array([[0, 3], [3, 0], [2, 3]] ) lowercase : Union[str, Any] =np.array([[2, 1], [6, 3]] ) lowercase : Union[str, Any] =schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : Optional[Any] =np.block([[a, b], [b.T, c]] ) lowercase : Union[str, Any] =np.linalg.det(UpperCAmelCase__ ) lowercase : List[Any] =np.linalg.det(UpperCAmelCase__ ) lowercase : List[str] =np.linalg.det(UpperCAmelCase__ ) self.assertAlmostEqual(UpperCAmelCase__ , det_a * det_s ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Any =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase : Optional[Any] =np.array([[0, 3], [3, 0], [2, 3]] ) lowercase : Tuple =np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCAmelCase__ ): schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : List[Any] =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase : Optional[int] =np.array([[0, 3], [3, 0], [2, 3]] ) lowercase : Optional[Any] =np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCAmelCase__ ): schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
92
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer __SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def UpperCamelCase__ (self ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ = XLMRobertaTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = '<pad>' UpperCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(__a ) , 1002 ) def UpperCamelCase__ (self ) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = XLMRobertaTokenizer(__a , keep_accents=__a ) UpperCAmelCase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase__ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(__a ) UpperCAmelCase__ = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(__a ) UpperCAmelCase__ = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(__a , legacy_format=__a ) UpperCAmelCase__ = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(__a ) UpperCAmelCase__ = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(__a , legacy_format=__a ) UpperCAmelCase__ = tokenizer_p.save_pretrained(__a ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(__a ) UpperCAmelCase__ = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) @cached_property def UpperCamelCase__ (self ) -> int: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__a , f.name ) UpperCAmelCase__ = XLMRobertaTokenizer(f.name , keep_accents=__a ) UpperCAmelCase__ = pickle.dumps(__a ) pickle.loads(__a ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = 'I was born in 92000, and this is falsé.' UpperCAmelCase__ = tokenizer.tokenize(__a ) UpperCAmelCase__ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase__ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = tokenizer.encode(__a ) UpperCAmelCase__ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = 'Hello World!' UpperCAmelCase__ = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) UpperCAmelCase__ = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = {'input_ids': [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
146
0
"""simple docstring""" import functools from typing import Any def _lowerCamelCase( a , a ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or len(lowerCamelCase_ ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie __a = {} __a = """WORD_KEEPER""" for word in words: __a = trie for c in word: if c not in trie_node: __a = {} __a = trie_node[c] __a = True __a = len(lowerCamelCase_ ) # Dynamic programming method @functools.cache def is_breakable(a ) -> bool: if index == len_string: return True __a = trie for i in range(lowerCamelCase_ , lowerCamelCase_ ): __a = trie_node.get(string[i] , lowerCamelCase_ ) if trie_node is None: return False if trie_node.get(lowerCamelCase_ , lowerCamelCase_ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" from math import pi def _lowerCamelCase( a , a ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
67
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin UpperCAmelCase__ : Optional[int] = False @skip_mps class UpperCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ = StableDiffusionAttendAndExcitePipeline UpperCamelCase_ = False UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowerCAmelCase__ ( cls) -> str: super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase) @classmethod def lowerCAmelCase__ ( cls) -> Tuple: super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase) def lowerCAmelCase__ ( self) -> Any: torch.manual_seed(0) UpperCamelCase__ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase , ) UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0) UpperCamelCase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) UpperCamelCase__ : List[Any] = CLIPTextModel(UpperCamelCase) UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') UpperCamelCase__ : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase=0) -> str: if str(UpperCamelCase).startswith('mps'): UpperCamelCase__ : Tuple = torch.manual_seed(UpperCamelCase) else: UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCamelCase).manual_seed(UpperCamelCase) UpperCamelCase__ : List[Any] = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def lowerCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : Union[str, Any] = self.get_dummy_components() UpperCamelCase__ : Optional[Any] = self.pipeline_class(**UpperCamelCase) pipe.to(UpperCamelCase) pipe.set_progress_bar_config(disable=UpperCamelCase) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCamelCase) UpperCamelCase__ : Union[str, Any] = pipe(**UpperCamelCase).images UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3)) UpperCamelCase__ : str = np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496]) UpperCamelCase__ : List[str] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(UpperCamelCase , 1E-3) def lowerCAmelCase__ ( self) -> Dict: super().test_cpu_offload_forward_pass(expected_max_diff=5E-4) def lowerCAmelCase__ ( self) -> str: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def lowerCAmelCase__ ( self) -> List[str]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4) def lowerCAmelCase__ ( self) -> List[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def lowerCAmelCase__ ( self) -> Optional[Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4) def lowerCAmelCase__ ( self) -> Dict: super().test_save_load_local(expected_max_difference=5E-4) def lowerCAmelCase__ ( self) -> Dict: super().test_save_load_optional_components(expected_max_difference=4E-4) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls) -> Optional[int]: super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase) @classmethod def lowerCAmelCase__ ( cls) -> str: super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase) def lowerCAmelCase__ ( self) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self) -> int: UpperCamelCase__ : Dict = torch.manual_seed(51) UpperCamelCase__ : Dict = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=UpperCamelCase , torch_dtype=torch.floataa) pipe.to('cuda') UpperCamelCase__ : Optional[int] = 'a painting of an elephant with glasses' UpperCamelCase__ : Dict = [5, 7] UpperCamelCase__ : Optional[int] = pipe( prompt=UpperCamelCase , token_indices=UpperCamelCase , guidance_scale=7.5 , generator=UpperCamelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] UpperCamelCase__ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy') assert np.abs((expected_image - image).max()) < 5E-1
410
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Tuple= FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=lowerCAmelCase , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[Any]= FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCAmelCase , from_pt=lowerCAmelCase , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__: int= controlnet_params SCREAMING_SNAKE_CASE__: Union[str, Any]= '''bird''' SCREAMING_SNAKE_CASE__: str= jax.device_count() SCREAMING_SNAKE_CASE__: int= pipe.prepare_text_inputs([prompts] * num_samples ) SCREAMING_SNAKE_CASE__: Any= load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) SCREAMING_SNAKE_CASE__: Optional[int]= pipe.prepare_image_inputs([canny_image] * num_samples ) SCREAMING_SNAKE_CASE__: int= jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__: Dict= jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE__: Tuple= replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= pipe( prompt_ids=lowerCAmelCase , image=lowerCAmelCase , params=lowerCAmelCase , prng_seed=lowerCAmelCase , num_inference_steps=50 , jit=lowerCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) SCREAMING_SNAKE_CASE__: Optional[int]= images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE__: List[str]= images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE__: List[Any]= jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE__: int= jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self ) -> str: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Dict= FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=lowerCAmelCase , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Optional[Any]= FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCAmelCase , from_pt=lowerCAmelCase , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__: Any= controlnet_params SCREAMING_SNAKE_CASE__: Union[str, Any]= '''Chef in the kitchen''' SCREAMING_SNAKE_CASE__: Union[str, Any]= jax.device_count() SCREAMING_SNAKE_CASE__: str= pipe.prepare_text_inputs([prompts] * num_samples ) SCREAMING_SNAKE_CASE__: Optional[Any]= load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) SCREAMING_SNAKE_CASE__: Tuple= pipe.prepare_image_inputs([pose_image] * num_samples ) SCREAMING_SNAKE_CASE__: List[Any]= jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__: Any= jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE__: List[Any]= replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= pipe( prompt_ids=lowerCAmelCase , image=lowerCAmelCase , params=lowerCAmelCase , prng_seed=lowerCAmelCase , num_inference_steps=50 , jit=lowerCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) SCREAMING_SNAKE_CASE__: str= images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE__: Optional[Any]= images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE__: Tuple= jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE__: Optional[Any]= jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
107
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
107
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" return x if y == 0 else greatest_common_divisor(_lowerCAmelCase , x % y ) def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" return (x * y) // greatest_common_divisor(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 20 ): """simple docstring""" _lowerCamelCase : Tuple = 1 for i in range(1 , n + 1 ): _lowerCamelCase : Any = lcm(_lowerCAmelCase , _lowerCAmelCase ) return g if __name__ == "__main__": print(f'''{solution() = }''')
44
from __future__ import annotations class lowerCAmelCase : def __init__( self :Union[str, Any] , _lowercase :List[Any]=None ): '''simple docstring''' lowercase__ = data lowercase__ = None def __repr__( self :Dict ): '''simple docstring''' lowercase__ = [] lowercase__ = self while temp: string_rep.append(f'''{temp.data}''' ) lowercase__ = temp.next return "->".join(_lowercase ) def _A ( __magic_name__ ): if not elements_list: raise Exception("The Elements List is empty" ) lowercase__ = lowercase__ = Node(elements_list[0] ) for i in range(1 , len(__magic_name__ ) ): lowercase__ = Node(elements_list[i] ) lowercase__ = current.next return head def _A ( __magic_name__ ): if head_node is not None and isinstance(__magic_name__ , __magic_name__ ): print_reverse(head_node.next ) print(head_node.data ) def _A ( ): from doctest import testmod testmod() lowercase__ = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(__magic_name__ ) print("Elements in Reverse:" ) print_reverse(__magic_name__ ) if __name__ == "__main__": main()
655
0
import math def __a ( A__ : int ): assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False SCREAMING_SNAKE_CASE = range(3 , int(math.sqrt(A__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __a ( A__ : Optional[int] , A__ : List[Any]=1 , **A__ : Optional[int] ): SCREAMING_SNAKE_CASE = factor * value SCREAMING_SNAKE_CASE = value while not is_prime(A__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **A__ ) return value
698
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Optional[int] ): return 1e-3
698
1
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase_ : Optional[Any] = 1.0_5457_1817e-34 # unit of ℏ : J * s UpperCAmelCase_ : Union[str, Any] = 3e8 # unit of c : m * s^-1 def __SCREAMING_SNAKE_CASE ( a__ : float ,a__ : float ,a__ : float ) -> dict[str, float]: if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: __A : List[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __A : Tuple = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __A : Optional[int] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
17
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class a_ ( a_ ): '''simple docstring''' __a: jnp.ndarray __a: jnp.ndarray class a_ ( nn.Module ): '''simple docstring''' __a: int __a: Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) __a: jnp.dtype = jnp.floataa def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCAmelCase_ = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCAmelCase_ = self.block_out_channels[i] lowerCAmelCase_ = self.block_out_channels[i + 1] lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_ ) lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_ ) lowerCAmelCase_ = blocks lowerCAmelCase_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = self.conv_in(lowercase_ ) lowerCAmelCase_ = nn.silu(lowercase_ ) for block in self.blocks: lowerCAmelCase_ = block(lowercase_ ) lowerCAmelCase_ = nn.silu(lowercase_ ) lowerCAmelCase_ = self.conv_out(lowercase_ ) return embedding @flax_register_to_config class a_ ( nn.Module , a_ , a_ ): '''simple docstring''' __a: int = 3_2 __a: int = 4 __a: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __a: Union[bool, Tuple[bool]] = False __a: Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) __a: int = 2 __a: Union[int, Tuple[int]] = 8 __a: Optional[Union[int, Tuple[int]]] = None __a: int = 1_2_8_0 __a: float = 0.0 __a: bool = False __a: jnp.dtype = jnp.floataa __a: bool = True __a: int = 0 __a: str = "rgb" __a: Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def _lowercase ( self , lowercase_ ) -> FrozenDict: '''simple docstring''' lowerCAmelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase_ = jnp.zeros(lowercase_ , dtype=jnp.floataa ) lowerCAmelCase_ = jnp.ones((1,) , dtype=jnp.intaa ) lowerCAmelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCAmelCase_ = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCAmelCase_ = jnp.zeros(lowercase_ , dtype=jnp.floataa ) lowerCAmelCase_ , lowerCAmelCase_ = jax.random.split(lowercase_ ) lowerCAmelCase_ = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )["params"] def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.block_out_channels lowerCAmelCase_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase_ = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCAmelCase_ = FlaxTimestepEmbedding(lowercase_ , dtype=self.dtype ) lowerCAmelCase_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCAmelCase_ = self.only_cross_attention if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = (num_attention_heads,) * len(self.down_block_types ) # down lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = block_out_channels[0] lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) for i, down_block_type in enumerate(self.down_block_types ): lowerCAmelCase_ = output_channel lowerCAmelCase_ = block_out_channels[i] lowerCAmelCase_ = i == len(lowercase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase_ = FlaxCrossAttnDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCAmelCase_ = FlaxDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase_ ) for _ in range(self.layers_per_block ): lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) if not is_final_block: lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) lowerCAmelCase_ = down_blocks lowerCAmelCase_ = controlnet_down_blocks # mid lowerCAmelCase_ = block_out_channels[-1] lowerCAmelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1.0 , lowercase_ = True , lowercase_ = False , ) -> Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' lowerCAmelCase_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCAmelCase_ = jnp.flip(lowercase_ , axis=1 ) # 1. time if not isinstance(lowercase_ , jnp.ndarray ): lowerCAmelCase_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowercase_ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCAmelCase_ = timesteps.astype(dtype=jnp.floataa ) lowerCAmelCase_ = jnp.expand_dims(lowercase_ , 0 ) lowerCAmelCase_ = self.time_proj(lowercase_ ) lowerCAmelCase_ = self.time_embedding(lowercase_ ) # 2. pre-process lowerCAmelCase_ = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) lowerCAmelCase_ = self.conv_in(lowercase_ ) lowerCAmelCase_ = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) lowerCAmelCase_ = self.controlnet_cond_embedding(lowercase_ ) sample += controlnet_cond # 3. down lowerCAmelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ , lowerCAmelCase_ = down_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) else: lowerCAmelCase_ , lowerCAmelCase_ = down_block(lowercase_ , lowercase_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCAmelCase_ = self.mid_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) # 5. contronet blocks lowerCAmelCase_ = () for down_block_res_sample, controlnet_block in zip(lowercase_ , self.controlnet_down_blocks ): lowerCAmelCase_ = controlnet_block(lowercase_ ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase_ = controlnet_down_block_res_samples lowerCAmelCase_ = self.controlnet_mid_block(lowercase_ ) # 6. scaling lowerCAmelCase_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase_ , mid_block_res_sample=lowercase_ )
318
0
"""simple docstring""" import os from distutils.util import strtobool def __a ( A , A ): '''simple docstring''' for e in env_keys: lowercase__ = int(os.environ.get(A , -1 ) ) if val >= 0: return val return default def __a ( A , A=False ): '''simple docstring''' lowercase__ = os.environ.get(A , str(A ) ) return strtobool(A ) == 1 # As its name indicates `strtobool` actually returns an int... def __a ( A , A="no" ): '''simple docstring''' lowercase__ = os.environ.get(A , str(A ) ) return value
702
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
0
def _snake_case (__lowercase , __lowercase): # Check if the input is valid if not len(lowerCamelCase__) == len(lowerCamelCase__) == 3: raise ValueError('Please enter a valid equation.') if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.') # Extract the coefficients UpperCamelCase_ = equationa UpperCamelCase_ = equationa # Calculate the determinants of the matrices UpperCamelCase_ = aa * ba - aa * ba UpperCamelCase_ = ca * ba - ca * ba UpperCamelCase_ = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)') else: raise ValueError('No solution. (Inconsistent system)') else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: UpperCamelCase_ = determinant_x / determinant UpperCamelCase_ = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
23
"""simple docstring""" import requests from bsa import BeautifulSoup def _lowerCamelCase ( lowerCamelCase__ : str = "https://www.worldometers.info/coronavirus" ): lowercase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase__ ).text , """html.parser""" ) lowercase__ : Union[str, Any] = soup.findAll("""h1""" ) lowercase__ : List[str] = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(lowerCamelCase__ , lowerCamelCase__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F"{key}\n{value}\n")
200
0
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = None @staticmethod def __lowerCAmelCase ( ) -> Dict: '''simple docstring''' raise NotImplementedError def __lowerCAmelCase ( self : Dict , A__ : Dict , A__ : int , A__ : str , **A__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError def __lowerCAmelCase ( self : List[Any] , A__ : List[str] ) -> Any: '''simple docstring''' raise NotImplementedError def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if not self.is_available(): raise RuntimeError( F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def __lowerCAmelCase ( cls : Dict ) -> Optional[int]: '''simple docstring''' return F'`pip install {cls.pip_package or cls.name}`' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "optuna" @staticmethod def __lowerCAmelCase ( ) -> Dict: '''simple docstring''' return is_optuna_available() def __lowerCAmelCase ( self : List[str] , A__ : str , A__ : int , A__ : str , **A__ : Dict ) -> Tuple: '''simple docstring''' return run_hp_search_optuna(A__ , A__ , A__ , **A__ ) def __lowerCAmelCase ( self : List[Any] , A__ : Dict ) -> int: '''simple docstring''' return default_hp_space_optuna(A__ ) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "ray" __UpperCamelCase = "'ray[tune]'" @staticmethod def __lowerCAmelCase ( ) -> Any: '''simple docstring''' return is_ray_available() def __lowerCAmelCase ( self : Tuple , A__ : Tuple , A__ : int , A__ : str , **A__ : Union[str, Any] ) -> Tuple: '''simple docstring''' return run_hp_search_ray(A__ , A__ , A__ , **A__ ) def __lowerCAmelCase ( self : List[Any] , A__ : Optional[int] ) -> Optional[int]: '''simple docstring''' return default_hp_space_ray(A__ ) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "sigopt" @staticmethod def __lowerCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_sigopt_available() def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : int , A__ : str , **A__ : str ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_sigopt(A__ , A__ , A__ , **A__ ) def __lowerCAmelCase ( self : Optional[Any] , A__ : Dict ) -> List[Any]: '''simple docstring''' return default_hp_space_sigopt(A__ ) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "wandb" @staticmethod def __lowerCAmelCase ( ) -> Any: '''simple docstring''' return is_wandb_available() def __lowerCAmelCase ( self : Dict , A__ : List[str] , A__ : int , A__ : str , **A__ : str ) -> Dict: '''simple docstring''' return run_hp_search_wandb(A__ , A__ , A__ , **A__ ) def __lowerCAmelCase ( self : Dict , A__ : Dict ) -> str: '''simple docstring''' return default_hp_space_wandb(A__ ) __SCREAMING_SNAKE_CASE = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __a ( ): a__ : Dict = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowerCAmelCase__ ) > 0: a__ : Any = available_backends[0].name if len(lowerCAmelCase__ ) > 1: logger.info( F'{len(lowerCAmelCase__ )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
713
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = '▁' __SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } __SCREAMING_SNAKE_CASE = { 'facebook/nllb-200-distilled-600M': 1_0_2_4, } # fmt: off __SCREAMING_SNAKE_CASE = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = [] __UpperCamelCase = [] def __init__( self : Union[str, Any] , A__ : List[str] , A__ : Union[str, Any]="<s>" , A__ : str="</s>" , A__ : Dict="</s>" , A__ : Union[str, Any]="<s>" , A__ : int="<unk>" , A__ : int="<pad>" , A__ : Any="<mask>" , A__ : List[str]=None , A__ : Union[str, Any]=None , A__ : Optional[int]=None , A__ : Optional[Dict[str, Any]] = None , A__ : int=None , A__ : Tuple=False , **A__ : str , ) -> List[Any]: '''simple docstring''' a__ : str = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token a__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs a__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , cls_token=A__ , pad_token=A__ , mask_token=A__ , tokenizer_file=A__ , src_lang=A__ , tgt_lang=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=A__ , **A__ , ) a__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A__ ) ) a__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token a__ : Dict = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a__ : List[str] = 1 a__ : List[Any] = len(self.sp_model ) a__ : Tuple = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A__ ) } a__ : List[Any] = {v: k for k, v in self.lang_code_to_id.items()} a__ : Any = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} a__ : str = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) a__ : Tuple = src_lang if src_lang is not None else '''eng_Latn''' a__ : Dict = self.lang_code_to_id[self._src_lang] a__ : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[Any] ) -> List[Any]: '''simple docstring''' a__ : List[Any] = self.__dict__.copy() a__ : Optional[Any] = None a__ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self : int , A__ : int ) -> List[Any]: '''simple docstring''' a__ : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a__ : str = {} a__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def __lowerCAmelCase ( self : List[str] , A__ : str ) -> None: '''simple docstring''' a__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self : Dict , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) a__ : List[str] = [1] * len(self.prefix_tokens ) a__ : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A__ )) + suffix_ones return prefix_ones + ([0] * len(A__ )) + ([0] * len(A__ )) + suffix_ones def __lowerCAmelCase ( self : Any , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Optional[int] = [self.sep_token_id] a__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : Dict , A__ : Optional[int] , A__ : str , A__ : Optional[str] , A__ : Optional[str] , **A__ : Union[str, Any] ) -> Tuple: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) a__ : List[Any] = src_lang a__ : List[Any] = self(A__ , add_special_tokens=A__ , return_tensors=A__ , **A__ ) a__ : Union[str, Any] = self.convert_tokens_to_ids(A__ ) a__ : Union[str, Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : List[str] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : Union[str, Any] , A__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(A__ , out_type=A__ ) def __lowerCAmelCase ( self : Any , A__ : List[str] ) -> Optional[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a__ : Tuple = self.sp_model.PieceToId(A__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> Union[str, Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Any ) -> Tuple: '''simple docstring''' a__ : Optional[Any] = ''''''.join(A__ ).replace(A__ , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Optional[Any] , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ : Tuple = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , '''wb''' ) as fi: a__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,) def __lowerCAmelCase ( self : Optional[Any] , A__ : List[str] , A__ : str = "eng_Latn" , A__ : Optional[List[str]] = None , A__ : str = "fra_Latn" , **A__ : Any , ) -> BatchEncoding: '''simple docstring''' a__ : Optional[Any] = src_lang a__ : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(A__ , A__ , **A__ ) def __lowerCAmelCase ( self : Tuple ) -> str: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self : int , A__ : Union[str, Any] ) -> None: '''simple docstring''' a__ : List[str] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: a__ : Union[str, Any] = [] a__ : Dict = [self.eos_token_id, self.cur_lang_code] else: a__ : Tuple = [self.cur_lang_code] a__ : List[Any] = [self.eos_token_id] def __lowerCAmelCase ( self : Dict , A__ : str ) -> None: '''simple docstring''' a__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: a__ : Optional[Any] = [] a__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: a__ : List[str] = [self.cur_lang_code] a__ : str = [self.eos_token_id]
340
0
'''simple docstring''' from torch import nn def a__ ( lowerCAmelCase__ ) -> List[Any]: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
75
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} __snake_case = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } __snake_case = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __lowerCAmelCase ( ) -> str: """simple docstring""" snake_case : int = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case : Any = bs[:] snake_case : str = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 snake_case : str = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def __lowerCAmelCase ( lowercase : int ) -> Tuple: """simple docstring""" snake_case : Optional[Any] = set() snake_case : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case : Optional[int] = char return pairs class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Dict = VOCAB_FILES_NAMES __UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="replace" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=False , **UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token snake_case : int = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token snake_case : Dict = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token snake_case : Optional[int] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token snake_case : Dict = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token snake_case : Tuple = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case : Any = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) with open(UpperCamelCase__ , encoding="utf-8" ) as vocab_handle: snake_case : Union[str, Any] = json.load(UpperCamelCase__ ) snake_case : List[Any] = {v: k for k, v in self.encoder.items()} snake_case : Any = errors # how to handle errors in decoding snake_case : Optional[int] = bytes_to_unicode() snake_case : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase__ , encoding="utf-8" ) as merges_handle: snake_case : List[str] = merges_handle.read().split("\n" )[1:-1] snake_case : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] snake_case : Optional[Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : Optional[int] = {} snake_case : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case : Optional[Any] = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' return len(self.encoder ) def lowerCamelCase ( self ) -> str: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' if token in self.cache: return self.cache[token] snake_case : Optional[Any] = tuple(UpperCamelCase__ ) snake_case : str = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: snake_case : str = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case ,snake_case : List[Any] = bigram snake_case : str = [] snake_case : Tuple = 0 while i < len(UpperCamelCase__ ): try: snake_case : Union[str, Any] = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case : Dict = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case : Optional[Any] = tuple(UpperCamelCase__ ) snake_case : int = new_word if len(UpperCamelCase__ ) == 1: break else: snake_case : str = get_pairs(UpperCamelCase__ ) snake_case : List[Any] = " ".join(UpperCamelCase__ ) snake_case : List[Any] = word return word def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = [] for token in re.findall(self.pat , UpperCamelCase__ ): snake_case : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(" " ) ) return bpe_tokens def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def lowerCamelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.decoder.get(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : int = "".join(UpperCamelCase__ ) snake_case : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return snake_case : Dict = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case : List[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + "\n" ) snake_case : List[Any] = 0 with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) snake_case : Optional[Any] = token_index writer.write(" ".join(UpperCamelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case : Union[str, Any] = [self.cls_token_id] snake_case : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' snake_case : Any = [self.sep_token_id] snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__=False , **UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()): snake_case : str = " " + text return (text, kwargs)
178
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = StableDiffusionXLImgaImgPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} a_ = PipelineTesterMixin.required_optional_params - {"latents"} a_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : str ): torch.manual_seed(0 ) snake_case__ : int = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=__A , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) snake_case__ : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) snake_case__ : Any = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) snake_case__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=3_2 , ) snake_case__ : Optional[int] = CLIPTextModel(__A ) snake_case__ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=__A ) snake_case__ : Optional[Any] = CLIPTextModelWithProjection(__A ) snake_case__ : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=__A ) snake_case__ : Tuple = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : Tuple , __A : str , __A : Optional[int]=0 ): snake_case__ : List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__A ) ).to(__A ) snake_case__ : Union[str, Any] = image / 2 + 0.5 if str(__A ).startswith("mps" ): snake_case__ : Optional[int] = torch.manual_seed(__A ) else: snake_case__ : List[Any] = torch.Generator(device=__A ).manual_seed(__A ) snake_case__ : str = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.7_5, } return inputs def _lowercase ( self : Tuple ): snake_case__ : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : str = self.get_dummy_components() snake_case__ : str = StableDiffusionXLImgaImgPipeline(**__A ) snake_case__ : List[str] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : Optional[Any] = self.get_dummy_inputs(__A ) snake_case__ : Dict = sd_pipe(**__A ).images snake_case__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : Any = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : Tuple ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _lowercase ( self : Tuple ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowercase ( self : Optional[int] ): pass def _lowercase ( self : int ): snake_case__ : List[str] = self.get_dummy_components() snake_case__ : Dict = StableDiffusionXLImgaImgPipeline(**__A ) snake_case__ : Any = sd_pipe.to(__A ) snake_case__ : int = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) # forward without prompt embeds snake_case__ : int = self.get_dummy_inputs(__A ) snake_case__ : Tuple = 3 * ["this is a negative prompt"] snake_case__ : Optional[Any] = negative_prompt snake_case__ : List[str] = 3 * [inputs["prompt"]] snake_case__ : str = sd_pipe(**__A ) snake_case__ : Optional[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds snake_case__ : Optional[Any] = self.get_dummy_inputs(__A ) snake_case__ : Union[str, Any] = 3 * ["this is a negative prompt"] snake_case__ : Union[str, Any] = 3 * [inputs.pop("prompt" )] ( snake_case__ ) : int = sd_pipe.encode_prompt(__A , negative_prompt=__A ) snake_case__ : List[str] = sd_pipe( **__A , prompt_embeds=__A , negative_prompt_embeds=__A , pooled_prompt_embeds=__A , negative_pooled_prompt_embeds=__A , ) snake_case__ : Optional[Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Union[str, Any] , __A : str , __A : int="cpu" , __A : str=torch.floataa , __A : Tuple=0 ): snake_case__ : Tuple = torch.Generator(device=__A ).manual_seed(__A ) snake_case__ : Union[str, Any] = np.random.RandomState(__A ).standard_normal((1, 4, 6_4, 6_4) ) snake_case__ : Dict = torch.from_numpy(__A ).to(device=__A , dtype=__A ) snake_case__ : List[str] = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Optional[int] ): snake_case__ : Optional[Any] = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : List[str] = self.get_inputs(__A ) snake_case__ : List[str] = pipe(**__A ).images snake_case__ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Optional[Any] = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
716
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case (__UpperCamelCase ): lowerCAmelCase__ :int = "Speech2TextFeatureExtractor" lowerCAmelCase__ :Tuple = "Speech2TextTokenizer" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Optional[int]: super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) lowercase__ = self.feature_extractor lowercase__ = False def __call__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) -> Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase_ ,**UpperCAmelCase_ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowercase__ = kwargs.pop("raw_speech" ) else: lowercase__ = kwargs.pop("audio" ,UpperCAmelCase_ ) lowercase__ = kwargs.pop("sampling_rate" ,UpperCAmelCase_ ) lowercase__ = kwargs.pop("text" ,UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: lowercase__ = args[0] lowercase__ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowercase__ = self.feature_extractor(UpperCAmelCase_ ,*UpperCAmelCase_ ,sampling_rate=UpperCAmelCase_ ,**UpperCAmelCase_ ) if text is not None: lowercase__ = self.tokenizer(UpperCAmelCase_ ,**UpperCAmelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowercase__ = encodings['input_ids'] return inputs def _a ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def _a ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @contextmanager def _a ( self ) -> int: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowercase__ = True lowercase__ = self.tokenizer yield lowercase__ = self.feature_extractor lowercase__ = False
267
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Dict = 1 __lowerCamelCase : str = 2 while i * i <= n: __lowerCamelCase : int = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def UpperCamelCase__ ( ): __lowerCamelCase : str = 1 __lowerCamelCase : List[str] = 1 while True: i += 1 t_num += i if count_divisors(SCREAMING_SNAKE_CASE__ ) > 500: break return t_num if __name__ == "__main__": print(solution())
669
0
def UpperCAmelCase__ ( A__ ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(A__ , A__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(A__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
708
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=None , ) -> List[str]: lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ) -> List[Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowerCamelCase__ = LlamaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Any: lowerCamelCase__ = True lowerCamelCase__ = LlamaModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , encoder_attention_mask=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> str: lowerCamelCase__ = LlamaForCausalLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = LlamaForCausalLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() # first forward pass lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , encoder_attention_mask=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , encoder_attention_mask=SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , )["hidden_states"][0] lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , encoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , )["hidden_states"][0] # select random slice lowerCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) def _lowerCamelCase ( self ) -> Any: lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _A ( __a , __a , __a , unittest.TestCase ): __a = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __a = (LlamaForCausalLM,) if is_torch_available() else () __a = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) __a = False __a = False def _lowerCamelCase ( self ) -> Tuple: lowerCamelCase__ = LlamaModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _lowerCamelCase ( self ) -> List[str]: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Tuple: lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = 3 lowerCamelCase__ = input_dict["input_ids"] lowerCamelCase__ = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase__ = LlamaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self ) -> Dict: lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = 3 lowerCamelCase__ = "single_label_classification" lowerCamelCase__ = input_dict["input_ids"] lowerCamelCase__ = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase__ = LlamaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self ) -> Any: lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = 3 lowerCamelCase__ = "multi_label_classification" lowerCamelCase__ = input_dict["input_ids"] lowerCamelCase__ = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase__ = LlamaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def _lowerCamelCase ( self ) -> List[Any]: pass @parameterized.expand([("linear",), ("dynamic",)] ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = ids_tensor([1, 10] , config.vocab_size ) lowerCamelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ = LlamaModel(SCREAMING_SNAKE_CASE__ ) original_model.to(SCREAMING_SNAKE_CASE__ ) original_model.eval() lowerCamelCase__ = original_model(SCREAMING_SNAKE_CASE__ ).last_hidden_state lowerCamelCase__ = original_model(SCREAMING_SNAKE_CASE__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ = {"type": scaling_type, "factor": 10.0} lowerCamelCase__ = LlamaModel(SCREAMING_SNAKE_CASE__ ) scaled_model.to(SCREAMING_SNAKE_CASE__ ) scaled_model.eval() lowerCamelCase__ = scaled_model(SCREAMING_SNAKE_CASE__ ).last_hidden_state lowerCamelCase__ = scaled_model(SCREAMING_SNAKE_CASE__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowerCamelCase__ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) lowerCamelCase__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCamelCase__ = torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] ) torch.testing.assert_close(out.mean(-1 ) , SCREAMING_SNAKE_CASE__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCamelCase__ = torch.tensor([-12.82_81, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.82_81, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , SCREAMING_SNAKE_CASE__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowerCamelCase__ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) lowerCamelCase__ = model(torch.tensor(SCREAMING_SNAKE_CASE__ ) ) # Expected mean on dim = -1 lowerCamelCase__ = torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] ) torch.testing.assert_close(out.mean(-1 ) , SCREAMING_SNAKE_CASE__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCamelCase__ = torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , SCREAMING_SNAKE_CASE__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _lowerCamelCase ( self ) -> Optional[int]: lowerCamelCase__ = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowerCamelCase__ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) lowerCamelCase__ = model(torch.tensor(SCREAMING_SNAKE_CASE__ ) ) # Expected mean on dim = -1 lowerCamelCase__ = torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] ) torch.testing.assert_close(out.mean(-1 ) , SCREAMING_SNAKE_CASE__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCamelCase__ = torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , SCREAMING_SNAKE_CASE__ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def _lowerCamelCase ( self ) -> List[str]: lowerCamelCase__ = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowerCamelCase__ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) lowerCamelCase__ = model(torch.tensor(SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , SCREAMING_SNAKE_CASE__ , atol=1e-2 , rtol=1e-2 ) # fmt: off lowerCamelCase__ = torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , SCREAMING_SNAKE_CASE__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Model is curently gated" ) @slow def _lowerCamelCase ( self ) -> List[Any]: lowerCamelCase__ = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" lowerCamelCase__ = "Simply put, the theory of relativity states that " lowerCamelCase__ = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) lowerCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ) lowerCamelCase__ = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=SCREAMING_SNAKE_CASE__ ) # greedy generation outputs lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ , max_new_tokens=64 , top_p=SCREAMING_SNAKE_CASE__ , temperature=1 , do_sample=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
274
0
from __future__ import annotations def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" a_ : list[list[int]] = [] a_ : list[int] = [] a_ : List[str] = 0 a_ : Union[str, Any] = sum(SCREAMING_SNAKE_CASE_ ) create_state_space_tree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return result def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[list[int]] , SCREAMING_SNAKE_CASE_ : int , ): """simple docstring""" if sum(SCREAMING_SNAKE_CASE_ ) > max_sum or (remaining_nums_sum + sum(SCREAMING_SNAKE_CASE_ )) < max_sum: return if sum(SCREAMING_SNAKE_CASE_ ) == max_sum: result.append(SCREAMING_SNAKE_CASE_ ) return for index in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): create_state_space_tree( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index + 1 , [*path, nums[index]] , SCREAMING_SNAKE_CASE_ , remaining_nums_sum - nums[index] , ) SCREAMING_SNAKE_CASE : Optional[int] = [3, 34, 4, 12, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = 9 SCREAMING_SNAKE_CASE : Any = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
419
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class snake_case__ ( __A ): def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> None: """simple docstring""" warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
419
1
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ = os.path.join(args.tf_model_dir , "parameters.json" ) SCREAMING_SNAKE_CASE__ = json.loads(open(__UpperCAmelCase ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(".pt" ): SCREAMING_SNAKE_CASE__ = args.output + ".pt" SCREAMING_SNAKE_CASE__ = OrderedDict() with tf.device("/CPU:0" ): SCREAMING_SNAKE_CASE__ = tf.train.load_checkpoint(args.tf_model_dir ) SCREAMING_SNAKE_CASE__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): SCREAMING_SNAKE_CASE__ = reader.get_tensor(__UpperCAmelCase ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): SCREAMING_SNAKE_CASE__ = int(key_name[9] ) elif key_name.startswith("pasts/out" ): SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time SCREAMING_SNAKE_CASE__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.startswith("model/moe" ): SCREAMING_SNAKE_CASE__ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): SCREAMING_SNAKE_CASE__ = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player SCREAMING_SNAKE_CASE__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.endswith("/softmlp/kernel" ): SCREAMING_SNAKE_CASE__ = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player SCREAMING_SNAKE_CASE__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): SCREAMING_SNAKE_CASE__ = key_name[-9:-7] for i in range(16 ): SCREAMING_SNAKE_CASE__ = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) SCREAMING_SNAKE_CASE__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.startswith("model/mlp" ): SCREAMING_SNAKE_CASE__ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): SCREAMING_SNAKE_CASE__ = "model.blocks.%d.feed_forward.mlp.wi.weight" % player SCREAMING_SNAKE_CASE__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.endswith("/p1/bias" ): SCREAMING_SNAKE_CASE__ = "model.blocks.%d.feed_forward.mlp.wi.bias" % player SCREAMING_SNAKE_CASE__ = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.endswith("/p2/kernel" ): SCREAMING_SNAKE_CASE__ = "model.blocks.%d.feed_forward.mlp.wo.weight" % player SCREAMING_SNAKE_CASE__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.endswith("/p2/bias" ): SCREAMING_SNAKE_CASE__ = "model.blocks.%d.feed_forward.mlp.wo.bias" % player SCREAMING_SNAKE_CASE__ = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.startswith("model/ln" ): SCREAMING_SNAKE_CASE__ = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): SCREAMING_SNAKE_CASE__ = "model.blocks.%d.feed_forward.norm.bias" % player SCREAMING_SNAKE_CASE__ = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.endswith("/g" ): SCREAMING_SNAKE_CASE__ = "model.blocks.%d.feed_forward.norm.weight" % player SCREAMING_SNAKE_CASE__ = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.startswith("model/att" ): SCREAMING_SNAKE_CASE__ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): SCREAMING_SNAKE_CASE__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum SCREAMING_SNAKE_CASE__ = state[:, 0, :, :] SCREAMING_SNAKE_CASE__ = state[:, 1, :, :] SCREAMING_SNAKE_CASE__ = state[:, 2, :, :] SCREAMING_SNAKE_CASE__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE__ = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.endswith("/o/kernel" ): SCREAMING_SNAKE_CASE__ = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player SCREAMING_SNAKE_CASE__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.startswith("model/an" ): SCREAMING_SNAKE_CASE__ = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): SCREAMING_SNAKE_CASE__ = "model.blocks.%d.self_attn.norm.bias" % player SCREAMING_SNAKE_CASE__ = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.endswith("/g" ): SCREAMING_SNAKE_CASE__ = "model.blocks.%d.self_attn.norm.weight" % player SCREAMING_SNAKE_CASE__ = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): SCREAMING_SNAKE_CASE__ = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] SCREAMING_SNAKE_CASE__ = "model.%s.weight" % nlayer SCREAMING_SNAKE_CASE__ = vnp.copy() # same in embedded SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) if key_name.startswith("model/wte" ): SCREAMING_SNAKE_CASE__ = "lm_head.weight" SCREAMING_SNAKE_CASE__ = vnp.copy() # same in embedded SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name.startswith("model/wob" ): SCREAMING_SNAKE_CASE__ = "final_logits_bias" SCREAMING_SNAKE_CASE__ = vnp.copy() # same in embedded SCREAMING_SNAKE_CASE__ = state.reshape((1, -1) ) SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name == "model/dense/kernel": SCREAMING_SNAKE_CASE__ = "model.last_project.weight" SCREAMING_SNAKE_CASE__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) elif key_name == "model/dense_1/bias": SCREAMING_SNAKE_CASE__ = "model.last_project.bias" SCREAMING_SNAKE_CASE__ = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ) torch.save(__UpperCAmelCase , args.output ) if __name__ == "__main__": _A = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') _A = parser.parse_args() convert_tf_gptsan_to_pt(args)
538
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _A = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
538
1
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
71
"""simple docstring""" from __future__ import annotations from typing import Any class a_ : def __init__( self : Union[str, Any] , snake_case__ : int = 6 ): lowerCAmelCase__ = None lowerCAmelCase__ = None self.create_linked_list(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : int ): lowerCAmelCase__ = Node() lowerCAmelCase__ = current_node lowerCAmelCase__ = current_node lowerCAmelCase__ = current_node for _ in range(1 , snake_case__ ): lowerCAmelCase__ = Node() lowerCAmelCase__ = current_node lowerCAmelCase__ = previous_node lowerCAmelCase__ = current_node lowerCAmelCase__ = self.front lowerCAmelCase__ = previous_node def _SCREAMING_SNAKE_CASE ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _SCREAMING_SNAKE_CASE ( self : Any ): self.check_can_perform_operation() return self.front.data if self.front else None def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase__ = self.rear.next if self.rear: lowerCAmelCase__ = data def _SCREAMING_SNAKE_CASE ( self : Any ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase__ = self.front.data lowerCAmelCase__ = None return data lowerCAmelCase__ = self.front lowerCAmelCase__ = old_front.next lowerCAmelCase__ = old_front.data lowerCAmelCase__ = None return data def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): if self.is_empty(): raise Exception("""Empty Queue""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class a_ : def __init__( self : Union[str, Any] ): lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if __name__ == "__main__": import doctest doctest.testmod()
644
0
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __lowercase ( _a , _a , _a ): snake_case_ : Tuple = AutoConfig.from_pretrained(_a ) snake_case_ : Tuple = FlaxAutoModelForSeqaSeqLM.from_config(config=_a ) snake_case_ : Union[str, Any] = checkpoints.load_tax_checkpoint(_a ) snake_case_ : Optional[int] = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": snake_case_ : str = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": snake_case_ : List[str] = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Dict = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): snake_case_ : Any = f"layers_{str(_a )}" # Self-Attention snake_case_ : Dict = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] snake_case_ : Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization snake_case_ : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: snake_case_ : int = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] snake_case_ : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: snake_case_ : int = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] snake_case_ : str = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization snake_case_ : Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning snake_case_ : Optional[Any] = flax_model.params['''encoder''']['''block'''][str(_a )]['''layer'''] snake_case_ : List[str] = tax_attention_key snake_case_ : Optional[Any] = tax_attention_out snake_case_ : Any = tax_attention_query snake_case_ : str = tax_attention_value snake_case_ : Dict = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Union[str, Any] = tax_global_layer_norm if split_mlp_wi: snake_case_ : Any = tax_mlp_wi_a snake_case_ : List[Any] = tax_mlp_wi_a else: snake_case_ : Union[str, Any] = tax_mlp_wi snake_case_ : List[Any] = tax_mlp_wo snake_case_ : int = tax_mlp_layer_norm snake_case_ : Any = flax_model_encoder_layer_block # Only for layer 0: snake_case_ : Optional[int] = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T snake_case_ : Any = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : List[str] = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T snake_case_ : Tuple = tax_encoder_global_rel_embedding # Assigning snake_case_ : Dict = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] snake_case_ : Any = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): snake_case_ : Tuple = f"layers_{str(_a )}" # Self-Attention snake_case_ : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] snake_case_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] snake_case_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization snake_case_ : str = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention snake_case_ : Any = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] snake_case_ : Optional[Any] = tax_enc_dec_attention_module['''key''']['''kernel'''] snake_case_ : str = tax_enc_dec_attention_module['''out''']['''kernel'''] snake_case_ : Union[str, Any] = tax_enc_dec_attention_module['''query''']['''kernel'''] snake_case_ : List[str] = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization snake_case_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] snake_case_ : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: snake_case_ : Dict = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning snake_case_ : Dict = flax_model.params['''decoder''']['''block'''][str(_a )]['''layer'''] snake_case_ : int = tax_attention_key snake_case_ : List[Any] = tax_attention_out snake_case_ : Any = tax_attention_query snake_case_ : Dict = tax_attention_value snake_case_ : str = tax_pre_attention_layer_norm snake_case_ : Any = tax_enc_dec_attention_key snake_case_ : str = tax_enc_dec_attention_out snake_case_ : int = tax_enc_dec_attention_query snake_case_ : Any = tax_enc_dec_attention_value snake_case_ : Optional[Any] = tax_cross_layer_norm if split_mlp_wi: snake_case_ : Tuple = tax_mlp_wi_a snake_case_ : List[Any] = tax_mlp_wi_a else: snake_case_ : List[Any] = tax_mlp_wi snake_case_ : Dict = tax_mlp_wo snake_case_ : List[Any] = txa_mlp_layer_norm snake_case_ : Optional[int] = flax_model_decoder_layer_block # Decoder Normalization snake_case_ : str = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] snake_case_ : Tuple = txa_decoder_norm # Only for layer 0: snake_case_ : str = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T snake_case_ : Optional[Any] = tax_decoder_rel_embedding # Token Embeddings snake_case_ : Union[str, Any] = tax_model['''target''']['''token_embedder''']['''embedding'''] snake_case_ : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: snake_case_ : Union[str, Any] = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(_a ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowercase__ : Dict = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
721
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowercase__ : Optional[int] = logging.get_logger(__name__) def __lowercase ( _a , _a , _a , _a=None , _a=None ): # Recurse if needed if "." in tensor_name: snake_case_ : Union[str, Any] = tensor_name.split('''.''' ) for split in splits[:-1]: snake_case_ : Any = getattr(_a , _a ) if new_module is None: raise ValueError(f"{module} has no attribute {split}." ) snake_case_ : int = new_module snake_case_ : str = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}." ) snake_case_ : Tuple = tensor_name in module._buffers snake_case_ : Optional[int] = getattr(_a , _a ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}." ) snake_case_ : Optional[Any] = False snake_case_ : List[Any] = False if is_buffer or not is_bitsandbytes_available(): snake_case_ : Optional[Any] = False snake_case_ : Tuple = False else: snake_case_ : Tuple = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) snake_case_ : int = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: snake_case_ : List[str] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: snake_case_ : Any = old_value.to(_a ) elif isinstance(_a , torch.Tensor ): snake_case_ : str = value.to('''cpu''' ) if value.dtype == torch.inta: snake_case_ : List[Any] = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: snake_case_ : Tuple = torch.tensor(_a , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _a ) and fpaa_statistics is None: snake_case_ : Any = new_value.T snake_case_ : Tuple = old_value.__dict__ if is_abit: snake_case_ : Tuple = bnb.nn.IntaParams(_a , requires_grad=_a , **_a ).to(_a ) elif is_abit: snake_case_ : Any = bnb.nn.Paramsabit(_a , requires_grad=_a , **_a ).to(_a ) snake_case_ : Union[str, Any] = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(_a ) ) else: if value is None: snake_case_ : Dict = old_value.to(_a ) elif isinstance(_a , torch.Tensor ): snake_case_ : Dict = value.to(_a ) else: snake_case_ : str = torch.tensor(_a , device=_a ) if is_buffer: snake_case_ : Optional[int] = new_value else: snake_case_ : Optional[Any] = nn.Parameter(_a , requires_grad=old_value.requires_grad ) snake_case_ : List[Any] = new_value def __lowercase ( _a , _a=None , _a=None , _a=None , _a=False ): for name, module in model.named_children(): if current_key_name is None: snake_case_ : List[str] = [] current_key_name.append(_a ) if (isinstance(_a , nn.Linear ) or isinstance(_a , _a )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_a ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_a , _a ): snake_case_, snake_case_ : List[Any] = module.weight.shape else: snake_case_ : Dict = module.in_features snake_case_ : Tuple = module.out_features if quantization_config.quantization_method() == "llm_int8": snake_case_ : str = bnb.nn.LinearabitLt( _a , _a , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) snake_case_ : str = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: snake_case_ : Union[str, Any] = bnb.nn.Linearabit( _a , _a , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) snake_case_ : List[Any] = True # Store the module class in case we need to transpose the weight later snake_case_ : str = type(_a ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_a ) if len(list(module.children() ) ) > 0: snake_case_, snake_case_ : Optional[int] = _replace_with_bnb_linear( _a , _a , _a , _a , has_been_replaced=_a , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __lowercase ( _a , _a=None , _a=None , _a=None ): snake_case_ : Any = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert snake_case_, snake_case_ : List[Any] = _replace_with_bnb_linear( _a , _a , _a , _a ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __lowercase ( *_a , **_a ): warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , _a , ) return replace_with_bnb_linear(*_a , **_a ) def __lowercase ( *_a , **_a ): warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , _a , ) return set_module_quantized_tensor_to_device(*_a , **_a ) def __lowercase ( _a ): snake_case_ : List[str] = deepcopy(_a ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() snake_case_ : Optional[Any] = find_tied_parameters(_a ) # For compatibility with Accelerate < 0.18 if isinstance(_a , _a ): snake_case_ : Any = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case_ : str = sum(_a , [] ) snake_case_ : str = len(_a ) > 0 # Check if it is a base model snake_case_ : Dict = not hasattr(_a , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case_ : Dict = list(model.named_children() ) snake_case_ : List[Any] = [list_modules[-1][0]] # add last module together with tied weights snake_case_ : Optional[int] = set(_a ) - set(_a ) snake_case_ : List[Any] = list(set(_a ) ) + list(_a ) # remove ".weight" from the keys snake_case_ : Any = ['''.weight''', '''.bias'''] snake_case_ : List[str] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case_ : List[str] = name.replace(_a , '''''' ) filtered_module_names.append(_a ) return filtered_module_names
485
0
class _A : def __init__( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = size _UpperCAmelCase = [0] * size _UpperCAmelCase = [0] * size @staticmethod def UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): return index | (index + 1) @staticmethod def UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): return (index & (index + 1)) - 1 def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = value while index < self.size: _UpperCAmelCase = self.get_prev(_SCREAMING_SNAKE_CASE ) + 1 if current_left_border == index: _UpperCAmelCase = value else: _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.get_next(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): right -= 1 # Because of right is exclusive _UpperCAmelCase = 0 while left <= right: _UpperCAmelCase = self.get_prev(_SCREAMING_SNAKE_CASE ) if left <= current_left: _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , self.tree[right] ) _UpperCAmelCase = current_left else: _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
518
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup a = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def _SCREAMING_SNAKE_CASE ( snake_case = "mumbai" ) -> Generator[tuple[str, str], None, None]: _UpperCAmelCase = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): _UpperCAmelCase = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() _UpperCAmelCase = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
518
1
'''simple docstring''' def __lowerCAmelCase ( a_ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = abs(a_ ) SCREAMING_SNAKE_CASE : Any = 0 while n > 0: res += n % 10 n //= 10 return res def __lowerCAmelCase ( a_ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = abs(a_ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowerCAmelCase ( a_ ) -> int: '''simple docstring''' return sum(int(a_ ) for c in str(abs(a_ ) ) ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(a_ , a_ ) -> None: SCREAMING_SNAKE_CASE : Optional[int] = f"""{func.__name__}({value})""" SCREAMING_SNAKE_CASE : Tuple = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(a_ )} -- {timing:.4f} seconds""" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(a_ , a_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
179
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase ( a_ , a_ = None ) -> list[list[str]]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = word_bank or [] # create a table SCREAMING_SNAKE_CASE : int = len(a_ ) + 1 SCREAMING_SNAKE_CASE : list[list[list[str]]] = [] for _ in range(a_ ): table.append([] ) # seed value SCREAMING_SNAKE_CASE : List[Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(a_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a_ )] == word: SCREAMING_SNAKE_CASE : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a_ )]: combination.reverse() return table[len(a_ )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
179
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[str] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys UpperCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
570
def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int , __A : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: a_ : Union[str, Any] = _modexpt(__A , exponent // 2 , __A ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__A , exponent - 1 , __A )) % modulo_value def SCREAMING_SNAKE_CASE_ ( __A : int = 17_77 , __A : int = 18_55 , __A : int = 8 ) -> int: """simple docstring""" a_ : List[str] = base for _ in range(1 , __A ): a_ : str = _modexpt(__A , __A , 10**digits ) return result if __name__ == "__main__": print(F'{solution() = }')
570
1
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
27
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[Any]=7 ,_a : Optional[Any]=True ,_a : Any=True ,_a : Optional[int]=True ,_a : Union[str, Any]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : List[Any]="gelu" ,_a : int=0.1 ,_a : Optional[int]=0.1 ,_a : Tuple=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Optional[int]=3 ,_a : str=4 ,_a : Optional[Any]=None ,): '''simple docstring''' A_ : Optional[Any] = parent A_ : str = batch_size A_ : int = seq_length A_ : Union[str, Any] = is_training A_ : Optional[Any] = use_token_type_ids A_ : int = use_labels A_ : Dict = vocab_size A_ : List[Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : int = intermediate_size A_ : Tuple = hidden_act A_ : int = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Tuple = type_sequence_label_size A_ : int = initializer_range A_ : Optional[Any] = num_labels A_ : str = num_choices A_ : Optional[Any] = scope A_ : List[Any] = self.vocab_size - 1 def _a ( self : Any ): '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : List[Any] = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : int = None A_ : str = None A_ : Union[str, Any] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Any = ids_tensor([self.batch_size] ,self.num_choices ) A_ : List[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) A_ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self : Optional[int] ,_a : List[str] ,_a : str ,_a : int ,_a : int ,*_a : Union[str, Any] ): '''simple docstring''' A_ : Optional[Any] = OpenAIGPTModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,head_mask=_a ) A_ : str = model(_a ,token_type_ids=_a ) A_ : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Dict ,_a : List[str] ,*_a : str ): '''simple docstring''' A_ : str = OpenAIGPTLMHeadModel(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any ,_a : Dict ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ,*_a : str ): '''simple docstring''' A_ : Any = OpenAIGPTDoubleHeadsModel(_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] ,_a : str ,_a : Tuple ,_a : Dict ,_a : Tuple ,*_a : Dict ): '''simple docstring''' A_ : List[str] = self.num_labels A_ : int = OpenAIGPTForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Optional[Any] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _a ( self : Tuple ): '''simple docstring''' A_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : str = config_and_inputs A_ : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _a ( self : Tuple ,_a : Optional[int] ,_a : str ,_a : List[str] ,_a : List[str] ,_a : Any ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _a ( self : Optional[int] ,_a : str ,_a : Dict ,_a : Optional[int]=False ): '''simple docstring''' A_ : Any = super()._prepare_for_class(_a ,_a ,return_labels=_a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=_a ,) A_ : Any = inputs_dict["""labels"""] A_ : Any = inputs_dict["""labels"""] A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=_a ,) A_ : int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) return inputs_dict def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Tuple = OpenAIGPTModelTester(self ) A_ : Optional[int] = ConfigTester(self ,config_class=_a ,n_embd=37 ) def _a ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_a ) def _a ( self : List[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_a ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_a ) @slow def _a ( self : List[Any] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a ( self : List[str] ): '''simple docstring''' A_ : Dict = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_a ) A_ : Dict = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=_a ) # the president is A_ : Dict = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : int = model.generate(_a ,do_sample=_a ) self.assertListEqual(output_ids[0].tolist() ,_a )
27
1
"""simple docstring""" lowerCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowerCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def snake_case_ ( A_ : str ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def snake_case_ ( A_ : str ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = '''Morse code here!''' print(A_ ) _lowerCamelCase : Optional[Any] = encrypt(A_ ) print(A_ ) _lowerCamelCase : Optional[Any] = decrypt(A_ ) print(A_ ) if __name__ == "__main__": main()
83
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) def _snake_case (): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])] def _snake_case (): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])] class _a ( UpperCAmelCase__ ): """simple docstring""" @require_beam def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> List[str]: import apache_beam as beam UpperCamelCase_ = beam.io.parquetio.WriteToParquet UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
23
0
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Optional[Any]: """simple docstring""" __UpperCAmelCase : int = OmegaConf.load(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = torch.load(UpperCAmelCase_ , map_location='''cpu''' )['''model'''] __UpperCAmelCase : List[Any] = list(state_dict.keys() ) # extract state_dict for VQVAE __UpperCAmelCase : Dict = {} __UpperCAmelCase : Tuple = '''first_stage_model.''' for key in keys: if key.startswith(UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = state_dict[key] # extract state_dict for UNetLDM __UpperCAmelCase : Union[str, Any] = {} __UpperCAmelCase : Any = '''model.diffusion_model.''' for key in keys: if key.startswith(UpperCAmelCase_ ): __UpperCAmelCase : int = state_dict[key] __UpperCAmelCase : Any = config.model.params.first_stage_config.params __UpperCAmelCase : Dict = config.model.params.unet_config.params __UpperCAmelCase : Tuple = VQModel(**UpperCAmelCase_ ).eval() vqvae.load_state_dict(UpperCAmelCase_ ) __UpperCAmelCase : Any = UNetLDMModel(**UpperCAmelCase_ ).eval() unet.load_state_dict(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=UpperCAmelCase_ , ) __UpperCAmelCase : Tuple = LDMPipeline(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) pipeline.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ :str = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) lowercase__ :Dict = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
374
"""simple docstring""" def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Tuple: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_=0 ) ->Dict: """simple docstring""" return sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[column] ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=float('''inf''' ) ) ->str: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCAmelCase : Tuple = current_dis return min_dis def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=float('''inf''' ) ) ->str: """simple docstring""" for i in range(min(6 , points_counts - 1 ) , UpperCAmelCase_ ): for j in range(max(0 , i - 6 ) , UpperCAmelCase_ ): __UpperCAmelCase : Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCAmelCase : Tuple = current_dis return min_dis def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Any: """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(UpperCAmelCase_ , UpperCAmelCase_ ) # recursion __UpperCAmelCase : Any = points_counts // 2 __UpperCAmelCase : Any = closest_pair_of_points_sqr( UpperCAmelCase_ , points_sorted_on_y[:mid] , UpperCAmelCase_ ) __UpperCAmelCase : Tuple = closest_pair_of_points_sqr( UpperCAmelCase_ , points_sorted_on_y[mid:] , points_counts - mid ) __UpperCAmelCase : List[Any] = min(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : int = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = dis_between_closest_in_strip( UpperCAmelCase_ , len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return min(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: """simple docstring""" __UpperCAmelCase : str = column_based_sort(UpperCAmelCase_ , column=0 ) __UpperCAmelCase : Any = column_based_sort(UpperCAmelCase_ , column=1 ) return ( closest_pair_of_points_sqr( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ) ** 0.5 if __name__ == "__main__": lowercase__ :Optional[Any] = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
374
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case ( __lowercase ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__(self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 1_00 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , ): """simple docstring""" if audio_length_in_s is None: SCREAMING_SNAKE_CASE_ = self.unet.config.sample_size / self.unet.config.sample_rate SCREAMING_SNAKE_CASE_ = audio_length_in_s * self.unet.config.sample_rate SCREAMING_SNAKE_CASE_ = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to' f' {3 * down_scale_factor / self.unet.config.sample_rate}.' ) SCREAMING_SNAKE_CASE_ = int(SCREAMING_SNAKE_CASE_ ) if sample_size % down_scale_factor != 0: SCREAMING_SNAKE_CASE_ = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled' f' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising' ''' process.''' ) SCREAMING_SNAKE_CASE_ = int(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = next(iter(self.unet.parameters() ) ).dtype SCREAMING_SNAKE_CASE_ = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) SCREAMING_SNAKE_CASE_ = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=audio.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(SCREAMING_SNAKE_CASE_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE_ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # 2. compute previous image: x_t -> t_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample SCREAMING_SNAKE_CASE_ = audio.clamp(-1 , 1 ).float().cpu().numpy() SCREAMING_SNAKE_CASE_ = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=SCREAMING_SNAKE_CASE_ )
626
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( __lowercase , unittest.TestCase ): UpperCAmelCase__ = None UpperCAmelCase__ = BloomTokenizerFast UpperCAmelCase__ = BloomTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = '''tokenizer_file''' UpperCAmelCase__ = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def _lowercase (self ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase (self , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] SCREAMING_SNAKE_CASE_ = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] SCREAMING_SNAKE_CASE_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ )['''input_ids'''] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input SCREAMING_SNAKE_CASE_ = '''This is a simple input''' SCREAMING_SNAKE_CASE_ = ['''This is a simple input 1''', '''This is a simple input 2'''] SCREAMING_SNAKE_CASE_ = ('''This is a simple input''', '''This is a pair''') SCREAMING_SNAKE_CASE_ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) SCREAMING_SNAKE_CASE_ = None # Hotfixing padding = None self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' , ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = next(iter(SCREAMING_SNAKE_CASE_ ) )['''premise'''] # pick up one data SCREAMING_SNAKE_CASE_ = list(sample_data.values() ) SCREAMING_SNAKE_CASE_ = list(map(tokenizer.encode , SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) for x in output_tokens] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
626
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black _UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _UpperCAmelCase = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) SCREAMING_SNAKE_CASE_: Any =self.diffusers_dir shutil.copy( os.path.join(lowerCAmelCase , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def lowerCamelCase__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple ="""src/diffusers""" shutil.rmtree(self.diffusers_dir ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int=None ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE_: List[Any] =comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result SCREAMING_SNAKE_CASE_: Any =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) SCREAMING_SNAKE_CASE_: Tuple =black.format_str(lowerCAmelCase , mode=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =os.path.join(self.diffusers_dir , """new_code.py""" ) with open(lowerCAmelCase , """w""" , newline="""\n""" ) as f: f.write(lowerCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase ) with open(lowerCAmelCase , """r""" ) as f: self.assertTrue(f.read() , lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , lowerCAmelCase ) , ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE_: Dict ="""TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , f'''{long_class_name}SchedulerOutput''' , re.sub("""Bert""" , lowerCAmelCase , lowerCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , lowerCAmelCase , overwrite_result=re.sub("""DDPM""" , """Test""" , lowerCAmelCase ) , )
36
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str]=13 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=224 , lowerCAmelCase : List[str]=1000 , lowerCAmelCase : Optional[Any]=[3, 3, 6, 4] , lowerCAmelCase : int=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =parent SCREAMING_SNAKE_CASE_: Any =batch_size SCREAMING_SNAKE_CASE_: Tuple =num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] =is_training SCREAMING_SNAKE_CASE_: Tuple =use_labels SCREAMING_SNAKE_CASE_: Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Tuple =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] =num_labels SCREAMING_SNAKE_CASE_: int =image_size SCREAMING_SNAKE_CASE_: Optional[Any] =layer_depths SCREAMING_SNAKE_CASE_: List[Any] =embed_dims def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: List[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE_: List[str] =ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_: Tuple =self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1E-5 , ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Any =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.num_labels SCREAMING_SNAKE_CASE_: Dict =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE_: int =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): str =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_: Tuple ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[int] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCamelCase : Tuple = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCamelCase : Any = False UpperCamelCase : Optional[int] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Dict = False UpperCamelCase : List[str] = False def lowerCamelCase__ ( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE_: Union[str, Any] =ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase__ ( self : Tuple ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: int =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Any =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Tuple =["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Optional[Any] =SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def lowerCamelCase__ ( self : Optional[int] ) -> str: '''simple docstring''' pass def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_: Optional[Any] =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[str] =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Dict =outputs.hidden_states SCREAMING_SNAKE_CASE_: List[Any] =8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Any =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' def _config_zero_init(lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_: Dict =copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1E-10 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple =_config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[Any] =_config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' pass def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[Any] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =self.default_image_processor SCREAMING_SNAKE_CASE_: int =prepare_img() SCREAMING_SNAKE_CASE_: Union[str, Any] =image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Dict =model(**lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_: Optional[Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
36
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _A ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E00 and cp <= 0X9_FFF) or (cp >= 0X3_400 and cp <= 0X4_DBF) # or (cp >= 0X20_000 and cp <= 0X2A_6DF) # or (cp >= 0X2A_700 and cp <= 0X2B_73F) # or (cp >= 0X2B_740 and cp <= 0X2B_81F) # or (cp >= 0X2B_820 and cp <= 0X2C_EAF) # or (cp >= 0XF_900 and cp <= 0XF_AFF) or (cp >= 0X2F_800 and cp <= 0X2F_A1F) # ): # return True return False def lowerCamelCase__ ( _A ): # word like '180' or '身高' or '神' for char in word: a : List[str] = ord(_A ) if not _is_chinese_char(_A ): return 0 return 1 def lowerCamelCase__ ( _A ): a : str = set() for token in tokens: a : Union[str, Any] = len(_A ) > 1 and is_chinese(_A ) if chinese_word: word_set.add(_A ) a : Optional[Any] = list(_A ) return word_list def lowerCamelCase__ ( _A , _A ): if not chinese_word_set: return bert_tokens a : List[Any] = max([len(_A ) for w in chinese_word_set] ) a : Dict = bert_tokens a , a : Dict = 0, len(_A ) while start < end: a : List[Any] = True if is_chinese(bert_word[start] ): a : str = min(end - start , _A ) for i in range(_A , 1 , -1 ): a : Dict = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a : str = '##' + bert_word[j] a : Union[str, Any] = start + i a : List[Any] = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _A , _A , _A ): a : Tuple = [] for i in range(0 , len(_A ) , 100 ): a : str = ltp_tokenizer.seg(lines[i : i + 100] )[0] a : Union[str, Any] = [get_chinese_word(_A ) for r in res] ltp_res.extend(_A ) assert len(_A ) == len(_A ) a : Any = [] for i in range(0 , len(_A ) , 100 ): a : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_A , truncation=_A , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_A ) == len(_A ) a : Optional[Any] = [] for input_ids, chinese_word in zip(_A , _A ): a : Any = [] for id in input_ids: a : str = bert_tokenizer._convert_id_to_token(_A ) input_tokens.append(_A ) a : List[str] = add_sub_symbol(_A , _A ) a : Optional[int] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_A ): if token[:2] == "##": a : str = token[2:] # save chinese tokens' pos if len(_A ) == 1 and _is_chinese_char(ord(_A ) ): ref_id.append(_A ) ref_ids.append(_A ) assert len(_A ) == len(_A ) return ref_ids def lowerCamelCase__ ( _A ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: a : List[Any] = f.readlines() a : Tuple = [line.strip() for line in data if len(_A ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a : Dict = LTP(args.ltp ) # faster in GPU device a : Any = BertTokenizer.from_pretrained(args.bert ) a : Dict = prepare_ref(_A , _A , _A ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: a : Dict = [json.dumps(_A ) + '\n' for ref in ref_ids] f.writelines(_A ) if __name__ == "__main__": lowerCAmelCase: Dict = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') lowerCAmelCase: Union[str, Any] = parser.parse_args() main(args)
526
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase: Tuple = logging.get_logger(__name__) lowerCAmelCase: Dict = '▁' lowerCAmelCase: Dict = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } lowerCAmelCase: int = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } lowerCAmelCase: Any = { 'facebook/s2t-small-librispeech-asr': 1_0_2_4, } lowerCAmelCase: Optional[int] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] lowerCAmelCase: List[Any] = {'mustc': MUSTC_LANGS} class a__( lowerCamelCase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = MAX_MODEL_INPUT_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = [] def __init__( self : int , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Optional[Any]="<s>" , __snake_case : Optional[int]="</s>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : str="<unk>" , __snake_case : Dict=False , __snake_case : int=False , __snake_case : str=None , __snake_case : Optional[int]=None , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Union[str, Any] , ): a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , do_upper_case=__snake_case , do_lower_case=__snake_case , tgt_lang=__snake_case , lang_codes=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) a : Tuple = do_upper_case a : Optional[Any] = do_lower_case a : List[str] = load_json(__snake_case ) a : Dict = {v: k for k, v in self.encoder.items()} a : int = spm_file a : Tuple = load_spm(__snake_case , self.sp_model_kwargs ) if lang_codes is not None: a : Any = lang_codes a : str = LANGUAGES[lang_codes] a : Tuple = [F"""<lang:{lang}>""" for lang in self.langs] a : str = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} a : Optional[Any] = self.lang_tokens a : Union[str, Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: a : List[str] = {} @property def lowercase_ ( self : Optional[Any] ): return len(self.encoder ) @property def lowercase_ ( self : int ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self : int , __snake_case : Optional[int] ): a : Union[str, Any] = new_tgt_lang self.set_tgt_lang_special_tokens(__snake_case ) def lowercase_ ( self : str , __snake_case : str ): a : int = self.lang_code_to_id[tgt_lang] a : int = [lang_code_id] def lowercase_ ( self : Optional[int] , __snake_case : str ): return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowercase_ ( self : List[str] , __snake_case : List[Any] ): return self.encoder.get(__snake_case , self.encoder[self.unk_token] ) def lowercase_ ( self : List[Any] , __snake_case : int ): return self.decoder.get(__snake_case , self.unk_token ) def lowercase_ ( self : Union[str, Any] , __snake_case : List[str] ): a : List[Any] = [] a : List[Any] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: a : Union[str, Any] = self.sp_model.decode(__snake_case ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " a : Optional[int] = [] else: current_sub_tokens.append(__snake_case ) a : Tuple = self.sp_model.decode(__snake_case ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self : int , __snake_case : List[Any] , __snake_case : List[str]=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) a : Optional[int] = [1] * len(self.prefix_tokens ) a : Any = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def lowercase_ ( self : Union[str, Any] ): a : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): a : List[str] = self.__dict__.copy() a : Union[str, Any] = None return state def __setstate__( self : str , __snake_case : Dict ): a : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): a : int = {} a : Any = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self : str , __snake_case : str , __snake_case : Optional[str] = None ): a : Union[str, Any] = Path(__snake_case ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" a : Any = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) a : List[Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , __snake_case ) if os.path.abspath(self.spm_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __snake_case ) elif not os.path.isfile(self.spm_file ): with open(__snake_case , 'wb' ) as fi: a : Tuple = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (str(__snake_case ), str(__snake_case )) def lowerCamelCase__ ( _A , _A ): a : List[Any] = sentencepiece.SentencePieceProcessor(**_A ) spm.Load(str(_A ) ) return spm def lowerCamelCase__ ( _A ): with open(_A , 'r' ) as f: return json.load(_A ) def lowerCamelCase__ ( _A , _A ): with open(_A , 'w' ) as f: json.dump(_A , _A , indent=2 )
526
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __snake_case: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=13 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=99 , __lowerCamelCase=32 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=37 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=16 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ): '''simple docstring''' __A : Any = parent __A : List[Any] = batch_size __A : Union[str, Any] = seq_length __A : Union[str, Any] = is_training __A : Any = use_input_mask __A : List[Any] = use_token_type_ids __A : int = use_labels __A : Any = vocab_size __A : Any = hidden_size __A : Dict = num_hidden_layers __A : Dict = num_attention_heads __A : Union[str, Any] = intermediate_size __A : int = hidden_act __A : int = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : Any = max_position_embeddings __A : Any = type_vocab_size __A : Optional[int] = type_sequence_label_size __A : str = initializer_range __A : int = num_labels __A : int = num_choices __A : Tuple = scope def _a ( self ): '''simple docstring''' __A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Optional[int] = None if self.use_input_mask: __A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __A : str = None if self.use_token_type_ids: __A : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A : Any = None __A : List[str] = None __A : Optional[int] = None if self.use_labels: __A : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __A : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Tuple = LlamaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __A : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) __A : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' __A : List[str] = True __A : Union[str, Any] = LlamaModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __A : Optional[int] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) __A : Optional[int] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , ) __A : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' __A : List[Any] = LlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __A : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' __A : Optional[int] = True __A : Optional[Any] = True __A : Union[str, Any] = LlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # first forward pass __A : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase , ) __A : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __A : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __A : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __A : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __A : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) __A : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )['hidden_states'][0] __A : Dict = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )['hidden_states'][0] # select random slice __A : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() __A : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __A : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def _a ( self ): '''simple docstring''' __A : Union[str, Any] = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : int = config_and_inputs __A : int = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __snake_case( A_ , A_ , A_ , unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCAmelCase = (LlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def _a ( self ): '''simple docstring''' __A : Optional[Any] = LlamaModelTester(self ) __A : Tuple = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _a ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self ): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _a ( self ): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A : Union[str, Any] = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def _a ( self ): '''simple docstring''' __A , __A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = 3 __A : Union[str, Any] = input_dict['input_ids'] __A : Optional[Any] = input_ids.ne(1 ).to(__lowerCamelCase ) __A : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A : Union[str, Any] = LlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __A : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self ): '''simple docstring''' __A , __A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[Any] = 3 __A : Union[str, Any] = 'single_label_classification' __A : str = input_dict['input_ids'] __A : List[Any] = input_ids.ne(1 ).to(__lowerCamelCase ) __A : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A : List[Any] = LlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __A : str = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self ): '''simple docstring''' __A , __A : Any = self.model_tester.prepare_config_and_inputs_for_common() __A : int = 3 __A : List[str] = 'multi_label_classification' __A : str = input_dict['input_ids'] __A : Tuple = input_ids.ne(1 ).to(__lowerCamelCase ) __A : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __A : List[Any] = LlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __A : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def _a ( self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _a ( self , __lowerCamelCase ): '''simple docstring''' __A , __A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = ids_tensor([1, 10] , config.vocab_size ) __A : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A : Optional[Any] = LlamaModel(__lowerCamelCase ) original_model.to(__lowerCamelCase ) original_model.eval() __A : str = original_model(__lowerCamelCase ).last_hidden_state __A : str = original_model(__lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A : Tuple = {'type': scaling_type, 'factor': 10.0} __A : str = LlamaModel(__lowerCamelCase ) scaled_model.to(__lowerCamelCase ) scaled_model.eval() __A : Tuple = scaled_model(__lowerCamelCase ).last_hidden_state __A : List[Any] = scaled_model(__lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) ) @require_torch class __snake_case( unittest.TestCase ): '''simple docstring''' @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _a ( self ): '''simple docstring''' __A : Optional[int] = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : Optional[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) __A : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __A : Optional[int] = torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] ) torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A : Dict = torch.tensor([-12.82_81, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.82_81, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowerCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _a ( self ): '''simple docstring''' __A : Optional[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : List[str] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) __A : List[str] = model(torch.tensor(__lowerCamelCase ) ) # Expected mean on dim = -1 __A : List[Any] = torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] ) torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A : int = torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowerCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _a ( self ): '''simple docstring''' __A : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) __A : Optional[Any] = model(torch.tensor(__lowerCamelCase ) ) # Expected mean on dim = -1 __A : Optional[int] = torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] ) torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A : Optional[int] = torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def _a ( self ): '''simple docstring''' __A : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : Tuple = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) __A : List[str] = model(torch.tensor(__lowerCamelCase ) ) __A : Optional[Any] = torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off __A : List[Any] = torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowerCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def _a ( self ): '''simple docstring''' __A : Optional[Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' __A : List[str] = 'Simply put, the theory of relativity states that ' __A : List[str] = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) __A : str = tokenizer.encode(__lowerCamelCase , return_tensors='pt' ) __A : str = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=__lowerCamelCase ) # greedy generation outputs __A : List[Any] = model.generate(__lowerCamelCase , max_new_tokens=64 , top_p=__lowerCamelCase , temperature=1 , do_sample=__lowerCamelCase ) __A : Any = tokenizer.decode(generated_ids[0] , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
237
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowerCamelCase : Dict =[ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _lowercase ( ) -> Optional[Any]: '''simple docstring''' __A : Union[str, Any] = Github(os.environ['GITHUB_TOKEN'] ) __A : Union[str, Any] = g.get_repo('huggingface/diffusers' ) __A : Optional[int] = repo.get_issues(state='open' ) for issue in open_issues: __A : Any = sorted(issue.get_comments() , key=lambda _SCREAMING_SNAKE_CASE : i.created_at , reverse=_SCREAMING_SNAKE_CASE ) __A : Optional[int] = comments[0] if len(_SCREAMING_SNAKE_CASE ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
237
1
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class UpperCAmelCase ( unittest.TestCase ): def __UpperCAmelCase ( self : Dict ): """simple docstring""" debug_launcher(test_script.main ) def __UpperCAmelCase ( self : Any ): """simple docstring""" debug_launcher(test_ops.main )
103
'''simple docstring''' def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = [] lowercase = set({"(", "[", "{"} ) lowercase = set({")", "]", "}"} ) lowercase = {"{": "}", "[": "]", "(": ")"} for i in range(len(lowerCAmelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCAmelCase_ ) == 0 or (len(lowerCAmelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCAmelCase_ ) == 0 def UpperCAmelCase_ ( ): """simple docstring""" lowercase = input("Enter sequence of brackets: " ) if is_balanced(lowerCAmelCase_ ): print(lowerCAmelCase_ , "is balanced" ) else: print(lowerCAmelCase_ , "is not balanced" ) if __name__ == "__main__": main()
310
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
709
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'gpt_bigcode' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, A_=5_0257, A_=1024, A_=768, A_=12, A_=12, A_=None, A_="gelu_pytorch_tanh", A_=0.1, A_=0.1, A_=0.1, A_=1E-5, A_=0.02, A_=True, A_=True, A_=5_0256, A_=5_0256, A_=True, A_=True, A_=True, **A_, ) -> Dict: UpperCAmelCase__ =vocab_size UpperCAmelCase__ =n_positions UpperCAmelCase__ =n_embd UpperCAmelCase__ =n_layer UpperCAmelCase__ =n_head UpperCAmelCase__ =n_inner UpperCAmelCase__ =activation_function UpperCAmelCase__ =resid_pdrop UpperCAmelCase__ =embd_pdrop UpperCAmelCase__ =attn_pdrop UpperCAmelCase__ =layer_norm_epsilon UpperCAmelCase__ =initializer_range UpperCAmelCase__ =scale_attn_weights UpperCAmelCase__ =use_cache UpperCAmelCase__ =attention_softmax_in_fpaa UpperCAmelCase__ =scale_attention_softmax_in_fpaa UpperCAmelCase__ =multi_query UpperCAmelCase__ =bos_token_id UpperCAmelCase__ =eos_token_id super().__init__(bos_token_id=A_, eos_token_id=A_, **A_ )
510
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __a : List[Any] = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) requires_backends(self , "decord" ) self.check_model_type(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" UpperCamelCase = {} if frame_sampling_rate is not None: UpperCamelCase = frame_sampling_rate if num_frames is not None: UpperCamelCase = num_frames UpperCamelCase = {} if top_k is not None: UpperCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 ) -> List[Any]: """simple docstring""" if num_frames is None: UpperCamelCase = self.model.config.num_frames if video.startswith("http://" ) or video.startswith("https://" ): UpperCamelCase = BytesIO(requests.get(SCREAMING_SNAKE_CASE ).content ) UpperCamelCase = VideoReader(SCREAMING_SNAKE_CASE ) videoreader.seek(0 ) UpperCamelCase = 0 UpperCamelCase = num_frames * frame_sampling_rate - 1 UpperCamelCase = np.linspace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num=SCREAMING_SNAKE_CASE , dtype=np.intaa ) UpperCamelCase = videoreader.get_batch(SCREAMING_SNAKE_CASE ).asnumpy() UpperCamelCase = list(SCREAMING_SNAKE_CASE ) UpperCamelCase = self.image_processor(SCREAMING_SNAKE_CASE , return_tensors=self.framework ) return model_inputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = self.model(**SCREAMING_SNAKE_CASE ) return model_outputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ) -> Optional[Any]: """simple docstring""" if top_k > self.model.config.num_labels: UpperCamelCase = self.model.config.num_labels if self.framework == "pt": UpperCamelCase = model_outputs.logits.softmax(-1 )[0] UpperCamelCase , UpperCamelCase = probs.topk(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) UpperCamelCase = scores.tolist() UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
606
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class A ( a ): __UpperCAmelCase : int = """Wav2Vec2FeatureExtractor""" __UpperCAmelCase : str = """AutoTokenizer""" def __init__( self , snake_case_ , snake_case_ ) -> Union[str, Any]: super().__init__(snake_case_ , snake_case_ ) _a = self.feature_extractor _a = False @classmethod def __lowerCAmelCase ( cls , snake_case_ , **snake_case_ ) -> List[str]: try: return super().from_pretrained(snake_case_ , **snake_case_ ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , snake_case_ , ) _a = WavaVecaFeatureExtractor.from_pretrained(snake_case_ , **snake_case_ ) _a = WavaVecaCTCTokenizer.from_pretrained(snake_case_ , **snake_case_ ) return cls(feature_extractor=snake_case_ , tokenizer=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*snake_case_ , **snake_case_ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _a = kwargs.pop("raw_speech" ) else: _a = kwargs.pop("audio" , snake_case_ ) _a = kwargs.pop("sampling_rate" , snake_case_ ) _a = kwargs.pop("text" , snake_case_ ) if len(snake_case_ ) > 0: _a = args[0] _a = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _a = self.feature_extractor(snake_case_ , *snake_case_ , sampling_rate=snake_case_ , **snake_case_ ) if text is not None: _a = self.tokenizer(snake_case_ , **snake_case_ ) if text is None: return inputs elif audio is None: return encodings else: _a = encodings["input_ids"] return inputs def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*snake_case_ , **snake_case_ ) _a = kwargs.pop("input_features" , snake_case_ ) _a = kwargs.pop("labels" , snake_case_ ) if len(snake_case_ ) > 0: _a = args[0] _a = args[1:] if input_features is not None: _a = self.feature_extractor.pad(snake_case_ , *snake_case_ , **snake_case_ ) if labels is not None: _a = self.tokenizer.pad(snake_case_ , **snake_case_ ) if labels is None: return input_features elif input_features is None: return labels else: _a = labels["input_ids"] return input_features def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> str: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> Tuple: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @contextmanager def __lowerCAmelCase ( self ) -> Dict: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _a = True _a = self.tokenizer yield _a = self.feature_extractor _a = False
718
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
539
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Dict = 5 # Realm tok SCREAMING_SNAKE_CASE_ : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(self.tmpdirname , 'realm_tokenizer' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : str = os.path.join(self.tmpdirname , 'realm_block_records' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], } ) return dataset def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.array( [ b'This is the first record', b'This is the second record', b'This is the third record', b'This is the fourth record', b'This is the fifth record', b'This is a longer longer longer record', ] , dtype=lowerCAmelCase__ , ) return block_records def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.get_config() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_dummy_retriever() SCREAMING_SNAKE_CASE_ : List[str] = retriever.tokenizer SCREAMING_SNAKE_CASE_ : Any = np.array([0, 3] , dtype='long' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer(['Test question'] ).input_ids SCREAMING_SNAKE_CASE_ : int = tokenizer( ['the fourth'] , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ).input_ids SCREAMING_SNAKE_CASE_ : Any = config.reader_seq_len SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = retriever( lowerCAmelCase__ , lowerCAmelCase__ , answer_ids=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors='np' ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.get_config() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_retriever() SCREAMING_SNAKE_CASE_ : Tuple = retriever.tokenizer SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array([0, 3, 5] , dtype='long' ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(['Test question'] ).input_ids SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ).input_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] = config.reader_seq_len SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = retriever( lowerCAmelCase__ , lowerCAmelCase__ , answer_ids=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors='np' ) self.assertEqual([False, True, True] , lowerCAmelCase__ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowerCAmelCase__ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) # Test local path SCREAMING_SNAKE_CASE_ : Optional[Any] = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) self.assertEqual(retriever.block_records[0] , b'This is the first record' ) # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download: SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME ) SCREAMING_SNAKE_CASE_ : Optional[Any] = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' ) self.assertEqual(retriever.block_records[0] , b'This is the first record' )
101
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Initialise PyTorch model __a = MobileBertConfig.from_json_file(_UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) __a = MobileBertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint __a = load_tf_weights_in_mobilebert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": __snake_case :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case :List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
700
def __snake_case ( _UpperCAmelCase ): __a = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __snake_case ( _UpperCAmelCase ): __a = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __a = remove_duplicates(key.upper() ) __a = len(_UpperCAmelCase ) # First fill cipher with key characters __a = {alphabet[i]: char for i, char in enumerate(_UpperCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_UpperCAmelCase ) , 26 ): __a = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __a = alphabet[i - offset] __a = char return cipher_alphabet def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return "".join(cipher_map.get(_UpperCAmelCase , _UpperCAmelCase ) for ch in message.upper() ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_UpperCAmelCase , _UpperCAmelCase ) for ch in message.upper() ) def __snake_case ( ): __a = input('''Enter message to encode or decode: ''' ).strip() __a = input('''Enter keyword: ''' ).strip() __a = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __a = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __a = create_cipher_map(_UpperCAmelCase ) print(func(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : List[Any] = logging.get_logger(__name__) def _lowerCAmelCase ( __magic_name__ :Tuple , __magic_name__ :Tuple=False , __magic_name__ :List[Any]=False , __magic_name__ :Optional[int]=False ): UpperCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def _lowerCAmelCase ( __magic_name__ :Optional[int] , __magic_name__ :List[Any] ): for i in range(config.num_hidden_layers ): UpperCAmelCase_ = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase_ = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ = in_proj_bias[: config.hidden_size] UpperCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( __magic_name__ :List[str] ): UpperCAmelCase_ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def _lowerCAmelCase ( __magic_name__ :Dict , __magic_name__ :Any , __magic_name__ :Optional[Any] ): UpperCAmelCase_ = dct.pop(__magic_name__ ) UpperCAmelCase_ = val @torch.no_grad() def _lowerCAmelCase ( __magic_name__ :Any , __magic_name__ :List[Any] ): UpperCAmelCase_ = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=__magic_name__ ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False if "vqa" in checkpoint_url: UpperCAmelCase_ = True UpperCAmelCase_ = 3_1_2_9 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''vqa2-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__magic_name__ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = ViltForQuestionAnswering(__magic_name__ ) elif "nlvr" in checkpoint_url: UpperCAmelCase_ = True UpperCAmelCase_ = 2 UpperCAmelCase_ = {0: '''False''', 1: '''True'''} UpperCAmelCase_ = {v: k for k, v in config.idalabel.items()} UpperCAmelCase_ = 3 UpperCAmelCase_ = ViltForImagesAndTextClassification(__magic_name__ ) elif "irtr" in checkpoint_url: UpperCAmelCase_ = True UpperCAmelCase_ = ViltForImageAndTextRetrieval(__magic_name__ ) elif "mlm_itm" in checkpoint_url: UpperCAmelCase_ = True UpperCAmelCase_ = ViltForMaskedLM(__magic_name__ ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''state_dict'''] UpperCAmelCase_ = create_rename_keys(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ ) if mlm_model or irtr_model: UpperCAmelCase_ = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) # load state dict into HuggingFace model model.eval() if mlm_model: UpperCAmelCase_, UpperCAmelCase_ = model.load_state_dict(__magic_name__ , strict=__magic_name__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__magic_name__ ) # Define processor UpperCAmelCase_ = ViltImageProcessor(size=3_8_4 ) UpperCAmelCase_ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase_ = ViltProcessor(__magic_name__ , __magic_name__ ) # Forward pass on example inputs (image + text) if nlvr_model: UpperCAmelCase_ = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__magic_name__ ).raw ) UpperCAmelCase_ = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__magic_name__ ).raw ) UpperCAmelCase_ = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) UpperCAmelCase_ = processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) UpperCAmelCase_ = processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) UpperCAmelCase_ = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: UpperCAmelCase_ = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__magic_name__ ).raw ) if mlm_model: UpperCAmelCase_ = '''a bunch of [MASK] laying on a [MASK].''' else: UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) UpperCAmelCase_ = model(**__magic_name__ ) # Verify outputs if mlm_model: UpperCAmelCase_ = torch.Size([1, 1_1, 3_0_5_2_2] ) UpperCAmelCase_ = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __magic_name__ , atol=1e-4 ) # verify masked token prediction equals "cats" UpperCAmelCase_ = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: UpperCAmelCase_ = torch.Size([1, 3_1_2_9] ) UpperCAmelCase_ = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __magic_name__ , atol=1e-4 ) # verify vqa prediction equals "2" UpperCAmelCase_ = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: UpperCAmelCase_ = torch.Size([1, 2] ) UpperCAmelCase_ = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
121
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Dict = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=__A ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=__A ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=__A ) return parser.parse_args() def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : List[str] = parse_args() # Import training_script as a module. lowerCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase : Optional[Any] = script_fpath.stem lowerCAmelCase : Dict = importlib.import_module(__A ) # Patch sys.argv lowerCAmelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
715
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
0
'''simple docstring''' def _A ( A__ , A__ ): """simple docstring""" __lowercase = [1] for i in range(2 , A__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __lowercase = [] __lowercase = list(range(A__ ) ) # Find permutation while factorials: __lowercase = factorials.pop() __lowercase , __lowercase = divmod(A__ , A__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
41
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowercase: List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCamelCase ( snake_case ): warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , snake_case , ) if isinstance(snake_case , torch.Tensor ): return image elif isinstance(snake_case , PIL.Image.Image ): _lowerCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase , _lowerCAmelCase = image[0].size _lowerCAmelCase , _lowerCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _lowerCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase = np.concatenate(snake_case , axis=0 ) _lowerCAmelCase = np.array(snake_case ).astype(np.floataa ) / 2_55.0 _lowerCAmelCase = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase = 2.0 * image - 1.0 _lowerCAmelCase = torch.from_numpy(snake_case ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase = torch.cat(snake_case , dim=0 ) return image def _lowerCamelCase ( snake_case ): if isinstance(snake_case , torch.Tensor ): return mask elif isinstance(snake_case , PIL.Image.Image ): _lowerCAmelCase = [mask] if isinstance(mask[0] , PIL.Image.Image ): _lowerCAmelCase , _lowerCAmelCase = mask[0].size _lowerCAmelCase , _lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _lowerCAmelCase = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] _lowerCAmelCase = np.concatenate(snake_case , axis=0 ) _lowerCAmelCase = mask.astype(np.floataa ) / 2_55.0 _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = torch.from_numpy(snake_case ) elif isinstance(mask[0] , torch.Tensor ): _lowerCAmelCase = torch.cat(snake_case , dim=0 ) return mask class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ =42 UpperCamelCase__ =42 def __init__( self : int , lowercase__ : List[Any] , lowercase__ : Optional[Any] ): super().__init__() self.register_modules(unet=lowercase__ , scheduler=lowercase__ ) @torch.no_grad() def __call__( self : Any , lowercase__ : Union[torch.Tensor, PIL.Image.Image] , lowercase__ : Union[torch.Tensor, PIL.Image.Image] , lowercase__ : int = 2_50 , lowercase__ : float = 0.0 , lowercase__ : int = 10 , lowercase__ : int = 10 , lowercase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase__ : Optional[str] = "pil" , lowercase__ : bool = True , ): _lowerCAmelCase = image _lowerCAmelCase = _preprocess_image(lowercase__ ) _lowerCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) _lowerCAmelCase = _preprocess_mask(lowercase__ ) _lowerCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) _lowerCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(lowercase__ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _lowerCAmelCase = original_image.shape _lowerCAmelCase = randn_tensor(lowercase__ , generator=lowercase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowercase__ , lowercase__ , lowercase__ , self.device ) _lowerCAmelCase = eta _lowerCAmelCase = self.scheduler.timesteps[0] + 1 _lowerCAmelCase = generator[0] if isinstance(lowercase__ , lowercase__ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual _lowerCAmelCase = self.unet(lowercase__ , lowercase__ ).sample # compute previous image: x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ).prev_sample else: # compute the reverse: x_t-1 -> x_t _lowerCAmelCase = self.scheduler.undo_step(lowercase__ , lowercase__ , lowercase__ ) _lowerCAmelCase = t _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ )
192
0
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def SCREAMING_SNAKE_CASE ( a_ : Optional[int] ): return 1.0 / (1.0 + np.exp(-_outputs )) def SCREAMING_SNAKE_CASE ( a_ : List[Any] ): __a = np.max(_outputs , axis=-1 , keepdims=a_ ) __a = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=a_ ) class __lowercase ( __magic_name__ ): _a = """sigmoid""" _a = """softmax""" _a = """none""" @add_end_docstrings( __magic_name__ , R""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class __lowercase ( __magic_name__ ): _a = False _a = ClassificationFunction.NONE def __init__( self , **UpperCamelCase ) -> Union[str, Any]: super().__init__(**UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def UpperCamelCase__ ( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase="" , **UpperCamelCase ) -> int: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" __a = tokenizer_kwargs __a = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: __a = self.model.config.return_all_scores if isinstance(UpperCamelCase , UpperCamelCase ) or top_k is None: __a = top_k __a = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , UpperCamelCase , ) if return_all_scores: __a = None else: __a = 1 if isinstance(UpperCamelCase , UpperCamelCase ): __a = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __a = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *UpperCamelCase , **UpperCamelCase ) -> Dict: __a = super().__call__(*UpperCamelCase , **UpperCamelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __a = 'top_k' not in kwargs if isinstance(args[0] , UpperCamelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def UpperCamelCase__ ( self , UpperCamelCase , **UpperCamelCase ) -> Dict[str, GenericTensor]: __a = self.framework if isinstance(UpperCamelCase , UpperCamelCase ): return self.tokenizer(**UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) elif isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) == 1 and isinstance(inputs[0] , UpperCamelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=UpperCamelCase , **UpperCamelCase ) elif isinstance(UpperCamelCase , UpperCamelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) def UpperCamelCase__ ( self , UpperCamelCase ) -> List[Any]: return self.model(**UpperCamelCase ) def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=1 , UpperCamelCase=True ) -> List[Any]: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __a = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __a = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: __a = self.model.config.function_to_apply else: __a = ClassificationFunction.NONE __a = model_outputs['logits'][0] __a = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __a = sigmoid(UpperCamelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: __a = softmax(UpperCamelCase ) elif function_to_apply == ClassificationFunction.NONE: __a = outputs else: raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __a = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(UpperCamelCase ) ] if not _legacy: dict_scores.sort(key=lambda UpperCamelCase : x["score"] , reverse=UpperCamelCase ) if top_k is not None: __a = dict_scores[:top_k] return dict_scores
715
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu UpperCAmelCase_ = False class __lowercase ( unittest.TestCase ): def UpperCamelCase__ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self ) -> Tuple: return 12 @property def UpperCamelCase__ ( self ) -> Optional[int]: return 12 @property def UpperCamelCase__ ( self ) -> List[str]: return 32 @property def UpperCamelCase__ ( self ) -> Optional[int]: torch.manual_seed(0 ) __a = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCamelCase__ ( self ) -> Optional[int]: __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCamelCase__ ( self ) -> Tuple: torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(UpperCamelCase ) @property def UpperCamelCase__ ( self ) -> Tuple: torch.manual_seed(0 ) __a = 12 __a = 12 __a = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __a = TransformeraDModel(**UpperCamelCase ) return model def UpperCamelCase__ ( self ) -> Optional[Any]: __a = 'cpu' __a = self.dummy_vqvae __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_transformer __a = VQDiffusionScheduler(self.num_embed ) __a = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCamelCase ) __a = VQDiffusionPipeline( vqvae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , transformer=UpperCamelCase , scheduler=UpperCamelCase , learned_classifier_free_sampling_embeddings=UpperCamelCase , ) __a = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __a = 'teddy bear playing in the pool' __a = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) __a = pipe([prompt] , generator=UpperCamelCase , num_inference_steps=2 , output_type='np' ) __a = output.images __a = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) __a = pipe( [prompt] , generator=UpperCamelCase , output_type='np' , return_dict=UpperCamelCase , num_inference_steps=2 )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __a = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self ) -> int: __a = 'cpu' __a = self.dummy_vqvae __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_transformer __a = VQDiffusionScheduler(self.num_embed ) __a = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCamelCase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __a = VQDiffusionPipeline( vqvae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , transformer=UpperCamelCase , scheduler=UpperCamelCase , learned_classifier_free_sampling_embeddings=UpperCamelCase , ) __a = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __a = 'teddy bear playing in the pool' __a = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) __a = pipe([prompt] , generator=UpperCamelCase , num_inference_steps=2 , output_type='np' ) __a = output.images __a = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) __a = pipe( [prompt] , generator=UpperCamelCase , output_type='np' , return_dict=UpperCamelCase , num_inference_steps=2 )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __a = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCamelCase__ ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) __a = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) __a = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __a = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) __a = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCamelCase , output_type='np' , ) __a = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
490
0
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @property def A ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __lowercase = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def A ( self ) -> str: '''simple docstring''' __lowercase = self.dummy_uncond_unet __lowercase = KarrasVeScheduler() __lowercase = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='''numpy''' ).images __lowercase = torch.manual_seed(0 ) __lowercase = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='''numpy''' , return_dict=snake_case_ )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowercase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def A ( self ) -> int: '''simple docstring''' __lowercase = '''google/ncsnpp-celebahq-256''' __lowercase = UNetaDModel.from_pretrained(snake_case_ ) __lowercase = KarrasVeScheduler() __lowercase = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe(num_inference_steps=2_0 , generator=snake_case_ , output_type='''numpy''' ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __lowercase = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
639
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__, UpperCamelCase__ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=snake_case , dtype=jnp.bfloataa ) UpperCamelCase__, UpperCamelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=snake_case , from_pt=snake_case , dtype=jnp.bfloataa ) UpperCamelCase__ = controlnet_params UpperCamelCase__ = "bird" UpperCamelCase__ = jax.device_count() UpperCamelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) UpperCamelCase__ = pipe.prepare_image_inputs([canny_image] * num_samples ) UpperCamelCase__ = jax.random.PRNGKey(0 ) UpperCamelCase__ = jax.random.split(snake_case , jax.device_count() ) UpperCamelCase__ = replicate(snake_case ) UpperCamelCase__ = shard(snake_case ) UpperCamelCase__ = shard(snake_case ) UpperCamelCase__ = pipe( prompt_ids=snake_case , image=snake_case , params=snake_case , prng_seed=snake_case , num_inference_steps=50 , jit=snake_case , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) UpperCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase__ = images[0, 253:256, 253:256, -1] UpperCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase__ = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__, UpperCamelCase__ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=snake_case , dtype=jnp.bfloataa ) UpperCamelCase__, UpperCamelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=snake_case , from_pt=snake_case , dtype=jnp.bfloataa ) UpperCamelCase__ = controlnet_params UpperCamelCase__ = "Chef in the kitchen" UpperCamelCase__ = jax.device_count() UpperCamelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) UpperCamelCase__ = pipe.prepare_image_inputs([pose_image] * num_samples ) UpperCamelCase__ = jax.random.PRNGKey(0 ) UpperCamelCase__ = jax.random.split(snake_case , jax.device_count() ) UpperCamelCase__ = replicate(snake_case ) UpperCamelCase__ = shard(snake_case ) UpperCamelCase__ = shard(snake_case ) UpperCamelCase__ = pipe( prompt_ids=snake_case , image=snake_case , params=snake_case , prng_seed=snake_case , num_inference_steps=50 , jit=snake_case , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) UpperCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase__ = images[0, 253:256, 253:256, -1] UpperCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase__ = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
551
0
from __future__ import annotations def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) # We need to create solution object to save path. SCREAMING_SNAKE_CASE = [[0 for _ in range(_UpperCAmelCase)] for _ in range(_UpperCAmelCase)] SCREAMING_SNAKE_CASE = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase) if solved: print('\n'.join(str(_UpperCAmelCase) for row in solutions)) else: print('No solution exists!') return solved def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) # Final check point. if i == j == (size - 1): SCREAMING_SNAKE_CASE = 1 return True SCREAMING_SNAKE_CASE = (not i < 0) and (not j < 0) # Check lower bounds SCREAMING_SNAKE_CASE = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. SCREAMING_SNAKE_CASE = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited SCREAMING_SNAKE_CASE = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase) ): return True SCREAMING_SNAKE_CASE = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
714
from abc import ABC, abstractmethod from typing import List, Optional class _snake_case ( A__ ): def __init__( self) -> int: # test for the above condition self.test() def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE = self.advance() if not self.does_advance(a): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.update(a) counter += 1 if counter > 1_0000: raise Exception('update() does not fulfill the constraint.') if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.') @abstractmethod def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def SCREAMING_SNAKE_CASE__ ( self , a) -> List[Any]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def SCREAMING_SNAKE_CASE__ ( self , a) -> Dict: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def SCREAMING_SNAKE_CASE__ ( self) -> Dict: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def SCREAMING_SNAKE_CASE__ ( self , a=False) -> int: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') class _snake_case ( A__ ): def __init__( self , a) -> Dict: super(a , self).__init__() if not isinstance(a , a) or len(a) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''') if any((not isinstance(a , a) or token_id < 0) for token_id in token_ids): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''') SCREAMING_SNAKE_CASE = token_ids SCREAMING_SNAKE_CASE = len(self.token_ids) SCREAMING_SNAKE_CASE = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self , a) -> Any: if not isinstance(a , a): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(a)}''') if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[int]: if not isinstance(a , a): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(a)}''') SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False if self.does_advance(a): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = completed else: # failed to make progress. SCREAMING_SNAKE_CASE = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 0 def SCREAMING_SNAKE_CASE__ ( self) -> Any: return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self , a=False) -> int: SCREAMING_SNAKE_CASE = PhrasalConstraint(self.token_ids) if stateful: SCREAMING_SNAKE_CASE = self.seqlen SCREAMING_SNAKE_CASE = self.fulfilled_idx SCREAMING_SNAKE_CASE = self.completed return new_constraint class _snake_case : def __init__( self , a , a=True) -> Tuple: SCREAMING_SNAKE_CASE = max([len(a) for one in nested_token_ids]) SCREAMING_SNAKE_CASE = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE = root for tidx, token_id in enumerate(a): if token_id not in level: SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = level[token_id] if no_subsets and self.has_subsets(a , a): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' f''' {nested_token_ids}.''') SCREAMING_SNAKE_CASE = root def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE = start[current_token] SCREAMING_SNAKE_CASE = list(start.keys()) return next_tokens def SCREAMING_SNAKE_CASE__ ( self , a) -> int: SCREAMING_SNAKE_CASE = self.next_tokens(a) return len(a) == 0 def SCREAMING_SNAKE_CASE__ ( self , a) -> int: SCREAMING_SNAKE_CASE = list(root.values()) if len(a) == 0: return 1 else: return sum([self.count_leaves(a) for nn in next_nodes]) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Optional[int]: SCREAMING_SNAKE_CASE = self.count_leaves(a) return len(a) != leaf_count class _snake_case ( A__ ): def __init__( self , a) -> Dict: super(a , self).__init__() if not isinstance(a , a) or len(a) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''') if any(not isinstance(a , a) for token_ids in nested_token_ids): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''') if any( any((not isinstance(a , a) or token_id < 0) for token_id in token_ids) for token_ids in nested_token_ids): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''') SCREAMING_SNAKE_CASE = DisjunctiveTrie(a) SCREAMING_SNAKE_CASE = nested_token_ids SCREAMING_SNAKE_CASE = self.trie.max_height SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.trie.next_tokens(self.current_seq) if len(a) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self , a) -> List[str]: if not isinstance(a , a): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(a)}''') SCREAMING_SNAKE_CASE = self.trie.next_tokens(self.current_seq) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self , a) -> List[Any]: if not isinstance(a , a): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(a)}''') SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False if self.does_advance(a): self.current_seq.append(a) SCREAMING_SNAKE_CASE = True else: SCREAMING_SNAKE_CASE = True self.reset() SCREAMING_SNAKE_CASE = self.trie.reached_leaf(self.current_seq) SCREAMING_SNAKE_CASE = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = [] def SCREAMING_SNAKE_CASE__ ( self) -> Dict: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq) def SCREAMING_SNAKE_CASE__ ( self , a=False) -> Union[str, Any]: SCREAMING_SNAKE_CASE = DisjunctiveConstraint(self.token_ids) if stateful: SCREAMING_SNAKE_CASE = self.seqlen SCREAMING_SNAKE_CASE = self.current_seq SCREAMING_SNAKE_CASE = self.completed return new_constraint class _snake_case : def __init__( self , a) -> Union[str, Any]: SCREAMING_SNAKE_CASE = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE = max([c.seqlen for c in constraints]) SCREAMING_SNAKE_CASE = len(a) SCREAMING_SNAKE_CASE = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = [constraint.copy(stateful=a) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE = constraint.advance() if isinstance(a , a): token_list.append(a) elif isinstance(a , a): token_list.extend(a) else: SCREAMING_SNAKE_CASE = self.inprogress_constraint.advance() if isinstance(a , a): token_list.append(a) elif isinstance(a , a): token_list.extend(a) if len(a) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self , a) -> int: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.add(a) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]: if not isinstance(a , a): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False, False if self.completed: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.inprogress_constraint.update(a) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=a)) SCREAMING_SNAKE_CASE = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint) SCREAMING_SNAKE_CASE = None if len(self.pending_constraints) == 0: # we're done! SCREAMING_SNAKE_CASE = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints): if pending_constraint.does_advance(a): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pending_constraint.update(a) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.') if complete: self.complete_constraints.append(a) SCREAMING_SNAKE_CASE = None if not complete and stepped: SCREAMING_SNAKE_CASE = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self , a=True) -> str: SCREAMING_SNAKE_CASE = ConstraintListState(self.constraints) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE = [ constraint.copy(stateful=a) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE = self.inprogress_constraint.copy(stateful=a) SCREAMING_SNAKE_CASE = [constraint.copy() for constraint in self.pending_constraints] return new_state
444
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _lowerCamelCase = pytest.mark.integration @require_faiss class _snake_case (A__): def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): import faiss UpperCAmelCase_ : Union[str, Any] = self._create_dummy_dataset() UpperCAmelCase_ : Dict = dset.map( lambda _snake_case ,_snake_case : {"vecs": i * np.ones(5 ,dtype=np.floataa )} ,with_indices=__UpperCAmelCase ,keep_in_memory=__UpperCAmelCase ) UpperCAmelCase_ : List[str] = dset.add_faiss_index("vecs" ,batch_size=1_00 ,metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase_ , UpperCAmelCase_ : Any = dset.get_nearest_examples("vecs" ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] ,"my_name-train_29" ) dset.drop_index("vecs" ) def UpperCamelCase__ ( self ): import faiss UpperCAmelCase_ : Optional[int] = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name="vecs" ,batch_size=1_00 ,metric_type=faiss.METRIC_INNER_PRODUCT ,) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dset.get_nearest_examples("vecs" ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] ,"my_name-train_29" ) def UpperCamelCase__ ( self ): import faiss UpperCAmelCase_ : Optional[int] = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name="vecs" ,metric_type=faiss.METRIC_INNER_PRODUCT ,) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file: dset.save_faiss_index("vecs" ,tmp_file.name ) dset.load_faiss_index("vecs2" ,tmp_file.name ) os.unlink(tmp_file.name ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = dset.get_nearest_examples("vecs2" ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] ,"my_name-train_29" ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__UpperCAmelCase ,partial(dset.get_nearest_examples ,"vecs2" ,np.ones(5 ,dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): from elasticsearch import Elasticsearch UpperCAmelCase_ : int = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: UpperCAmelCase_ : Optional[Any] = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) UpperCAmelCase_ : int = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} UpperCAmelCase_ : Optional[Any] = Elasticsearch() dset.add_elasticsearch_index("filename" ,es_client=__UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dset.get_nearest_examples("filename" ,"my_name-train_29" ) self.assertEqual(examples["filename"][0] ,"my_name-train_29" ) @require_faiss class _snake_case (A__): def UpperCamelCase__ ( self ): import faiss UpperCAmelCase_ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal ,5 ) index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal ,10 ) # single query UpperCAmelCase_ : Any = np.zeros(5 ,dtype=np.floataa ) UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = index.search(__UpperCAmelCase ) self.assertRaises(__UpperCAmelCase ,index.search ,query.reshape(-1 ,1 ) ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) # batched queries UpperCAmelCase_ : List[Any] = np.eye(5 ,dtype=np.floataa )[::-1] UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = index.search_batch(__UpperCAmelCase ) self.assertRaises(__UpperCAmelCase ,index.search_batch ,queries[0] ) UpperCAmelCase_ : Optional[Any] = [scores[0] for scores in total_scores] UpperCAmelCase_ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__UpperCAmelCase ) ,0 ) self.assertListEqual([4, 3, 2, 1, 0] ,__UpperCAmelCase ) def UpperCamelCase__ ( self ): import faiss UpperCAmelCase_ : str = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) UpperCAmelCase_ : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexLSH ) with self.assertRaises(__UpperCAmelCase ): UpperCAmelCase_ : str = FaissIndex(string_factory="Flat" ,custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): import faiss UpperCAmelCase_ : str = faiss.IndexFlat(5 ) UpperCAmelCase_ : int = FaissIndex(custom_index=__UpperCAmelCase ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) def UpperCamelCase__ ( self ): import faiss UpperCAmelCase_ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) UpperCAmelCase_ : Optional[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) UpperCAmelCase_ : int = np.zeros(5 ,dtype=np.floataa ) UpperCAmelCase_ : Any = 1 UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = index.search(__UpperCAmelCase ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) @require_faiss def a__ ( _SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: """simple docstring""" import faiss UpperCAmelCase_ : List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) UpperCAmelCase_ : Optional[int] = "index.faiss" UpperCAmelCase_ : List[Any] = F'''mock://{index_name}''' index.save(snake_case__ , storage_options=mockfs.storage_options ) UpperCAmelCase_ : Optional[Any] = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) UpperCAmelCase_ : Tuple = np.zeros(5 , dtype=np.floataa ) UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ , UpperCAmelCase_ : int = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case (A__): def UpperCamelCase__ ( self ): from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: UpperCAmelCase_ : Optional[int] = Elasticsearch() UpperCAmelCase_ : Optional[Any] = {"acknowledged": True} UpperCAmelCase_ : List[Any] = ElasticSearchIndex(es_client=__UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query UpperCAmelCase_ : Dict = "foo" UpperCAmelCase_ : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} UpperCAmelCase_ , UpperCAmelCase_ : List[str] = index.search(__UpperCAmelCase ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # single query with timeout UpperCAmelCase_ : Optional[int] = "foo" UpperCAmelCase_ : Optional[int] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = index.search(__UpperCAmelCase ,request_timeout=30 ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # batched queries UpperCAmelCase_ : Optional[Any] = ["foo", "bar", "foobar"] UpperCAmelCase_ : Any = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = index.search_batch(__UpperCAmelCase ) UpperCAmelCase_ : int = [scores[0] for scores in total_scores] UpperCAmelCase_ : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(__UpperCAmelCase ) ,0 ) self.assertListEqual([1, 1, 1] ,__UpperCAmelCase ) # batched queries with timeout UpperCAmelCase_ : Union[str, Any] = ["foo", "bar", "foobar"] UpperCAmelCase_ : List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} UpperCAmelCase_ , UpperCAmelCase_ : int = index.search_batch(__UpperCAmelCase ,request_timeout=30 ) UpperCAmelCase_ : Dict = [scores[0] for scores in total_scores] UpperCAmelCase_ : Optional[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__UpperCAmelCase ) ,0 ) self.assertListEqual([1, 1, 1] ,__UpperCAmelCase )
71
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A_ : Optional[Any] = logging.getLogger(__name__) @dataclass class lowerCamelCase (A__ ): lowerCamelCase__ : Optional[float] = field( default=0.0 ,metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) lowerCamelCase__ : bool = field(default=A__ ,metadata={'help': 'Whether to SortishSamler or not.'} ) lowerCamelCase__ : bool = field( default=A__ ,metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : bool = field(default=A__ ,metadata={'help': 'whether to use adafactor'} ) lowerCamelCase__ : Optional[float] = field( default=A__ ,metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) lowerCamelCase__ : Optional[float] = field( default=A__ ,metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) lowerCamelCase__ : Optional[float] = field(default=A__ ,metadata={'help': 'Dropout probability. Goes into model.config.'} ) lowerCamelCase__ : Optional[float] = field( default=A__ ,metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) lowerCamelCase__ : Optional[str] = field( default='linear' ,metadata={'help': f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} ,)
196
0
'''simple docstring''' from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
718
'''simple docstring''' import argparse import struct import unittest class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ): lowerCamelCase__ = data # Initialize hash values lowerCamelCase__ = [ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants lowerCamelCase__ = [ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] lowerCamelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ): lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64)) lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase_ ( self ): # Convert into blocks of 64 bytes lowerCamelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 ) lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g) lowerCamelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 ) lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowerCamelCase__ = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): import hashlib lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() ) def A__ ( ): import doctest doctest.testmod() lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" ) print(SHAaaa(__lowerCAmelCase ).hash ) if __name__ == "__main__": main()
9
0
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _lowerCAmelCase :Optional[Any] = datasets.utils.logging.get_logger(__name__) class _UpperCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' a__ =None a__ =None class _UpperCAmelCase ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' a__ =datasets.Audio() a__ ="""audio""" a__ =AudioFolderConfig a__ =42 # definition at the bottom of the script a__ =AudioClassification(audio_column='''audio''' ,label_column='''label''' ) _lowerCAmelCase :Optional[Any] = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] _lowerCAmelCase :Union[str, Any] = AUDIO_EXTENSIONS
506
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _lowercase = logging.get_logger(__name__) class __a ( __a ): '''simple docstring''' def __init__( self , **_lowerCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(self , ["bs4"] ) super().__init__(**_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = [] __lowercase = [] __lowercase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __lowercase = parent.find_all(child.name , recursive=_lowerCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_lowerCamelCase ) else next(i for i, s in enumerate(_lowerCamelCase , 1 ) if s is child ) ) __lowercase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = BeautifulSoup(_lowerCamelCase , "html.parser" ) __lowercase = [] __lowercase = [] __lowercase = [] for element in html_code.descendants: if type(_lowerCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __lowercase = html.unescape(_lowerCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(_lowerCamelCase ) __lowercase , __lowercase = self.xpath_soup(_lowerCamelCase ) stringaxtag_seq.append(_lowerCamelCase ) stringaxsubs_seq.append(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = "" for tagname, subs in zip(_lowerCamelCase , _lowerCamelCase ): xpath += f'''/{tagname}''' if subs != 0: xpath += f'''[{subs}]''' return xpath def __call__( self , _lowerCamelCase ) -> BatchFeature: '''simple docstring''' __lowercase = False # Check that strings has a valid type if isinstance(_lowerCamelCase , _lowerCamelCase ): __lowercase = True elif isinstance(_lowerCamelCase , (list, tuple) ): if len(_lowerCamelCase ) == 0 or isinstance(html_strings[0] , _lowerCamelCase ): __lowercase = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " f'''but is of type {type(_lowerCamelCase )}.''' ) __lowercase = bool(isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , _lowerCamelCase )) ) if not is_batched: __lowercase = [html_strings] # Get nodes + xpaths __lowercase = [] __lowercase = [] for html_string in html_strings: __lowercase , __lowercase , __lowercase = self.get_three_from_single(_lowerCamelCase ) nodes.append(_lowerCamelCase ) __lowercase = [] for node, tag_list, sub_list in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): __lowercase = self.construct_xpath(_lowerCamelCase , _lowerCamelCase ) xpath_strings.append(_lowerCamelCase ) xpaths.append(_lowerCamelCase ) # return as Dict __lowercase = {"nodes": nodes, "xpaths": xpaths} __lowercase = BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase ) return encoded_inputs
118
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'blip_2_vision_model' def __init__( self , A_=14_08 , A_=61_44 , A_=39 , A_=16 , A_=2_24 , A_=14 , A_="gelu" , A_=0.00001 , A_=0.0 , A_=1E-1_0 , A_=True , **A_ , ) -> int: """simple docstring""" super().__init__(**A_ ) _lowerCamelCase = hidden_size _lowerCamelCase = intermediate_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = patch_size _lowerCamelCase = image_size _lowerCamelCase = initializer_range _lowerCamelCase = attention_dropout _lowerCamelCase = layer_norm_eps _lowerCamelCase = hidden_act _lowerCamelCase = qkv_bias @classmethod def UpperCamelCase_ ( cls , A_ , **A_ ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A_ ) _lowerCamelCase , _lowerCamelCase = cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": _lowerCamelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'blip_2_qformer' def __init__( self , A_=3_05_22 , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_="gelu" , A_=0.1 , A_=0.1 , A_=5_12 , A_=0.02 , A_=1E-1_2 , A_=0 , A_="absolute" , A_=2 , A_=14_08 , **A_ , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=A_ , **A_ ) _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = hidden_act _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = position_embedding_type _lowerCamelCase = cross_attention_frequency _lowerCamelCase = encoder_hidden_size @classmethod def UpperCamelCase_ ( cls , A_ , **A_ ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A_ ) _lowerCamelCase , _lowerCamelCase = cls.get_config_dict(A_ , **A_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": _lowerCamelCase = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'blip-2' A_ = True def __init__( self , A_=None , A_=None , A_=None , A_=32 , **A_ ) -> str: """simple docstring""" super().__init__(**A_ ) if vision_config is None: _lowerCamelCase = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: _lowerCamelCase = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: _lowerCamelCase = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) _lowerCamelCase = BlipaVisionConfig(**A_ ) _lowerCamelCase = BlipaQFormerConfig(**A_ ) _lowerCamelCase = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' _lowerCamelCase = CONFIG_MAPPING[text_model_type](**A_ ) _lowerCamelCase = self.text_config.tie_word_embeddings _lowerCamelCase = self.text_config.is_encoder_decoder _lowerCamelCase = num_query_tokens _lowerCamelCase = self.vision_config.hidden_size _lowerCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCamelCase = 1.0 _lowerCamelCase = 0.02 @classmethod def UpperCamelCase_ ( cls , A_ , A_ , A_ , **A_ , ) -> Tuple: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A_ , ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.vision_config.to_dict() _lowerCamelCase = self.qformer_config.to_dict() _lowerCamelCase = self.text_config.to_dict() _lowerCamelCase = self.__class__.model_type return output
720
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
0
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class lowercase ( _A): '''simple docstring''' UpperCAmelCase : Union[str, Any] = 42 UpperCAmelCase : Any = None def __a ( __lowerCAmelCase , __lowerCAmelCase=0.999 , __lowerCAmelCase="cosine" , ) -> Any: if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE : Any = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase , dtype=torch.floataa ) class lowercase ( _A , _A): '''simple docstring''' UpperCAmelCase : Union[str, Any] = 1 @register_to_config def __init__( self : Dict , snake_case : int = 1000 , snake_case : float = 0.0001 , snake_case : float = 0.02 , snake_case : str = "linear" , snake_case : Optional[Union[np.ndarray, List[float]]] = None , snake_case : bool = True , snake_case : bool = True , snake_case : int = 0 , snake_case : str = "epsilon" , snake_case : float = 1.0 , **snake_case : str , ): '''simple docstring''' if kwargs.get('set_alpha_to_one' , __lowerCamelCase ) is not None: SCREAMING_SNAKE_CASE : List[Any] = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' , '1.0.0' , __lowerCamelCase , standard_warn=__lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs['set_alpha_to_one'] if trained_betas is not None: SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(__lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE : Any = torch.linspace(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE : Optional[int] = betas_for_alpha_bar(__lowerCamelCase ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) SCREAMING_SNAKE_CASE : int = 1.0 - self.betas SCREAMING_SNAKE_CASE : str = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. SCREAMING_SNAKE_CASE : Tuple = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE : List[str] = 1.0 # setable values SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(np.arange(0 , __lowerCamelCase ).copy().astype(np.intaa ) ) def lowerCamelCase_ ( self : Any , snake_case : torch.FloatTensor , snake_case : Optional[int] = None ): '''simple docstring''' return sample def lowerCamelCase_ ( self : str , snake_case : int , snake_case : Union[str, torch.device] = None ): '''simple docstring''' if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) SCREAMING_SNAKE_CASE : Dict = num_inference_steps SCREAMING_SNAKE_CASE : Any = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE : List[str] = (np.arange(0 , __lowerCamelCase ) * step_ratio).round().copy().astype(np.intaa ) SCREAMING_SNAKE_CASE : Any = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) self.timesteps += self.config.steps_offset def lowerCamelCase_ ( self : int , snake_case : torch.FloatTensor , snake_case : int , snake_case : torch.FloatTensor , snake_case : float = 0.0 , snake_case : bool = False , snake_case : Optional[torch.FloatTensor] = None , snake_case : bool = True , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process SCREAMING_SNAKE_CASE : Optional[Any] = self.alphas_cumprod[timestep] SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 SCREAMING_SNAKE_CASE : str = model_output elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE : int = model_output SCREAMING_SNAKE_CASE : Optional[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output SCREAMING_SNAKE_CASE : int = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ' `v_prediction`' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE : Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__lowerCamelCase , pred_original_sample=__lowerCamelCase ) def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
352
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = "▁" A_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} A_ = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } A_ = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } A_ = { "ernie-m-base": 514, "ernie-m-large": 514, } A_ = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class __lowercase ( _A ): lowercase = ["input_ids"] lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = RESOURCE_FILES_NAMES def __init__( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=False , __lowerCamelCase : int="utf8" , __lowerCamelCase : Union[str, Any]="[UNK]" , __lowerCamelCase : Tuple="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : str="[CLS]" , __lowerCamelCase : List[Any]="[MASK]" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Optional[int] , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , vocab_file=__lowerCamelCase , encoding=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) lowercase = do_lower_case lowercase = sentencepiece_model_ckpt lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowercase = self.load_vocab(filepath=__lowerCamelCase ) else: lowercase = {self.sp_model.id_to_piece(__lowerCamelCase ): id for id in range(self.sp_model.get_piece_size() )} lowercase = {v: k for k, v in self.vocab.items()} def __a ( self : int , __lowerCamelCase : List[str] ) -> str: '''simple docstring''' if text is None: return None lowercase = self.tokenize(__lowerCamelCase ) lowercase ,lowercase = '''''', [] for i, ch in enumerate(__lowerCamelCase ): if ch in self.SP_CHAR_MAPPING: lowercase = self.SP_CHAR_MAPPING.get(__lowerCamelCase ) else: lowercase = unicodedata.normalize('''NFKC''' , __lowerCamelCase ) if self.is_whitespace(__lowerCamelCase ): continue normalized_text += ch char_mapping.extend([i] * len(__lowerCamelCase ) ) lowercase ,lowercase ,lowercase = normalized_text, [], 0 if self.do_lower_case: lowercase = text.lower() for token in split_tokens: if token[:1] == "▁": lowercase = token[1:] lowercase = text[offset:].index(__lowerCamelCase ) + offset lowercase = start + len(__lowerCamelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowercase = end return token_mapping @property def __a ( self : str ) -> Tuple: '''simple docstring''' return len(self.vocab ) def __a ( self : Dict ) -> Optional[Any]: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Tuple ) -> Dict: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self : int , __lowerCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def __a ( self : Any , __lowerCamelCase : Dict ) -> Optional[int]: '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(__lowerCamelCase , __lowerCamelCase ) for c in text) ) def __a ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Optional[Any]=64 , __lowerCamelCase : Any=0.1 ) -> int: '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: lowercase = True if self.sp_model_kwargs.get('''alpha''' ) is not None: lowercase = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: lowercase = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: lowercase = self.sp_model.EncodeAsPieces(__lowerCamelCase ) else: lowercase = self.sp_model.SampleEncodeAsPieces(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase = [] for pi, piece in enumerate(__lowerCamelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__lowerCamelCase ) and pi != 0: new_pieces.append(__lowerCamelCase ) continue else: continue lowercase = 0 for i, chunk in enumerate(__lowerCamelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__lowerCamelCase ) or self.is_punct(__lowerCamelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__lowerCamelCase ) lowercase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase = i if len(__lowerCamelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def __a ( self : str , __lowerCamelCase : Tuple ) -> Optional[int]: '''simple docstring''' lowercase = ''''''.join(__lowerCamelCase ).replace(__lowerCamelCase , ''' ''' ).strip() return out_string def __a ( self : List[str] , __lowerCamelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase = self.convert_ids_to_tokens(__lowerCamelCase ) lowercase = ''''''.join(__lowerCamelCase ).replace(__lowerCamelCase , ''' ''' ).strip() return out_string def __a ( self : List[Any] , __lowerCamelCase : List[str] ) -> Dict: '''simple docstring''' return self.vocab.get(__lowerCamelCase , self.vocab.get(self.unk_token ) ) def __a ( self : int , __lowerCamelCase : Optional[Any] ) -> int: '''simple docstring''' return self.reverse_vocab.get(__lowerCamelCase , self.unk_token ) def __a ( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]=None ) -> str: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def __a ( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int=None ) -> Any: '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def __a ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : int=None , __lowerCamelCase : Optional[int]=False ) -> Optional[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def __a ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(__lowerCamelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__lowerCamelCase ) + 1) + [1] * (len(__lowerCamelCase ) + 3) def __a ( self : Union[str, Any] , __lowerCamelCase : Dict ) -> str: '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def __a ( self : Tuple , __lowerCamelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def __a ( self : Dict , __lowerCamelCase : str ) -> Optional[Any]: '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def __a ( self : Optional[Any] , __lowerCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__lowerCamelCase ) == 1: lowercase = unicodedata.category(__lowerCamelCase ) if cat == "Zs": return True return False def __a ( self : Tuple , __lowerCamelCase : Optional[Any] ) -> Any: '''simple docstring''' lowercase = {} with io.open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__lowerCamelCase ): lowercase = line.rstrip('''\n''' ) lowercase = int(__lowerCamelCase ) return token_to_idx def __a ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase = 0 if os.path.isdir(__lowerCamelCase ): lowercase = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) lowercase = token_index writer.write(token + '''\n''' ) index += 1 lowercase = os.path.join(__lowerCamelCase , '''sentencepiece.bpe.model''' ) with open(__lowerCamelCase , '''wb''' ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (vocab_file,)
604
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _UpperCamelCase : list[int] ): '''simple docstring''' return len(set(_UpperCamelCase ) ) == len(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
43
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Any ) ->Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : str ) ->List[str]: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) UpperCAmelCase_ = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('''sample_euler''' ) UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : List[str] ) ->int: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) UpperCAmelCase_ = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('''sample_euler''' ) UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def lowerCAmelCase__ ( self : List[Any] ) ->Optional[int]: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) UpperCAmelCase_ = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=UpperCAmelCase__ , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
43
1
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def lowerCamelCase__ ( _lowerCamelCase : Dict ) -> str: lowerCamelCase_ = [] for line in lines: lowerCamelCase_ = re.sub(r'#.*' , '' , _lowerCamelCase ) # remove comments if line: filtered_lines.append(_lowerCamelCase ) lowerCamelCase_ = '\n'.join(_lowerCamelCase ) # Make a hash from all this code lowerCamelCase_ = full_str.encode('utf-8' ) return shaaaa(_lowerCamelCase ).hexdigest() # get importable module names and hash for caching _SCREAMING_SNAKE_CASE : Any = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _SCREAMING_SNAKE_CASE : int = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name _SCREAMING_SNAKE_CASE : Any = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
549
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__="gelu" , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__=True , UpperCamelCase__=5_12 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ): '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_multiple_size A__ = hidden_act A__ = hidden_dropout A__ = attention_dropout A__ = weight_tying A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def lowercase_ ( self ): '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = self.get_config() return config, input_ids, input_mask, token_labels def lowercase_ ( self ): '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def lowercase_ ( self ): '''simple docstring''' A__ , A__ , A__ , A__ = self.prepare_config_and_inputs() A__ = True return config, input_ids, input_mask, token_labels def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = GPTNeoXJapaneseModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) A__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = True A__ = GPTNeoXJapaneseModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = True A__ = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ = torch.cat([input_mask, next_mask] , dim=-1 ) A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) A__ = output_from_no_past["hidden_states"][0] A__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["hidden_states"][0] # select random slice A__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def lowercase_ ( self ): '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ = config_and_inputs A__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowercase__ : Union[str, Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowercase__ : Optional[int] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowercase__ : Optional[Any] = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowercase__ : Any = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : str = False def lowercase_ ( self ): '''simple docstring''' A__ = GPTNeoXJapaneseModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ): '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder() A__ = None self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = "abeja/gpt-neox-japanese-2.7b" A__ = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] A__ = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] A__ = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCamelCase__ ) A__ = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCamelCase__ ) A__ = [] for prompt in prompts: A__ = tokenizer(UpperCamelCase__ , return_tensors="pt" ).input_ids A__ = model.generate(UpperCamelCase__ , max_length=50 ) A__ = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
337
0
"""simple docstring""" def a_ ( lowerCamelCase = 1_0 ): if not isinstance(lowerCamelCase , lowerCamelCase ) or n < 0: raise ValueError('Invalid input' ) UpperCAmelCase__ = 1_0**n UpperCAmelCase__ = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , lowerCamelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
632
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" snake_case__ = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : str ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : int = 50_257 ,lowerCamelCase__ : int = 1_024 ,lowerCamelCase__ : int = 768 ,lowerCamelCase__ : int = 12 ,lowerCamelCase__ : int = 12 ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : str = "gelu_new" ,lowerCamelCase__ : float = 0.1 ,lowerCamelCase__ : float = 0.1 ,lowerCamelCase__ : float = 0.1 ,lowerCamelCase__ : float = 1e-5 ,lowerCamelCase__ : float = 0.0_2 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : bool = False ,): super().__init__() UpperCAmelCase__ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) UpperCAmelCase__ = prefix_inner_dim UpperCAmelCase__ = prefix_hidden_dim UpperCAmelCase__ = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ = ( nn.Linear(self.prefix_hidden_dim ,lowerCamelCase__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ = GPTaConfig( vocab_size=lowerCamelCase__ ,n_positions=lowerCamelCase__ ,n_embd=lowerCamelCase__ ,n_layer=lowerCamelCase__ ,n_head=lowerCamelCase__ ,n_inner=lowerCamelCase__ ,activation_function=lowerCamelCase__ ,resid_pdrop=lowerCamelCase__ ,embd_pdrop=lowerCamelCase__ ,attn_pdrop=lowerCamelCase__ ,layer_norm_epsilon=lowerCamelCase__ ,initializer_range=lowerCamelCase__ ,scale_attn_weights=lowerCamelCase__ ,use_cache=lowerCamelCase__ ,scale_attn_by_inverse_layer_idx=lowerCamelCase__ ,reorder_and_upcast_attn=lowerCamelCase__ ,) UpperCAmelCase__ = GPTaLMHeadModel(lowerCamelCase__ ) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : torch.Tensor ,lowerCamelCase__ : torch.Tensor ,lowerCamelCase__ : Optional[torch.Tensor] = None ,lowerCamelCase__ : Optional[torch.Tensor] = None ,): UpperCAmelCase__ = self.transformer.transformer.wte(lowerCamelCase__ ) UpperCAmelCase__ = self.encode_prefix(lowerCamelCase__ ) UpperCAmelCase__ = self.decode_prefix(lowerCamelCase__ ) UpperCAmelCase__ = torch.cat((prefix_embeds, embedding_text) ,dim=1 ) if labels is not None: UpperCAmelCase__ = self.get_dummy_token(input_ids.shape[0] ,input_ids.device ) UpperCAmelCase__ = torch.cat((dummy_token, input_ids) ,dim=1 ) UpperCAmelCase__ = self.transformer(inputs_embeds=lowerCamelCase__ ,labels=lowerCamelCase__ ,attention_mask=lowerCamelCase__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : torch.device ): return torch.zeros(lowerCamelCase__ ,self.prefix_length ,dtype=torch.intaa ,device=lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : List[str] ): return self.encode_prefix(lowerCamelCase__ ) @torch.no_grad() def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[int] ): UpperCAmelCase__ = torch.split(lowerCamelCase__ ,1 ,dim=0 ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] for feature in features: UpperCAmelCase__ = self.decode_prefix(feature.to(lowerCamelCase__ ) ) # back to the clip feature # Only support beam search for now UpperCAmelCase__ , UpperCAmelCase__ = self.generate_beam( input_embeds=lowerCamelCase__ ,device=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) UpperCAmelCase__ = torch.stack(lowerCamelCase__ ) UpperCAmelCase__ = torch.stack(lowerCamelCase__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : str=None ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : int = 5 ,lowerCamelCase__ : int = 67 ,lowerCamelCase__ : float = 1.0 ,lowerCamelCase__ : Optional[int] = None ,): UpperCAmelCase__ = eos_token_id UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = torch.ones(lowerCamelCase__ ,device=lowerCamelCase__ ,dtype=torch.int ) UpperCAmelCase__ = torch.zeros(lowerCamelCase__ ,device=lowerCamelCase__ ,dtype=torch.bool ) if input_embeds is not None: UpperCAmelCase__ = input_embeds else: UpperCAmelCase__ = self.transformer.transformer.wte(lowerCamelCase__ ) for i in range(lowerCamelCase__ ): UpperCAmelCase__ = self.transformer(inputs_embeds=lowerCamelCase__ ) UpperCAmelCase__ = outputs.logits UpperCAmelCase__ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCAmelCase__ = logits.softmax(-1 ).log() if scores is None: UpperCAmelCase__ , UpperCAmelCase__ = logits.topk(lowerCamelCase__ ,-1 ) UpperCAmelCase__ = generated.expand(lowerCamelCase__ ,*generated.shape[1:] ) UpperCAmelCase__ , UpperCAmelCase__ = next_tokens.permute(1 ,0 ), scores.squeeze(0 ) if tokens is None: UpperCAmelCase__ = next_tokens else: UpperCAmelCase__ = tokens.expand(lowerCamelCase__ ,*tokens.shape[1:] ) UpperCAmelCase__ = torch.cat((tokens, next_tokens) ,dim=1 ) else: UpperCAmelCase__ = -float(np.inf ) UpperCAmelCase__ = 0 UpperCAmelCase__ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCAmelCase__ = scores_sum / seq_lengths[:, None] UpperCAmelCase__ , UpperCAmelCase__ = scores_sum_average.view(-1 ).topk(lowerCamelCase__ ,-1 ) UpperCAmelCase__ = next_tokens // scores_sum.shape[1] UpperCAmelCase__ = seq_lengths[next_tokens_source] UpperCAmelCase__ = next_tokens % scores_sum.shape[1] UpperCAmelCase__ = next_tokens.unsqueeze(1 ) UpperCAmelCase__ = tokens[next_tokens_source] UpperCAmelCase__ = torch.cat((tokens, next_tokens) ,dim=1 ) UpperCAmelCase__ = generated[next_tokens_source] UpperCAmelCase__ = scores_sum_average * seq_lengths UpperCAmelCase__ = is_stopped[next_tokens_source] UpperCAmelCase__ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 ) UpperCAmelCase__ = torch.cat((generated, next_token_embed) ,dim=1 ) UpperCAmelCase__ = is_stopped + next_tokens.eq(lowerCamelCase__ ).squeeze() if is_stopped.all(): break UpperCAmelCase__ = scores / seq_lengths UpperCAmelCase__ = scores.argsort(descending=lowerCamelCase__ ) # tokens tensors are already padded to max_seq_length UpperCAmelCase__ = [tokens[i] for i in order] UpperCAmelCase__ = torch.stack(lowerCamelCase__ ,dim=0 ) UpperCAmelCase__ = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype ) return output_texts, seq_lengths
632
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class a (unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCamelCase : Any , lowerCamelCase : int=7 , lowerCamelCase : str=3 , lowerCamelCase : Optional[int]=30 , lowerCamelCase : Dict=400 , lowerCamelCase : str=True , lowerCamelCase : str=None , lowerCamelCase : Any=True , lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[int]=1 / 255 , lowerCamelCase : Any=True , ) -> str: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __snake_case : Optional[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} __snake_case : Optional[Any] = parent __snake_case : List[Any] = batch_size __snake_case : Optional[int] = num_channels __snake_case : str = min_resolution __snake_case : int = max_resolution __snake_case : int = do_resize __snake_case : Tuple = size __snake_case : Any = do_normalize __snake_case : int = image_mean __snake_case : Tuple = image_std __snake_case : Dict = do_rescale __snake_case : Optional[Any] = rescale_factor __snake_case : str = do_pad def __snake_case ( self : Any ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __snake_case ( self : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]=False ) -> List[str]: if not batched: __snake_case : Dict = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): __snake_case , __snake_case : Dict = image.size else: __snake_case , __snake_case : List[str] = image.shape[1], image.shape[2] if w < h: __snake_case : Optional[int] = int(self.size["shortest_edge"] * h / w ) __snake_case : int = self.size["shortest_edge"] elif w > h: __snake_case : List[str] = self.size["shortest_edge"] __snake_case : Optional[Any] = int(self.size["shortest_edge"] * w / h ) else: __snake_case : List[Any] = self.size["shortest_edge"] __snake_case : Any = self.size["shortest_edge"] else: __snake_case : int = [] for image in image_inputs: __snake_case , __snake_case : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case : str = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] __snake_case : str = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ConditionalDetrImageProcessor if is_vision_available() else None def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : Optional[Any] = ConditionalDetrImageProcessingTester(self ) @property def __snake_case ( self : Any ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Optional[Any] ) -> Optional[int]: __snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) def __snake_case ( self : Any ) -> Dict: __snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) __snake_case : str = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> Dict: pass def __snake_case ( self : Tuple ) -> str: # Initialize image_processing __snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case , __snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) __snake_case : Dict = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self : int ) -> str: # Initialize image_processing __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : List[Any] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self : int ) -> List[str]: # Initialize image_processing __snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : List[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : int = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __snake_case ( self : Any ) -> Optional[int]: # prepare image and target __snake_case : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __snake_case : str = json.loads(f.read() ) __snake_case : List[Any] = {"image_id": 39769, "annotations": target} # encode them __snake_case : List[str] = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) __snake_case : List[str] = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , return_tensors="pt" ) # verify pixel values __snake_case : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) __snake_case : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area __snake_case : List[Any] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes __snake_case : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) __snake_case : List[Any] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id __snake_case : Optional[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd __snake_case : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels __snake_case : Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify orig_size __snake_case : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size __snake_case : Tuple = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) ) @slow def __snake_case ( self : str ) -> Tuple: # prepare image, target and masks_path __snake_case : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __snake_case : str = json.loads(f.read() ) __snake_case : str = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} __snake_case : Optional[int] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __snake_case : int = ConditionalDetrImageProcessor(format="coco_panoptic" ) __snake_case : str = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , masks_path=lowerCamelCase , return_tensors="pt" ) # verify pixel values __snake_case : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) __snake_case : Dict = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area __snake_case : Any = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes __snake_case : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) __snake_case : Optional[Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id __snake_case : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd __snake_case : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels __snake_case : int = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify masks __snake_case : List[Any] = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCamelCase ) # verify orig_size __snake_case : List[str] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size __snake_case : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) )
81
def __UpperCamelCase ( lowerCAmelCase__ : list ): for i in range(len(lowerCAmelCase__ ) - 1 , 0 , -1 ): __a : Optional[Any] = False for j in range(lowerCAmelCase__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __a , __a : Optional[int] = unsorted[j - 1], unsorted[j] __a : Union[str, Any] = True for j in range(lowerCAmelCase__ ): if unsorted[j] > unsorted[j + 1]: __a , __a : str = unsorted[j + 1], unsorted[j] __a : str = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowercase__ =input('Enter numbers separated by a comma:\n').strip() lowercase__ =[int(item) for item in user_input.split(',')] print(F"""{cocktail_shaker_sort(unsorted) = }""")
521
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class A ( _UpperCAmelCase ): lowercase_ = '''switch_transformers''' lowercase_ = ['''past_key_values'''] lowercase_ = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[int] , UpperCamelCase_ : List[str]=32128 , UpperCamelCase_ : Tuple=768 , UpperCamelCase_ : List[str]=64 , UpperCamelCase_ : Optional[Any]=2048 , UpperCamelCase_ : Dict=64 , UpperCamelCase_ : Optional[int]=12 , UpperCamelCase_ : int=3 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : List[str]=3 , UpperCamelCase_ : List[str]=12 , UpperCamelCase_ : List[Any]=8 , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Dict=0.01 , UpperCamelCase_ : Dict="float32" , UpperCamelCase_ : int=False , UpperCamelCase_ : Union[str, Any]=32 , UpperCamelCase_ : Optional[int]=128 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Any=1e-6 , UpperCamelCase_ : int=0.001 , UpperCamelCase_ : Union[str, Any]=0.001 , UpperCamelCase_ : Dict=1.0 , UpperCamelCase_ : List[str]="relu" , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Dict=0 , UpperCamelCase_ : List[Any]=1 , **UpperCamelCase_ : Dict , ): """simple docstring""" __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Any = d_model __UpperCAmelCase : int = d_kv __UpperCAmelCase : List[str] = d_ff __UpperCAmelCase : str = num_sparse_encoder_layers __UpperCAmelCase : str = num_layers __UpperCAmelCase : Dict = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __UpperCAmelCase : Tuple = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __UpperCAmelCase : List[Any] = self.num_layers // self.num_sparse_encoder_layers else: __UpperCAmelCase : List[str] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __UpperCAmelCase : Any = self.num_decoder_layers // self.num_sparse_decoder_layers else: __UpperCAmelCase : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : List[str] = num_experts __UpperCAmelCase : int = expert_capacity __UpperCAmelCase : List[Any] = router_bias __UpperCAmelCase : Any = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}") __UpperCAmelCase : Optional[int] = router_dtype __UpperCAmelCase : str = router_ignore_padding_tokens __UpperCAmelCase : int = relative_attention_num_buckets __UpperCAmelCase : Union[str, Any] = relative_attention_max_distance __UpperCAmelCase : List[str] = dropout_rate __UpperCAmelCase : Union[str, Any] = layer_norm_epsilon __UpperCAmelCase : Union[str, Any] = initializer_factor __UpperCAmelCase : str = feed_forward_proj __UpperCAmelCase : List[Any] = use_cache __UpperCAmelCase : Union[str, Any] = add_router_probs __UpperCAmelCase : Optional[int] = router_z_loss_coef __UpperCAmelCase : List[Any] = router_aux_loss_coef __UpperCAmelCase : Union[str, Any] = self.feed_forward_proj.split("-") __UpperCAmelCase : str = act_info[-1] __UpperCAmelCase : Union[str, Any] = act_info[0] == "gated" if len(A_) > 1 and act_info[0] != "gated" or len(A_) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "\'gated-gelu\' or \'relu\'") # for backwards compatibility if feed_forward_proj == "gated-gelu": __UpperCAmelCase : Optional[int] = "gelu_new" super().__init__( pad_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , **A_ , )
705
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) A = logging.getLogger(__name__) def _UpperCamelCase ( UpperCamelCase ) -> Any: """simple docstring""" __UpperCAmelCase : Optional[Any] = git.Repo(search_parent_directories=UpperCamelCase ) __UpperCAmelCase : Any = { "repo_id": str(UpperCamelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(UpperCamelCase , "git_log.json" ) , "w" ) as f: json.dump(UpperCamelCase , UpperCamelCase , indent=4 ) def _UpperCamelCase ( UpperCamelCase ) -> str: """simple docstring""" if params.n_gpu <= 0: __UpperCAmelCase : str = 0 __UpperCAmelCase : Dict = -1 __UpperCAmelCase : Tuple = True __UpperCAmelCase : List[str] = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __UpperCAmelCase : Optional[int] = int(os.environ["WORLD_SIZE"] ) __UpperCAmelCase : Union[str, Any] = int(os.environ["N_GPU_NODE"] ) __UpperCAmelCase : Optional[int] = int(os.environ["RANK"] ) # number of nodes / node ID __UpperCAmelCase : int = params.world_size // params.n_gpu_per_node __UpperCAmelCase : Optional[int] = params.global_rank // params.n_gpu_per_node __UpperCAmelCase : Tuple = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __UpperCAmelCase : Union[str, Any] = 1 __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Any = 1 __UpperCAmelCase : str = 1 __UpperCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __UpperCAmelCase : Union[str, Any] = params.node_id == 0 and params.local_rank == 0 __UpperCAmelCase : Dict = params.n_nodes > 1 # summary __UpperCAmelCase : Any = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def _UpperCamelCase ( UpperCamelCase ) -> Tuple: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
487
0